aws-sdk-sagemaker 1.156.0 → 1.158.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +249 -16
- data/lib/aws-sdk-sagemaker/client_api.rb +86 -1
- data/lib/aws-sdk-sagemaker/endpoints.rb +28 -0
- data/lib/aws-sdk-sagemaker/plugins/endpoints.rb +4 -0
- data/lib/aws-sdk-sagemaker/types.rb +488 -86
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -2015,66 +2015,171 @@ module Aws::SageMaker
|
|
2015
2015
|
#
|
2016
2016
|
# Here are the options:
|
2017
2017
|
#
|
2018
|
-
#
|
2019
|
-
#
|
2020
|
-
#
|
2021
|
-
#
|
2022
|
-
#
|
2023
|
-
#
|
2024
|
-
#
|
2025
|
-
#
|
2026
|
-
#
|
2027
|
-
#
|
2028
|
-
#
|
2029
|
-
#
|
2030
|
-
#
|
2031
|
-
#
|
2032
|
-
#
|
2033
|
-
#
|
2018
|
+
# Accuracy
|
2019
|
+
#
|
2020
|
+
# : The ratio of the number of correctly classified items to the total
|
2021
|
+
# number of (correctly and incorrectly) classified items. It is used
|
2022
|
+
# for both binary and multiclass classification. Accuracy measures
|
2023
|
+
# how close the predicted class values are to the actual values.
|
2024
|
+
# Values for accuracy metrics vary between zero (0) and one (1). A
|
2025
|
+
# value of 1 indicates perfect accuracy, and 0 indicates perfect
|
2026
|
+
# inaccuracy.
|
2027
|
+
#
|
2028
|
+
# AUC
|
2029
|
+
#
|
2030
|
+
# : The area under the curve (AUC) metric is used to compare and
|
2031
|
+
# evaluate binary classification by algorithms that return
|
2032
|
+
# probabilities, such as logistic regression. To map the
|
2033
|
+
# probabilities into classifications, these are compared against a
|
2034
|
+
# threshold value.
|
2035
|
+
#
|
2036
|
+
# The relevant curve is the receiver operating characteristic curve
|
2037
|
+
# (ROC curve). The ROC curve plots the true positive rate (TPR) of
|
2038
|
+
# predictions (or recall) against the false positive rate (FPR) as a
|
2039
|
+
# function of the threshold value, above which a prediction is
|
2040
|
+
# considered positive. Increasing the threshold results in fewer
|
2041
|
+
# false positives, but more false negatives.
|
2042
|
+
#
|
2043
|
+
# AUC is the area under this ROC curve. Therefore, AUC provides an
|
2044
|
+
# aggregated measure of the model performance across all possible
|
2045
|
+
# classification thresholds. AUC scores vary between 0 and 1. A
|
2046
|
+
# score of 1 indicates perfect accuracy, and a score of one half
|
2047
|
+
# (0.5) indicates that the prediction is not better than a random
|
2048
|
+
# classifier.
|
2049
|
+
#
|
2050
|
+
# BalancedAccuracy
|
2051
|
+
#
|
2052
|
+
# : `BalancedAccuracy` is a metric that measures the ratio of accurate
|
2053
|
+
# predictions to all predictions. This ratio is calculated after
|
2054
|
+
# normalizing true positives (TP) and true negatives (TN) by the
|
2055
|
+
# total number of positive (P) and negative (N) values. It is used
|
2056
|
+
# in both binary and multiclass classification and is defined as
|
2057
|
+
# follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
|
2058
|
+
# `BalancedAccuracy` gives a better measure of accuracy when the
|
2059
|
+
# number of positives or negatives differ greatly from each other in
|
2060
|
+
# an imbalanced dataset. For example, when only 1% of email is spam.
|
2061
|
+
#
|
2062
|
+
# F1
|
2063
|
+
#
|
2064
|
+
# : The `F1` score is the harmonic mean of the precision and recall,
|
2065
|
+
# defined as follows: F1 = 2 * (precision * recall) / (precision +
|
2066
|
+
# recall). It is used for binary classification into classes
|
2034
2067
|
# traditionally referred to as positive and negative. Predictions
|
2035
|
-
# are said to be true when they match their actual (correct) class
|
2036
|
-
# and false when they do not.
|
2037
|
-
#
|
2038
|
-
#
|
2039
|
-
#
|
2040
|
-
#
|
2041
|
-
#
|
2042
|
-
#
|
2043
|
-
#
|
2044
|
-
#
|
2045
|
-
#
|
2046
|
-
#
|
2047
|
-
#
|
2048
|
-
#
|
2049
|
-
#
|
2050
|
-
#
|
2051
|
-
#
|
2052
|
-
#
|
2053
|
-
#
|
2054
|
-
#
|
2055
|
-
#
|
2056
|
-
#
|
2057
|
-
#
|
2058
|
-
#
|
2059
|
-
#
|
2060
|
-
#
|
2061
|
-
#
|
2062
|
-
#
|
2063
|
-
#
|
2064
|
-
#
|
2065
|
-
#
|
2066
|
-
#
|
2067
|
-
#
|
2068
|
-
#
|
2069
|
-
#
|
2070
|
-
#
|
2071
|
-
#
|
2072
|
-
#
|
2073
|
-
#
|
2074
|
-
#
|
2075
|
-
#
|
2076
|
-
#
|
2077
|
-
#
|
2068
|
+
# are said to be true when they match their actual (correct) class,
|
2069
|
+
# and false when they do not.
|
2070
|
+
#
|
2071
|
+
# Precision is the ratio of the true positive predictions to all
|
2072
|
+
# positive predictions, and it includes the false positives in a
|
2073
|
+
# dataset. Precision measures the quality of the prediction when it
|
2074
|
+
# predicts the positive class.
|
2075
|
+
#
|
2076
|
+
# Recall (or sensitivity) is the ratio of the true positive
|
2077
|
+
# predictions to all actual positive instances. Recall measures how
|
2078
|
+
# completely a model predicts the actual class members in a dataset.
|
2079
|
+
#
|
2080
|
+
# F1 scores vary between 0 and 1. A score of 1 indicates the best
|
2081
|
+
# possible performance, and 0 indicates the worst.
|
2082
|
+
#
|
2083
|
+
# F1macro
|
2084
|
+
#
|
2085
|
+
# : The `F1macro` score applies F1 scoring to multiclass
|
2086
|
+
# classification problems. It does this by calculating the precision
|
2087
|
+
# and recall, and then taking their harmonic mean to calculate the
|
2088
|
+
# F1 score for each class. Lastly, the F1macro averages the
|
2089
|
+
# individual scores to obtain the `F1macro` score. `F1macro` scores
|
2090
|
+
# vary between 0 and 1. A score of 1 indicates the best possible
|
2091
|
+
# performance, and 0 indicates the worst.
|
2092
|
+
#
|
2093
|
+
# MAE
|
2094
|
+
#
|
2095
|
+
# : The mean absolute error (MAE) is a measure of how different the
|
2096
|
+
# predicted and actual values are, when they're averaged over all
|
2097
|
+
# values. MAE is commonly used in regression analysis to understand
|
2098
|
+
# model prediction error. If there is linear regression, MAE
|
2099
|
+
# represents the average distance from a predicted line to the
|
2100
|
+
# actual value. MAE is defined as the sum of absolute errors divided
|
2101
|
+
# by the number of observations. Values range from 0 to infinity,
|
2102
|
+
# with smaller numbers indicating a better model fit to the data.
|
2103
|
+
#
|
2104
|
+
# MSE
|
2105
|
+
#
|
2106
|
+
# : The mean squared error (MSE) is the average of the squared
|
2107
|
+
# differences between the predicted and actual values. It is used
|
2108
|
+
# for regression. MSE values are always positive. The better a model
|
2109
|
+
# is at predicting the actual values, the smaller the MSE value is
|
2110
|
+
#
|
2111
|
+
# Precision
|
2112
|
+
#
|
2113
|
+
# : Precision measures how well an algorithm predicts the true
|
2114
|
+
# positives (TP) out of all of the positives that it identifies. It
|
2115
|
+
# is defined as follows: Precision = TP/(TP+FP), with values ranging
|
2116
|
+
# from zero (0) to one (1), and is used in binary classification.
|
2117
|
+
# Precision is an important metric when the cost of a false positive
|
2118
|
+
# is high. For example, the cost of a false positive is very high if
|
2119
|
+
# an airplane safety system is falsely deemed safe to fly. A false
|
2120
|
+
# positive (FP) reflects a positive prediction that is actually
|
2121
|
+
# negative in the data.
|
2122
|
+
#
|
2123
|
+
# PrecisionMacro
|
2124
|
+
#
|
2125
|
+
# : The precision macro computes precision for multiclass
|
2126
|
+
# classification problems. It does this by calculating precision for
|
2127
|
+
# each class and averaging scores to obtain precision for several
|
2128
|
+
# classes. `PrecisionMacro` scores range from zero (0) to one (1).
|
2129
|
+
# Higher scores reflect the model's ability to predict true
|
2130
|
+
# positives (TP) out of all of the positives that it identifies,
|
2131
|
+
# averaged across multiple classes.
|
2132
|
+
#
|
2133
|
+
# R2
|
2134
|
+
#
|
2135
|
+
# : R2, also known as the coefficient of determination, is used in
|
2136
|
+
# regression to quantify how much a model can explain the variance
|
2137
|
+
# of a dependent variable. Values range from one (1) to negative one
|
2138
|
+
# (-1). Higher numbers indicate a higher fraction of explained
|
2139
|
+
# variability. `R2` values close to zero (0) indicate that very
|
2140
|
+
# little of the dependent variable can be explained by the model.
|
2141
|
+
# Negative values indicate a poor fit and that the model is
|
2142
|
+
# outperformed by a constant function. For linear regression, this
|
2143
|
+
# is a horizontal line.
|
2144
|
+
#
|
2145
|
+
# Recall
|
2146
|
+
#
|
2147
|
+
# : Recall measures how well an algorithm correctly predicts all of
|
2148
|
+
# the true positives (TP) in a dataset. A true positive is a
|
2149
|
+
# positive prediction that is also an actual positive value in the
|
2150
|
+
# data. Recall is defined as follows: Recall = TP/(TP+FN), with
|
2151
|
+
# values ranging from 0 to 1. Higher scores reflect a better ability
|
2152
|
+
# of the model to predict true positives (TP) in the data, and is
|
2153
|
+
# used in binary classification.
|
2154
|
+
#
|
2155
|
+
# Recall is important when testing for cancer because it's used to
|
2156
|
+
# find all of the true positives. A false positive (FP) reflects a
|
2157
|
+
# positive prediction that is actually negative in the data. It is
|
2158
|
+
# often insufficient to measure only recall, because predicting
|
2159
|
+
# every output as a true positive will yield a perfect recall score.
|
2160
|
+
#
|
2161
|
+
# RecallMacro
|
2162
|
+
#
|
2163
|
+
# : The RecallMacro computes recall for multiclass classification
|
2164
|
+
# problems by calculating recall for each class and averaging scores
|
2165
|
+
# to obtain recall for several classes. RecallMacro scores range
|
2166
|
+
# from 0 to 1. Higher scores reflect the model's ability to predict
|
2167
|
+
# true positives (TP) in a dataset. Whereas, a true positive
|
2168
|
+
# reflects a positive prediction that is also an actual positive
|
2169
|
+
# value in the data. It is often insufficient to measure only
|
2170
|
+
# recall, because predicting every output as a true positive will
|
2171
|
+
# yield a perfect recall score.
|
2172
|
+
#
|
2173
|
+
# RMSE
|
2174
|
+
#
|
2175
|
+
# : Root mean squared error (RMSE) measures the square root of the
|
2176
|
+
# squared difference between predicted and actual values, and it's
|
2177
|
+
# averaged over all values. It is used in regression analysis to
|
2178
|
+
# understand model prediction error. It's an important metric to
|
2179
|
+
# indicate the presence of large model errors and outliers. Values
|
2180
|
+
# range from zero (0) to infinity, with smaller numbers indicating a
|
2181
|
+
# better model fit to the data. RMSE is dependent on scale, and
|
2182
|
+
# should not be used to compare datasets of different sizes.
|
2078
2183
|
#
|
2079
2184
|
# If you do not specify a metric explicitly, the default behavior is
|
2080
2185
|
# to automatically use:
|
@@ -5381,8 +5486,8 @@ module Aws::SageMaker
|
|
5381
5486
|
# @return [String]
|
5382
5487
|
#
|
5383
5488
|
# @!attribute [rw] role_arn
|
5384
|
-
# The
|
5385
|
-
#
|
5489
|
+
# The ARN of an IAM role that enables Amazon SageMaker to perform
|
5490
|
+
# tasks on your behalf.
|
5386
5491
|
# @return [String]
|
5387
5492
|
#
|
5388
5493
|
# @!attribute [rw] tags
|
@@ -5402,7 +5507,7 @@ module Aws::SageMaker
|
|
5402
5507
|
end
|
5403
5508
|
|
5404
5509
|
# @!attribute [rw] image_arn
|
5405
|
-
# The
|
5510
|
+
# The ARN of the image.
|
5406
5511
|
# @return [String]
|
5407
5512
|
#
|
5408
5513
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageResponse AWS API Documentation
|
@@ -5435,18 +5540,83 @@ module Aws::SageMaker
|
|
5435
5540
|
# The `ImageName` of the `Image` to create a version of.
|
5436
5541
|
# @return [String]
|
5437
5542
|
#
|
5543
|
+
# @!attribute [rw] aliases
|
5544
|
+
# A list of aliases created with the image version.
|
5545
|
+
# @return [Array<String>]
|
5546
|
+
#
|
5547
|
+
# @!attribute [rw] vendor_guidance
|
5548
|
+
# The stability of the image version, specified by the maintainer.
|
5549
|
+
#
|
5550
|
+
# * `NOT_PROVIDED`\: The maintainers did not provide a status for
|
5551
|
+
# image version stability.
|
5552
|
+
#
|
5553
|
+
# * `STABLE`\: The image version is stable.
|
5554
|
+
#
|
5555
|
+
# * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
|
5556
|
+
# image versions that are set to be archived are automatically
|
5557
|
+
# archived after three months.
|
5558
|
+
#
|
5559
|
+
# * `ARCHIVED`\: The image version is archived. Archived image
|
5560
|
+
# versions are not searchable and are no longer actively supported.
|
5561
|
+
# @return [String]
|
5562
|
+
#
|
5563
|
+
# @!attribute [rw] job_type
|
5564
|
+
# Indicates SageMaker job type compatibility.
|
5565
|
+
#
|
5566
|
+
# * `TRAINING`\: The image version is compatible with SageMaker
|
5567
|
+
# training jobs.
|
5568
|
+
#
|
5569
|
+
# * `INFERENCE`\: The image version is compatible with SageMaker
|
5570
|
+
# inference jobs.
|
5571
|
+
#
|
5572
|
+
# * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
|
5573
|
+
# notebook kernels.
|
5574
|
+
# @return [String]
|
5575
|
+
#
|
5576
|
+
# @!attribute [rw] ml_framework
|
5577
|
+
# The machine learning framework vended in the image version.
|
5578
|
+
# @return [String]
|
5579
|
+
#
|
5580
|
+
# @!attribute [rw] programming_lang
|
5581
|
+
# The supported programming language and its version.
|
5582
|
+
# @return [String]
|
5583
|
+
#
|
5584
|
+
# @!attribute [rw] processor
|
5585
|
+
# Indicates CPU or GPU compatibility.
|
5586
|
+
#
|
5587
|
+
# * `CPU`\: The image version is compatible with CPU.
|
5588
|
+
#
|
5589
|
+
# * `GPU`\: The image version is compatible with GPU.
|
5590
|
+
# @return [String]
|
5591
|
+
#
|
5592
|
+
# @!attribute [rw] horovod
|
5593
|
+
# Indicates Horovod compatibility.
|
5594
|
+
# @return [Boolean]
|
5595
|
+
#
|
5596
|
+
# @!attribute [rw] release_notes
|
5597
|
+
# The maintainer description of the image version.
|
5598
|
+
# @return [String]
|
5599
|
+
#
|
5438
5600
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageVersionRequest AWS API Documentation
|
5439
5601
|
#
|
5440
5602
|
class CreateImageVersionRequest < Struct.new(
|
5441
5603
|
:base_image,
|
5442
5604
|
:client_token,
|
5443
|
-
:image_name
|
5605
|
+
:image_name,
|
5606
|
+
:aliases,
|
5607
|
+
:vendor_guidance,
|
5608
|
+
:job_type,
|
5609
|
+
:ml_framework,
|
5610
|
+
:programming_lang,
|
5611
|
+
:processor,
|
5612
|
+
:horovod,
|
5613
|
+
:release_notes)
|
5444
5614
|
SENSITIVE = []
|
5445
5615
|
include Aws::Structure
|
5446
5616
|
end
|
5447
5617
|
|
5448
5618
|
# @!attribute [rw] image_version_arn
|
5449
|
-
# The
|
5619
|
+
# The ARN of the image version.
|
5450
5620
|
# @return [String]
|
5451
5621
|
#
|
5452
5622
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageVersionResponse AWS API Documentation
|
@@ -8931,18 +9101,23 @@ module Aws::SageMaker
|
|
8931
9101
|
class DeleteImageResponse < Aws::EmptyStructure; end
|
8932
9102
|
|
8933
9103
|
# @!attribute [rw] image_name
|
8934
|
-
# The name of the image.
|
9104
|
+
# The name of the image to delete.
|
8935
9105
|
# @return [String]
|
8936
9106
|
#
|
8937
9107
|
# @!attribute [rw] version
|
8938
9108
|
# The version to delete.
|
8939
9109
|
# @return [Integer]
|
8940
9110
|
#
|
9111
|
+
# @!attribute [rw] alias
|
9112
|
+
# The alias of the image to delete.
|
9113
|
+
# @return [String]
|
9114
|
+
#
|
8941
9115
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteImageVersionRequest AWS API Documentation
|
8942
9116
|
#
|
8943
9117
|
class DeleteImageVersionRequest < Struct.new(
|
8944
9118
|
:image_name,
|
8945
|
-
:version
|
9119
|
+
:version,
|
9120
|
+
:alias)
|
8946
9121
|
SENSITIVE = []
|
8947
9122
|
include Aws::Structure
|
8948
9123
|
end
|
@@ -9906,7 +10081,13 @@ module Aws::SageMaker
|
|
9906
10081
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
9907
10082
|
#
|
9908
10083
|
# @!attribute [rw] best_candidate
|
9909
|
-
#
|
10084
|
+
# The best model candidate selected by SageMaker Autopilot using both
|
10085
|
+
# the best objective metric and lowest [InferenceLatency][1] for an
|
10086
|
+
# experiment.
|
10087
|
+
#
|
10088
|
+
#
|
10089
|
+
#
|
10090
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
|
9910
10091
|
# @return [Types::AutoMLCandidate]
|
9911
10092
|
#
|
9912
10093
|
# @!attribute [rw] auto_ml_job_status
|
@@ -11707,7 +11888,7 @@ module Aws::SageMaker
|
|
11707
11888
|
# @return [String]
|
11708
11889
|
#
|
11709
11890
|
# @!attribute [rw] image_arn
|
11710
|
-
# The
|
11891
|
+
# The ARN of the image.
|
11711
11892
|
# @return [String]
|
11712
11893
|
#
|
11713
11894
|
# @!attribute [rw] image_name
|
@@ -11723,8 +11904,8 @@ module Aws::SageMaker
|
|
11723
11904
|
# @return [Time]
|
11724
11905
|
#
|
11725
11906
|
# @!attribute [rw] role_arn
|
11726
|
-
# The
|
11727
|
-
#
|
11907
|
+
# The ARN of the IAM role that enables Amazon SageMaker to perform
|
11908
|
+
# tasks on your behalf.
|
11728
11909
|
# @return [String]
|
11729
11910
|
#
|
11730
11911
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageResponse AWS API Documentation
|
@@ -11752,11 +11933,16 @@ module Aws::SageMaker
|
|
11752
11933
|
# described.
|
11753
11934
|
# @return [Integer]
|
11754
11935
|
#
|
11936
|
+
# @!attribute [rw] alias
|
11937
|
+
# The alias of the image version.
|
11938
|
+
# @return [String]
|
11939
|
+
#
|
11755
11940
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageVersionRequest AWS API Documentation
|
11756
11941
|
#
|
11757
11942
|
class DescribeImageVersionRequest < Struct.new(
|
11758
11943
|
:image_name,
|
11759
|
-
:version
|
11944
|
+
:version,
|
11945
|
+
:alias)
|
11760
11946
|
SENSITIVE = []
|
11761
11947
|
include Aws::Structure
|
11762
11948
|
end
|
@@ -11780,7 +11966,7 @@ module Aws::SageMaker
|
|
11780
11966
|
# @return [String]
|
11781
11967
|
#
|
11782
11968
|
# @!attribute [rw] image_arn
|
11783
|
-
# The
|
11969
|
+
# The ARN of the image the version is based on.
|
11784
11970
|
# @return [String]
|
11785
11971
|
#
|
11786
11972
|
# @!attribute [rw] image_version_arn
|
@@ -11799,6 +11985,59 @@ module Aws::SageMaker
|
|
11799
11985
|
# The version number.
|
11800
11986
|
# @return [Integer]
|
11801
11987
|
#
|
11988
|
+
# @!attribute [rw] vendor_guidance
|
11989
|
+
# The stability of the image version specified by the maintainer.
|
11990
|
+
#
|
11991
|
+
# * `NOT_PROVIDED`\: The maintainers did not provide a status for
|
11992
|
+
# image version stability.
|
11993
|
+
#
|
11994
|
+
# * `STABLE`\: The image version is stable.
|
11995
|
+
#
|
11996
|
+
# * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
|
11997
|
+
# image versions that are set to be archived are automatically
|
11998
|
+
# archived after three months.
|
11999
|
+
#
|
12000
|
+
# * `ARCHIVED`\: The image version is archived. Archived image
|
12001
|
+
# versions are not searchable and are no longer actively supported.
|
12002
|
+
# @return [String]
|
12003
|
+
#
|
12004
|
+
# @!attribute [rw] job_type
|
12005
|
+
# Indicates SageMaker job type compatibility.
|
12006
|
+
#
|
12007
|
+
# * `TRAINING`\: The image version is compatible with SageMaker
|
12008
|
+
# training jobs.
|
12009
|
+
#
|
12010
|
+
# * `INFERENCE`\: The image version is compatible with SageMaker
|
12011
|
+
# inference jobs.
|
12012
|
+
#
|
12013
|
+
# * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
|
12014
|
+
# notebook kernels.
|
12015
|
+
# @return [String]
|
12016
|
+
#
|
12017
|
+
# @!attribute [rw] ml_framework
|
12018
|
+
# The machine learning framework vended in the image version.
|
12019
|
+
# @return [String]
|
12020
|
+
#
|
12021
|
+
# @!attribute [rw] programming_lang
|
12022
|
+
# The supported programming language and its version.
|
12023
|
+
# @return [String]
|
12024
|
+
#
|
12025
|
+
# @!attribute [rw] processor
|
12026
|
+
# Indicates CPU or GPU compatibility.
|
12027
|
+
#
|
12028
|
+
# * `CPU`\: The image version is compatible with CPU.
|
12029
|
+
#
|
12030
|
+
# * `GPU`\: The image version is compatible with GPU.
|
12031
|
+
# @return [String]
|
12032
|
+
#
|
12033
|
+
# @!attribute [rw] horovod
|
12034
|
+
# Indicates Horovod compatibility.
|
12035
|
+
# @return [Boolean]
|
12036
|
+
#
|
12037
|
+
# @!attribute [rw] release_notes
|
12038
|
+
# The maintainer description of the image version.
|
12039
|
+
# @return [String]
|
12040
|
+
#
|
11802
12041
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageVersionResponse AWS API Documentation
|
11803
12042
|
#
|
11804
12043
|
class DescribeImageVersionResponse < Struct.new(
|
@@ -11810,7 +12049,14 @@ module Aws::SageMaker
|
|
11810
12049
|
:image_version_arn,
|
11811
12050
|
:image_version_status,
|
11812
12051
|
:last_modified_time,
|
11813
|
-
:version
|
12052
|
+
:version,
|
12053
|
+
:vendor_guidance,
|
12054
|
+
:job_type,
|
12055
|
+
:ml_framework,
|
12056
|
+
:programming_lang,
|
12057
|
+
:processor,
|
12058
|
+
:horovod,
|
12059
|
+
:release_notes)
|
11814
12060
|
SENSITIVE = []
|
11815
12061
|
include Aws::Structure
|
11816
12062
|
end
|
@@ -14519,8 +14765,8 @@ module Aws::SageMaker
|
|
14519
14765
|
# @return [String]
|
14520
14766
|
#
|
14521
14767
|
# @!attribute [rw] sources
|
14522
|
-
# A list of
|
14523
|
-
#
|
14768
|
+
# A list of ARNs and, if applicable, job types for multiple sources of
|
14769
|
+
# an experiment run.
|
14524
14770
|
# @return [Array<Types::TrialComponentSource>]
|
14525
14771
|
#
|
14526
14772
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrialComponentResponse AWS API Documentation
|
@@ -16201,8 +16447,8 @@ module Aws::SageMaker
|
|
16201
16447
|
# * CreateTransformJob
|
16202
16448
|
#
|
16203
16449
|
# @!attribute [rw] experiment_name
|
16204
|
-
# The name of an existing experiment to associate the trial
|
16205
|
-
#
|
16450
|
+
# The name of an existing experiment to associate with the trial
|
16451
|
+
# component.
|
16206
16452
|
# @return [String]
|
16207
16453
|
#
|
16208
16454
|
# @!attribute [rw] trial_name
|
@@ -16216,8 +16462,8 @@ module Aws::SageMaker
|
|
16216
16462
|
# @return [String]
|
16217
16463
|
#
|
16218
16464
|
# @!attribute [rw] run_name
|
16219
|
-
# The name of the experiment run to associate the trial
|
16220
|
-
#
|
16465
|
+
# The name of the experiment run to associate with the trial
|
16466
|
+
# component.
|
16221
16467
|
# @return [String]
|
16222
16468
|
#
|
16223
16469
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
|
@@ -18899,8 +19145,8 @@ module Aws::SageMaker
|
|
18899
19145
|
# @!attribute [rw] parameter_ranges
|
18900
19146
|
# The ParameterRanges object that specifies the ranges of
|
18901
19147
|
# hyperparameters that this tuning job searches over to find the
|
18902
|
-
# optimal configuration for the highest model performance against
|
18903
|
-
#
|
19148
|
+
# optimal configuration for the highest model performance against your
|
19149
|
+
# chosen objective metric.
|
18904
19150
|
# @return [Types::ParameterRanges]
|
18905
19151
|
#
|
18906
19152
|
# @!attribute [rw] training_job_early_stopping_type
|
@@ -19464,7 +19710,7 @@ module Aws::SageMaker
|
|
19464
19710
|
# @return [String]
|
19465
19711
|
#
|
19466
19712
|
# @!attribute [rw] image_arn
|
19467
|
-
# The
|
19713
|
+
# The ARN of the image.
|
19468
19714
|
# @return [String]
|
19469
19715
|
#
|
19470
19716
|
# @!attribute [rw] image_name
|
@@ -19536,7 +19782,7 @@ module Aws::SageMaker
|
|
19536
19782
|
# @return [String]
|
19537
19783
|
#
|
19538
19784
|
# @!attribute [rw] image_arn
|
19539
|
-
# The
|
19785
|
+
# The ARN of the image the version is based on.
|
19540
19786
|
# @return [String]
|
19541
19787
|
#
|
19542
19788
|
# @!attribute [rw] image_version_arn
|
@@ -21163,6 +21409,58 @@ module Aws::SageMaker
|
|
21163
21409
|
include Aws::Structure
|
21164
21410
|
end
|
21165
21411
|
|
21412
|
+
# @!attribute [rw] image_name
|
21413
|
+
# The name of the image.
|
21414
|
+
# @return [String]
|
21415
|
+
#
|
21416
|
+
# @!attribute [rw] alias
|
21417
|
+
# The alias of the image version.
|
21418
|
+
# @return [String]
|
21419
|
+
#
|
21420
|
+
# @!attribute [rw] version
|
21421
|
+
# The version of the image. If image version is not specified, the
|
21422
|
+
# aliases of all versions of the image are listed.
|
21423
|
+
# @return [Integer]
|
21424
|
+
#
|
21425
|
+
# @!attribute [rw] max_results
|
21426
|
+
# The maximum number of aliases to return.
|
21427
|
+
# @return [Integer]
|
21428
|
+
#
|
21429
|
+
# @!attribute [rw] next_token
|
21430
|
+
# If the previous call to `ListAliases` didn't return the full set of
|
21431
|
+
# aliases, the call returns a token for retrieving the next set of
|
21432
|
+
# aliases.
|
21433
|
+
# @return [String]
|
21434
|
+
#
|
21435
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAliasesRequest AWS API Documentation
|
21436
|
+
#
|
21437
|
+
class ListAliasesRequest < Struct.new(
|
21438
|
+
:image_name,
|
21439
|
+
:alias,
|
21440
|
+
:version,
|
21441
|
+
:max_results,
|
21442
|
+
:next_token)
|
21443
|
+
SENSITIVE = []
|
21444
|
+
include Aws::Structure
|
21445
|
+
end
|
21446
|
+
|
21447
|
+
# @!attribute [rw] sage_maker_image_version_aliases
|
21448
|
+
# A list of SageMaker image version aliases.
|
21449
|
+
# @return [Array<String>]
|
21450
|
+
#
|
21451
|
+
# @!attribute [rw] next_token
|
21452
|
+
# A token for getting the next set of aliases, if more aliases exist.
|
21453
|
+
# @return [String]
|
21454
|
+
#
|
21455
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAliasesResponse AWS API Documentation
|
21456
|
+
#
|
21457
|
+
class ListAliasesResponse < Struct.new(
|
21458
|
+
:sage_maker_image_version_aliases,
|
21459
|
+
:next_token)
|
21460
|
+
SENSITIVE = []
|
21461
|
+
include Aws::Structure
|
21462
|
+
end
|
21463
|
+
|
21166
21464
|
# @!attribute [rw] max_results
|
21167
21465
|
# The maximum number of AppImageConfigs to return in the response. The
|
21168
21466
|
# default value is 10.
|
@@ -37235,8 +37533,8 @@ module Aws::SageMaker
|
|
37235
37533
|
# @return [String]
|
37236
37534
|
#
|
37237
37535
|
# @!attribute [rw] role_arn
|
37238
|
-
# The new
|
37239
|
-
#
|
37536
|
+
# The new ARN for the IAM role that enables Amazon SageMaker to
|
37537
|
+
# perform tasks on your behalf.
|
37240
37538
|
# @return [String]
|
37241
37539
|
#
|
37242
37540
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageRequest AWS API Documentation
|
@@ -37252,7 +37550,7 @@ module Aws::SageMaker
|
|
37252
37550
|
end
|
37253
37551
|
|
37254
37552
|
# @!attribute [rw] image_arn
|
37255
|
-
# The
|
37553
|
+
# The ARN of the image.
|
37256
37554
|
# @return [String]
|
37257
37555
|
#
|
37258
37556
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageResponse AWS API Documentation
|
@@ -37263,6 +37561,110 @@ module Aws::SageMaker
|
|
37263
37561
|
include Aws::Structure
|
37264
37562
|
end
|
37265
37563
|
|
37564
|
+
# @!attribute [rw] image_name
|
37565
|
+
# The name of the image.
|
37566
|
+
# @return [String]
|
37567
|
+
#
|
37568
|
+
# @!attribute [rw] alias
|
37569
|
+
# The alias of the image version.
|
37570
|
+
# @return [String]
|
37571
|
+
#
|
37572
|
+
# @!attribute [rw] version
|
37573
|
+
# The version of the image.
|
37574
|
+
# @return [Integer]
|
37575
|
+
#
|
37576
|
+
# @!attribute [rw] aliases_to_add
|
37577
|
+
# A list of aliases to add.
|
37578
|
+
# @return [Array<String>]
|
37579
|
+
#
|
37580
|
+
# @!attribute [rw] aliases_to_delete
|
37581
|
+
# A list of aliases to delete.
|
37582
|
+
# @return [Array<String>]
|
37583
|
+
#
|
37584
|
+
# @!attribute [rw] vendor_guidance
|
37585
|
+
# The availability of the image version specified by the maintainer.
|
37586
|
+
#
|
37587
|
+
# * `NOT_PROVIDED`\: The maintainers did not provide a status for
|
37588
|
+
# image version stability.
|
37589
|
+
#
|
37590
|
+
# * `STABLE`\: The image version is stable.
|
37591
|
+
#
|
37592
|
+
# * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
|
37593
|
+
# image versions that are set to be archived are automatically
|
37594
|
+
# archived after three months.
|
37595
|
+
#
|
37596
|
+
# * `ARCHIVED`\: The image version is archived. Archived image
|
37597
|
+
# versions are not searchable and are no longer actively supported.
|
37598
|
+
# @return [String]
|
37599
|
+
#
|
37600
|
+
# @!attribute [rw] job_type
|
37601
|
+
# Indicates SageMaker job type compatibility.
|
37602
|
+
#
|
37603
|
+
# * `TRAINING`\: The image version is compatible with SageMaker
|
37604
|
+
# training jobs.
|
37605
|
+
#
|
37606
|
+
# * `INFERENCE`\: The image version is compatible with SageMaker
|
37607
|
+
# inference jobs.
|
37608
|
+
#
|
37609
|
+
# * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
|
37610
|
+
# notebook kernels.
|
37611
|
+
# @return [String]
|
37612
|
+
#
|
37613
|
+
# @!attribute [rw] ml_framework
|
37614
|
+
# The machine learning framework vended in the image version.
|
37615
|
+
# @return [String]
|
37616
|
+
#
|
37617
|
+
# @!attribute [rw] programming_lang
|
37618
|
+
# The supported programming language and its version.
|
37619
|
+
# @return [String]
|
37620
|
+
#
|
37621
|
+
# @!attribute [rw] processor
|
37622
|
+
# Indicates CPU or GPU compatibility.
|
37623
|
+
#
|
37624
|
+
# * `CPU`\: The image version is compatible with CPU.
|
37625
|
+
#
|
37626
|
+
# * `GPU`\: The image version is compatible with GPU.
|
37627
|
+
# @return [String]
|
37628
|
+
#
|
37629
|
+
# @!attribute [rw] horovod
|
37630
|
+
# Indicates Horovod compatibility.
|
37631
|
+
# @return [Boolean]
|
37632
|
+
#
|
37633
|
+
# @!attribute [rw] release_notes
|
37634
|
+
# The maintainer description of the image version.
|
37635
|
+
# @return [String]
|
37636
|
+
#
|
37637
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageVersionRequest AWS API Documentation
|
37638
|
+
#
|
37639
|
+
class UpdateImageVersionRequest < Struct.new(
|
37640
|
+
:image_name,
|
37641
|
+
:alias,
|
37642
|
+
:version,
|
37643
|
+
:aliases_to_add,
|
37644
|
+
:aliases_to_delete,
|
37645
|
+
:vendor_guidance,
|
37646
|
+
:job_type,
|
37647
|
+
:ml_framework,
|
37648
|
+
:programming_lang,
|
37649
|
+
:processor,
|
37650
|
+
:horovod,
|
37651
|
+
:release_notes)
|
37652
|
+
SENSITIVE = []
|
37653
|
+
include Aws::Structure
|
37654
|
+
end
|
37655
|
+
|
37656
|
+
# @!attribute [rw] image_version_arn
|
37657
|
+
# The ARN of the image version.
|
37658
|
+
# @return [String]
|
37659
|
+
#
|
37660
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageVersionResponse AWS API Documentation
|
37661
|
+
#
|
37662
|
+
class UpdateImageVersionResponse < Struct.new(
|
37663
|
+
:image_version_arn)
|
37664
|
+
SENSITIVE = []
|
37665
|
+
include Aws::Structure
|
37666
|
+
end
|
37667
|
+
|
37266
37668
|
# @!attribute [rw] name
|
37267
37669
|
# The name of the inference experiment to be updated.
|
37268
37670
|
# @return [String]
|