aws-sdk-sagemaker 1.156.0 → 1.158.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +249 -16
- data/lib/aws-sdk-sagemaker/client_api.rb +86 -1
- data/lib/aws-sdk-sagemaker/endpoints.rb +28 -0
- data/lib/aws-sdk-sagemaker/plugins/endpoints.rb +4 -0
- data/lib/aws-sdk-sagemaker/types.rb +488 -86
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -2015,66 +2015,171 @@ module Aws::SageMaker
|
|
2015
2015
|
#
|
2016
2016
|
# Here are the options:
|
2017
2017
|
#
|
2018
|
-
#
|
2019
|
-
#
|
2020
|
-
#
|
2021
|
-
#
|
2022
|
-
#
|
2023
|
-
#
|
2024
|
-
#
|
2025
|
-
#
|
2026
|
-
#
|
2027
|
-
#
|
2028
|
-
#
|
2029
|
-
#
|
2030
|
-
#
|
2031
|
-
#
|
2032
|
-
#
|
2033
|
-
#
|
2018
|
+
# Accuracy
|
2019
|
+
#
|
2020
|
+
# : The ratio of the number of correctly classified items to the total
|
2021
|
+
# number of (correctly and incorrectly) classified items. It is used
|
2022
|
+
# for both binary and multiclass classification. Accuracy measures
|
2023
|
+
# how close the predicted class values are to the actual values.
|
2024
|
+
# Values for accuracy metrics vary between zero (0) and one (1). A
|
2025
|
+
# value of 1 indicates perfect accuracy, and 0 indicates perfect
|
2026
|
+
# inaccuracy.
|
2027
|
+
#
|
2028
|
+
# AUC
|
2029
|
+
#
|
2030
|
+
# : The area under the curve (AUC) metric is used to compare and
|
2031
|
+
# evaluate binary classification by algorithms that return
|
2032
|
+
# probabilities, such as logistic regression. To map the
|
2033
|
+
# probabilities into classifications, these are compared against a
|
2034
|
+
# threshold value.
|
2035
|
+
#
|
2036
|
+
# The relevant curve is the receiver operating characteristic curve
|
2037
|
+
# (ROC curve). The ROC curve plots the true positive rate (TPR) of
|
2038
|
+
# predictions (or recall) against the false positive rate (FPR) as a
|
2039
|
+
# function of the threshold value, above which a prediction is
|
2040
|
+
# considered positive. Increasing the threshold results in fewer
|
2041
|
+
# false positives, but more false negatives.
|
2042
|
+
#
|
2043
|
+
# AUC is the area under this ROC curve. Therefore, AUC provides an
|
2044
|
+
# aggregated measure of the model performance across all possible
|
2045
|
+
# classification thresholds. AUC scores vary between 0 and 1. A
|
2046
|
+
# score of 1 indicates perfect accuracy, and a score of one half
|
2047
|
+
# (0.5) indicates that the prediction is not better than a random
|
2048
|
+
# classifier.
|
2049
|
+
#
|
2050
|
+
# BalancedAccuracy
|
2051
|
+
#
|
2052
|
+
# : `BalancedAccuracy` is a metric that measures the ratio of accurate
|
2053
|
+
# predictions to all predictions. This ratio is calculated after
|
2054
|
+
# normalizing true positives (TP) and true negatives (TN) by the
|
2055
|
+
# total number of positive (P) and negative (N) values. It is used
|
2056
|
+
# in both binary and multiclass classification and is defined as
|
2057
|
+
# follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
|
2058
|
+
# `BalancedAccuracy` gives a better measure of accuracy when the
|
2059
|
+
# number of positives or negatives differ greatly from each other in
|
2060
|
+
# an imbalanced dataset. For example, when only 1% of email is spam.
|
2061
|
+
#
|
2062
|
+
# F1
|
2063
|
+
#
|
2064
|
+
# : The `F1` score is the harmonic mean of the precision and recall,
|
2065
|
+
# defined as follows: F1 = 2 * (precision * recall) / (precision +
|
2066
|
+
# recall). It is used for binary classification into classes
|
2034
2067
|
# traditionally referred to as positive and negative. Predictions
|
2035
|
-
# are said to be true when they match their actual (correct) class
|
2036
|
-
# and false when they do not.
|
2037
|
-
#
|
2038
|
-
#
|
2039
|
-
#
|
2040
|
-
#
|
2041
|
-
#
|
2042
|
-
#
|
2043
|
-
#
|
2044
|
-
#
|
2045
|
-
#
|
2046
|
-
#
|
2047
|
-
#
|
2048
|
-
#
|
2049
|
-
#
|
2050
|
-
#
|
2051
|
-
#
|
2052
|
-
#
|
2053
|
-
#
|
2054
|
-
#
|
2055
|
-
#
|
2056
|
-
#
|
2057
|
-
#
|
2058
|
-
#
|
2059
|
-
#
|
2060
|
-
#
|
2061
|
-
#
|
2062
|
-
#
|
2063
|
-
#
|
2064
|
-
#
|
2065
|
-
#
|
2066
|
-
#
|
2067
|
-
#
|
2068
|
-
#
|
2069
|
-
#
|
2070
|
-
#
|
2071
|
-
#
|
2072
|
-
#
|
2073
|
-
#
|
2074
|
-
#
|
2075
|
-
#
|
2076
|
-
#
|
2077
|
-
#
|
2068
|
+
# are said to be true when they match their actual (correct) class,
|
2069
|
+
# and false when they do not.
|
2070
|
+
#
|
2071
|
+
# Precision is the ratio of the true positive predictions to all
|
2072
|
+
# positive predictions, and it includes the false positives in a
|
2073
|
+
# dataset. Precision measures the quality of the prediction when it
|
2074
|
+
# predicts the positive class.
|
2075
|
+
#
|
2076
|
+
# Recall (or sensitivity) is the ratio of the true positive
|
2077
|
+
# predictions to all actual positive instances. Recall measures how
|
2078
|
+
# completely a model predicts the actual class members in a dataset.
|
2079
|
+
#
|
2080
|
+
# F1 scores vary between 0 and 1. A score of 1 indicates the best
|
2081
|
+
# possible performance, and 0 indicates the worst.
|
2082
|
+
#
|
2083
|
+
# F1macro
|
2084
|
+
#
|
2085
|
+
# : The `F1macro` score applies F1 scoring to multiclass
|
2086
|
+
# classification problems. It does this by calculating the precision
|
2087
|
+
# and recall, and then taking their harmonic mean to calculate the
|
2088
|
+
# F1 score for each class. Lastly, the F1macro averages the
|
2089
|
+
# individual scores to obtain the `F1macro` score. `F1macro` scores
|
2090
|
+
# vary between 0 and 1. A score of 1 indicates the best possible
|
2091
|
+
# performance, and 0 indicates the worst.
|
2092
|
+
#
|
2093
|
+
# MAE
|
2094
|
+
#
|
2095
|
+
# : The mean absolute error (MAE) is a measure of how different the
|
2096
|
+
# predicted and actual values are, when they're averaged over all
|
2097
|
+
# values. MAE is commonly used in regression analysis to understand
|
2098
|
+
# model prediction error. If there is linear regression, MAE
|
2099
|
+
# represents the average distance from a predicted line to the
|
2100
|
+
# actual value. MAE is defined as the sum of absolute errors divided
|
2101
|
+
# by the number of observations. Values range from 0 to infinity,
|
2102
|
+
# with smaller numbers indicating a better model fit to the data.
|
2103
|
+
#
|
2104
|
+
# MSE
|
2105
|
+
#
|
2106
|
+
# : The mean squared error (MSE) is the average of the squared
|
2107
|
+
# differences between the predicted and actual values. It is used
|
2108
|
+
# for regression. MSE values are always positive. The better a model
|
2109
|
+
# is at predicting the actual values, the smaller the MSE value is
|
2110
|
+
#
|
2111
|
+
# Precision
|
2112
|
+
#
|
2113
|
+
# : Precision measures how well an algorithm predicts the true
|
2114
|
+
# positives (TP) out of all of the positives that it identifies. It
|
2115
|
+
# is defined as follows: Precision = TP/(TP+FP), with values ranging
|
2116
|
+
# from zero (0) to one (1), and is used in binary classification.
|
2117
|
+
# Precision is an important metric when the cost of a false positive
|
2118
|
+
# is high. For example, the cost of a false positive is very high if
|
2119
|
+
# an airplane safety system is falsely deemed safe to fly. A false
|
2120
|
+
# positive (FP) reflects a positive prediction that is actually
|
2121
|
+
# negative in the data.
|
2122
|
+
#
|
2123
|
+
# PrecisionMacro
|
2124
|
+
#
|
2125
|
+
# : The precision macro computes precision for multiclass
|
2126
|
+
# classification problems. It does this by calculating precision for
|
2127
|
+
# each class and averaging scores to obtain precision for several
|
2128
|
+
# classes. `PrecisionMacro` scores range from zero (0) to one (1).
|
2129
|
+
# Higher scores reflect the model's ability to predict true
|
2130
|
+
# positives (TP) out of all of the positives that it identifies,
|
2131
|
+
# averaged across multiple classes.
|
2132
|
+
#
|
2133
|
+
# R2
|
2134
|
+
#
|
2135
|
+
# : R2, also known as the coefficient of determination, is used in
|
2136
|
+
# regression to quantify how much a model can explain the variance
|
2137
|
+
# of a dependent variable. Values range from one (1) to negative one
|
2138
|
+
# (-1). Higher numbers indicate a higher fraction of explained
|
2139
|
+
# variability. `R2` values close to zero (0) indicate that very
|
2140
|
+
# little of the dependent variable can be explained by the model.
|
2141
|
+
# Negative values indicate a poor fit and that the model is
|
2142
|
+
# outperformed by a constant function. For linear regression, this
|
2143
|
+
# is a horizontal line.
|
2144
|
+
#
|
2145
|
+
# Recall
|
2146
|
+
#
|
2147
|
+
# : Recall measures how well an algorithm correctly predicts all of
|
2148
|
+
# the true positives (TP) in a dataset. A true positive is a
|
2149
|
+
# positive prediction that is also an actual positive value in the
|
2150
|
+
# data. Recall is defined as follows: Recall = TP/(TP+FN), with
|
2151
|
+
# values ranging from 0 to 1. Higher scores reflect a better ability
|
2152
|
+
# of the model to predict true positives (TP) in the data, and is
|
2153
|
+
# used in binary classification.
|
2154
|
+
#
|
2155
|
+
# Recall is important when testing for cancer because it's used to
|
2156
|
+
# find all of the true positives. A false positive (FP) reflects a
|
2157
|
+
# positive prediction that is actually negative in the data. It is
|
2158
|
+
# often insufficient to measure only recall, because predicting
|
2159
|
+
# every output as a true positive will yield a perfect recall score.
|
2160
|
+
#
|
2161
|
+
# RecallMacro
|
2162
|
+
#
|
2163
|
+
# : The RecallMacro computes recall for multiclass classification
|
2164
|
+
# problems by calculating recall for each class and averaging scores
|
2165
|
+
# to obtain recall for several classes. RecallMacro scores range
|
2166
|
+
# from 0 to 1. Higher scores reflect the model's ability to predict
|
2167
|
+
# true positives (TP) in a dataset. Whereas, a true positive
|
2168
|
+
# reflects a positive prediction that is also an actual positive
|
2169
|
+
# value in the data. It is often insufficient to measure only
|
2170
|
+
# recall, because predicting every output as a true positive will
|
2171
|
+
# yield a perfect recall score.
|
2172
|
+
#
|
2173
|
+
# RMSE
|
2174
|
+
#
|
2175
|
+
# : Root mean squared error (RMSE) measures the square root of the
|
2176
|
+
# squared difference between predicted and actual values, and it's
|
2177
|
+
# averaged over all values. It is used in regression analysis to
|
2178
|
+
# understand model prediction error. It's an important metric to
|
2179
|
+
# indicate the presence of large model errors and outliers. Values
|
2180
|
+
# range from zero (0) to infinity, with smaller numbers indicating a
|
2181
|
+
# better model fit to the data. RMSE is dependent on scale, and
|
2182
|
+
# should not be used to compare datasets of different sizes.
|
2078
2183
|
#
|
2079
2184
|
# If you do not specify a metric explicitly, the default behavior is
|
2080
2185
|
# to automatically use:
|
@@ -5381,8 +5486,8 @@ module Aws::SageMaker
|
|
5381
5486
|
# @return [String]
|
5382
5487
|
#
|
5383
5488
|
# @!attribute [rw] role_arn
|
5384
|
-
# The
|
5385
|
-
#
|
5489
|
+
# The ARN of an IAM role that enables Amazon SageMaker to perform
|
5490
|
+
# tasks on your behalf.
|
5386
5491
|
# @return [String]
|
5387
5492
|
#
|
5388
5493
|
# @!attribute [rw] tags
|
@@ -5402,7 +5507,7 @@ module Aws::SageMaker
|
|
5402
5507
|
end
|
5403
5508
|
|
5404
5509
|
# @!attribute [rw] image_arn
|
5405
|
-
# The
|
5510
|
+
# The ARN of the image.
|
5406
5511
|
# @return [String]
|
5407
5512
|
#
|
5408
5513
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageResponse AWS API Documentation
|
@@ -5435,18 +5540,83 @@ module Aws::SageMaker
|
|
5435
5540
|
# The `ImageName` of the `Image` to create a version of.
|
5436
5541
|
# @return [String]
|
5437
5542
|
#
|
5543
|
+
# @!attribute [rw] aliases
|
5544
|
+
# A list of aliases created with the image version.
|
5545
|
+
# @return [Array<String>]
|
5546
|
+
#
|
5547
|
+
# @!attribute [rw] vendor_guidance
|
5548
|
+
# The stability of the image version, specified by the maintainer.
|
5549
|
+
#
|
5550
|
+
# * `NOT_PROVIDED`\: The maintainers did not provide a status for
|
5551
|
+
# image version stability.
|
5552
|
+
#
|
5553
|
+
# * `STABLE`\: The image version is stable.
|
5554
|
+
#
|
5555
|
+
# * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
|
5556
|
+
# image versions that are set to be archived are automatically
|
5557
|
+
# archived after three months.
|
5558
|
+
#
|
5559
|
+
# * `ARCHIVED`\: The image version is archived. Archived image
|
5560
|
+
# versions are not searchable and are no longer actively supported.
|
5561
|
+
# @return [String]
|
5562
|
+
#
|
5563
|
+
# @!attribute [rw] job_type
|
5564
|
+
# Indicates SageMaker job type compatibility.
|
5565
|
+
#
|
5566
|
+
# * `TRAINING`\: The image version is compatible with SageMaker
|
5567
|
+
# training jobs.
|
5568
|
+
#
|
5569
|
+
# * `INFERENCE`\: The image version is compatible with SageMaker
|
5570
|
+
# inference jobs.
|
5571
|
+
#
|
5572
|
+
# * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
|
5573
|
+
# notebook kernels.
|
5574
|
+
# @return [String]
|
5575
|
+
#
|
5576
|
+
# @!attribute [rw] ml_framework
|
5577
|
+
# The machine learning framework vended in the image version.
|
5578
|
+
# @return [String]
|
5579
|
+
#
|
5580
|
+
# @!attribute [rw] programming_lang
|
5581
|
+
# The supported programming language and its version.
|
5582
|
+
# @return [String]
|
5583
|
+
#
|
5584
|
+
# @!attribute [rw] processor
|
5585
|
+
# Indicates CPU or GPU compatibility.
|
5586
|
+
#
|
5587
|
+
# * `CPU`\: The image version is compatible with CPU.
|
5588
|
+
#
|
5589
|
+
# * `GPU`\: The image version is compatible with GPU.
|
5590
|
+
# @return [String]
|
5591
|
+
#
|
5592
|
+
# @!attribute [rw] horovod
|
5593
|
+
# Indicates Horovod compatibility.
|
5594
|
+
# @return [Boolean]
|
5595
|
+
#
|
5596
|
+
# @!attribute [rw] release_notes
|
5597
|
+
# The maintainer description of the image version.
|
5598
|
+
# @return [String]
|
5599
|
+
#
|
5438
5600
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageVersionRequest AWS API Documentation
|
5439
5601
|
#
|
5440
5602
|
class CreateImageVersionRequest < Struct.new(
|
5441
5603
|
:base_image,
|
5442
5604
|
:client_token,
|
5443
|
-
:image_name
|
5605
|
+
:image_name,
|
5606
|
+
:aliases,
|
5607
|
+
:vendor_guidance,
|
5608
|
+
:job_type,
|
5609
|
+
:ml_framework,
|
5610
|
+
:programming_lang,
|
5611
|
+
:processor,
|
5612
|
+
:horovod,
|
5613
|
+
:release_notes)
|
5444
5614
|
SENSITIVE = []
|
5445
5615
|
include Aws::Structure
|
5446
5616
|
end
|
5447
5617
|
|
5448
5618
|
# @!attribute [rw] image_version_arn
|
5449
|
-
# The
|
5619
|
+
# The ARN of the image version.
|
5450
5620
|
# @return [String]
|
5451
5621
|
#
|
5452
5622
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageVersionResponse AWS API Documentation
|
@@ -8931,18 +9101,23 @@ module Aws::SageMaker
|
|
8931
9101
|
class DeleteImageResponse < Aws::EmptyStructure; end
|
8932
9102
|
|
8933
9103
|
# @!attribute [rw] image_name
|
8934
|
-
# The name of the image.
|
9104
|
+
# The name of the image to delete.
|
8935
9105
|
# @return [String]
|
8936
9106
|
#
|
8937
9107
|
# @!attribute [rw] version
|
8938
9108
|
# The version to delete.
|
8939
9109
|
# @return [Integer]
|
8940
9110
|
#
|
9111
|
+
# @!attribute [rw] alias
|
9112
|
+
# The alias of the image to delete.
|
9113
|
+
# @return [String]
|
9114
|
+
#
|
8941
9115
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteImageVersionRequest AWS API Documentation
|
8942
9116
|
#
|
8943
9117
|
class DeleteImageVersionRequest < Struct.new(
|
8944
9118
|
:image_name,
|
8945
|
-
:version
|
9119
|
+
:version,
|
9120
|
+
:alias)
|
8946
9121
|
SENSITIVE = []
|
8947
9122
|
include Aws::Structure
|
8948
9123
|
end
|
@@ -9906,7 +10081,13 @@ module Aws::SageMaker
|
|
9906
10081
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
9907
10082
|
#
|
9908
10083
|
# @!attribute [rw] best_candidate
|
9909
|
-
#
|
10084
|
+
# The best model candidate selected by SageMaker Autopilot using both
|
10085
|
+
# the best objective metric and lowest [InferenceLatency][1] for an
|
10086
|
+
# experiment.
|
10087
|
+
#
|
10088
|
+
#
|
10089
|
+
#
|
10090
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
|
9910
10091
|
# @return [Types::AutoMLCandidate]
|
9911
10092
|
#
|
9912
10093
|
# @!attribute [rw] auto_ml_job_status
|
@@ -11707,7 +11888,7 @@ module Aws::SageMaker
|
|
11707
11888
|
# @return [String]
|
11708
11889
|
#
|
11709
11890
|
# @!attribute [rw] image_arn
|
11710
|
-
# The
|
11891
|
+
# The ARN of the image.
|
11711
11892
|
# @return [String]
|
11712
11893
|
#
|
11713
11894
|
# @!attribute [rw] image_name
|
@@ -11723,8 +11904,8 @@ module Aws::SageMaker
|
|
11723
11904
|
# @return [Time]
|
11724
11905
|
#
|
11725
11906
|
# @!attribute [rw] role_arn
|
11726
|
-
# The
|
11727
|
-
#
|
11907
|
+
# The ARN of the IAM role that enables Amazon SageMaker to perform
|
11908
|
+
# tasks on your behalf.
|
11728
11909
|
# @return [String]
|
11729
11910
|
#
|
11730
11911
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageResponse AWS API Documentation
|
@@ -11752,11 +11933,16 @@ module Aws::SageMaker
|
|
11752
11933
|
# described.
|
11753
11934
|
# @return [Integer]
|
11754
11935
|
#
|
11936
|
+
# @!attribute [rw] alias
|
11937
|
+
# The alias of the image version.
|
11938
|
+
# @return [String]
|
11939
|
+
#
|
11755
11940
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageVersionRequest AWS API Documentation
|
11756
11941
|
#
|
11757
11942
|
class DescribeImageVersionRequest < Struct.new(
|
11758
11943
|
:image_name,
|
11759
|
-
:version
|
11944
|
+
:version,
|
11945
|
+
:alias)
|
11760
11946
|
SENSITIVE = []
|
11761
11947
|
include Aws::Structure
|
11762
11948
|
end
|
@@ -11780,7 +11966,7 @@ module Aws::SageMaker
|
|
11780
11966
|
# @return [String]
|
11781
11967
|
#
|
11782
11968
|
# @!attribute [rw] image_arn
|
11783
|
-
# The
|
11969
|
+
# The ARN of the image the version is based on.
|
11784
11970
|
# @return [String]
|
11785
11971
|
#
|
11786
11972
|
# @!attribute [rw] image_version_arn
|
@@ -11799,6 +11985,59 @@ module Aws::SageMaker
|
|
11799
11985
|
# The version number.
|
11800
11986
|
# @return [Integer]
|
11801
11987
|
#
|
11988
|
+
# @!attribute [rw] vendor_guidance
|
11989
|
+
# The stability of the image version specified by the maintainer.
|
11990
|
+
#
|
11991
|
+
# * `NOT_PROVIDED`\: The maintainers did not provide a status for
|
11992
|
+
# image version stability.
|
11993
|
+
#
|
11994
|
+
# * `STABLE`\: The image version is stable.
|
11995
|
+
#
|
11996
|
+
# * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
|
11997
|
+
# image versions that are set to be archived are automatically
|
11998
|
+
# archived after three months.
|
11999
|
+
#
|
12000
|
+
# * `ARCHIVED`\: The image version is archived. Archived image
|
12001
|
+
# versions are not searchable and are no longer actively supported.
|
12002
|
+
# @return [String]
|
12003
|
+
#
|
12004
|
+
# @!attribute [rw] job_type
|
12005
|
+
# Indicates SageMaker job type compatibility.
|
12006
|
+
#
|
12007
|
+
# * `TRAINING`\: The image version is compatible with SageMaker
|
12008
|
+
# training jobs.
|
12009
|
+
#
|
12010
|
+
# * `INFERENCE`\: The image version is compatible with SageMaker
|
12011
|
+
# inference jobs.
|
12012
|
+
#
|
12013
|
+
# * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
|
12014
|
+
# notebook kernels.
|
12015
|
+
# @return [String]
|
12016
|
+
#
|
12017
|
+
# @!attribute [rw] ml_framework
|
12018
|
+
# The machine learning framework vended in the image version.
|
12019
|
+
# @return [String]
|
12020
|
+
#
|
12021
|
+
# @!attribute [rw] programming_lang
|
12022
|
+
# The supported programming language and its version.
|
12023
|
+
# @return [String]
|
12024
|
+
#
|
12025
|
+
# @!attribute [rw] processor
|
12026
|
+
# Indicates CPU or GPU compatibility.
|
12027
|
+
#
|
12028
|
+
# * `CPU`\: The image version is compatible with CPU.
|
12029
|
+
#
|
12030
|
+
# * `GPU`\: The image version is compatible with GPU.
|
12031
|
+
# @return [String]
|
12032
|
+
#
|
12033
|
+
# @!attribute [rw] horovod
|
12034
|
+
# Indicates Horovod compatibility.
|
12035
|
+
# @return [Boolean]
|
12036
|
+
#
|
12037
|
+
# @!attribute [rw] release_notes
|
12038
|
+
# The maintainer description of the image version.
|
12039
|
+
# @return [String]
|
12040
|
+
#
|
11802
12041
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageVersionResponse AWS API Documentation
|
11803
12042
|
#
|
11804
12043
|
class DescribeImageVersionResponse < Struct.new(
|
@@ -11810,7 +12049,14 @@ module Aws::SageMaker
|
|
11810
12049
|
:image_version_arn,
|
11811
12050
|
:image_version_status,
|
11812
12051
|
:last_modified_time,
|
11813
|
-
:version
|
12052
|
+
:version,
|
12053
|
+
:vendor_guidance,
|
12054
|
+
:job_type,
|
12055
|
+
:ml_framework,
|
12056
|
+
:programming_lang,
|
12057
|
+
:processor,
|
12058
|
+
:horovod,
|
12059
|
+
:release_notes)
|
11814
12060
|
SENSITIVE = []
|
11815
12061
|
include Aws::Structure
|
11816
12062
|
end
|
@@ -14519,8 +14765,8 @@ module Aws::SageMaker
|
|
14519
14765
|
# @return [String]
|
14520
14766
|
#
|
14521
14767
|
# @!attribute [rw] sources
|
14522
|
-
# A list of
|
14523
|
-
#
|
14768
|
+
# A list of ARNs and, if applicable, job types for multiple sources of
|
14769
|
+
# an experiment run.
|
14524
14770
|
# @return [Array<Types::TrialComponentSource>]
|
14525
14771
|
#
|
14526
14772
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrialComponentResponse AWS API Documentation
|
@@ -16201,8 +16447,8 @@ module Aws::SageMaker
|
|
16201
16447
|
# * CreateTransformJob
|
16202
16448
|
#
|
16203
16449
|
# @!attribute [rw] experiment_name
|
16204
|
-
# The name of an existing experiment to associate the trial
|
16205
|
-
#
|
16450
|
+
# The name of an existing experiment to associate with the trial
|
16451
|
+
# component.
|
16206
16452
|
# @return [String]
|
16207
16453
|
#
|
16208
16454
|
# @!attribute [rw] trial_name
|
@@ -16216,8 +16462,8 @@ module Aws::SageMaker
|
|
16216
16462
|
# @return [String]
|
16217
16463
|
#
|
16218
16464
|
# @!attribute [rw] run_name
|
16219
|
-
# The name of the experiment run to associate the trial
|
16220
|
-
#
|
16465
|
+
# The name of the experiment run to associate with the trial
|
16466
|
+
# component.
|
16221
16467
|
# @return [String]
|
16222
16468
|
#
|
16223
16469
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
|
@@ -18899,8 +19145,8 @@ module Aws::SageMaker
|
|
18899
19145
|
# @!attribute [rw] parameter_ranges
|
18900
19146
|
# The ParameterRanges object that specifies the ranges of
|
18901
19147
|
# hyperparameters that this tuning job searches over to find the
|
18902
|
-
# optimal configuration for the highest model performance against
|
18903
|
-
#
|
19148
|
+
# optimal configuration for the highest model performance against your
|
19149
|
+
# chosen objective metric.
|
18904
19150
|
# @return [Types::ParameterRanges]
|
18905
19151
|
#
|
18906
19152
|
# @!attribute [rw] training_job_early_stopping_type
|
@@ -19464,7 +19710,7 @@ module Aws::SageMaker
|
|
19464
19710
|
# @return [String]
|
19465
19711
|
#
|
19466
19712
|
# @!attribute [rw] image_arn
|
19467
|
-
# The
|
19713
|
+
# The ARN of the image.
|
19468
19714
|
# @return [String]
|
19469
19715
|
#
|
19470
19716
|
# @!attribute [rw] image_name
|
@@ -19536,7 +19782,7 @@ module Aws::SageMaker
|
|
19536
19782
|
# @return [String]
|
19537
19783
|
#
|
19538
19784
|
# @!attribute [rw] image_arn
|
19539
|
-
# The
|
19785
|
+
# The ARN of the image the version is based on.
|
19540
19786
|
# @return [String]
|
19541
19787
|
#
|
19542
19788
|
# @!attribute [rw] image_version_arn
|
@@ -21163,6 +21409,58 @@ module Aws::SageMaker
|
|
21163
21409
|
include Aws::Structure
|
21164
21410
|
end
|
21165
21411
|
|
21412
|
+
# @!attribute [rw] image_name
|
21413
|
+
# The name of the image.
|
21414
|
+
# @return [String]
|
21415
|
+
#
|
21416
|
+
# @!attribute [rw] alias
|
21417
|
+
# The alias of the image version.
|
21418
|
+
# @return [String]
|
21419
|
+
#
|
21420
|
+
# @!attribute [rw] version
|
21421
|
+
# The version of the image. If image version is not specified, the
|
21422
|
+
# aliases of all versions of the image are listed.
|
21423
|
+
# @return [Integer]
|
21424
|
+
#
|
21425
|
+
# @!attribute [rw] max_results
|
21426
|
+
# The maximum number of aliases to return.
|
21427
|
+
# @return [Integer]
|
21428
|
+
#
|
21429
|
+
# @!attribute [rw] next_token
|
21430
|
+
# If the previous call to `ListAliases` didn't return the full set of
|
21431
|
+
# aliases, the call returns a token for retrieving the next set of
|
21432
|
+
# aliases.
|
21433
|
+
# @return [String]
|
21434
|
+
#
|
21435
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAliasesRequest AWS API Documentation
|
21436
|
+
#
|
21437
|
+
class ListAliasesRequest < Struct.new(
|
21438
|
+
:image_name,
|
21439
|
+
:alias,
|
21440
|
+
:version,
|
21441
|
+
:max_results,
|
21442
|
+
:next_token)
|
21443
|
+
SENSITIVE = []
|
21444
|
+
include Aws::Structure
|
21445
|
+
end
|
21446
|
+
|
21447
|
+
# @!attribute [rw] sage_maker_image_version_aliases
|
21448
|
+
# A list of SageMaker image version aliases.
|
21449
|
+
# @return [Array<String>]
|
21450
|
+
#
|
21451
|
+
# @!attribute [rw] next_token
|
21452
|
+
# A token for getting the next set of aliases, if more aliases exist.
|
21453
|
+
# @return [String]
|
21454
|
+
#
|
21455
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAliasesResponse AWS API Documentation
|
21456
|
+
#
|
21457
|
+
class ListAliasesResponse < Struct.new(
|
21458
|
+
:sage_maker_image_version_aliases,
|
21459
|
+
:next_token)
|
21460
|
+
SENSITIVE = []
|
21461
|
+
include Aws::Structure
|
21462
|
+
end
|
21463
|
+
|
21166
21464
|
# @!attribute [rw] max_results
|
21167
21465
|
# The maximum number of AppImageConfigs to return in the response. The
|
21168
21466
|
# default value is 10.
|
@@ -37235,8 +37533,8 @@ module Aws::SageMaker
|
|
37235
37533
|
# @return [String]
|
37236
37534
|
#
|
37237
37535
|
# @!attribute [rw] role_arn
|
37238
|
-
# The new
|
37239
|
-
#
|
37536
|
+
# The new ARN for the IAM role that enables Amazon SageMaker to
|
37537
|
+
# perform tasks on your behalf.
|
37240
37538
|
# @return [String]
|
37241
37539
|
#
|
37242
37540
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageRequest AWS API Documentation
|
@@ -37252,7 +37550,7 @@ module Aws::SageMaker
|
|
37252
37550
|
end
|
37253
37551
|
|
37254
37552
|
# @!attribute [rw] image_arn
|
37255
|
-
# The
|
37553
|
+
# The ARN of the image.
|
37256
37554
|
# @return [String]
|
37257
37555
|
#
|
37258
37556
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageResponse AWS API Documentation
|
@@ -37263,6 +37561,110 @@ module Aws::SageMaker
|
|
37263
37561
|
include Aws::Structure
|
37264
37562
|
end
|
37265
37563
|
|
37564
|
+
# @!attribute [rw] image_name
|
37565
|
+
# The name of the image.
|
37566
|
+
# @return [String]
|
37567
|
+
#
|
37568
|
+
# @!attribute [rw] alias
|
37569
|
+
# The alias of the image version.
|
37570
|
+
# @return [String]
|
37571
|
+
#
|
37572
|
+
# @!attribute [rw] version
|
37573
|
+
# The version of the image.
|
37574
|
+
# @return [Integer]
|
37575
|
+
#
|
37576
|
+
# @!attribute [rw] aliases_to_add
|
37577
|
+
# A list of aliases to add.
|
37578
|
+
# @return [Array<String>]
|
37579
|
+
#
|
37580
|
+
# @!attribute [rw] aliases_to_delete
|
37581
|
+
# A list of aliases to delete.
|
37582
|
+
# @return [Array<String>]
|
37583
|
+
#
|
37584
|
+
# @!attribute [rw] vendor_guidance
|
37585
|
+
# The availability of the image version specified by the maintainer.
|
37586
|
+
#
|
37587
|
+
# * `NOT_PROVIDED`\: The maintainers did not provide a status for
|
37588
|
+
# image version stability.
|
37589
|
+
#
|
37590
|
+
# * `STABLE`\: The image version is stable.
|
37591
|
+
#
|
37592
|
+
# * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
|
37593
|
+
# image versions that are set to be archived are automatically
|
37594
|
+
# archived after three months.
|
37595
|
+
#
|
37596
|
+
# * `ARCHIVED`\: The image version is archived. Archived image
|
37597
|
+
# versions are not searchable and are no longer actively supported.
|
37598
|
+
# @return [String]
|
37599
|
+
#
|
37600
|
+
# @!attribute [rw] job_type
|
37601
|
+
# Indicates SageMaker job type compatibility.
|
37602
|
+
#
|
37603
|
+
# * `TRAINING`\: The image version is compatible with SageMaker
|
37604
|
+
# training jobs.
|
37605
|
+
#
|
37606
|
+
# * `INFERENCE`\: The image version is compatible with SageMaker
|
37607
|
+
# inference jobs.
|
37608
|
+
#
|
37609
|
+
# * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
|
37610
|
+
# notebook kernels.
|
37611
|
+
# @return [String]
|
37612
|
+
#
|
37613
|
+
# @!attribute [rw] ml_framework
|
37614
|
+
# The machine learning framework vended in the image version.
|
37615
|
+
# @return [String]
|
37616
|
+
#
|
37617
|
+
# @!attribute [rw] programming_lang
|
37618
|
+
# The supported programming language and its version.
|
37619
|
+
# @return [String]
|
37620
|
+
#
|
37621
|
+
# @!attribute [rw] processor
|
37622
|
+
# Indicates CPU or GPU compatibility.
|
37623
|
+
#
|
37624
|
+
# * `CPU`\: The image version is compatible with CPU.
|
37625
|
+
#
|
37626
|
+
# * `GPU`\: The image version is compatible with GPU.
|
37627
|
+
# @return [String]
|
37628
|
+
#
|
37629
|
+
# @!attribute [rw] horovod
|
37630
|
+
# Indicates Horovod compatibility.
|
37631
|
+
# @return [Boolean]
|
37632
|
+
#
|
37633
|
+
# @!attribute [rw] release_notes
|
37634
|
+
# The maintainer description of the image version.
|
37635
|
+
# @return [String]
|
37636
|
+
#
|
37637
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageVersionRequest AWS API Documentation
|
37638
|
+
#
|
37639
|
+
class UpdateImageVersionRequest < Struct.new(
|
37640
|
+
:image_name,
|
37641
|
+
:alias,
|
37642
|
+
:version,
|
37643
|
+
:aliases_to_add,
|
37644
|
+
:aliases_to_delete,
|
37645
|
+
:vendor_guidance,
|
37646
|
+
:job_type,
|
37647
|
+
:ml_framework,
|
37648
|
+
:programming_lang,
|
37649
|
+
:processor,
|
37650
|
+
:horovod,
|
37651
|
+
:release_notes)
|
37652
|
+
SENSITIVE = []
|
37653
|
+
include Aws::Structure
|
37654
|
+
end
|
37655
|
+
|
37656
|
+
# @!attribute [rw] image_version_arn
|
37657
|
+
# The ARN of the image version.
|
37658
|
+
# @return [String]
|
37659
|
+
#
|
37660
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageVersionResponse AWS API Documentation
|
37661
|
+
#
|
37662
|
+
class UpdateImageVersionResponse < Struct.new(
|
37663
|
+
:image_version_arn)
|
37664
|
+
SENSITIVE = []
|
37665
|
+
include Aws::Structure
|
37666
|
+
end
|
37667
|
+
|
37266
37668
|
# @!attribute [rw] name
|
37267
37669
|
# The name of the inference experiment to be updated.
|
37268
37670
|
# @return [String]
|