aws-sdk-sagemaker 1.160.0 → 1.161.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 68257fc763d05bf903e7e94883a6d57ada657a4a5e1f896d0835e2756e2f68ea
4
- data.tar.gz: 8a623fd58b20bae9857cc94c64707f6aad1f0a315cee7f3bcefc6752a6763180
3
+ metadata.gz: 85135e4afe416328b32c72167b5ae7bed2367d2fe07c555b1ce03c44d4c95566
4
+ data.tar.gz: 04527a7f71d5c14b8adcdf15ac67728cc5ee18942e78d92920ec0e73357d36cb
5
5
  SHA512:
6
- metadata.gz: 4147ec5f876a614bc6a4b5f50e15059d51f6a32d2b9f1a175535ff594bff17f4b2cce60bb558298fbda3c0068cb0b95e7204b2a6ea4f16c3d249a4cb7725f97c
7
- data.tar.gz: e52e107a3d7408fec2c7cb1c75ff82e91030b7c4966dfb7d58fe62ef88457df2147cd8a74960574dad8429f838eab1909df802834343400efacf7d529494bce0
6
+ metadata.gz: c28378c92d0df7784a61cf57c311993882c9f5f493ab4acaa25ecaccfab923239b8a4bdce691c849edf2281ebdf53d7c309e0d50d34eccc51a6101535f1dcd7f
7
+ data.tar.gz: b337098450db70304f7fe03244d2d955657559d5f7192f797b192643b3a13423e60cf0ff2fdb43334e150d36745dd14afce6cfc970e598a77a2513a45de932ca
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.161.0 (2023-01-19)
5
+ ------------------
6
+
7
+ * Feature - HyperParameterTuningJobs now allow passing environment variables into the corresponding TrainingJobs
8
+
4
9
  1.160.0 (2023-01-18)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.160.0
1
+ 1.161.0
@@ -3417,6 +3417,9 @@ module Aws::SageMaker
3417
3417
  # },
3418
3418
  # ],
3419
3419
  # },
3420
+ # environment: {
3421
+ # "HyperParameterTrainingJobEnvironmentKey" => "HyperParameterTrainingJobEnvironmentValue",
3422
+ # },
3420
3423
  # },
3421
3424
  # training_job_definitions: [
3422
3425
  # {
@@ -3541,6 +3544,9 @@ module Aws::SageMaker
3541
3544
  # },
3542
3545
  # ],
3543
3546
  # },
3547
+ # environment: {
3548
+ # "HyperParameterTrainingJobEnvironmentKey" => "HyperParameterTrainingJobEnvironmentValue",
3549
+ # },
3544
3550
  # },
3545
3551
  # ],
3546
3552
  # warm_start_config: {
@@ -11062,6 +11068,8 @@ module Aws::SageMaker
11062
11068
  # resp.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge", "ml.trn1.2xlarge", "ml.trn1.32xlarge"
11063
11069
  # resp.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].instance_count #=> Integer
11064
11070
  # resp.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].volume_size_in_gb #=> Integer
11071
+ # resp.training_job_definition.environment #=> Hash
11072
+ # resp.training_job_definition.environment["HyperParameterTrainingJobEnvironmentKey"] #=> String
11065
11073
  # resp.training_job_definitions #=> Array
11066
11074
  # resp.training_job_definitions[0].definition_name #=> String
11067
11075
  # resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
@@ -11139,6 +11147,8 @@ module Aws::SageMaker
11139
11147
  # resp.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge", "ml.trn1.2xlarge", "ml.trn1.32xlarge"
11140
11148
  # resp.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].instance_count #=> Integer
11141
11149
  # resp.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].volume_size_in_gb #=> Integer
11150
+ # resp.training_job_definitions[0].environment #=> Hash
11151
+ # resp.training_job_definitions[0].environment["HyperParameterTrainingJobEnvironmentKey"] #=> String
11142
11152
  # resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11143
11153
  # resp.creation_time #=> Time
11144
11154
  # resp.hyper_parameter_tuning_end_time #=> Time
@@ -20916,7 +20926,8 @@ module Aws::SageMaker
20916
20926
  # `true`, `ExcludeRetainedVariantProperties` specifies the list of type
20917
20927
  # VariantProperty to override with the values provided by
20918
20928
  # `EndpointConfig`. If you don't specify a value for
20919
- # `ExcludeAllVariantProperties`, no variant properties are overridden.
20929
+ # `ExcludeRetainedVariantProperties`, no variant properties are
20930
+ # overridden.
20920
20931
  #
20921
20932
  # @option params [Types::DeploymentConfig] :deployment_config
20922
20933
  # The deployment configuration for an endpoint, which contains the
@@ -22716,7 +22727,7 @@ module Aws::SageMaker
22716
22727
  params: params,
22717
22728
  config: config)
22718
22729
  context[:gem_name] = 'aws-sdk-sagemaker'
22719
- context[:gem_version] = '1.160.0'
22730
+ context[:gem_version] = '1.161.0'
22720
22731
  Seahorse::Client::Request.new(handlers, context)
22721
22732
  end
22722
22733
 
@@ -838,6 +838,9 @@ module Aws::SageMaker
838
838
  HyperParameterTrainingJobDefinition = Shapes::StructureShape.new(name: 'HyperParameterTrainingJobDefinition')
839
839
  HyperParameterTrainingJobDefinitionName = Shapes::StringShape.new(name: 'HyperParameterTrainingJobDefinitionName')
840
840
  HyperParameterTrainingJobDefinitions = Shapes::ListShape.new(name: 'HyperParameterTrainingJobDefinitions')
841
+ HyperParameterTrainingJobEnvironmentKey = Shapes::StringShape.new(name: 'HyperParameterTrainingJobEnvironmentKey')
842
+ HyperParameterTrainingJobEnvironmentMap = Shapes::MapShape.new(name: 'HyperParameterTrainingJobEnvironmentMap')
843
+ HyperParameterTrainingJobEnvironmentValue = Shapes::StringShape.new(name: 'HyperParameterTrainingJobEnvironmentValue')
841
844
  HyperParameterTrainingJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTrainingJobSummaries')
842
845
  HyperParameterTrainingJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTrainingJobSummary')
843
846
  HyperParameterTuningAllocationStrategy = Shapes::StringShape.new(name: 'HyperParameterTuningAllocationStrategy')
@@ -5109,10 +5112,14 @@ module Aws::SageMaker
5109
5112
  HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
5110
5113
  HyperParameterTrainingJobDefinition.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
5111
5114
  HyperParameterTrainingJobDefinition.add_member(:hyper_parameter_tuning_resource_config, Shapes::ShapeRef.new(shape: HyperParameterTuningResourceConfig, location_name: "HyperParameterTuningResourceConfig"))
5115
+ HyperParameterTrainingJobDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobEnvironmentMap, location_name: "Environment"))
5112
5116
  HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
5113
5117
 
5114
5118
  HyperParameterTrainingJobDefinitions.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition)
5115
5119
 
5120
+ HyperParameterTrainingJobEnvironmentMap.key = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobEnvironmentKey)
5121
+ HyperParameterTrainingJobEnvironmentMap.value = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobEnvironmentValue)
5122
+
5116
5123
  HyperParameterTrainingJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary)
5117
5124
 
5118
5125
  HyperParameterTrainingJobSummary.add_member(:training_job_definition_name, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinitionName, location_name: "TrainingJobDefinitionName"))
@@ -18953,6 +18953,28 @@ module Aws::SageMaker
18953
18953
  # additionally store training data in the storage volume (optional).
18954
18954
  # @return [Types::HyperParameterTuningResourceConfig]
18955
18955
  #
18956
+ # @!attribute [rw] environment
18957
+ # An environment variable that you can pass into the SageMaker
18958
+ # [CreateTrainingJob][1] API. You can use an existing [environment
18959
+ # variable from the training container][2] or use your own. See
18960
+ # [Define metrics and variables][3] for more information.
18961
+ #
18962
+ # <note markdown="1"> The maximum number of items specified for `Map Entries` refers to
18963
+ # the maximum number of environment variables for each
18964
+ # `TrainingJobDefinition` and also the maximum for the hyperparameter
18965
+ # tuning job itself. That is, the sum of the number of environment
18966
+ # variables for all the training job definitions can't exceed the
18967
+ # maximum number specified.
18968
+ #
18969
+ # </note>
18970
+ #
18971
+ #
18972
+ #
18973
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
18974
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
18975
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
18976
+ # @return [Hash<String,String>]
18977
+ #
18956
18978
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
18957
18979
  #
18958
18980
  class HyperParameterTrainingJobDefinition < Struct.new(
@@ -18972,7 +18994,8 @@ module Aws::SageMaker
18972
18994
  :enable_managed_spot_training,
18973
18995
  :checkpoint_config,
18974
18996
  :retry_strategy,
18975
- :hyper_parameter_tuning_resource_config)
18997
+ :hyper_parameter_tuning_resource_config,
18998
+ :environment)
18976
18999
  SENSITIVE = []
18977
19000
  include Aws::Structure
18978
19001
  end
@@ -19096,7 +19119,7 @@ module Aws::SageMaker
19096
19119
  # The number of instances of the type specified by `InstanceType`.
19097
19120
  # Choose an instance count larger than 1 for distributed training
19098
19121
  # algorithms. See [SageMaker distributed training jobs][1] for more
19099
- # informcration.
19122
+ # information.
19100
19123
  #
19101
19124
  #
19102
19125
  #
@@ -37330,7 +37353,8 @@ module Aws::SageMaker
37330
37353
  # to `true`, `ExcludeRetainedVariantProperties` specifies the list of
37331
37354
  # type VariantProperty to override with the values provided by
37332
37355
  # `EndpointConfig`. If you don't specify a value for
37333
- # `ExcludeAllVariantProperties`, no variant properties are overridden.
37356
+ # `ExcludeRetainedVariantProperties`, no variant properties are
37357
+ # overridden.
37334
37358
  # @return [Array<Types::VariantProperty>]
37335
37359
  #
37336
37360
  # @!attribute [rw] deployment_config
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.160.0'
56
+ GEM_VERSION = '1.161.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.160.0
4
+ version: 1.161.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-01-18 00:00:00.000000000 Z
11
+ date: 2023-01-19 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core