aws-sdk-sagemaker 1.163.0 → 1.165.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 610f6dd90dba52af24881f30fa4a35e9d183eb907396b243d537e39006e07d0e
4
- data.tar.gz: 71182d23cfb1f2b558e3ffc423867ecbfe8be7ff02452cd57b0eb5044987f96c
3
+ metadata.gz: 4b70d40dafbd65952b023955c4073d7133301d2632716994ccac94b5c6774f57
4
+ data.tar.gz: c5a6a6bb92fb11d39a06022c95905587dab004239e8cdbec8e15bea88ff6d7ac
5
5
  SHA512:
6
- metadata.gz: ac0eb6215e3e00f5ae9ec8e1baeed1131235f91761f7eb8f39bed684433b635297ca563edd93dded659fa1e7134c245bfd9846818bbbbabef28245d87342ba38
7
- data.tar.gz: 6daae133e3733cc4add88549ffb9c05cc544ace9bda6f71634bdff07445d997a6c8d9d7f2a3ca84e95926b32d7111e102d6e00740e6b1893ba824223550744bb
6
+ metadata.gz: 4a3206ca0900cec98220787578385061f279879d614610dfa7c170b1d487772ca4c31b32f183015465cafd3be99adca5aa6ca7b73a8294c4dc80e0551d9c01a4
7
+ data.tar.gz: 3960e1d52159f69f3725bc33626353757cbdd7e25809bdf3e36c9d922df12bc129087cd1e3dddd4e7d80e080845d157bf7ccac2a2b95fb42ea88aa9ac5ece76a
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.165.0 (2023-01-31)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Automatic Model Tuning now supports more completion criteria for Hyperparameter Optimization.
8
+
9
+ 1.164.0 (2023-01-27)
10
+ ------------------
11
+
12
+ * Feature - This release supports running SageMaker Training jobs with container images that are in a private Docker registry.
13
+
4
14
  1.163.0 (2023-01-25)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.163.0
1
+ 1.165.0
@@ -3264,6 +3264,7 @@ module Aws::SageMaker
3264
3264
  # resource_limits: { # required
3265
3265
  # max_number_of_training_jobs: 1,
3266
3266
  # max_parallel_training_jobs: 1, # required
3267
+ # max_runtime_in_seconds: 1,
3267
3268
  # },
3268
3269
  # parameter_ranges: {
3269
3270
  # integer_parameter_ranges: [
@@ -3291,7 +3292,13 @@ module Aws::SageMaker
3291
3292
  # },
3292
3293
  # training_job_early_stopping_type: "Off", # accepts Off, Auto
3293
3294
  # tuning_job_completion_criteria: {
3294
- # target_objective_metric_value: 1.0, # required
3295
+ # target_objective_metric_value: 1.0,
3296
+ # best_objective_not_improving: {
3297
+ # max_number_of_training_jobs_not_improving: 1,
3298
+ # },
3299
+ # convergence_detected: {
3300
+ # complete_on_convergence: "Disabled", # accepts Disabled, Enabled
3301
+ # },
3295
3302
  # },
3296
3303
  # random_seed: 1,
3297
3304
  # },
@@ -6912,6 +6919,12 @@ module Aws::SageMaker
6912
6919
  # enable_sage_maker_metrics_time_series: false,
6913
6920
  # container_entrypoint: ["TrainingContainerEntrypointString"],
6914
6921
  # container_arguments: ["TrainingContainerArgument"],
6922
+ # training_image_config: {
6923
+ # training_repository_access_mode: "Platform", # required, accepts Platform, Vpc
6924
+ # training_repository_auth_config: {
6925
+ # training_repository_credentials_provider_arn: "TrainingRepositoryCredentialsProviderArn", # required
6926
+ # },
6927
+ # },
6915
6928
  # },
6916
6929
  # role_arn: "RoleArn", # required
6917
6930
  # input_data_config: [
@@ -10959,6 +10972,8 @@ module Aws::SageMaker
10959
10972
  # * {Types::DescribeHyperParameterTuningJobResponse#overall_best_training_job #overall_best_training_job} => Types::HyperParameterTrainingJobSummary
10960
10973
  # * {Types::DescribeHyperParameterTuningJobResponse#warm_start_config #warm_start_config} => Types::HyperParameterTuningJobWarmStartConfig
10961
10974
  # * {Types::DescribeHyperParameterTuningJobResponse#failure_reason #failure_reason} => String
10975
+ # * {Types::DescribeHyperParameterTuningJobResponse#tuning_job_completion_details #tuning_job_completion_details} => Types::HyperParameterTuningJobCompletionDetails
10976
+ # * {Types::DescribeHyperParameterTuningJobResponse#consumed_resources #consumed_resources} => Types::HyperParameterTuningJobConsumedResources
10962
10977
  #
10963
10978
  # @example Request syntax with placeholder values
10964
10979
  #
@@ -10977,6 +10992,7 @@ module Aws::SageMaker
10977
10992
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
10978
10993
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
10979
10994
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_parallel_training_jobs #=> Integer
10995
+ # resp.hyper_parameter_tuning_job_config.resource_limits.max_runtime_in_seconds #=> Integer
10980
10996
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges #=> Array
10981
10997
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
10982
10998
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
@@ -10993,6 +11009,8 @@ module Aws::SageMaker
10993
11009
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
10994
11010
  # resp.hyper_parameter_tuning_job_config.training_job_early_stopping_type #=> String, one of "Off", "Auto"
10995
11011
  # resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.target_objective_metric_value #=> Float
11012
+ # resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.best_objective_not_improving.max_number_of_training_jobs_not_improving #=> Integer
11013
+ # resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.convergence_detected.complete_on_convergence #=> String, one of "Disabled", "Enabled"
10996
11014
  # resp.hyper_parameter_tuning_job_config.random_seed #=> Integer
10997
11015
  # resp.training_job_definition.definition_name #=> String
10998
11016
  # resp.training_job_definition.tuning_objective.type #=> String, one of "Maximize", "Minimize"
@@ -11197,6 +11215,9 @@ module Aws::SageMaker
11197
11215
  # resp.warm_start_config.parent_hyper_parameter_tuning_jobs[0].hyper_parameter_tuning_job_name #=> String
11198
11216
  # resp.warm_start_config.warm_start_type #=> String, one of "IdenticalDataAndAlgorithm", "TransferLearning"
11199
11217
  # resp.failure_reason #=> String
11218
+ # resp.tuning_job_completion_details.number_of_training_jobs_objective_not_improving #=> Integer
11219
+ # resp.tuning_job_completion_details.convergence_detected_time #=> Time
11220
+ # resp.consumed_resources.runtime_in_seconds #=> Integer
11200
11221
  #
11201
11222
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJob AWS API Documentation
11202
11223
  #
@@ -13143,6 +13164,8 @@ module Aws::SageMaker
13143
13164
  # resp.algorithm_specification.container_entrypoint[0] #=> String
13144
13165
  # resp.algorithm_specification.container_arguments #=> Array
13145
13166
  # resp.algorithm_specification.container_arguments[0] #=> String
13167
+ # resp.algorithm_specification.training_image_config.training_repository_access_mode #=> String, one of "Platform", "Vpc"
13168
+ # resp.algorithm_specification.training_image_config.training_repository_auth_config.training_repository_credentials_provider_arn #=> String
13146
13169
  # resp.role_arn #=> String
13147
13170
  # resp.input_data_config #=> Array
13148
13171
  # resp.input_data_config[0].channel_name #=> String
@@ -16075,6 +16098,7 @@ module Aws::SageMaker
16075
16098
  # resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.failed #=> Integer
16076
16099
  # resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_number_of_training_jobs #=> Integer
16077
16100
  # resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_parallel_training_jobs #=> Integer
16101
+ # resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_runtime_in_seconds #=> Integer
16078
16102
  # resp.next_token #=> String
16079
16103
  #
16080
16104
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListHyperParameterTuningJobs AWS API Documentation
@@ -22738,7 +22762,7 @@ module Aws::SageMaker
22738
22762
  params: params,
22739
22763
  config: config)
22740
22764
  context[:gem_name] = 'aws-sdk-sagemaker'
22741
- context[:gem_version] = '1.163.0'
22765
+ context[:gem_version] = '1.165.0'
22742
22766
  Seahorse::Client::Request.new(handlers, context)
22743
22767
  end
22744
22768
 
@@ -142,6 +142,7 @@ module Aws::SageMaker
142
142
  BatchDescribeModelPackageSummary = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageSummary')
143
143
  BatchStrategy = Shapes::StringShape.new(name: 'BatchStrategy')
144
144
  BatchTransformInput = Shapes::StructureShape.new(name: 'BatchTransformInput')
145
+ BestObjectiveNotImproving = Shapes::StructureShape.new(name: 'BestObjectiveNotImproving')
145
146
  Bias = Shapes::StructureShape.new(name: 'Bias')
146
147
  BillableTimeInSeconds = Shapes::IntegerShape.new(name: 'BillableTimeInSeconds')
147
148
  BlockedReason = Shapes::StringShape.new(name: 'BlockedReason')
@@ -241,6 +242,7 @@ module Aws::SageMaker
241
242
  CompilationJobSummaries = Shapes::ListShape.new(name: 'CompilationJobSummaries')
242
243
  CompilationJobSummary = Shapes::StructureShape.new(name: 'CompilationJobSummary')
243
244
  CompilerOptions = Shapes::StringShape.new(name: 'CompilerOptions')
245
+ CompleteOnConvergence = Shapes::StringShape.new(name: 'CompleteOnConvergence')
244
246
  CompressionType = Shapes::StringShape.new(name: 'CompressionType')
245
247
  CompressionTypes = Shapes::ListShape.new(name: 'CompressionTypes')
246
248
  ConditionOutcome = Shapes::StringShape.new(name: 'ConditionOutcome')
@@ -269,6 +271,7 @@ module Aws::SageMaker
269
271
  ContinuousParameterRange = Shapes::StructureShape.new(name: 'ContinuousParameterRange')
270
272
  ContinuousParameterRangeSpecification = Shapes::StructureShape.new(name: 'ContinuousParameterRangeSpecification')
271
273
  ContinuousParameterRanges = Shapes::ListShape.new(name: 'ContinuousParameterRanges')
274
+ ConvergenceDetected = Shapes::StructureShape.new(name: 'ConvergenceDetected')
272
275
  CreateActionRequest = Shapes::StructureShape.new(name: 'CreateActionRequest')
273
276
  CreateActionResponse = Shapes::StructureShape.new(name: 'CreateActionResponse')
274
277
  CreateAlgorithmInput = Shapes::StructureShape.new(name: 'CreateAlgorithmInput')
@@ -847,7 +850,9 @@ module Aws::SageMaker
847
850
  HyperParameterTuningInstanceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningInstanceConfig')
848
851
  HyperParameterTuningInstanceConfigs = Shapes::ListShape.new(name: 'HyperParameterTuningInstanceConfigs')
849
852
  HyperParameterTuningJobArn = Shapes::StringShape.new(name: 'HyperParameterTuningJobArn')
853
+ HyperParameterTuningJobCompletionDetails = Shapes::StructureShape.new(name: 'HyperParameterTuningJobCompletionDetails')
850
854
  HyperParameterTuningJobConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobConfig')
855
+ HyperParameterTuningJobConsumedResources = Shapes::StructureShape.new(name: 'HyperParameterTuningJobConsumedResources')
851
856
  HyperParameterTuningJobName = Shapes::StringShape.new(name: 'HyperParameterTuningJobName')
852
857
  HyperParameterTuningJobObjective = Shapes::StructureShape.new(name: 'HyperParameterTuningJobObjective')
853
858
  HyperParameterTuningJobObjectiveType = Shapes::StringShape.new(name: 'HyperParameterTuningJobObjectiveType')
@@ -861,6 +866,7 @@ module Aws::SageMaker
861
866
  HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
862
867
  HyperParameterTuningJobWarmStartConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobWarmStartConfig')
863
868
  HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
869
+ HyperParameterTuningMaxRuntimeInSeconds = Shapes::IntegerShape.new(name: 'HyperParameterTuningMaxRuntimeInSeconds')
864
870
  HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
865
871
  HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
866
872
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
@@ -1153,6 +1159,7 @@ module Aws::SageMaker
1153
1159
  MaxHumanLabeledObjectCount = Shapes::IntegerShape.new(name: 'MaxHumanLabeledObjectCount')
1154
1160
  MaxNumberOfTests = Shapes::IntegerShape.new(name: 'MaxNumberOfTests')
1155
1161
  MaxNumberOfTrainingJobs = Shapes::IntegerShape.new(name: 'MaxNumberOfTrainingJobs')
1162
+ MaxNumberOfTrainingJobsNotImproving = Shapes::IntegerShape.new(name: 'MaxNumberOfTrainingJobsNotImproving')
1156
1163
  MaxParallelExecutionSteps = Shapes::IntegerShape.new(name: 'MaxParallelExecutionSteps')
1157
1164
  MaxParallelOfTests = Shapes::IntegerShape.new(name: 'MaxParallelOfTests')
1158
1165
  MaxParallelTrainingJobs = Shapes::IntegerShape.new(name: 'MaxParallelTrainingJobs')
@@ -1784,6 +1791,7 @@ module Aws::SageMaker
1784
1791
  TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
1785
1792
  TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
1786
1793
  TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
1794
+ TrainingImageConfig = Shapes::StructureShape.new(name: 'TrainingImageConfig')
1787
1795
  TrainingInputMode = Shapes::StringShape.new(name: 'TrainingInputMode')
1788
1796
  TrainingInstanceCount = Shapes::IntegerShape.new(name: 'TrainingInstanceCount')
1789
1797
  TrainingInstanceType = Shapes::StringShape.new(name: 'TrainingInstanceType')
@@ -1800,6 +1808,9 @@ module Aws::SageMaker
1800
1808
  TrainingJobStepMetadata = Shapes::StructureShape.new(name: 'TrainingJobStepMetadata')
1801
1809
  TrainingJobSummaries = Shapes::ListShape.new(name: 'TrainingJobSummaries')
1802
1810
  TrainingJobSummary = Shapes::StructureShape.new(name: 'TrainingJobSummary')
1811
+ TrainingRepositoryAccessMode = Shapes::StringShape.new(name: 'TrainingRepositoryAccessMode')
1812
+ TrainingRepositoryAuthConfig = Shapes::StructureShape.new(name: 'TrainingRepositoryAuthConfig')
1813
+ TrainingRepositoryCredentialsProviderArn = Shapes::StringShape.new(name: 'TrainingRepositoryCredentialsProviderArn')
1803
1814
  TrainingSpecification = Shapes::StructureShape.new(name: 'TrainingSpecification')
1804
1815
  TrainingTimeInSeconds = Shapes::IntegerShape.new(name: 'TrainingTimeInSeconds')
1805
1816
  TransformDataSource = Shapes::StructureShape.new(name: 'TransformDataSource')
@@ -2030,6 +2041,7 @@ module Aws::SageMaker
2030
2041
  AlgorithmSpecification.add_member(:enable_sage_maker_metrics_time_series, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableSageMakerMetricsTimeSeries"))
2031
2042
  AlgorithmSpecification.add_member(:container_entrypoint, Shapes::ShapeRef.new(shape: TrainingContainerEntrypoint, location_name: "ContainerEntrypoint"))
2032
2043
  AlgorithmSpecification.add_member(:container_arguments, Shapes::ShapeRef.new(shape: TrainingContainerArguments, location_name: "ContainerArguments"))
2044
+ AlgorithmSpecification.add_member(:training_image_config, Shapes::ShapeRef.new(shape: TrainingImageConfig, location_name: "TrainingImageConfig"))
2033
2045
  AlgorithmSpecification.struct_class = Types::AlgorithmSpecification
2034
2046
 
2035
2047
  AlgorithmStatusDetails.add_member(:validation_statuses, Shapes::ShapeRef.new(shape: AlgorithmStatusItemList, location_name: "ValidationStatuses"))
@@ -2303,6 +2315,9 @@ module Aws::SageMaker
2303
2315
  BatchTransformInput.add_member(:end_time_offset, Shapes::ShapeRef.new(shape: MonitoringTimeOffsetString, location_name: "EndTimeOffset"))
2304
2316
  BatchTransformInput.struct_class = Types::BatchTransformInput
2305
2317
 
2318
+ BestObjectiveNotImproving.add_member(:max_number_of_training_jobs_not_improving, Shapes::ShapeRef.new(shape: MaxNumberOfTrainingJobsNotImproving, location_name: "MaxNumberOfTrainingJobsNotImproving"))
2319
+ BestObjectiveNotImproving.struct_class = Types::BestObjectiveNotImproving
2320
+
2306
2321
  Bias.add_member(:report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Report"))
2307
2322
  Bias.add_member(:pre_training_report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "PreTrainingReport"))
2308
2323
  Bias.add_member(:post_training_report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "PostTrainingReport"))
@@ -2542,6 +2557,9 @@ module Aws::SageMaker
2542
2557
 
2543
2558
  ContinuousParameterRanges.member = Shapes::ShapeRef.new(shape: ContinuousParameterRange)
2544
2559
 
2560
+ ConvergenceDetected.add_member(:complete_on_convergence, Shapes::ShapeRef.new(shape: CompleteOnConvergence, location_name: "CompleteOnConvergence"))
2561
+ ConvergenceDetected.struct_class = Types::ConvergenceDetected
2562
+
2545
2563
  CreateActionRequest.add_member(:action_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, required: true, location_name: "ActionName"))
2546
2564
  CreateActionRequest.add_member(:source, Shapes::ShapeRef.new(shape: ActionSource, required: true, location_name: "Source"))
2547
2565
  CreateActionRequest.add_member(:action_type, Shapes::ShapeRef.new(shape: String256, required: true, location_name: "ActionType"))
@@ -3947,6 +3965,8 @@ module Aws::SageMaker
3947
3965
  DescribeHyperParameterTuningJobResponse.add_member(:overall_best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "OverallBestTrainingJob"))
3948
3966
  DescribeHyperParameterTuningJobResponse.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
3949
3967
  DescribeHyperParameterTuningJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
3968
+ DescribeHyperParameterTuningJobResponse.add_member(:tuning_job_completion_details, Shapes::ShapeRef.new(shape: HyperParameterTuningJobCompletionDetails, location_name: "TuningJobCompletionDetails"))
3969
+ DescribeHyperParameterTuningJobResponse.add_member(:consumed_resources, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConsumedResources, location_name: "ConsumedResources"))
3950
3970
  DescribeHyperParameterTuningJobResponse.struct_class = Types::DescribeHyperParameterTuningJobResponse
3951
3971
 
3952
3972
  DescribeImageRequest.add_member(:image_name, Shapes::ShapeRef.new(shape: ImageName, required: true, location_name: "ImageName"))
@@ -5146,6 +5166,10 @@ module Aws::SageMaker
5146
5166
 
5147
5167
  HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
5148
5168
 
5169
+ HyperParameterTuningJobCompletionDetails.add_member(:number_of_training_jobs_objective_not_improving, Shapes::ShapeRef.new(shape: Integer, location_name: "NumberOfTrainingJobsObjectiveNotImproving"))
5170
+ HyperParameterTuningJobCompletionDetails.add_member(:convergence_detected_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "ConvergenceDetectedTime"))
5171
+ HyperParameterTuningJobCompletionDetails.struct_class = Types::HyperParameterTuningJobCompletionDetails
5172
+
5149
5173
  HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
5150
5174
  HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
5151
5175
  HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
@@ -5156,6 +5180,9 @@ module Aws::SageMaker
5156
5180
  HyperParameterTuningJobConfig.add_member(:random_seed, Shapes::ShapeRef.new(shape: RandomSeed, location_name: "RandomSeed"))
5157
5181
  HyperParameterTuningJobConfig.struct_class = Types::HyperParameterTuningJobConfig
5158
5182
 
5183
+ HyperParameterTuningJobConsumedResources.add_member(:runtime_in_seconds, Shapes::ShapeRef.new(shape: Integer, location_name: "RuntimeInSeconds"))
5184
+ HyperParameterTuningJobConsumedResources.struct_class = Types::HyperParameterTuningJobConsumedResources
5185
+
5159
5186
  HyperParameterTuningJobObjective.add_member(:type, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjectiveType, required: true, location_name: "Type"))
5160
5187
  HyperParameterTuningJobObjective.add_member(:metric_name, Shapes::ShapeRef.new(shape: MetricName, required: true, location_name: "MetricName"))
5161
5188
  HyperParameterTuningJobObjective.struct_class = Types::HyperParameterTuningJobObjective
@@ -5178,6 +5205,8 @@ module Aws::SageMaker
5178
5205
  HyperParameterTuningJobSearchEntity.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
5179
5206
  HyperParameterTuningJobSearchEntity.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
5180
5207
  HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5208
+ HyperParameterTuningJobSearchEntity.add_member(:tuning_job_completion_details, Shapes::ShapeRef.new(shape: HyperParameterTuningJobCompletionDetails, location_name: "TuningJobCompletionDetails"))
5209
+ HyperParameterTuningJobSearchEntity.add_member(:consumed_resources, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConsumedResources, location_name: "ConsumedResources"))
5181
5210
  HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
5182
5211
 
5183
5212
  HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
@@ -7710,6 +7739,7 @@ module Aws::SageMaker
7710
7739
 
7711
7740
  ResourceLimits.add_member(:max_number_of_training_jobs, Shapes::ShapeRef.new(shape: MaxNumberOfTrainingJobs, location_name: "MaxNumberOfTrainingJobs"))
7712
7741
  ResourceLimits.add_member(:max_parallel_training_jobs, Shapes::ShapeRef.new(shape: MaxParallelTrainingJobs, required: true, location_name: "MaxParallelTrainingJobs"))
7742
+ ResourceLimits.add_member(:max_runtime_in_seconds, Shapes::ShapeRef.new(shape: HyperParameterTuningMaxRuntimeInSeconds, location_name: "MaxRuntimeInSeconds"))
7713
7743
  ResourceLimits.struct_class = Types::ResourceLimits
7714
7744
 
7715
7745
  ResourceNotFound.add_member(:message, Shapes::ShapeRef.new(shape: FailureReason, location_name: "Message"))
@@ -8030,6 +8060,10 @@ module Aws::SageMaker
8030
8060
  TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
8031
8061
  TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
8032
8062
 
8063
+ TrainingImageConfig.add_member(:training_repository_access_mode, Shapes::ShapeRef.new(shape: TrainingRepositoryAccessMode, required: true, location_name: "TrainingRepositoryAccessMode"))
8064
+ TrainingImageConfig.add_member(:training_repository_auth_config, Shapes::ShapeRef.new(shape: TrainingRepositoryAuthConfig, location_name: "TrainingRepositoryAuthConfig"))
8065
+ TrainingImageConfig.struct_class = Types::TrainingImageConfig
8066
+
8033
8067
  TrainingInstanceTypes.member = Shapes::ShapeRef.new(shape: TrainingInstanceType)
8034
8068
 
8035
8069
  TrainingJob.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, location_name: "TrainingJobName"))
@@ -8100,6 +8134,9 @@ module Aws::SageMaker
8100
8134
  TrainingJobSummary.add_member(:warm_pool_status, Shapes::ShapeRef.new(shape: WarmPoolStatus, location_name: "WarmPoolStatus"))
8101
8135
  TrainingJobSummary.struct_class = Types::TrainingJobSummary
8102
8136
 
8137
+ TrainingRepositoryAuthConfig.add_member(:training_repository_credentials_provider_arn, Shapes::ShapeRef.new(shape: TrainingRepositoryCredentialsProviderArn, required: true, location_name: "TrainingRepositoryCredentialsProviderArn"))
8138
+ TrainingRepositoryAuthConfig.struct_class = Types::TrainingRepositoryAuthConfig
8139
+
8103
8140
  TrainingSpecification.add_member(:training_image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "TrainingImage"))
8104
8141
  TrainingSpecification.add_member(:training_image_digest, Shapes::ShapeRef.new(shape: ImageDigest, location_name: "TrainingImageDigest"))
8105
8142
  TrainingSpecification.add_member(:supported_hyper_parameters, Shapes::ShapeRef.new(shape: HyperParameterSpecifications, location_name: "SupportedHyperParameters"))
@@ -8303,7 +8340,9 @@ module Aws::SageMaker
8303
8340
  TrialSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
8304
8341
  TrialSummary.struct_class = Types::TrialSummary
8305
8342
 
8306
- TuningJobCompletionCriteria.add_member(:target_objective_metric_value, Shapes::ShapeRef.new(shape: TargetObjectiveMetricValue, required: true, location_name: "TargetObjectiveMetricValue"))
8343
+ TuningJobCompletionCriteria.add_member(:target_objective_metric_value, Shapes::ShapeRef.new(shape: TargetObjectiveMetricValue, location_name: "TargetObjectiveMetricValue"))
8344
+ TuningJobCompletionCriteria.add_member(:best_objective_not_improving, Shapes::ShapeRef.new(shape: BestObjectiveNotImproving, location_name: "BestObjectiveNotImproving"))
8345
+ TuningJobCompletionCriteria.add_member(:convergence_detected, Shapes::ShapeRef.new(shape: ConvergenceDetected, location_name: "ConvergenceDetected"))
8307
8346
  TuningJobCompletionCriteria.struct_class = Types::TuningJobCompletionCriteria
8308
8347
 
8309
8348
  TuningJobStepMetaData.add_member(:arn, Shapes::ShapeRef.new(shape: HyperParameterTuningJobArn, location_name: "Arn"))
@@ -33,13 +33,10 @@ module Aws::SageMaker
33
33
  if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
34
34
  if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
35
35
  if Aws::Endpoints::Matchers.string_equals?("aws", Aws::Endpoints::Matchers.attr(partition_result, "name"))
36
- return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
37
- end
38
- if Aws::Endpoints::Matchers.string_equals?(region, "us-gov-west-1-secondary")
39
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.us-gov-west-1.amazonaws.com", headers: {}, properties: {})
36
+ return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
40
37
  end
41
38
  if Aws::Endpoints::Matchers.string_equals?("aws-us-gov", Aws::Endpoints::Matchers.attr(partition_result, "name"))
42
- return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
39
+ return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
43
40
  end
44
41
  return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
45
42
  end
@@ -411,6 +411,11 @@ module Aws::SageMaker
411
411
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html
412
412
  # @return [Array<String>]
413
413
  #
414
+ # @!attribute [rw] training_image_config
415
+ # The configuration to use an image from a private Docker registry for
416
+ # a training job.
417
+ # @return [Types::TrainingImageConfig]
418
+ #
414
419
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmSpecification AWS API Documentation
415
420
  #
416
421
  class AlgorithmSpecification < Struct.new(
@@ -420,7 +425,8 @@ module Aws::SageMaker
420
425
  :metric_definitions,
421
426
  :enable_sage_maker_metrics_time_series,
422
427
  :container_entrypoint,
423
- :container_arguments)
428
+ :container_arguments,
429
+ :training_image_config)
424
430
  SENSITIVE = []
425
431
  include Aws::Structure
426
432
  end
@@ -2598,6 +2604,24 @@ module Aws::SageMaker
2598
2604
  include Aws::Structure
2599
2605
  end
2600
2606
 
2607
+ # A structure that keeps track of which training jobs launched by your
2608
+ # hyperparameter tuning job are not improving model performance as
2609
+ # evaluated against an objective function.
2610
+ #
2611
+ # @!attribute [rw] max_number_of_training_jobs_not_improving
2612
+ # The number of training jobs that have failed to improve model
2613
+ # performance by 1% or greater over prior training jobs as evaluated
2614
+ # against an objective function.
2615
+ # @return [Integer]
2616
+ #
2617
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BestObjectiveNotImproving AWS API Documentation
2618
+ #
2619
+ class BestObjectiveNotImproving < Struct.new(
2620
+ :max_number_of_training_jobs_not_improving)
2621
+ SENSITIVE = []
2622
+ include Aws::Structure
2623
+ end
2624
+
2601
2625
  # Contains bias metrics for a model.
2602
2626
  #
2603
2627
  # @!attribute [rw] report
@@ -3919,6 +3943,23 @@ module Aws::SageMaker
3919
3943
  include Aws::Structure
3920
3944
  end
3921
3945
 
3946
+ # A flag to indicating that automatic model tuning (AMT) has detected
3947
+ # model convergence, defined as a lack of significant improvement (1% or
3948
+ # less) against an objective metric.
3949
+ #
3950
+ # @!attribute [rw] complete_on_convergence
3951
+ # A flag to stop a tuning job once AMT has detected that the job has
3952
+ # converged.
3953
+ # @return [String]
3954
+ #
3955
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ConvergenceDetected AWS API Documentation
3956
+ #
3957
+ class ConvergenceDetected < Struct.new(
3958
+ :complete_on_convergence)
3959
+ SENSITIVE = []
3960
+ include Aws::Structure
3961
+ end
3962
+
3922
3963
  # @!attribute [rw] action_name
3923
3964
  # The name of the action. Must be unique to your account in an Amazon
3924
3965
  # Web Services Region.
@@ -11836,6 +11877,18 @@ module Aws::SageMaker
11836
11877
  # If the tuning job failed, the reason it failed.
11837
11878
  # @return [String]
11838
11879
  #
11880
+ # @!attribute [rw] tuning_job_completion_details
11881
+ # Tuning job completion information returned as the response from a
11882
+ # hyperparameter tuning job. This information tells if your tuning job
11883
+ # has or has not converged. It also includes the number of training
11884
+ # jobs that have not improved model performance as evaluated against
11885
+ # the objective function.
11886
+ # @return [Types::HyperParameterTuningJobCompletionDetails]
11887
+ #
11888
+ # @!attribute [rw] consumed_resources
11889
+ # The total resources consumed by your hyperparameter tuning job.
11890
+ # @return [Types::HyperParameterTuningJobConsumedResources]
11891
+ #
11839
11892
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJobResponse AWS API Documentation
11840
11893
  #
11841
11894
  class DescribeHyperParameterTuningJobResponse < Struct.new(
@@ -11853,7 +11906,9 @@ module Aws::SageMaker
11853
11906
  :best_training_job,
11854
11907
  :overall_best_training_job,
11855
11908
  :warm_start_config,
11856
- :failure_reason)
11909
+ :failure_reason,
11910
+ :tuning_job_completion_details,
11911
+ :consumed_resources)
11857
11912
  SENSITIVE = []
11858
11913
  include Aws::Structure
11859
11914
  end
@@ -19141,6 +19196,30 @@ module Aws::SageMaker
19141
19196
  include Aws::Structure
19142
19197
  end
19143
19198
 
19199
+ # A structure that contains runtime information about both current and
19200
+ # completed hyperparameter tuning jobs.
19201
+ #
19202
+ # @!attribute [rw] number_of_training_jobs_objective_not_improving
19203
+ # The number of training jobs launched by a tuning job that are not
19204
+ # improving (1% or less) as measured by model performance evaluated
19205
+ # against an objective function.
19206
+ # @return [Integer]
19207
+ #
19208
+ # @!attribute [rw] convergence_detected_time
19209
+ # The time in timestamp format that AMT detected model convergence, as
19210
+ # defined by a lack of significant improvement over time based on
19211
+ # criteria developed over a wide range of diverse benchmarking tests.
19212
+ # @return [Time]
19213
+ #
19214
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobCompletionDetails AWS API Documentation
19215
+ #
19216
+ class HyperParameterTuningJobCompletionDetails < Struct.new(
19217
+ :number_of_training_jobs_objective_not_improving,
19218
+ :convergence_detected_time)
19219
+ SENSITIVE = []
19220
+ include Aws::Structure
19221
+ end
19222
+
19144
19223
  # Configures a hyperparameter tuning job.
19145
19224
  #
19146
19225
  # @!attribute [rw] strategy
@@ -19230,6 +19309,21 @@ module Aws::SageMaker
19230
19309
  include Aws::Structure
19231
19310
  end
19232
19311
 
19312
+ # The total resources consumed by your hyperparameter tuning job.
19313
+ #
19314
+ # @!attribute [rw] runtime_in_seconds
19315
+ # The wall clock runtime in seconds used by your hyperparameter tuning
19316
+ # job.
19317
+ # @return [Integer]
19318
+ #
19319
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobConsumedResources AWS API Documentation
19320
+ #
19321
+ class HyperParameterTuningJobConsumedResources < Struct.new(
19322
+ :runtime_in_seconds)
19323
+ SENSITIVE = []
19324
+ include Aws::Structure
19325
+ end
19326
+
19233
19327
  # Defines the objective metric for a hyperparameter tuning job.
19234
19328
  # Hyperparameter tuning uses the value of this metric to evaluate the
19235
19329
  # training jobs it launches, and returns the training job that results
@@ -19351,6 +19445,16 @@ module Aws::SageMaker
19351
19445
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
19352
19446
  # @return [Array<Types::Tag>]
19353
19447
  #
19448
+ # @!attribute [rw] tuning_job_completion_details
19449
+ # Information about either a current or completed hyperparameter
19450
+ # tuning job.
19451
+ # @return [Types::HyperParameterTuningJobCompletionDetails]
19452
+ #
19453
+ # @!attribute [rw] consumed_resources
19454
+ # The total amount of resources consumed by a hyperparameter tuning
19455
+ # job.
19456
+ # @return [Types::HyperParameterTuningJobConsumedResources]
19457
+ #
19354
19458
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobSearchEntity AWS API Documentation
19355
19459
  #
19356
19460
  class HyperParameterTuningJobSearchEntity < Struct.new(
@@ -19369,7 +19473,9 @@ module Aws::SageMaker
19369
19473
  :overall_best_training_job,
19370
19474
  :warm_start_config,
19371
19475
  :failure_reason,
19372
- :tags)
19476
+ :tags,
19477
+ :tuning_job_completion_details,
19478
+ :consumed_resources)
19373
19479
  SENSITIVE = []
19374
19480
  include Aws::Structure
19375
19481
  end
@@ -33344,11 +33450,17 @@ module Aws::SageMaker
33344
33450
  # tuning job can launch.
33345
33451
  # @return [Integer]
33346
33452
  #
33453
+ # @!attribute [rw] max_runtime_in_seconds
33454
+ # The maximum time in seconds that a training job launched by a
33455
+ # hyperparameter tuning job can run.
33456
+ # @return [Integer]
33457
+ #
33347
33458
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ResourceLimits AWS API Documentation
33348
33459
  #
33349
33460
  class ResourceLimits < Struct.new(
33350
33461
  :max_number_of_training_jobs,
33351
- :max_parallel_training_jobs)
33462
+ :max_parallel_training_jobs,
33463
+ :max_runtime_in_seconds)
33352
33464
  SENSITIVE = []
33353
33465
  include Aws::Structure
33354
33466
  end
@@ -35172,6 +35284,29 @@ module Aws::SageMaker
35172
35284
  include Aws::Structure
35173
35285
  end
35174
35286
 
35287
+ # The configuration to use an image from a private Docker registry for a
35288
+ # training job.
35289
+ #
35290
+ # @!attribute [rw] training_repository_access_mode
35291
+ # The method that your training job will use to gain access to the
35292
+ # images in your private Docker registry. For access to an image in a
35293
+ # private Docker registry, set to `Vpc`.
35294
+ # @return [String]
35295
+ #
35296
+ # @!attribute [rw] training_repository_auth_config
35297
+ # An object containing authentication information for a private Docker
35298
+ # registry containing your training images.
35299
+ # @return [Types::TrainingRepositoryAuthConfig]
35300
+ #
35301
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingImageConfig AWS API Documentation
35302
+ #
35303
+ class TrainingImageConfig < Struct.new(
35304
+ :training_repository_access_mode,
35305
+ :training_repository_auth_config)
35306
+ SENSITIVE = []
35307
+ include Aws::Structure
35308
+ end
35309
+
35175
35310
  # Contains information about a training job.
35176
35311
  #
35177
35312
  # @!attribute [rw] training_job_name
@@ -35701,6 +35836,23 @@ module Aws::SageMaker
35701
35836
  include Aws::Structure
35702
35837
  end
35703
35838
 
35839
+ # An object containing authentication information for a private Docker
35840
+ # registry.
35841
+ #
35842
+ # @!attribute [rw] training_repository_credentials_provider_arn
35843
+ # The Amazon Resource Name (ARN) of an Amazon Web Services Lambda
35844
+ # function used to give SageMaker access credentials to your private
35845
+ # Docker registry.
35846
+ # @return [String]
35847
+ #
35848
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingRepositoryAuthConfig AWS API Documentation
35849
+ #
35850
+ class TrainingRepositoryAuthConfig < Struct.new(
35851
+ :training_repository_credentials_provider_arn)
35852
+ SENSITIVE = []
35853
+ include Aws::Structure
35854
+ end
35855
+
35704
35856
  # Defines how the algorithm is used for a training job.
35705
35857
  #
35706
35858
  # @!attribute [rw] training_image
@@ -36910,10 +37062,23 @@ module Aws::SageMaker
36910
37062
  # The value of the objective metric.
36911
37063
  # @return [Float]
36912
37064
  #
37065
+ # @!attribute [rw] best_objective_not_improving
37066
+ # A flag to stop your hyperparameter tuning job if model performance
37067
+ # fails to improve as evaluated against an objective function.
37068
+ # @return [Types::BestObjectiveNotImproving]
37069
+ #
37070
+ # @!attribute [rw] convergence_detected
37071
+ # A flag to top your hyperparameter tuning job if automatic model
37072
+ # tuning (AMT) has detected that your model has converged as evaluated
37073
+ # against your objective function.
37074
+ # @return [Types::ConvergenceDetected]
37075
+ #
36913
37076
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
36914
37077
  #
36915
37078
  class TuningJobCompletionCriteria < Struct.new(
36916
- :target_objective_metric_value)
37079
+ :target_objective_metric_value,
37080
+ :best_objective_not_improving,
37081
+ :convergence_detected)
36917
37082
  SENSITIVE = []
36918
37083
  include Aws::Structure
36919
37084
  end
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.163.0'
56
+ GEM_VERSION = '1.165.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.163.0
4
+ version: 1.165.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-01-25 00:00:00.000000000 Z
11
+ date: 2023-01-31 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core