aws-sdk-sagemaker 1.156.0 → 1.158.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2015,66 +2015,171 @@ module Aws::SageMaker
2015
2015
  #
2016
2016
  # Here are the options:
2017
2017
  #
2018
- # * `MSE`\: The mean squared error (MSE) is the average of the squared
2019
- # differences between the predicted and actual values. It is used
2020
- # for regression. MSE values are always positive: the better a model
2021
- # is at predicting the actual values, the smaller the MSE value is.
2022
- # When the data contains outliers, they tend to dominate the MSE,
2023
- # which might cause subpar prediction performance.
2024
- #
2025
- # * `Accuracy`\: The ratio of the number of correctly classified items
2026
- # to the total number of (correctly and incorrectly) classified
2027
- # items. It is used for binary and multiclass classification. It
2028
- # measures how close the predicted class values are to the actual
2029
- # values. Accuracy values vary between zero and one: one indicates
2030
- # perfect accuracy and zero indicates perfect inaccuracy.
2031
- #
2032
- # * `F1`\: The F1 score is the harmonic mean of the precision and
2033
- # recall. It is used for binary classification into classes
2018
+ # Accuracy
2019
+ #
2020
+ # : The ratio of the number of correctly classified items to the total
2021
+ # number of (correctly and incorrectly) classified items. It is used
2022
+ # for both binary and multiclass classification. Accuracy measures
2023
+ # how close the predicted class values are to the actual values.
2024
+ # Values for accuracy metrics vary between zero (0) and one (1). A
2025
+ # value of 1 indicates perfect accuracy, and 0 indicates perfect
2026
+ # inaccuracy.
2027
+ #
2028
+ # AUC
2029
+ #
2030
+ # : The area under the curve (AUC) metric is used to compare and
2031
+ # evaluate binary classification by algorithms that return
2032
+ # probabilities, such as logistic regression. To map the
2033
+ # probabilities into classifications, these are compared against a
2034
+ # threshold value.
2035
+ #
2036
+ # The relevant curve is the receiver operating characteristic curve
2037
+ # (ROC curve). The ROC curve plots the true positive rate (TPR) of
2038
+ # predictions (or recall) against the false positive rate (FPR) as a
2039
+ # function of the threshold value, above which a prediction is
2040
+ # considered positive. Increasing the threshold results in fewer
2041
+ # false positives, but more false negatives.
2042
+ #
2043
+ # AUC is the area under this ROC curve. Therefore, AUC provides an
2044
+ # aggregated measure of the model performance across all possible
2045
+ # classification thresholds. AUC scores vary between 0 and 1. A
2046
+ # score of 1 indicates perfect accuracy, and a score of one half
2047
+ # (0.5) indicates that the prediction is not better than a random
2048
+ # classifier.
2049
+ #
2050
+ # BalancedAccuracy
2051
+ #
2052
+ # : `BalancedAccuracy` is a metric that measures the ratio of accurate
2053
+ # predictions to all predictions. This ratio is calculated after
2054
+ # normalizing true positives (TP) and true negatives (TN) by the
2055
+ # total number of positive (P) and negative (N) values. It is used
2056
+ # in both binary and multiclass classification and is defined as
2057
+ # follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
2058
+ # `BalancedAccuracy` gives a better measure of accuracy when the
2059
+ # number of positives or negatives differ greatly from each other in
2060
+ # an imbalanced dataset. For example, when only 1% of email is spam.
2061
+ #
2062
+ # F1
2063
+ #
2064
+ # : The `F1` score is the harmonic mean of the precision and recall,
2065
+ # defined as follows: F1 = 2 * (precision * recall) / (precision +
2066
+ # recall). It is used for binary classification into classes
2034
2067
  # traditionally referred to as positive and negative. Predictions
2035
- # are said to be true when they match their actual (correct) class
2036
- # and false when they do not. Precision is the ratio of the true
2037
- # positive predictions to all positive predictions (including the
2038
- # false positives) in a data set and measures the quality of the
2039
- # prediction when it predicts the positive class. Recall (or
2040
- # sensitivity) is the ratio of the true positive predictions to all
2041
- # actual positive instances and measures how completely a model
2042
- # predicts the actual class members in a data set. The standard F1
2043
- # score weighs precision and recall equally. But which metric is
2044
- # paramount typically depends on specific aspects of a problem. F1
2045
- # scores vary between zero and one: one indicates the best possible
2046
- # performance and zero the worst.
2047
- #
2048
- # * `AUC`\: The area under the curve (AUC) metric is used to compare
2049
- # and evaluate binary classification by algorithms such as logistic
2050
- # regression that return probabilities. A threshold is needed to map
2051
- # the probabilities into classifications. The relevant curve is the
2052
- # receiver operating characteristic curve that plots the true
2053
- # positive rate (TPR) of predictions (or recall) against the false
2054
- # positive rate (FPR) as a function of the threshold value, above
2055
- # which a prediction is considered positive. Increasing the
2056
- # threshold results in fewer false positives but more false
2057
- # negatives. AUC is the area under this receiver operating
2058
- # characteristic curve and so provides an aggregated measure of the
2059
- # model performance across all possible classification thresholds.
2060
- # The AUC score can also be interpreted as the probability that a
2061
- # randomly selected positive data point is more likely to be
2062
- # predicted positive than a randomly selected negative example. AUC
2063
- # scores vary between zero and one: a score of one indicates perfect
2064
- # accuracy and a score of one half indicates that the prediction is
2065
- # not better than a random classifier. Values under one half predict
2066
- # less accurately than a random predictor. But such consistently bad
2067
- # predictors can simply be inverted to obtain better than random
2068
- # predictors.
2069
- #
2070
- # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2071
- # classification. In this context, you have multiple classes to
2072
- # predict. You just calculate the precision and recall for each
2073
- # class as you did for the positive class in binary classification.
2074
- # Then, use these values to calculate the F1 score for each class
2075
- # and average them to obtain the F1macro score. F1macro scores vary
2076
- # between zero and one: one indicates the best possible performance
2077
- # and zero the worst.
2068
+ # are said to be true when they match their actual (correct) class,
2069
+ # and false when they do not.
2070
+ #
2071
+ # Precision is the ratio of the true positive predictions to all
2072
+ # positive predictions, and it includes the false positives in a
2073
+ # dataset. Precision measures the quality of the prediction when it
2074
+ # predicts the positive class.
2075
+ #
2076
+ # Recall (or sensitivity) is the ratio of the true positive
2077
+ # predictions to all actual positive instances. Recall measures how
2078
+ # completely a model predicts the actual class members in a dataset.
2079
+ #
2080
+ # F1 scores vary between 0 and 1. A score of 1 indicates the best
2081
+ # possible performance, and 0 indicates the worst.
2082
+ #
2083
+ # F1macro
2084
+ #
2085
+ # : The `F1macro` score applies F1 scoring to multiclass
2086
+ # classification problems. It does this by calculating the precision
2087
+ # and recall, and then taking their harmonic mean to calculate the
2088
+ # F1 score for each class. Lastly, the F1macro averages the
2089
+ # individual scores to obtain the `F1macro` score. `F1macro` scores
2090
+ # vary between 0 and 1. A score of 1 indicates the best possible
2091
+ # performance, and 0 indicates the worst.
2092
+ #
2093
+ # MAE
2094
+ #
2095
+ # : The mean absolute error (MAE) is a measure of how different the
2096
+ # predicted and actual values are, when they're averaged over all
2097
+ # values. MAE is commonly used in regression analysis to understand
2098
+ # model prediction error. If there is linear regression, MAE
2099
+ # represents the average distance from a predicted line to the
2100
+ # actual value. MAE is defined as the sum of absolute errors divided
2101
+ # by the number of observations. Values range from 0 to infinity,
2102
+ # with smaller numbers indicating a better model fit to the data.
2103
+ #
2104
+ # MSE
2105
+ #
2106
+ # : The mean squared error (MSE) is the average of the squared
2107
+ # differences between the predicted and actual values. It is used
2108
+ # for regression. MSE values are always positive. The better a model
2109
+ # is at predicting the actual values, the smaller the MSE value is
2110
+ #
2111
+ # Precision
2112
+ #
2113
+ # : Precision measures how well an algorithm predicts the true
2114
+ # positives (TP) out of all of the positives that it identifies. It
2115
+ # is defined as follows: Precision = TP/(TP+FP), with values ranging
2116
+ # from zero (0) to one (1), and is used in binary classification.
2117
+ # Precision is an important metric when the cost of a false positive
2118
+ # is high. For example, the cost of a false positive is very high if
2119
+ # an airplane safety system is falsely deemed safe to fly. A false
2120
+ # positive (FP) reflects a positive prediction that is actually
2121
+ # negative in the data.
2122
+ #
2123
+ # PrecisionMacro
2124
+ #
2125
+ # : The precision macro computes precision for multiclass
2126
+ # classification problems. It does this by calculating precision for
2127
+ # each class and averaging scores to obtain precision for several
2128
+ # classes. `PrecisionMacro` scores range from zero (0) to one (1).
2129
+ # Higher scores reflect the model's ability to predict true
2130
+ # positives (TP) out of all of the positives that it identifies,
2131
+ # averaged across multiple classes.
2132
+ #
2133
+ # R2
2134
+ #
2135
+ # : R2, also known as the coefficient of determination, is used in
2136
+ # regression to quantify how much a model can explain the variance
2137
+ # of a dependent variable. Values range from one (1) to negative one
2138
+ # (-1). Higher numbers indicate a higher fraction of explained
2139
+ # variability. `R2` values close to zero (0) indicate that very
2140
+ # little of the dependent variable can be explained by the model.
2141
+ # Negative values indicate a poor fit and that the model is
2142
+ # outperformed by a constant function. For linear regression, this
2143
+ # is a horizontal line.
2144
+ #
2145
+ # Recall
2146
+ #
2147
+ # : Recall measures how well an algorithm correctly predicts all of
2148
+ # the true positives (TP) in a dataset. A true positive is a
2149
+ # positive prediction that is also an actual positive value in the
2150
+ # data. Recall is defined as follows: Recall = TP/(TP+FN), with
2151
+ # values ranging from 0 to 1. Higher scores reflect a better ability
2152
+ # of the model to predict true positives (TP) in the data, and is
2153
+ # used in binary classification.
2154
+ #
2155
+ # Recall is important when testing for cancer because it's used to
2156
+ # find all of the true positives. A false positive (FP) reflects a
2157
+ # positive prediction that is actually negative in the data. It is
2158
+ # often insufficient to measure only recall, because predicting
2159
+ # every output as a true positive will yield a perfect recall score.
2160
+ #
2161
+ # RecallMacro
2162
+ #
2163
+ # : The RecallMacro computes recall for multiclass classification
2164
+ # problems by calculating recall for each class and averaging scores
2165
+ # to obtain recall for several classes. RecallMacro scores range
2166
+ # from 0 to 1. Higher scores reflect the model's ability to predict
2167
+ # true positives (TP) in a dataset. Whereas, a true positive
2168
+ # reflects a positive prediction that is also an actual positive
2169
+ # value in the data. It is often insufficient to measure only
2170
+ # recall, because predicting every output as a true positive will
2171
+ # yield a perfect recall score.
2172
+ #
2173
+ # RMSE
2174
+ #
2175
+ # : Root mean squared error (RMSE) measures the square root of the
2176
+ # squared difference between predicted and actual values, and it's
2177
+ # averaged over all values. It is used in regression analysis to
2178
+ # understand model prediction error. It's an important metric to
2179
+ # indicate the presence of large model errors and outliers. Values
2180
+ # range from zero (0) to infinity, with smaller numbers indicating a
2181
+ # better model fit to the data. RMSE is dependent on scale, and
2182
+ # should not be used to compare datasets of different sizes.
2078
2183
  #
2079
2184
  # If you do not specify a metric explicitly, the default behavior is
2080
2185
  # to automatically use:
@@ -5381,8 +5486,8 @@ module Aws::SageMaker
5381
5486
  # @return [String]
5382
5487
  #
5383
5488
  # @!attribute [rw] role_arn
5384
- # The Amazon Resource Name (ARN) of an IAM role that enables Amazon
5385
- # SageMaker to perform tasks on your behalf.
5489
+ # The ARN of an IAM role that enables Amazon SageMaker to perform
5490
+ # tasks on your behalf.
5386
5491
  # @return [String]
5387
5492
  #
5388
5493
  # @!attribute [rw] tags
@@ -5402,7 +5507,7 @@ module Aws::SageMaker
5402
5507
  end
5403
5508
 
5404
5509
  # @!attribute [rw] image_arn
5405
- # The Amazon Resource Name (ARN) of the image.
5510
+ # The ARN of the image.
5406
5511
  # @return [String]
5407
5512
  #
5408
5513
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageResponse AWS API Documentation
@@ -5435,18 +5540,83 @@ module Aws::SageMaker
5435
5540
  # The `ImageName` of the `Image` to create a version of.
5436
5541
  # @return [String]
5437
5542
  #
5543
+ # @!attribute [rw] aliases
5544
+ # A list of aliases created with the image version.
5545
+ # @return [Array<String>]
5546
+ #
5547
+ # @!attribute [rw] vendor_guidance
5548
+ # The stability of the image version, specified by the maintainer.
5549
+ #
5550
+ # * `NOT_PROVIDED`\: The maintainers did not provide a status for
5551
+ # image version stability.
5552
+ #
5553
+ # * `STABLE`\: The image version is stable.
5554
+ #
5555
+ # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
5556
+ # image versions that are set to be archived are automatically
5557
+ # archived after three months.
5558
+ #
5559
+ # * `ARCHIVED`\: The image version is archived. Archived image
5560
+ # versions are not searchable and are no longer actively supported.
5561
+ # @return [String]
5562
+ #
5563
+ # @!attribute [rw] job_type
5564
+ # Indicates SageMaker job type compatibility.
5565
+ #
5566
+ # * `TRAINING`\: The image version is compatible with SageMaker
5567
+ # training jobs.
5568
+ #
5569
+ # * `INFERENCE`\: The image version is compatible with SageMaker
5570
+ # inference jobs.
5571
+ #
5572
+ # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
5573
+ # notebook kernels.
5574
+ # @return [String]
5575
+ #
5576
+ # @!attribute [rw] ml_framework
5577
+ # The machine learning framework vended in the image version.
5578
+ # @return [String]
5579
+ #
5580
+ # @!attribute [rw] programming_lang
5581
+ # The supported programming language and its version.
5582
+ # @return [String]
5583
+ #
5584
+ # @!attribute [rw] processor
5585
+ # Indicates CPU or GPU compatibility.
5586
+ #
5587
+ # * `CPU`\: The image version is compatible with CPU.
5588
+ #
5589
+ # * `GPU`\: The image version is compatible with GPU.
5590
+ # @return [String]
5591
+ #
5592
+ # @!attribute [rw] horovod
5593
+ # Indicates Horovod compatibility.
5594
+ # @return [Boolean]
5595
+ #
5596
+ # @!attribute [rw] release_notes
5597
+ # The maintainer description of the image version.
5598
+ # @return [String]
5599
+ #
5438
5600
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageVersionRequest AWS API Documentation
5439
5601
  #
5440
5602
  class CreateImageVersionRequest < Struct.new(
5441
5603
  :base_image,
5442
5604
  :client_token,
5443
- :image_name)
5605
+ :image_name,
5606
+ :aliases,
5607
+ :vendor_guidance,
5608
+ :job_type,
5609
+ :ml_framework,
5610
+ :programming_lang,
5611
+ :processor,
5612
+ :horovod,
5613
+ :release_notes)
5444
5614
  SENSITIVE = []
5445
5615
  include Aws::Structure
5446
5616
  end
5447
5617
 
5448
5618
  # @!attribute [rw] image_version_arn
5449
- # The Amazon Resource Name (ARN) of the image version.
5619
+ # The ARN of the image version.
5450
5620
  # @return [String]
5451
5621
  #
5452
5622
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateImageVersionResponse AWS API Documentation
@@ -8931,18 +9101,23 @@ module Aws::SageMaker
8931
9101
  class DeleteImageResponse < Aws::EmptyStructure; end
8932
9102
 
8933
9103
  # @!attribute [rw] image_name
8934
- # The name of the image.
9104
+ # The name of the image to delete.
8935
9105
  # @return [String]
8936
9106
  #
8937
9107
  # @!attribute [rw] version
8938
9108
  # The version to delete.
8939
9109
  # @return [Integer]
8940
9110
  #
9111
+ # @!attribute [rw] alias
9112
+ # The alias of the image to delete.
9113
+ # @return [String]
9114
+ #
8941
9115
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteImageVersionRequest AWS API Documentation
8942
9116
  #
8943
9117
  class DeleteImageVersionRequest < Struct.new(
8944
9118
  :image_name,
8945
- :version)
9119
+ :version,
9120
+ :alias)
8946
9121
  SENSITIVE = []
8947
9122
  include Aws::Structure
8948
9123
  end
@@ -9906,7 +10081,13 @@ module Aws::SageMaker
9906
10081
  # @return [Array<Types::AutoMLPartialFailureReason>]
9907
10082
  #
9908
10083
  # @!attribute [rw] best_candidate
9909
- # Returns the job's best `AutoMLCandidate`.
10084
+ # The best model candidate selected by SageMaker Autopilot using both
10085
+ # the best objective metric and lowest [InferenceLatency][1] for an
10086
+ # experiment.
10087
+ #
10088
+ #
10089
+ #
10090
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
9910
10091
  # @return [Types::AutoMLCandidate]
9911
10092
  #
9912
10093
  # @!attribute [rw] auto_ml_job_status
@@ -11707,7 +11888,7 @@ module Aws::SageMaker
11707
11888
  # @return [String]
11708
11889
  #
11709
11890
  # @!attribute [rw] image_arn
11710
- # The Amazon Resource Name (ARN) of the image.
11891
+ # The ARN of the image.
11711
11892
  # @return [String]
11712
11893
  #
11713
11894
  # @!attribute [rw] image_name
@@ -11723,8 +11904,8 @@ module Aws::SageMaker
11723
11904
  # @return [Time]
11724
11905
  #
11725
11906
  # @!attribute [rw] role_arn
11726
- # The Amazon Resource Name (ARN) of the IAM role that enables Amazon
11727
- # SageMaker to perform tasks on your behalf.
11907
+ # The ARN of the IAM role that enables Amazon SageMaker to perform
11908
+ # tasks on your behalf.
11728
11909
  # @return [String]
11729
11910
  #
11730
11911
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageResponse AWS API Documentation
@@ -11752,11 +11933,16 @@ module Aws::SageMaker
11752
11933
  # described.
11753
11934
  # @return [Integer]
11754
11935
  #
11936
+ # @!attribute [rw] alias
11937
+ # The alias of the image version.
11938
+ # @return [String]
11939
+ #
11755
11940
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageVersionRequest AWS API Documentation
11756
11941
  #
11757
11942
  class DescribeImageVersionRequest < Struct.new(
11758
11943
  :image_name,
11759
- :version)
11944
+ :version,
11945
+ :alias)
11760
11946
  SENSITIVE = []
11761
11947
  include Aws::Structure
11762
11948
  end
@@ -11780,7 +11966,7 @@ module Aws::SageMaker
11780
11966
  # @return [String]
11781
11967
  #
11782
11968
  # @!attribute [rw] image_arn
11783
- # The Amazon Resource Name (ARN) of the image the version is based on.
11969
+ # The ARN of the image the version is based on.
11784
11970
  # @return [String]
11785
11971
  #
11786
11972
  # @!attribute [rw] image_version_arn
@@ -11799,6 +11985,59 @@ module Aws::SageMaker
11799
11985
  # The version number.
11800
11986
  # @return [Integer]
11801
11987
  #
11988
+ # @!attribute [rw] vendor_guidance
11989
+ # The stability of the image version specified by the maintainer.
11990
+ #
11991
+ # * `NOT_PROVIDED`\: The maintainers did not provide a status for
11992
+ # image version stability.
11993
+ #
11994
+ # * `STABLE`\: The image version is stable.
11995
+ #
11996
+ # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
11997
+ # image versions that are set to be archived are automatically
11998
+ # archived after three months.
11999
+ #
12000
+ # * `ARCHIVED`\: The image version is archived. Archived image
12001
+ # versions are not searchable and are no longer actively supported.
12002
+ # @return [String]
12003
+ #
12004
+ # @!attribute [rw] job_type
12005
+ # Indicates SageMaker job type compatibility.
12006
+ #
12007
+ # * `TRAINING`\: The image version is compatible with SageMaker
12008
+ # training jobs.
12009
+ #
12010
+ # * `INFERENCE`\: The image version is compatible with SageMaker
12011
+ # inference jobs.
12012
+ #
12013
+ # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
12014
+ # notebook kernels.
12015
+ # @return [String]
12016
+ #
12017
+ # @!attribute [rw] ml_framework
12018
+ # The machine learning framework vended in the image version.
12019
+ # @return [String]
12020
+ #
12021
+ # @!attribute [rw] programming_lang
12022
+ # The supported programming language and its version.
12023
+ # @return [String]
12024
+ #
12025
+ # @!attribute [rw] processor
12026
+ # Indicates CPU or GPU compatibility.
12027
+ #
12028
+ # * `CPU`\: The image version is compatible with CPU.
12029
+ #
12030
+ # * `GPU`\: The image version is compatible with GPU.
12031
+ # @return [String]
12032
+ #
12033
+ # @!attribute [rw] horovod
12034
+ # Indicates Horovod compatibility.
12035
+ # @return [Boolean]
12036
+ #
12037
+ # @!attribute [rw] release_notes
12038
+ # The maintainer description of the image version.
12039
+ # @return [String]
12040
+ #
11802
12041
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeImageVersionResponse AWS API Documentation
11803
12042
  #
11804
12043
  class DescribeImageVersionResponse < Struct.new(
@@ -11810,7 +12049,14 @@ module Aws::SageMaker
11810
12049
  :image_version_arn,
11811
12050
  :image_version_status,
11812
12051
  :last_modified_time,
11813
- :version)
12052
+ :version,
12053
+ :vendor_guidance,
12054
+ :job_type,
12055
+ :ml_framework,
12056
+ :programming_lang,
12057
+ :processor,
12058
+ :horovod,
12059
+ :release_notes)
11814
12060
  SENSITIVE = []
11815
12061
  include Aws::Structure
11816
12062
  end
@@ -14519,8 +14765,8 @@ module Aws::SageMaker
14519
14765
  # @return [String]
14520
14766
  #
14521
14767
  # @!attribute [rw] sources
14522
- # A list of the Amazon Resource Name (ARN) and, if applicable, job
14523
- # type for multiple sources of an experiment run.
14768
+ # A list of ARNs and, if applicable, job types for multiple sources of
14769
+ # an experiment run.
14524
14770
  # @return [Array<Types::TrialComponentSource>]
14525
14771
  #
14526
14772
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrialComponentResponse AWS API Documentation
@@ -16201,8 +16447,8 @@ module Aws::SageMaker
16201
16447
  # * CreateTransformJob
16202
16448
  #
16203
16449
  # @!attribute [rw] experiment_name
16204
- # The name of an existing experiment to associate the trial component
16205
- # with.
16450
+ # The name of an existing experiment to associate with the trial
16451
+ # component.
16206
16452
  # @return [String]
16207
16453
  #
16208
16454
  # @!attribute [rw] trial_name
@@ -16216,8 +16462,8 @@ module Aws::SageMaker
16216
16462
  # @return [String]
16217
16463
  #
16218
16464
  # @!attribute [rw] run_name
16219
- # The name of the experiment run to associate the trial component
16220
- # with.
16465
+ # The name of the experiment run to associate with the trial
16466
+ # component.
16221
16467
  # @return [String]
16222
16468
  #
16223
16469
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
@@ -18899,8 +19145,8 @@ module Aws::SageMaker
18899
19145
  # @!attribute [rw] parameter_ranges
18900
19146
  # The ParameterRanges object that specifies the ranges of
18901
19147
  # hyperparameters that this tuning job searches over to find the
18902
- # optimal configuration for the highest model performance against
18903
- # .your chosen objective metric.
19148
+ # optimal configuration for the highest model performance against your
19149
+ # chosen objective metric.
18904
19150
  # @return [Types::ParameterRanges]
18905
19151
  #
18906
19152
  # @!attribute [rw] training_job_early_stopping_type
@@ -19464,7 +19710,7 @@ module Aws::SageMaker
19464
19710
  # @return [String]
19465
19711
  #
19466
19712
  # @!attribute [rw] image_arn
19467
- # The Amazon Resource Name (ARN) of the image.
19713
+ # The ARN of the image.
19468
19714
  # @return [String]
19469
19715
  #
19470
19716
  # @!attribute [rw] image_name
@@ -19536,7 +19782,7 @@ module Aws::SageMaker
19536
19782
  # @return [String]
19537
19783
  #
19538
19784
  # @!attribute [rw] image_arn
19539
- # The Amazon Resource Name (ARN) of the image the version is based on.
19785
+ # The ARN of the image the version is based on.
19540
19786
  # @return [String]
19541
19787
  #
19542
19788
  # @!attribute [rw] image_version_arn
@@ -21163,6 +21409,58 @@ module Aws::SageMaker
21163
21409
  include Aws::Structure
21164
21410
  end
21165
21411
 
21412
+ # @!attribute [rw] image_name
21413
+ # The name of the image.
21414
+ # @return [String]
21415
+ #
21416
+ # @!attribute [rw] alias
21417
+ # The alias of the image version.
21418
+ # @return [String]
21419
+ #
21420
+ # @!attribute [rw] version
21421
+ # The version of the image. If image version is not specified, the
21422
+ # aliases of all versions of the image are listed.
21423
+ # @return [Integer]
21424
+ #
21425
+ # @!attribute [rw] max_results
21426
+ # The maximum number of aliases to return.
21427
+ # @return [Integer]
21428
+ #
21429
+ # @!attribute [rw] next_token
21430
+ # If the previous call to `ListAliases` didn't return the full set of
21431
+ # aliases, the call returns a token for retrieving the next set of
21432
+ # aliases.
21433
+ # @return [String]
21434
+ #
21435
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAliasesRequest AWS API Documentation
21436
+ #
21437
+ class ListAliasesRequest < Struct.new(
21438
+ :image_name,
21439
+ :alias,
21440
+ :version,
21441
+ :max_results,
21442
+ :next_token)
21443
+ SENSITIVE = []
21444
+ include Aws::Structure
21445
+ end
21446
+
21447
+ # @!attribute [rw] sage_maker_image_version_aliases
21448
+ # A list of SageMaker image version aliases.
21449
+ # @return [Array<String>]
21450
+ #
21451
+ # @!attribute [rw] next_token
21452
+ # A token for getting the next set of aliases, if more aliases exist.
21453
+ # @return [String]
21454
+ #
21455
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAliasesResponse AWS API Documentation
21456
+ #
21457
+ class ListAliasesResponse < Struct.new(
21458
+ :sage_maker_image_version_aliases,
21459
+ :next_token)
21460
+ SENSITIVE = []
21461
+ include Aws::Structure
21462
+ end
21463
+
21166
21464
  # @!attribute [rw] max_results
21167
21465
  # The maximum number of AppImageConfigs to return in the response. The
21168
21466
  # default value is 10.
@@ -37235,8 +37533,8 @@ module Aws::SageMaker
37235
37533
  # @return [String]
37236
37534
  #
37237
37535
  # @!attribute [rw] role_arn
37238
- # The new Amazon Resource Name (ARN) for the IAM role that enables
37239
- # Amazon SageMaker to perform tasks on your behalf.
37536
+ # The new ARN for the IAM role that enables Amazon SageMaker to
37537
+ # perform tasks on your behalf.
37240
37538
  # @return [String]
37241
37539
  #
37242
37540
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageRequest AWS API Documentation
@@ -37252,7 +37550,7 @@ module Aws::SageMaker
37252
37550
  end
37253
37551
 
37254
37552
  # @!attribute [rw] image_arn
37255
- # The Amazon Resource Name (ARN) of the image.
37553
+ # The ARN of the image.
37256
37554
  # @return [String]
37257
37555
  #
37258
37556
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageResponse AWS API Documentation
@@ -37263,6 +37561,110 @@ module Aws::SageMaker
37263
37561
  include Aws::Structure
37264
37562
  end
37265
37563
 
37564
+ # @!attribute [rw] image_name
37565
+ # The name of the image.
37566
+ # @return [String]
37567
+ #
37568
+ # @!attribute [rw] alias
37569
+ # The alias of the image version.
37570
+ # @return [String]
37571
+ #
37572
+ # @!attribute [rw] version
37573
+ # The version of the image.
37574
+ # @return [Integer]
37575
+ #
37576
+ # @!attribute [rw] aliases_to_add
37577
+ # A list of aliases to add.
37578
+ # @return [Array<String>]
37579
+ #
37580
+ # @!attribute [rw] aliases_to_delete
37581
+ # A list of aliases to delete.
37582
+ # @return [Array<String>]
37583
+ #
37584
+ # @!attribute [rw] vendor_guidance
37585
+ # The availability of the image version specified by the maintainer.
37586
+ #
37587
+ # * `NOT_PROVIDED`\: The maintainers did not provide a status for
37588
+ # image version stability.
37589
+ #
37590
+ # * `STABLE`\: The image version is stable.
37591
+ #
37592
+ # * `TO_BE_ARCHIVED`\: The image version is set to be archived. Custom
37593
+ # image versions that are set to be archived are automatically
37594
+ # archived after three months.
37595
+ #
37596
+ # * `ARCHIVED`\: The image version is archived. Archived image
37597
+ # versions are not searchable and are no longer actively supported.
37598
+ # @return [String]
37599
+ #
37600
+ # @!attribute [rw] job_type
37601
+ # Indicates SageMaker job type compatibility.
37602
+ #
37603
+ # * `TRAINING`\: The image version is compatible with SageMaker
37604
+ # training jobs.
37605
+ #
37606
+ # * `INFERENCE`\: The image version is compatible with SageMaker
37607
+ # inference jobs.
37608
+ #
37609
+ # * `NOTEBOOK_KERNEL`\: The image version is compatible with SageMaker
37610
+ # notebook kernels.
37611
+ # @return [String]
37612
+ #
37613
+ # @!attribute [rw] ml_framework
37614
+ # The machine learning framework vended in the image version.
37615
+ # @return [String]
37616
+ #
37617
+ # @!attribute [rw] programming_lang
37618
+ # The supported programming language and its version.
37619
+ # @return [String]
37620
+ #
37621
+ # @!attribute [rw] processor
37622
+ # Indicates CPU or GPU compatibility.
37623
+ #
37624
+ # * `CPU`\: The image version is compatible with CPU.
37625
+ #
37626
+ # * `GPU`\: The image version is compatible with GPU.
37627
+ # @return [String]
37628
+ #
37629
+ # @!attribute [rw] horovod
37630
+ # Indicates Horovod compatibility.
37631
+ # @return [Boolean]
37632
+ #
37633
+ # @!attribute [rw] release_notes
37634
+ # The maintainer description of the image version.
37635
+ # @return [String]
37636
+ #
37637
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageVersionRequest AWS API Documentation
37638
+ #
37639
+ class UpdateImageVersionRequest < Struct.new(
37640
+ :image_name,
37641
+ :alias,
37642
+ :version,
37643
+ :aliases_to_add,
37644
+ :aliases_to_delete,
37645
+ :vendor_guidance,
37646
+ :job_type,
37647
+ :ml_framework,
37648
+ :programming_lang,
37649
+ :processor,
37650
+ :horovod,
37651
+ :release_notes)
37652
+ SENSITIVE = []
37653
+ include Aws::Structure
37654
+ end
37655
+
37656
+ # @!attribute [rw] image_version_arn
37657
+ # The ARN of the image version.
37658
+ # @return [String]
37659
+ #
37660
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateImageVersionResponse AWS API Documentation
37661
+ #
37662
+ class UpdateImageVersionResponse < Struct.new(
37663
+ :image_version_arn)
37664
+ SENSITIVE = []
37665
+ include Aws::Structure
37666
+ end
37667
+
37266
37668
  # @!attribute [rw] name
37267
37669
  # The name of the inference experiment to be updated.
37268
37670
  # @return [String]