aws-sdk-sagemaker 1.156.0 → 1.158.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -2015,66 +2015,171 @@ module Aws::SageMaker
2015
2015
  #
2016
2016
  # Here are the options:
2017
2017
  #
2018
- # * `MSE`\: The mean squared error (MSE) is the average of the squared
2019
- # differences between the predicted and actual values. It is used
2020
- # for regression. MSE values are always positive: the better a model
2021
- # is at predicting the actual values, the smaller the MSE value is.
2022
- # When the data contains outliers, they tend to dominate the MSE,
2023
- # which might cause subpar prediction performance.
2024
- #
2025
- # * `Accuracy`\: The ratio of the number of correctly classified items
2026
- # to the total number of (correctly and incorrectly) classified
2027
- # items. It is used for binary and multiclass classification. It
2028
- # measures how close the predicted class values are to the actual
2029
- # values. Accuracy values vary between zero and one: one indicates
2030
- # perfect accuracy and zero indicates perfect inaccuracy.
2031
- #
2032
- # * `F1`\: The F1 score is the harmonic mean of the precision and
2033
- # recall. It is used for binary classification into classes
2018
+ # Accuracy
2019
+ #
2020
+ # : The ratio of the number of correctly classified items to the total
2021
+ # number of (correctly and incorrectly) classified items. It is used
2022
+ # for both binary and multiclass classification. Accuracy measures
2023
+ # how close the predicted class values are to the actual values.
2024
+ # Values for accuracy metrics vary between zero (0) and one (1). A
2025
+ # value of 1 indicates perfect accuracy, and 0 indicates perfect
2026
+ # inaccuracy.
2027
+ #
2028
+ # AUC
2029
+ #
2030
+ # : The area under the curve (AUC) metric is used to compare and
2031
+ # evaluate binary classification by algorithms that return
2032
+ # probabilities, such as logistic regression. To map the
2033
+ # probabilities into classifications, these are compared against a
2034
+ # threshold value.
2035
+ #
2036
+ # The relevant curve is the receiver operating characteristic curve
2037
+ # (ROC curve). The ROC curve plots the true positive rate (TPR) of
2038
+ # predictions (or recall) against the false positive rate (FPR) as a
2039
+ # function of the threshold value, above which a prediction is
2040
+ # considered positive. Increasing the threshold results in fewer
2041
+ # false positives, but more false negatives.
2042
+ #
2043
+ # AUC is the area under this ROC curve. Therefore, AUC provides an
2044
+ # aggregated measure of the model performance across all possible
2045
+ # classification thresholds. AUC scores vary between 0 and 1. A
2046
+ # score of 1 indicates perfect accuracy, and a score of one half
2047
+ # (0.5) indicates that the prediction is not better than a random
2048
+ # classifier.
2049
+ #
2050
+ # BalancedAccuracy
2051
+ #
2052
+ # : `BalancedAccuracy` is a metric that measures the ratio of accurate
2053
+ # predictions to all predictions. This ratio is calculated after
2054
+ # normalizing true positives (TP) and true negatives (TN) by the
2055
+ # total number of positive (P) and negative (N) values. It is used
2056
+ # in both binary and multiclass classification and is defined as
2057
+ # follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
2058
+ # `BalancedAccuracy` gives a better measure of accuracy when the
2059
+ # number of positives or negatives differ greatly from each other in
2060
+ # an imbalanced dataset. For example, when only 1% of email is spam.
2061
+ #
2062
+ # F1
2063
+ #
2064
+ # : The `F1` score is the harmonic mean of the precision and recall,
2065
+ # defined as follows: F1 = 2 * (precision * recall) / (precision +
2066
+ # recall). It is used for binary classification into classes
2034
2067
  # traditionally referred to as positive and negative. Predictions
2035
- # are said to be true when they match their actual (correct) class
2036
- # and false when they do not. Precision is the ratio of the true
2037
- # positive predictions to all positive predictions (including the
2038
- # false positives) in a data set and measures the quality of the
2039
- # prediction when it predicts the positive class. Recall (or
2040
- # sensitivity) is the ratio of the true positive predictions to all
2041
- # actual positive instances and measures how completely a model
2042
- # predicts the actual class members in a data set. The standard F1
2043
- # score weighs precision and recall equally. But which metric is
2044
- # paramount typically depends on specific aspects of a problem. F1
2045
- # scores vary between zero and one: one indicates the best possible
2046
- # performance and zero the worst.
2047
- #
2048
- # * `AUC`\: The area under the curve (AUC) metric is used to compare
2049
- # and evaluate binary classification by algorithms such as logistic
2050
- # regression that return probabilities. A threshold is needed to map
2051
- # the probabilities into classifications. The relevant curve is the
2052
- # receiver operating characteristic curve that plots the true
2053
- # positive rate (TPR) of predictions (or recall) against the false
2054
- # positive rate (FPR) as a function of the threshold value, above
2055
- # which a prediction is considered positive. Increasing the
2056
- # threshold results in fewer false positives but more false
2057
- # negatives. AUC is the area under this receiver operating
2058
- # characteristic curve and so provides an aggregated measure of the
2059
- # model performance across all possible classification thresholds.
2060
- # The AUC score can also be interpreted as the probability that a
2061
- # randomly selected positive data point is more likely to be
2062
- # predicted positive than a randomly selected negative example. AUC
2063
- # scores vary between zero and one: a score of one indicates perfect
2064
- # accuracy and a score of one half indicates that the prediction is
2065
- # not better than a random classifier. Values under one half predict
2066
- # less accurately than a random predictor. But such consistently bad
2067
- # predictors can simply be inverted to obtain better than random
2068
- # predictors.
2069
- #
2070
- # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2071
- # classification. In this context, you have multiple classes to
2072
- # predict. You just calculate the precision and recall for each
2073
- # class as you did for the positive class in binary classification.
2074
- # Then, use these values to calculate the F1 score for each class
2075
- # and average them to obtain the F1macro score. F1macro scores vary
2076
- # between zero and one: one indicates the best possible performance
2077
- # and zero the worst.
2068
+ # are said to be true when they match their actual (correct) class,
2069
+ # and false when they do not.
2070
+ #
2071
+ # Precision is the ratio of the true positive predictions to all
2072
+ # positive predictions, and it includes the false positives in a
2073
+ # dataset. Precision measures the quality of the prediction when it
2074
+ # predicts the positive class.
2075
+ #
2076
+ # Recall (or sensitivity) is the ratio of the true positive
2077
+ # predictions to all actual positive instances. Recall measures how
2078
+ # completely a model predicts the actual class members in a dataset.
2079
+ #
2080
+ # F1 scores vary between 0 and 1. A score of 1 indicates the best
2081
+ # possible performance, and 0 indicates the worst.
2082
+ #
2083
+ # F1macro
2084
+ #
2085
+ # : The `F1macro` score applies F1 scoring to multiclass
2086
+ # classification problems. It does this by calculating the precision
2087
+ # and recall, and then taking their harmonic mean to calculate the
2088
+ # F1 score for each class. Lastly, the F1macro averages the
2089
+ # individual scores to obtain the `F1macro` score. `F1macro` scores
2090
+ # vary between 0 and 1. A score of 1 indicates the best possible
2091
+ # performance, and 0 indicates the worst.
2092
+ #
2093
+ # MAE
2094
+ #
2095
+ # : The mean absolute error (MAE) is a measure of how different the
2096
+ # predicted and actual values are, when they're averaged over all
2097
+ # values. MAE is commonly used in regression analysis to understand
2098
+ # model prediction error. If there is linear regression, MAE
2099
+ # represents the average distance from a predicted line to the
2100
+ # actual value. MAE is defined as the sum of absolute errors divided
2101
+ # by the number of observations. Values range from 0 to infinity,
2102
+ # with smaller numbers indicating a better model fit to the data.
2103
+ #
2104
+ # MSE
2105
+ #
2106
+ # : The mean squared error (MSE) is the average of the squared
2107
+ # differences between the predicted and actual values. It is used
2108
+ # for regression. MSE values are always positive. The better a model
2109
+ # is at predicting the actual values, the smaller the MSE value is
2110
+ #
2111
+ # Precision
2112
+ #
2113
+ # : Precision measures how well an algorithm predicts the true
2114
+ # positives (TP) out of all of the positives that it identifies. It
2115
+ # is defined as follows: Precision = TP/(TP+FP), with values ranging
2116
+ # from zero (0) to one (1), and is used in binary classification.
2117
+ # Precision is an important metric when the cost of a false positive
2118
+ # is high. For example, the cost of a false positive is very high if
2119
+ # an airplane safety system is falsely deemed safe to fly. A false
2120
+ # positive (FP) reflects a positive prediction that is actually
2121
+ # negative in the data.
2122
+ #
2123
+ # PrecisionMacro
2124
+ #
2125
+ # : The precision macro computes precision for multiclass
2126
+ # classification problems. It does this by calculating precision for
2127
+ # each class and averaging scores to obtain precision for several
2128
+ # classes. `PrecisionMacro` scores range from zero (0) to one (1).
2129
+ # Higher scores reflect the model's ability to predict true
2130
+ # positives (TP) out of all of the positives that it identifies,
2131
+ # averaged across multiple classes.
2132
+ #
2133
+ # R2
2134
+ #
2135
+ # : R2, also known as the coefficient of determination, is used in
2136
+ # regression to quantify how much a model can explain the variance
2137
+ # of a dependent variable. Values range from one (1) to negative one
2138
+ # (-1). Higher numbers indicate a higher fraction of explained
2139
+ # variability. `R2` values close to zero (0) indicate that very
2140
+ # little of the dependent variable can be explained by the model.
2141
+ # Negative values indicate a poor fit and that the model is
2142
+ # outperformed by a constant function. For linear regression, this
2143
+ # is a horizontal line.
2144
+ #
2145
+ # Recall
2146
+ #
2147
+ # : Recall measures how well an algorithm correctly predicts all of
2148
+ # the true positives (TP) in a dataset. A true positive is a
2149
+ # positive prediction that is also an actual positive value in the
2150
+ # data. Recall is defined as follows: Recall = TP/(TP+FN), with
2151
+ # values ranging from 0 to 1. Higher scores reflect a better ability
2152
+ # of the model to predict true positives (TP) in the data, and is
2153
+ # used in binary classification.
2154
+ #
2155
+ # Recall is important when testing for cancer because it's used to
2156
+ # find all of the true positives. A false positive (FP) reflects a
2157
+ # positive prediction that is actually negative in the data. It is
2158
+ # often insufficient to measure only recall, because predicting
2159
+ # every output as a true positive will yield a perfect recall score.
2160
+ #
2161
+ # RecallMacro
2162
+ #
2163
+ # : The RecallMacro computes recall for multiclass classification
2164
+ # problems by calculating recall for each class and averaging scores
2165
+ # to obtain recall for several classes. RecallMacro scores range
2166
+ # from 0 to 1. Higher scores reflect the model's ability to predict
2167
+ # true positives (TP) in a dataset. Whereas, a true positive
2168
+ # reflects a positive prediction that is also an actual positive
2169
+ # value in the data. It is often insufficient to measure only
2170
+ # recall, because predicting every output as a true positive will
2171
+ # yield a perfect recall score.
2172
+ #
2173
+ # RMSE
2174
+ #
2175
+ # : Root mean squared error (RMSE) measures the square root of the
2176
+ # squared difference between predicted and actual values, and it's
2177
+ # averaged over all values. It is used in regression analysis to
2178
+ # understand model prediction error. It's an important metric to
2179
+ # indicate the presence of large model errors and outliers. Values
2180
+ # range from zero (0) to infinity, with smaller numbers indicating a
2181
+ # better model fit to the data. RMSE is dependent on scale, and
2182
+ # should not be used to compare datasets of different sizes.
2078
2183
  #
2079
2184
  # If you do not specify a metric explicitly, the default behavior is
2080
2185
  # to automatically use:
@@ -5381,8 +5486,8 @@ module Aws::SageMaker
5381
5486
  # @return [String]
5382
5487
  #
5383
5488
  # @!attribute [rw] role_arn
5384
- # The Amazon Resource Name (ARN) of an IAM role that enables Amazon
5385
- # SageMaker to perform tasks on your behalf.
5489
+ # The ARN of an IAM role that enables Amazon SageMaker to perform
5490
+ # tasks on your behalf.
5386
5491
  # @return [String]
5387
5492
  #
5388
5493
  # @!attribute [rw] tags
@@ -5402,7 +5507,7 @@ module Aws::SageMaker
5402
5507
  end
5403
5508
 
5404
5509
  # @!attribute [rw] image_arn
5405
- # The Amazon Resource Name (ARN) of the image.
5510
+ # The ARN of the image.
5406
5511
  # @return [String]
5407
5512
  #
5408
5513
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageResponse AWS API Documentation
@@ -5435,18 +5540,83 @@ module Aws::SageMaker
5435
5540
  # The `ImageName` of the `Image` to create a version of.
5436
5541
  # @return [String]
5437
5542
  #
5543
+ # @!attribute [rw] aliases
5544
+ # A list of aliases created with the image version.
5545
+ # @return [Array<String>]
5546
+ #
5547
+ # @!attribute [rw] vendor_guidance
5548
+ # The stability of the image version, specified by the maintainer.
5549
+ #
5550
+ # * `NOT_PROVIDED`\: The maintainers did not provide a status for
5551
+ # image version stability.
5552
+ #
5553
+ # * `STABLE`\: The image version is stable.
5554
+ #
5555
+ # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
5556
+ # image versions that are set to be archived are automatically
5557
+ # archived after three months.
5558
+ #
5559
+ # * `ARCHIVED`\: The image version is archived. Archived image
5560
+ # versions are not searchable and are no longer actively supported.
5561
+ # @return [String]
5562
+ #
5563
+ # @!attribute [rw] job_type
5564
+ # Indicates SageMaker job type compatibility.
5565
+ #
5566
+ # * `TRAINING`\: The image version is compatible with SageMaker
5567
+ # training jobs.
5568
+ #
5569
+ # * `INFERENCE`\: The image version is compatible with SageMaker
5570
+ # inference jobs.
5571
+ #
5572
+ # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
5573
+ # notebook kernels.
5574
+ # @return [String]
5575
+ #
5576
+ # @!attribute [rw] ml_framework
5577
+ # The machine learning framework vended in the image version.
5578
+ # @return [String]
5579
+ #
5580
+ # @!attribute [rw] programming_lang
5581
+ # The supported programming language and its version.
5582
+ # @return [String]
5583
+ #
5584
+ # @!attribute [rw] processor
5585
+ # Indicates CPU or GPU compatibility.
5586
+ #
5587
+ # * `CPU`\: The image version is compatible with CPU.
5588
+ #
5589
+ # * `GPU`\: The image version is compatible with GPU.
5590
+ # @return [String]
5591
+ #
5592
+ # @!attribute [rw] horovod
5593
+ # Indicates Horovod compatibility.
5594
+ # @return [Boolean]
5595
+ #
5596
+ # @!attribute [rw] release_notes
5597
+ # The maintainer description of the image version.
5598
+ # @return [String]
5599
+ #
5438
5600
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageVersionRequest AWS API Documentation
5439
5601
  #
5440
5602
  class CreateImageVersionRequest < Struct.new(
5441
5603
  :base_image,
5442
5604
  :client_token,
5443
- :image_name)
5605
+ :image_name,
5606
+ :aliases,
5607
+ :vendor_guidance,
5608
+ :job_type,
5609
+ :ml_framework,
5610
+ :programming_lang,
5611
+ :processor,
5612
+ :horovod,
5613
+ :release_notes)
5444
5614
  SENSITIVE = []
5445
5615
  include Aws::Structure
5446
5616
  end
5447
5617
 
5448
5618
  # @!attribute [rw] image_version_arn
5449
- # The Amazon Resource Name (ARN) of the image version.
5619
+ # The ARN of the image version.
5450
5620
  # @return [String]
5451
5621
  #
5452
5622
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageVersionResponse AWS API Documentation
@@ -8931,18 +9101,23 @@ module Aws::SageMaker
8931
9101
  class DeleteImageResponse < Aws::EmptyStructure; end
8932
9102
 
8933
9103
  # @!attribute [rw] image_name
8934
- # The name of the image.
9104
+ # The name of the image to delete.
8935
9105
  # @return [String]
8936
9106
  #
8937
9107
  # @!attribute [rw] version
8938
9108
  # The version to delete.
8939
9109
  # @return [Integer]
8940
9110
  #
9111
+ # @!attribute [rw] alias
9112
+ # The alias of the image to delete.
9113
+ # @return [String]
9114
+ #
8941
9115
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteImageVersionRequest AWS API Documentation
8942
9116
  #
8943
9117
  class DeleteImageVersionRequest < Struct.new(
8944
9118
  :image_name,
8945
- :version)
9119
+ :version,
9120
+ :alias)
8946
9121
  SENSITIVE = []
8947
9122
  include Aws::Structure
8948
9123
  end
@@ -9906,7 +10081,13 @@ module Aws::SageMaker
9906
10081
  # @return [Array<Types::AutoMLPartialFailureReason>]
9907
10082
  #
9908
10083
  # @!attribute [rw] best_candidate
9909
- # Returns the job's best `AutoMLCandidate`.
10084
+ # The best model candidate selected by SageMaker Autopilot using both
10085
+ # the best objective metric and lowest [InferenceLatency][1] for an
10086
+ # experiment.
10087
+ #
10088
+ #
10089
+ #
10090
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
9910
10091
  # @return [Types::AutoMLCandidate]
9911
10092
  #
9912
10093
  # @!attribute [rw] auto_ml_job_status
@@ -11707,7 +11888,7 @@ module Aws::SageMaker
11707
11888
  # @return [String]
11708
11889
  #
11709
11890
  # @!attribute [rw] image_arn
11710
- # The Amazon Resource Name (ARN) of the image.
11891
+ # The ARN of the image.
11711
11892
  # @return [String]
11712
11893
  #
11713
11894
  # @!attribute [rw] image_name
@@ -11723,8 +11904,8 @@ module Aws::SageMaker
11723
11904
  # @return [Time]
11724
11905
  #
11725
11906
  # @!attribute [rw] role_arn
11726
- # The Amazon Resource Name (ARN) of the IAM role that enables Amazon
11727
- # SageMaker to perform tasks on your behalf.
11907
+ # The ARN of the IAM role that enables Amazon SageMaker to perform
11908
+ # tasks on your behalf.
11728
11909
  # @return [String]
11729
11910
  #
11730
11911
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageResponse AWS API Documentation
@@ -11752,11 +11933,16 @@ module Aws::SageMaker
11752
11933
  # described.
11753
11934
  # @return [Integer]
11754
11935
  #
11936
+ # @!attribute [rw] alias
11937
+ # The alias of the image version.
11938
+ # @return [String]
11939
+ #
11755
11940
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageVersionRequest AWS API Documentation
11756
11941
  #
11757
11942
  class DescribeImageVersionRequest < Struct.new(
11758
11943
  :image_name,
11759
- :version)
11944
+ :version,
11945
+ :alias)
11760
11946
  SENSITIVE = []
11761
11947
  include Aws::Structure
11762
11948
  end
@@ -11780,7 +11966,7 @@ module Aws::SageMaker
11780
11966
  # @return [String]
11781
11967
  #
11782
11968
  # @!attribute [rw] image_arn
11783
- # The Amazon Resource Name (ARN) of the image the version is based on.
11969
+ # The ARN of the image the version is based on.
11784
11970
  # @return [String]
11785
11971
  #
11786
11972
  # @!attribute [rw] image_version_arn
@@ -11799,6 +11985,59 @@ module Aws::SageMaker
11799
11985
  # The version number.
11800
11986
  # @return [Integer]
11801
11987
  #
11988
+ # @!attribute [rw] vendor_guidance
11989
+ # The stability of the image version specified by the maintainer.
11990
+ #
11991
+ # * `NOT_PROVIDED`\: The maintainers did not provide a status for
11992
+ # image version stability.
11993
+ #
11994
+ # * `STABLE`\: The image version is stable.
11995
+ #
11996
+ # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
11997
+ # image versions that are set to be archived are automatically
11998
+ # archived after three months.
11999
+ #
12000
+ # * `ARCHIVED`\: The image version is archived. Archived image
12001
+ # versions are not searchable and are no longer actively supported.
12002
+ # @return [String]
12003
+ #
12004
+ # @!attribute [rw] job_type
12005
+ # Indicates SageMaker job type compatibility.
12006
+ #
12007
+ # * `TRAINING`\: The image version is compatible with SageMaker
12008
+ # training jobs.
12009
+ #
12010
+ # * `INFERENCE`\: The image version is compatible with SageMaker
12011
+ # inference jobs.
12012
+ #
12013
+ # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
12014
+ # notebook kernels.
12015
+ # @return [String]
12016
+ #
12017
+ # @!attribute [rw] ml_framework
12018
+ # The machine learning framework vended in the image version.
12019
+ # @return [String]
12020
+ #
12021
+ # @!attribute [rw] programming_lang
12022
+ # The supported programming language and its version.
12023
+ # @return [String]
12024
+ #
12025
+ # @!attribute [rw] processor
12026
+ # Indicates CPU or GPU compatibility.
12027
+ #
12028
+ # * `CPU`\: The image version is compatible with CPU.
12029
+ #
12030
+ # * `GPU`\: The image version is compatible with GPU.
12031
+ # @return [String]
12032
+ #
12033
+ # @!attribute [rw] horovod
12034
+ # Indicates Horovod compatibility.
12035
+ # @return [Boolean]
12036
+ #
12037
+ # @!attribute [rw] release_notes
12038
+ # The maintainer description of the image version.
12039
+ # @return [String]
12040
+ #
11802
12041
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageVersionResponse AWS API Documentation
11803
12042
  #
11804
12043
  class DescribeImageVersionResponse < Struct.new(
@@ -11810,7 +12049,14 @@ module Aws::SageMaker
11810
12049
  :image_version_arn,
11811
12050
  :image_version_status,
11812
12051
  :last_modified_time,
11813
- :version)
12052
+ :version,
12053
+ :vendor_guidance,
12054
+ :job_type,
12055
+ :ml_framework,
12056
+ :programming_lang,
12057
+ :processor,
12058
+ :horovod,
12059
+ :release_notes)
11814
12060
  SENSITIVE = []
11815
12061
  include Aws::Structure
11816
12062
  end
@@ -14519,8 +14765,8 @@ module Aws::SageMaker
14519
14765
  # @return [String]
14520
14766
  #
14521
14767
  # @!attribute [rw] sources
14522
- # A list of the Amazon Resource Name (ARN) and, if applicable, job
14523
- # type for multiple sources of an experiment run.
14768
+ # A list of ARNs and, if applicable, job types for multiple sources of
14769
+ # an experiment run.
14524
14770
  # @return [Array<Types::TrialComponentSource>]
14525
14771
  #
14526
14772
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrialComponentResponse AWS API Documentation
@@ -16201,8 +16447,8 @@ module Aws::SageMaker
16201
16447
  # * CreateTransformJob
16202
16448
  #
16203
16449
  # @!attribute [rw] experiment_name
16204
- # The name of an existing experiment to associate the trial component
16205
- # with.
16450
+ # The name of an existing experiment to associate with the trial
16451
+ # component.
16206
16452
  # @return [String]
16207
16453
  #
16208
16454
  # @!attribute [rw] trial_name
@@ -16216,8 +16462,8 @@ module Aws::SageMaker
16216
16462
  # @return [String]
16217
16463
  #
16218
16464
  # @!attribute [rw] run_name
16219
- # The name of the experiment run to associate the trial component
16220
- # with.
16465
+ # The name of the experiment run to associate with the trial
16466
+ # component.
16221
16467
  # @return [String]
16222
16468
  #
16223
16469
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
@@ -18899,8 +19145,8 @@ module Aws::SageMaker
18899
19145
  # @!attribute [rw] parameter_ranges
18900
19146
  # The ParameterRanges object that specifies the ranges of
18901
19147
  # hyperparameters that this tuning job searches over to find the
18902
- # optimal configuration for the highest model performance against
18903
- # .your chosen objective metric.
19148
+ # optimal configuration for the highest model performance against your
19149
+ # chosen objective metric.
18904
19150
  # @return [Types::ParameterRanges]
18905
19151
  #
18906
19152
  # @!attribute [rw] training_job_early_stopping_type
@@ -19464,7 +19710,7 @@ module Aws::SageMaker
19464
19710
  # @return [String]
19465
19711
  #
19466
19712
  # @!attribute [rw] image_arn
19467
- # The Amazon Resource Name (ARN) of the image.
19713
+ # The ARN of the image.
19468
19714
  # @return [String]
19469
19715
  #
19470
19716
  # @!attribute [rw] image_name
@@ -19536,7 +19782,7 @@ module Aws::SageMaker
19536
19782
  # @return [String]
19537
19783
  #
19538
19784
  # @!attribute [rw] image_arn
19539
- # The Amazon Resource Name (ARN) of the image the version is based on.
19785
+ # The ARN of the image the version is based on.
19540
19786
  # @return [String]
19541
19787
  #
19542
19788
  # @!attribute [rw] image_version_arn
@@ -21163,6 +21409,58 @@ module Aws::SageMaker
21163
21409
  include Aws::Structure
21164
21410
  end
21165
21411
 
21412
+ # @!attribute [rw] image_name
21413
+ # The name of the image.
21414
+ # @return [String]
21415
+ #
21416
+ # @!attribute [rw] alias
21417
+ # The alias of the image version.
21418
+ # @return [String]
21419
+ #
21420
+ # @!attribute [rw] version
21421
+ # The version of the image. If image version is not specified, the
21422
+ # aliases of all versions of the image are listed.
21423
+ # @return [Integer]
21424
+ #
21425
+ # @!attribute [rw] max_results
21426
+ # The maximum number of aliases to return.
21427
+ # @return [Integer]
21428
+ #
21429
+ # @!attribute [rw] next_token
21430
+ # If the previous call to `ListAliases` didn't return the full set of
21431
+ # aliases, the call returns a token for retrieving the next set of
21432
+ # aliases.
21433
+ # @return [String]
21434
+ #
21435
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAliasesRequest AWS API Documentation
21436
+ #
21437
+ class ListAliasesRequest < Struct.new(
21438
+ :image_name,
21439
+ :alias,
21440
+ :version,
21441
+ :max_results,
21442
+ :next_token)
21443
+ SENSITIVE = []
21444
+ include Aws::Structure
21445
+ end
21446
+
21447
+ # @!attribute [rw] sage_maker_image_version_aliases
21448
+ # A list of SageMaker image version aliases.
21449
+ # @return [Array<String>]
21450
+ #
21451
+ # @!attribute [rw] next_token
21452
+ # A token for getting the next set of aliases, if more aliases exist.
21453
+ # @return [String]
21454
+ #
21455
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAliasesResponse AWS API Documentation
21456
+ #
21457
+ class ListAliasesResponse < Struct.new(
21458
+ :sage_maker_image_version_aliases,
21459
+ :next_token)
21460
+ SENSITIVE = []
21461
+ include Aws::Structure
21462
+ end
21463
+
21166
21464
  # @!attribute [rw] max_results
21167
21465
  # The maximum number of AppImageConfigs to return in the response. The
21168
21466
  # default value is 10.
@@ -37235,8 +37533,8 @@ module Aws::SageMaker
37235
37533
  # @return [String]
37236
37534
  #
37237
37535
  # @!attribute [rw] role_arn
37238
- # The new Amazon Resource Name (ARN) for the IAM role that enables
37239
- # Amazon SageMaker to perform tasks on your behalf.
37536
+ # The new ARN for the IAM role that enables Amazon SageMaker to
37537
+ # perform tasks on your behalf.
37240
37538
  # @return [String]
37241
37539
  #
37242
37540
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageRequest AWS API Documentation
@@ -37252,7 +37550,7 @@ module Aws::SageMaker
37252
37550
  end
37253
37551
 
37254
37552
  # @!attribute [rw] image_arn
37255
- # The Amazon Resource Name (ARN) of the image.
37553
+ # The ARN of the image.
37256
37554
  # @return [String]
37257
37555
  #
37258
37556
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageResponse AWS API Documentation
@@ -37263,6 +37561,110 @@ module Aws::SageMaker
37263
37561
  include Aws::Structure
37264
37562
  end
37265
37563
 
37564
+ # @!attribute [rw] image_name
37565
+ # The name of the image.
37566
+ # @return [String]
37567
+ #
37568
+ # @!attribute [rw] alias
37569
+ # The alias of the image version.
37570
+ # @return [String]
37571
+ #
37572
+ # @!attribute [rw] version
37573
+ # The version of the image.
37574
+ # @return [Integer]
37575
+ #
37576
+ # @!attribute [rw] aliases_to_add
37577
+ # A list of aliases to add.
37578
+ # @return [Array<String>]
37579
+ #
37580
+ # @!attribute [rw] aliases_to_delete
37581
+ # A list of aliases to delete.
37582
+ # @return [Array<String>]
37583
+ #
37584
+ # @!attribute [rw] vendor_guidance
37585
+ # The availability of the image version specified by the maintainer.
37586
+ #
37587
+ # * `NOT_PROVIDED`\: The maintainers did not provide a status for
37588
+ # image version stability.
37589
+ #
37590
+ # * `STABLE`\: The image version is stable.
37591
+ #
37592
+ # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
37593
+ # image versions that are set to be archived are automatically
37594
+ # archived after three months.
37595
+ #
37596
+ # * `ARCHIVED`\: The image version is archived. Archived image
37597
+ # versions are not searchable and are no longer actively supported.
37598
+ # @return [String]
37599
+ #
37600
+ # @!attribute [rw] job_type
37601
+ # Indicates SageMaker job type compatibility.
37602
+ #
37603
+ # * `TRAINING`\: The image version is compatible with SageMaker
37604
+ # training jobs.
37605
+ #
37606
+ # * `INFERENCE`\: The image version is compatible with SageMaker
37607
+ # inference jobs.
37608
+ #
37609
+ # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
37610
+ # notebook kernels.
37611
+ # @return [String]
37612
+ #
37613
+ # @!attribute [rw] ml_framework
37614
+ # The machine learning framework vended in the image version.
37615
+ # @return [String]
37616
+ #
37617
+ # @!attribute [rw] programming_lang
37618
+ # The supported programming language and its version.
37619
+ # @return [String]
37620
+ #
37621
+ # @!attribute [rw] processor
37622
+ # Indicates CPU or GPU compatibility.
37623
+ #
37624
+ # * `CPU`\: The image version is compatible with CPU.
37625
+ #
37626
+ # * `GPU`\: The image version is compatible with GPU.
37627
+ # @return [String]
37628
+ #
37629
+ # @!attribute [rw] horovod
37630
+ # Indicates Horovod compatibility.
37631
+ # @return [Boolean]
37632
+ #
37633
+ # @!attribute [rw] release_notes
37634
+ # The maintainer description of the image version.
37635
+ # @return [String]
37636
+ #
37637
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageVersionRequest AWS API Documentation
37638
+ #
37639
+ class UpdateImageVersionRequest < Struct.new(
37640
+ :image_name,
37641
+ :alias,
37642
+ :version,
37643
+ :aliases_to_add,
37644
+ :aliases_to_delete,
37645
+ :vendor_guidance,
37646
+ :job_type,
37647
+ :ml_framework,
37648
+ :programming_lang,
37649
+ :processor,
37650
+ :horovod,
37651
+ :release_notes)
37652
+ SENSITIVE = []
37653
+ include Aws::Structure
37654
+ end
37655
+
37656
+ # @!attribute [rw] image_version_arn
37657
+ # The ARN of the image version.
37658
+ # @return [String]
37659
+ #
37660
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageVersionResponse AWS API Documentation
37661
+ #
37662
+ class UpdateImageVersionResponse < Struct.new(
37663
+ :image_version_arn)
37664
+ SENSITIVE = []
37665
+ include Aws::Structure
37666
+ end
37667
+
37266
37668
  # @!attribute [rw] name
37267
37669
  # The name of the inference experiment to be updated.
37268
37670
  # @return [String]