aws-sdk-sagemaker 1.162.0 → 1.163.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 226c8b36176d95e7bf9bbd3bf0014a56b8763bead617bb62a2f1213be87a7dab
4
- data.tar.gz: 921fccb0d6d628d696e77073db1eed3a137a611f7a24c86bfa2e79d3793cc60d
3
+ metadata.gz: 610f6dd90dba52af24881f30fa4a35e9d183eb907396b243d537e39006e07d0e
4
+ data.tar.gz: 71182d23cfb1f2b558e3ffc423867ecbfe8be7ff02452cd57b0eb5044987f96c
5
5
  SHA512:
6
- metadata.gz: d387d9205155449220d201e6cff0c4938c0e31e4e73b8bbc6ce6e13e3d1e6795424d2542acf52fad72e8bf358c56a8cd7c9045f15feb09fa9d33dcf866dd3f7c
7
- data.tar.gz: 1c8a40798f7ce00537e709bbc3eae2c90587bda53a337b4b2fbdd98895d139d5b7bce5c4b44c5e0f8c78f6cc120d9d812f03c4651a0f39a0c356995c2a24376e
6
+ metadata.gz: ac0eb6215e3e00f5ae9ec8e1baeed1131235f91761f7eb8f39bed684433b635297ca563edd93dded659fa1e7134c245bfd9846818bbbbabef28245d87342ba38
7
+ data.tar.gz: 6daae133e3733cc4add88549ffb9c05cc544ace9bda6f71634bdff07445d997a6c8d9d7f2a3ca84e95926b32d7111e102d6e00740e6b1893ba824223550744bb
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.163.0 (2023-01-25)
5
+ ------------------
6
+
7
+ * Feature - SageMaker Inference Recommender now decouples from Model Registry and could accept Model Name to invoke inference recommendations job; Inference Recommender now provides CPU/Memory Utilization metrics data in recommendation output.
8
+
4
9
  1.162.0 (2023-01-23)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.162.0
1
+ 1.163.0
@@ -3995,7 +3995,7 @@ module Aws::SageMaker
3995
3995
  # job_type: "Default", # required, accepts Default, Advanced
3996
3996
  # role_arn: "RoleArn", # required
3997
3997
  # input_config: { # required
3998
- # model_package_version_arn: "ModelPackageArn", # required
3998
+ # model_package_version_arn: "ModelPackageArn",
3999
3999
  # job_duration_in_seconds: 1,
4000
4000
  # traffic_pattern: {
4001
4001
  # traffic_type: "PHASES", # accepts PHASES
@@ -4037,6 +4037,7 @@ module Aws::SageMaker
4037
4037
  # },
4038
4038
  # nearest_model_name: "String",
4039
4039
  # supported_instance_types: ["String"],
4040
+ # data_input_config: "RecommendationJobDataInputConfig",
4040
4041
  # },
4041
4042
  # endpoints: [
4042
4043
  # {
@@ -4047,6 +4048,7 @@ module Aws::SageMaker
4047
4048
  # security_group_ids: ["RecommendationJobVpcSecurityGroupId"], # required
4048
4049
  # subnets: ["RecommendationJobVpcSubnetId"], # required
4049
4050
  # },
4051
+ # model_name: "ModelName",
4050
4052
  # },
4051
4053
  # job_description: "RecommendationJobDescription",
4052
4054
  # stopping_conditions: {
@@ -11474,12 +11476,14 @@ module Aws::SageMaker
11474
11476
  # resp.input_config.container_config.nearest_model_name #=> String
11475
11477
  # resp.input_config.container_config.supported_instance_types #=> Array
11476
11478
  # resp.input_config.container_config.supported_instance_types[0] #=> String
11479
+ # resp.input_config.container_config.data_input_config #=> String
11477
11480
  # resp.input_config.endpoints #=> Array
11478
11481
  # resp.input_config.endpoints[0].endpoint_name #=> String
11479
11482
  # resp.input_config.vpc_config.security_group_ids #=> Array
11480
11483
  # resp.input_config.vpc_config.security_group_ids[0] #=> String
11481
11484
  # resp.input_config.vpc_config.subnets #=> Array
11482
11485
  # resp.input_config.vpc_config.subnets[0] #=> String
11486
+ # resp.input_config.model_name #=> String
11483
11487
  # resp.stopping_conditions.max_invocations #=> Integer
11484
11488
  # resp.stopping_conditions.model_latency_thresholds #=> Array
11485
11489
  # resp.stopping_conditions.model_latency_thresholds[0].percentile #=> String
@@ -11489,6 +11493,8 @@ module Aws::SageMaker
11489
11493
  # resp.inference_recommendations[0].metrics.cost_per_inference #=> Float
11490
11494
  # resp.inference_recommendations[0].metrics.max_invocations #=> Integer
11491
11495
  # resp.inference_recommendations[0].metrics.model_latency #=> Integer
11496
+ # resp.inference_recommendations[0].metrics.cpu_utilization #=> Float
11497
+ # resp.inference_recommendations[0].metrics.memory_utilization #=> Float
11492
11498
  # resp.inference_recommendations[0].endpoint_configuration.endpoint_name #=> String
11493
11499
  # resp.inference_recommendations[0].endpoint_configuration.variant_name #=> String
11494
11500
  # resp.inference_recommendations[0].endpoint_configuration.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge", "ml.c6i.large", "ml.c6i.xlarge", "ml.c6i.2xlarge", "ml.c6i.4xlarge", "ml.c6i.8xlarge", "ml.c6i.12xlarge", "ml.c6i.16xlarge", "ml.c6i.24xlarge", "ml.c6i.32xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.12xlarge", "ml.g5.16xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge", "ml.p4d.24xlarge", "ml.c7g.large", "ml.c7g.xlarge", "ml.c7g.2xlarge", "ml.c7g.4xlarge", "ml.c7g.8xlarge", "ml.c7g.12xlarge", "ml.c7g.16xlarge", "ml.m6g.large", "ml.m6g.xlarge", "ml.m6g.2xlarge", "ml.m6g.4xlarge", "ml.m6g.8xlarge", "ml.m6g.12xlarge", "ml.m6g.16xlarge", "ml.m6gd.large", "ml.m6gd.xlarge", "ml.m6gd.2xlarge", "ml.m6gd.4xlarge", "ml.m6gd.8xlarge", "ml.m6gd.12xlarge", "ml.m6gd.16xlarge", "ml.c6g.large", "ml.c6g.xlarge", "ml.c6g.2xlarge", "ml.c6g.4xlarge", "ml.c6g.8xlarge", "ml.c6g.12xlarge", "ml.c6g.16xlarge", "ml.c6gd.large", "ml.c6gd.xlarge", "ml.c6gd.2xlarge", "ml.c6gd.4xlarge", "ml.c6gd.8xlarge", "ml.c6gd.12xlarge", "ml.c6gd.16xlarge", "ml.c6gn.large", "ml.c6gn.xlarge", "ml.c6gn.2xlarge", "ml.c6gn.4xlarge", "ml.c6gn.8xlarge", "ml.c6gn.12xlarge", "ml.c6gn.16xlarge", "ml.r6g.large", "ml.r6g.xlarge", "ml.r6g.2xlarge", "ml.r6g.4xlarge", "ml.r6g.8xlarge", "ml.r6g.12xlarge", "ml.r6g.16xlarge", "ml.r6gd.large", "ml.r6gd.xlarge", "ml.r6gd.2xlarge", "ml.r6gd.4xlarge", "ml.r6gd.8xlarge", "ml.r6gd.12xlarge", "ml.r6gd.16xlarge", "ml.p4de.24xlarge"
@@ -11498,6 +11504,8 @@ module Aws::SageMaker
11498
11504
  # resp.inference_recommendations[0].model_configuration.environment_parameters[0].key #=> String
11499
11505
  # resp.inference_recommendations[0].model_configuration.environment_parameters[0].value_type #=> String
11500
11506
  # resp.inference_recommendations[0].model_configuration.environment_parameters[0].value #=> String
11507
+ # resp.inference_recommendations[0].model_configuration.compilation_job_name #=> String
11508
+ # resp.inference_recommendations[0].recommendation_id #=> String
11501
11509
  # resp.endpoint_performances #=> Array
11502
11510
  # resp.endpoint_performances[0].metrics.max_invocations #=> Integer
11503
11511
  # resp.endpoint_performances[0].metrics.model_latency #=> Integer
@@ -16382,6 +16390,8 @@ module Aws::SageMaker
16382
16390
  # resp.steps[0].inference_benchmark.metrics.cost_per_inference #=> Float
16383
16391
  # resp.steps[0].inference_benchmark.metrics.max_invocations #=> Integer
16384
16392
  # resp.steps[0].inference_benchmark.metrics.model_latency #=> Integer
16393
+ # resp.steps[0].inference_benchmark.metrics.cpu_utilization #=> Float
16394
+ # resp.steps[0].inference_benchmark.metrics.memory_utilization #=> Float
16385
16395
  # resp.steps[0].inference_benchmark.endpoint_configuration.endpoint_name #=> String
16386
16396
  # resp.steps[0].inference_benchmark.endpoint_configuration.variant_name #=> String
16387
16397
  # resp.steps[0].inference_benchmark.endpoint_configuration.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.12xlarge", "ml.m5d.24xlarge", "ml.c4.large", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.large", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.12xlarge", "ml.r5.24xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.12xlarge", "ml.r5d.24xlarge", "ml.inf1.xlarge", "ml.inf1.2xlarge", "ml.inf1.6xlarge", "ml.inf1.24xlarge", "ml.c6i.large", "ml.c6i.xlarge", "ml.c6i.2xlarge", "ml.c6i.4xlarge", "ml.c6i.8xlarge", "ml.c6i.12xlarge", "ml.c6i.16xlarge", "ml.c6i.24xlarge", "ml.c6i.32xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.12xlarge", "ml.g5.16xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge", "ml.p4d.24xlarge", "ml.c7g.large", "ml.c7g.xlarge", "ml.c7g.2xlarge", "ml.c7g.4xlarge", "ml.c7g.8xlarge", "ml.c7g.12xlarge", "ml.c7g.16xlarge", "ml.m6g.large", "ml.m6g.xlarge", "ml.m6g.2xlarge", "ml.m6g.4xlarge", "ml.m6g.8xlarge", "ml.m6g.12xlarge", "ml.m6g.16xlarge", "ml.m6gd.large", "ml.m6gd.xlarge", "ml.m6gd.2xlarge", "ml.m6gd.4xlarge", "ml.m6gd.8xlarge", "ml.m6gd.12xlarge", "ml.m6gd.16xlarge", "ml.c6g.large", "ml.c6g.xlarge", "ml.c6g.2xlarge", "ml.c6g.4xlarge", "ml.c6g.8xlarge", "ml.c6g.12xlarge", "ml.c6g.16xlarge", "ml.c6gd.large", "ml.c6gd.xlarge", "ml.c6gd.2xlarge", "ml.c6gd.4xlarge", "ml.c6gd.8xlarge", "ml.c6gd.12xlarge", "ml.c6gd.16xlarge", "ml.c6gn.large", "ml.c6gn.xlarge", "ml.c6gn.2xlarge", "ml.c6gn.4xlarge", "ml.c6gn.8xlarge", "ml.c6gn.12xlarge", "ml.c6gn.16xlarge", "ml.r6g.large", "ml.r6g.xlarge", "ml.r6g.2xlarge", "ml.r6g.4xlarge", "ml.r6g.8xlarge", "ml.r6g.12xlarge", "ml.r6g.16xlarge", "ml.r6gd.large", "ml.r6gd.xlarge", "ml.r6gd.2xlarge", "ml.r6gd.4xlarge", "ml.r6gd.8xlarge", "ml.r6gd.12xlarge", "ml.r6gd.16xlarge", "ml.p4de.24xlarge"
@@ -16391,6 +16401,7 @@ module Aws::SageMaker
16391
16401
  # resp.steps[0].inference_benchmark.model_configuration.environment_parameters[0].key #=> String
16392
16402
  # resp.steps[0].inference_benchmark.model_configuration.environment_parameters[0].value_type #=> String
16393
16403
  # resp.steps[0].inference_benchmark.model_configuration.environment_parameters[0].value #=> String
16404
+ # resp.steps[0].inference_benchmark.model_configuration.compilation_job_name #=> String
16394
16405
  # resp.steps[0].inference_benchmark.failure_reason #=> String
16395
16406
  # resp.next_token #=> String
16396
16407
  #
@@ -22727,7 +22738,7 @@ module Aws::SageMaker
22727
22738
  params: params,
22728
22739
  config: config)
22729
22740
  context[:gem_name] = 'aws-sdk-sagemaker'
22730
- context[:gem_version] = '1.162.0'
22741
+ context[:gem_version] = '1.163.0'
22731
22742
  Seahorse::Client::Request.new(handlers, context)
22732
22743
  end
22733
22744
 
@@ -1543,8 +1543,10 @@ module Aws::SageMaker
1543
1543
  RealtimeInferenceInstanceTypes = Shapes::ListShape.new(name: 'RealtimeInferenceInstanceTypes')
1544
1544
  RecommendationFailureReason = Shapes::StringShape.new(name: 'RecommendationFailureReason')
1545
1545
  RecommendationJobArn = Shapes::StringShape.new(name: 'RecommendationJobArn')
1546
+ RecommendationJobCompilationJobName = Shapes::StringShape.new(name: 'RecommendationJobCompilationJobName')
1546
1547
  RecommendationJobCompiledOutputConfig = Shapes::StructureShape.new(name: 'RecommendationJobCompiledOutputConfig')
1547
1548
  RecommendationJobContainerConfig = Shapes::StructureShape.new(name: 'RecommendationJobContainerConfig')
1549
+ RecommendationJobDataInputConfig = Shapes::StringShape.new(name: 'RecommendationJobDataInputConfig')
1548
1550
  RecommendationJobDescription = Shapes::StringShape.new(name: 'RecommendationJobDescription')
1549
1551
  RecommendationJobInferenceBenchmark = Shapes::StructureShape.new(name: 'RecommendationJobInferenceBenchmark')
1550
1552
  RecommendationJobInputConfig = Shapes::StructureShape.new(name: 'RecommendationJobInputConfig')
@@ -1925,6 +1927,7 @@ module Aws::SageMaker
1925
1927
  UserProfileSortKey = Shapes::StringShape.new(name: 'UserProfileSortKey')
1926
1928
  UserProfileStatus = Shapes::StringShape.new(name: 'UserProfileStatus')
1927
1929
  UserSettings = Shapes::StructureShape.new(name: 'UserSettings')
1930
+ UtilizationMetric = Shapes::FloatShape.new(name: 'UtilizationMetric')
1928
1931
  ValidationFraction = Shapes::FloatShape.new(name: 'ValidationFraction')
1929
1932
  VariantName = Shapes::StringShape.new(name: 'VariantName')
1930
1933
  VariantProperty = Shapes::StructureShape.new(name: 'VariantProperty')
@@ -5292,6 +5295,7 @@ module Aws::SageMaker
5292
5295
  InferenceRecommendation.add_member(:metrics, Shapes::ShapeRef.new(shape: RecommendationMetrics, required: true, location_name: "Metrics"))
5293
5296
  InferenceRecommendation.add_member(:endpoint_configuration, Shapes::ShapeRef.new(shape: EndpointOutputConfiguration, required: true, location_name: "EndpointConfiguration"))
5294
5297
  InferenceRecommendation.add_member(:model_configuration, Shapes::ShapeRef.new(shape: ModelConfiguration, required: true, location_name: "ModelConfiguration"))
5298
+ InferenceRecommendation.add_member(:recommendation_id, Shapes::ShapeRef.new(shape: String, location_name: "RecommendationId"))
5295
5299
  InferenceRecommendation.struct_class = Types::InferenceRecommendation
5296
5300
 
5297
5301
  InferenceRecommendations.member = Shapes::ShapeRef.new(shape: InferenceRecommendation)
@@ -6593,6 +6597,7 @@ module Aws::SageMaker
6593
6597
 
6594
6598
  ModelConfiguration.add_member(:inference_specification_name, Shapes::ShapeRef.new(shape: InferenceSpecificationName, location_name: "InferenceSpecificationName"))
6595
6599
  ModelConfiguration.add_member(:environment_parameters, Shapes::ShapeRef.new(shape: EnvironmentParameters, location_name: "EnvironmentParameters"))
6600
+ ModelConfiguration.add_member(:compilation_job_name, Shapes::ShapeRef.new(shape: RecommendationJobCompilationJobName, location_name: "CompilationJobName"))
6596
6601
  ModelConfiguration.struct_class = Types::ModelConfiguration
6597
6602
 
6598
6603
  ModelDashboardEndpoint.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, required: true, location_name: "EndpointName"))
@@ -7583,6 +7588,7 @@ module Aws::SageMaker
7583
7588
  RecommendationJobContainerConfig.add_member(:payload_config, Shapes::ShapeRef.new(shape: RecommendationJobPayloadConfig, location_name: "PayloadConfig"))
7584
7589
  RecommendationJobContainerConfig.add_member(:nearest_model_name, Shapes::ShapeRef.new(shape: String, location_name: "NearestModelName"))
7585
7590
  RecommendationJobContainerConfig.add_member(:supported_instance_types, Shapes::ShapeRef.new(shape: RecommendationJobSupportedInstanceTypes, location_name: "SupportedInstanceTypes"))
7591
+ RecommendationJobContainerConfig.add_member(:data_input_config, Shapes::ShapeRef.new(shape: RecommendationJobDataInputConfig, location_name: "DataInputConfig"))
7586
7592
  RecommendationJobContainerConfig.struct_class = Types::RecommendationJobContainerConfig
7587
7593
 
7588
7594
  RecommendationJobInferenceBenchmark.add_member(:metrics, Shapes::ShapeRef.new(shape: RecommendationMetrics, location_name: "Metrics"))
@@ -7591,7 +7597,7 @@ module Aws::SageMaker
7591
7597
  RecommendationJobInferenceBenchmark.add_member(:failure_reason, Shapes::ShapeRef.new(shape: RecommendationFailureReason, location_name: "FailureReason"))
7592
7598
  RecommendationJobInferenceBenchmark.struct_class = Types::RecommendationJobInferenceBenchmark
7593
7599
 
7594
- RecommendationJobInputConfig.add_member(:model_package_version_arn, Shapes::ShapeRef.new(shape: ModelPackageArn, required: true, location_name: "ModelPackageVersionArn"))
7600
+ RecommendationJobInputConfig.add_member(:model_package_version_arn, Shapes::ShapeRef.new(shape: ModelPackageArn, location_name: "ModelPackageVersionArn"))
7595
7601
  RecommendationJobInputConfig.add_member(:job_duration_in_seconds, Shapes::ShapeRef.new(shape: JobDurationInSeconds, location_name: "JobDurationInSeconds"))
7596
7602
  RecommendationJobInputConfig.add_member(:traffic_pattern, Shapes::ShapeRef.new(shape: TrafficPattern, location_name: "TrafficPattern"))
7597
7603
  RecommendationJobInputConfig.add_member(:resource_limit, Shapes::ShapeRef.new(shape: RecommendationJobResourceLimit, location_name: "ResourceLimit"))
@@ -7600,6 +7606,7 @@ module Aws::SageMaker
7600
7606
  RecommendationJobInputConfig.add_member(:container_config, Shapes::ShapeRef.new(shape: RecommendationJobContainerConfig, location_name: "ContainerConfig"))
7601
7607
  RecommendationJobInputConfig.add_member(:endpoints, Shapes::ShapeRef.new(shape: Endpoints, location_name: "Endpoints"))
7602
7608
  RecommendationJobInputConfig.add_member(:vpc_config, Shapes::ShapeRef.new(shape: RecommendationJobVpcConfig, location_name: "VpcConfig"))
7609
+ RecommendationJobInputConfig.add_member(:model_name, Shapes::ShapeRef.new(shape: ModelName, location_name: "ModelName"))
7603
7610
  RecommendationJobInputConfig.struct_class = Types::RecommendationJobInputConfig
7604
7611
 
7605
7612
  RecommendationJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
@@ -7634,6 +7641,8 @@ module Aws::SageMaker
7634
7641
  RecommendationMetrics.add_member(:cost_per_inference, Shapes::ShapeRef.new(shape: Float, required: true, location_name: "CostPerInference"))
7635
7642
  RecommendationMetrics.add_member(:max_invocations, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "MaxInvocations"))
7636
7643
  RecommendationMetrics.add_member(:model_latency, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ModelLatency"))
7644
+ RecommendationMetrics.add_member(:cpu_utilization, Shapes::ShapeRef.new(shape: UtilizationMetric, location_name: "CpuUtilization"))
7645
+ RecommendationMetrics.add_member(:memory_utilization, Shapes::ShapeRef.new(shape: UtilizationMetric, location_name: "MemoryUtilization"))
7637
7646
  RecommendationMetrics.struct_class = Types::RecommendationMetrics
7638
7647
 
7639
7648
  RedshiftDatasetDefinition.add_member(:cluster_id, Shapes::ShapeRef.new(shape: RedshiftClusterId, required: true, location_name: "ClusterId"))
@@ -10703,6 +10712,7 @@ module Aws::SageMaker
10703
10712
  o.http_request_uri = "/"
10704
10713
  o.input = Shapes::ShapeRef.new(shape: ListInferenceRecommendationsJobStepsRequest)
10705
10714
  o.output = Shapes::ShapeRef.new(shape: ListInferenceRecommendationsJobStepsResponse)
10715
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
10706
10716
  o[:pager] = Aws::Pager.new(
10707
10717
  limit_key: "max_results",
10708
10718
  tokens: {
@@ -20098,12 +20098,17 @@ module Aws::SageMaker
20098
20098
  # Defines the model configuration.
20099
20099
  # @return [Types::ModelConfiguration]
20100
20100
  #
20101
+ # @!attribute [rw] recommendation_id
20102
+ # The recommendation ID which uniquely identifies each recommendation.
20103
+ # @return [String]
20104
+ #
20101
20105
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceRecommendation AWS API Documentation
20102
20106
  #
20103
20107
  class InferenceRecommendation < Struct.new(
20104
20108
  :metrics,
20105
20109
  :endpoint_configuration,
20106
- :model_configuration)
20110
+ :model_configuration,
20111
+ :recommendation_id)
20107
20112
  SENSITIVE = []
20108
20113
  include Aws::Structure
20109
20114
  end
@@ -27008,11 +27013,17 @@ module Aws::SageMaker
27008
27013
  # and values.
27009
27014
  # @return [Array<Types::EnvironmentParameter>]
27010
27015
  #
27016
+ # @!attribute [rw] compilation_job_name
27017
+ # The name of the compilation job used to create the recommended model
27018
+ # artifacts.
27019
+ # @return [String]
27020
+ #
27011
27021
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelConfiguration AWS API Documentation
27012
27022
  #
27013
27023
  class ModelConfiguration < Struct.new(
27014
27024
  :inference_specification_name,
27015
- :environment_parameters)
27025
+ :environment_parameters,
27026
+ :compilation_job_name)
27016
27027
  SENSITIVE = []
27017
27028
  include Aws::Structure
27018
27029
  end
@@ -32566,6 +32577,17 @@ module Aws::SageMaker
32566
32577
  # real-time.
32567
32578
  # @return [Array<String>]
32568
32579
  #
32580
+ # @!attribute [rw] data_input_config
32581
+ # Specifies the name and shape of the expected data inputs for your
32582
+ # trained model with a JSON dictionary form. This field is used for
32583
+ # optimizing your model using SageMaker Neo. For more information, see
32584
+ # [DataInputConfig][1].
32585
+ #
32586
+ #
32587
+ #
32588
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InputConfig.html#sagemaker-Type-InputConfig-DataInputConfig
32589
+ # @return [String]
32590
+ #
32569
32591
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobContainerConfig AWS API Documentation
32570
32592
  #
32571
32593
  class RecommendationJobContainerConfig < Struct.new(
@@ -32575,7 +32597,8 @@ module Aws::SageMaker
32575
32597
  :framework_version,
32576
32598
  :payload_config,
32577
32599
  :nearest_model_name,
32578
- :supported_instance_types)
32600
+ :supported_instance_types,
32601
+ :data_input_config)
32579
32602
  SENSITIVE = []
32580
32603
  include Aws::Structure
32581
32604
  end
@@ -32690,6 +32713,10 @@ module Aws::SageMaker
32690
32713
  # VPC in the inference recommendation job.
32691
32714
  # @return [Types::RecommendationJobVpcConfig]
32692
32715
  #
32716
+ # @!attribute [rw] model_name
32717
+ # The name of the created model.
32718
+ # @return [String]
32719
+ #
32693
32720
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobInputConfig AWS API Documentation
32694
32721
  #
32695
32722
  class RecommendationJobInputConfig < Struct.new(
@@ -32701,7 +32728,8 @@ module Aws::SageMaker
32701
32728
  :volume_kms_key_id,
32702
32729
  :container_config,
32703
32730
  :endpoints,
32704
- :vpc_config)
32731
+ :vpc_config,
32732
+ :model_name)
32705
32733
  SENSITIVE = []
32706
32734
  include Aws::Structure
32707
32735
  end
@@ -32864,13 +32892,29 @@ module Aws::SageMaker
32864
32892
  # instance.
32865
32893
  # @return [Integer]
32866
32894
  #
32895
+ # @!attribute [rw] cpu_utilization
32896
+ # The expected CPU utilization at maximum invocations per minute for
32897
+ # the instance.
32898
+ #
32899
+ # `NaN` indicates that the value is not available.
32900
+ # @return [Float]
32901
+ #
32902
+ # @!attribute [rw] memory_utilization
32903
+ # The expected memory utilization at maximum invocations per minute
32904
+ # for the instance.
32905
+ #
32906
+ # `NaN` indicates that the value is not available.
32907
+ # @return [Float]
32908
+ #
32867
32909
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationMetrics AWS API Documentation
32868
32910
  #
32869
32911
  class RecommendationMetrics < Struct.new(
32870
32912
  :cost_per_hour,
32871
32913
  :cost_per_inference,
32872
32914
  :max_invocations,
32873
- :model_latency)
32915
+ :model_latency,
32916
+ :cpu_utilization,
32917
+ :memory_utilization)
32874
32918
  SENSITIVE = []
32875
32919
  include Aws::Structure
32876
32920
  end
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.162.0'
56
+ GEM_VERSION = '1.163.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.162.0
4
+ version: 1.163.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-01-23 00:00:00.000000000 Z
11
+ date: 2023-01-25 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core