aws-sdk-sagemaker 1.148.0 → 1.150.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 96541be27161586a7ed521844a9ad4cacaa1a997dc6bb099bbef008f3ca6b31a
4
- data.tar.gz: ad3a8796009de28e83fe9ac3ef342b7f15cd9fe49aac25186d523741d865c319
3
+ metadata.gz: ecf91634251778d678474df27e63649b77f77c082513cbbceec3089fc87efa5c
4
+ data.tar.gz: a3e56bb49e16979263812fe1d66e4e98597f82e7cbb2069da854580eeefb7848
5
5
  SHA512:
6
- metadata.gz: b206844326903bcdd1c6da77f1fa17738902d8bfea533991b174e5b62f4b5ad21e677c76283370e1c5d95c62a89712a57c34573848a308442e589b602e4e596f
7
- data.tar.gz: 8dbb2b0efe8d0c6f58596dbb3b8c6dae5d8e15a50457fdea56ead2ba355b02e8d1999bf8c532d88f21c96e082a3066d20b72eaddb8320d2ba16a90ee483908a5
6
+ metadata.gz: b39ea0607e02329a61dba49d04eeae9130f9973b2883806803ff4236fcb2558350bbd7645a2b6fb2a9892c26cba603c94277f5b2dc20b3695eb7f522c77d2c7d
7
+ data.tar.gz: 041b28179f96e58b990904821545b9f2c403e8942b2bb83e1a9ac27a88f23cceab926fc934c06d231ee34449121614a9867f63f0f7526e4596398bf01c3e41e1
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.150.0 (2022-10-27)
5
+ ------------------
6
+
7
+ * Feature - This change allows customers to provide a custom entrypoint script for the docker container to be run while executing training jobs, and provide custom arguments to the entrypoint script.
8
+
9
+ 1.149.0 (2022-10-26)
10
+ ------------------
11
+
12
+ * Feature - Amazon SageMaker Automatic Model Tuning now supports specifying Grid Search strategy for tuning jobs, which evaluates all hyperparameter combinations exhaustively based on the categorical hyperparameters provided.
13
+
4
14
  1.148.0 (2022-10-25)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.148.0
1
+ 1.150.0
@@ -3109,7 +3109,7 @@ module Aws::SageMaker
3109
3109
  # resp = client.create_hyper_parameter_tuning_job({
3110
3110
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
3111
3111
  # hyper_parameter_tuning_job_config: { # required
3112
- # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
3112
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband, Grid
3113
3113
  # strategy_config: {
3114
3114
  # hyperband_strategy_config: {
3115
3115
  # min_resource: 1,
@@ -3121,7 +3121,7 @@ module Aws::SageMaker
3121
3121
  # metric_name: "MetricName", # required
3122
3122
  # },
3123
3123
  # resource_limits: { # required
3124
- # max_number_of_training_jobs: 1, # required
3124
+ # max_number_of_training_jobs: 1,
3125
3125
  # max_parallel_training_jobs: 1, # required
3126
3126
  # },
3127
3127
  # parameter_ranges: {
@@ -6035,8 +6035,8 @@ module Aws::SageMaker
6035
6035
  # use of security-sensitive credentials are detected, SageMaker will
6036
6036
  # reject your training job request and return an exception error.
6037
6037
  #
6038
- # * `InputDataConfig` - Describes the training dataset and the Amazon
6039
- # S3, EFS, or FSx location where it is stored.
6038
+ # * `InputDataConfig` - Describes the input required by the training job
6039
+ # and the Amazon S3, EFS, or FSx location where it is stored.
6040
6040
  #
6041
6041
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
6042
6042
  # SageMaker to save the results of model training.
@@ -6297,6 +6297,8 @@ module Aws::SageMaker
6297
6297
  # },
6298
6298
  # ],
6299
6299
  # enable_sage_maker_metrics_time_series: false,
6300
+ # container_entrypoint: ["TrainingContainerEntrypointString"],
6301
+ # container_arguments: ["TrainingContainerArgument"],
6300
6302
  # },
6301
6303
  # role_arn: "RoleArn", # required
6302
6304
  # input_data_config: [
@@ -9993,7 +9995,7 @@ module Aws::SageMaker
9993
9995
  #
9994
9996
  # resp.hyper_parameter_tuning_job_name #=> String
9995
9997
  # resp.hyper_parameter_tuning_job_arn #=> String
9996
- # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
9998
+ # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband", "Grid"
9997
9999
  # resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
9998
10000
  # resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
9999
10001
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
@@ -11882,6 +11884,10 @@ module Aws::SageMaker
11882
11884
  # resp.algorithm_specification.metric_definitions[0].name #=> String
11883
11885
  # resp.algorithm_specification.metric_definitions[0].regex #=> String
11884
11886
  # resp.algorithm_specification.enable_sage_maker_metrics_time_series #=> Boolean
11887
+ # resp.algorithm_specification.container_entrypoint #=> Array
11888
+ # resp.algorithm_specification.container_entrypoint[0] #=> String
11889
+ # resp.algorithm_specification.container_arguments #=> Array
11890
+ # resp.algorithm_specification.container_arguments[0] #=> String
11885
11891
  # resp.role_arn #=> String
11886
11892
  # resp.input_data_config #=> Array
11887
11893
  # resp.input_data_config[0].channel_name #=> String
@@ -14419,7 +14425,7 @@ module Aws::SageMaker
14419
14425
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
14420
14426
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
14421
14427
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
14422
- # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random", "Hyperband"
14428
+ # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random", "Hyperband", "Grid"
14423
14429
  # resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
14424
14430
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
14425
14431
  # resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
@@ -17600,6 +17606,10 @@ module Aws::SageMaker
17600
17606
  # resp.results[0].training_job.algorithm_specification.metric_definitions[0].name #=> String
17601
17607
  # resp.results[0].training_job.algorithm_specification.metric_definitions[0].regex #=> String
17602
17608
  # resp.results[0].training_job.algorithm_specification.enable_sage_maker_metrics_time_series #=> Boolean
17609
+ # resp.results[0].training_job.algorithm_specification.container_entrypoint #=> Array
17610
+ # resp.results[0].training_job.algorithm_specification.container_entrypoint[0] #=> String
17611
+ # resp.results[0].training_job.algorithm_specification.container_arguments #=> Array
17612
+ # resp.results[0].training_job.algorithm_specification.container_arguments[0] #=> String
17603
17613
  # resp.results[0].training_job.role_arn #=> String
17604
17614
  # resp.results[0].training_job.input_data_config #=> Array
17605
17615
  # resp.results[0].training_job.input_data_config[0].channel_name #=> String
@@ -17796,6 +17806,10 @@ module Aws::SageMaker
17796
17806
  # resp.results[0].trial_component.source_detail.training_job.algorithm_specification.metric_definitions[0].name #=> String
17797
17807
  # resp.results[0].trial_component.source_detail.training_job.algorithm_specification.metric_definitions[0].regex #=> String
17798
17808
  # resp.results[0].trial_component.source_detail.training_job.algorithm_specification.enable_sage_maker_metrics_time_series #=> Boolean
17809
+ # resp.results[0].trial_component.source_detail.training_job.algorithm_specification.container_entrypoint #=> Array
17810
+ # resp.results[0].trial_component.source_detail.training_job.algorithm_specification.container_entrypoint[0] #=> String
17811
+ # resp.results[0].trial_component.source_detail.training_job.algorithm_specification.container_arguments #=> Array
17812
+ # resp.results[0].trial_component.source_detail.training_job.algorithm_specification.container_arguments[0] #=> String
17799
17813
  # resp.results[0].trial_component.source_detail.training_job.role_arn #=> String
17800
17814
  # resp.results[0].trial_component.source_detail.training_job.input_data_config #=> Array
17801
17815
  # resp.results[0].trial_component.source_detail.training_job.input_data_config[0].channel_name #=> String
@@ -18384,7 +18398,7 @@ module Aws::SageMaker
18384
18398
  # resp.results[0].feature_metadata.parameters[0].value #=> String
18385
18399
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
18386
18400
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
18387
- # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
18401
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband", "Grid"
18388
18402
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
18389
18403
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
18390
18404
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
@@ -21078,7 +21092,7 @@ module Aws::SageMaker
21078
21092
  params: params,
21079
21093
  config: config)
21080
21094
  context[:gem_name] = 'aws-sdk-sagemaker'
21081
- context[:gem_version] = '1.148.0'
21095
+ context[:gem_version] = '1.150.0'
21082
21096
  Seahorse::Client::Request.new(handlers, context)
21083
21097
  end
21084
21098
 
@@ -1591,6 +1591,10 @@ module Aws::SageMaker
1591
1591
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
1592
1592
  TrafficRoutingConfigType = Shapes::StringShape.new(name: 'TrafficRoutingConfigType')
1593
1593
  TrafficType = Shapes::StringShape.new(name: 'TrafficType')
1594
+ TrainingContainerArgument = Shapes::StringShape.new(name: 'TrainingContainerArgument')
1595
+ TrainingContainerArguments = Shapes::ListShape.new(name: 'TrainingContainerArguments')
1596
+ TrainingContainerEntrypoint = Shapes::ListShape.new(name: 'TrainingContainerEntrypoint')
1597
+ TrainingContainerEntrypointString = Shapes::StringShape.new(name: 'TrainingContainerEntrypointString')
1594
1598
  TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
1595
1599
  TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
1596
1600
  TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
@@ -1823,6 +1827,8 @@ module Aws::SageMaker
1823
1827
  AlgorithmSpecification.add_member(:training_input_mode, Shapes::ShapeRef.new(shape: TrainingInputMode, required: true, location_name: "TrainingInputMode"))
1824
1828
  AlgorithmSpecification.add_member(:metric_definitions, Shapes::ShapeRef.new(shape: MetricDefinitionList, location_name: "MetricDefinitions"))
1825
1829
  AlgorithmSpecification.add_member(:enable_sage_maker_metrics_time_series, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableSageMakerMetricsTimeSeries"))
1830
+ AlgorithmSpecification.add_member(:container_entrypoint, Shapes::ShapeRef.new(shape: TrainingContainerEntrypoint, location_name: "ContainerEntrypoint"))
1831
+ AlgorithmSpecification.add_member(:container_arguments, Shapes::ShapeRef.new(shape: TrainingContainerArguments, location_name: "ContainerArguments"))
1826
1832
  AlgorithmSpecification.struct_class = Types::AlgorithmSpecification
1827
1833
 
1828
1834
  AlgorithmStatusDetails.add_member(:validation_statuses, Shapes::ShapeRef.new(shape: AlgorithmStatusItemList, location_name: "ValidationStatuses"))
@@ -6840,7 +6846,7 @@ module Aws::SageMaker
6840
6846
  ResourceLimitExceeded.add_member(:message, Shapes::ShapeRef.new(shape: FailureReason, location_name: "Message"))
6841
6847
  ResourceLimitExceeded.struct_class = Types::ResourceLimitExceeded
6842
6848
 
6843
- ResourceLimits.add_member(:max_number_of_training_jobs, Shapes::ShapeRef.new(shape: MaxNumberOfTrainingJobs, required: true, location_name: "MaxNumberOfTrainingJobs"))
6849
+ ResourceLimits.add_member(:max_number_of_training_jobs, Shapes::ShapeRef.new(shape: MaxNumberOfTrainingJobs, location_name: "MaxNumberOfTrainingJobs"))
6844
6850
  ResourceLimits.add_member(:max_parallel_training_jobs, Shapes::ShapeRef.new(shape: MaxParallelTrainingJobs, required: true, location_name: "MaxParallelTrainingJobs"))
6845
6851
  ResourceLimits.struct_class = Types::ResourceLimits
6846
6852
 
@@ -7112,6 +7118,10 @@ module Aws::SageMaker
7112
7118
  TrafficRoutingConfig.add_member(:linear_step_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "LinearStepSize"))
7113
7119
  TrafficRoutingConfig.struct_class = Types::TrafficRoutingConfig
7114
7120
 
7121
+ TrainingContainerArguments.member = Shapes::ShapeRef.new(shape: TrainingContainerArgument)
7122
+
7123
+ TrainingContainerEntrypoint.member = Shapes::ShapeRef.new(shape: TrainingContainerEntrypointString)
7124
+
7115
7125
  TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
7116
7126
  TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
7117
7127
 
@@ -351,6 +351,8 @@ module Aws::SageMaker
351
351
  # },
352
352
  # ],
353
353
  # enable_sage_maker_metrics_time_series: false,
354
+ # container_entrypoint: ["TrainingContainerEntrypointString"],
355
+ # container_arguments: ["TrainingContainerArgument"],
354
356
  # }
355
357
  #
356
358
  # @!attribute [rw] training_image
@@ -473,6 +475,28 @@ module Aws::SageMaker
473
475
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html
474
476
  # @return [Boolean]
475
477
  #
478
+ # @!attribute [rw] container_entrypoint
479
+ # The [entrypoint script for a Docker container][1] used to run a
480
+ # training job. This script takes precedence over the default train
481
+ # processing instructions. See [How Amazon SageMaker Runs Your
482
+ # Training Image][2] for more information.
483
+ #
484
+ #
485
+ #
486
+ # [1]: https://docs.docker.com/engine/reference/builder/
487
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html
488
+ # @return [Array<String>]
489
+ #
490
+ # @!attribute [rw] container_arguments
491
+ # The arguments for a container used to run a training job. See [How
492
+ # Amazon SageMaker Runs Your Training Image][1] for additional
493
+ # information.
494
+ #
495
+ #
496
+ #
497
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html
498
+ # @return [Array<String>]
499
+ #
476
500
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmSpecification AWS API Documentation
477
501
  #
478
502
  class AlgorithmSpecification < Struct.new(
@@ -480,7 +504,9 @@ module Aws::SageMaker
480
504
  :algorithm_name,
481
505
  :training_input_mode,
482
506
  :metric_definitions,
483
- :enable_sage_maker_metrics_time_series)
507
+ :enable_sage_maker_metrics_time_series,
508
+ :container_entrypoint,
509
+ :container_arguments)
484
510
  SENSITIVE = []
485
511
  include Aws::Structure
486
512
  end
@@ -6983,7 +7009,7 @@ module Aws::SageMaker
6983
7009
  # {
6984
7010
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
6985
7011
  # hyper_parameter_tuning_job_config: { # required
6986
- # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
7012
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband, Grid
6987
7013
  # strategy_config: {
6988
7014
  # hyperband_strategy_config: {
6989
7015
  # min_resource: 1,
@@ -6995,7 +7021,7 @@ module Aws::SageMaker
6995
7021
  # metric_name: "MetricName", # required
6996
7022
  # },
6997
7023
  # resource_limits: { # required
6998
- # max_number_of_training_jobs: 1, # required
7024
+ # max_number_of_training_jobs: 1,
6999
7025
  # max_parallel_training_jobs: 1, # required
7000
7026
  # },
7001
7027
  # parameter_ranges: {
@@ -10059,6 +10085,8 @@ module Aws::SageMaker
10059
10085
  # },
10060
10086
  # ],
10061
10087
  # enable_sage_maker_metrics_time_series: false,
10088
+ # container_entrypoint: ["TrainingContainerEntrypointString"],
10089
+ # container_arguments: ["TrainingContainerArgument"],
10062
10090
  # },
10063
10091
  # role_arn: "RoleArn", # required
10064
10092
  # input_data_config: [
@@ -22804,7 +22832,7 @@ module Aws::SageMaker
22804
22832
  # data as a hash:
22805
22833
  #
22806
22834
  # {
22807
- # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
22835
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband, Grid
22808
22836
  # strategy_config: {
22809
22837
  # hyperband_strategy_config: {
22810
22838
  # min_resource: 1,
@@ -22816,7 +22844,7 @@ module Aws::SageMaker
22816
22844
  # metric_name: "MetricName", # required
22817
22845
  # },
22818
22846
  # resource_limits: { # required
22819
- # max_number_of_training_jobs: 1, # required
22847
+ # max_number_of_training_jobs: 1,
22820
22848
  # max_parallel_training_jobs: 1, # required
22821
22849
  # },
22822
22850
  # parameter_ranges: {
@@ -37859,7 +37887,7 @@ module Aws::SageMaker
37859
37887
  # data as a hash:
37860
37888
  #
37861
37889
  # {
37862
- # max_number_of_training_jobs: 1, # required
37890
+ # max_number_of_training_jobs: 1,
37863
37891
  # max_parallel_training_jobs: 1, # required
37864
37892
  # }
37865
37893
  #
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.148.0'
56
+ GEM_VERSION = '1.150.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.148.0
4
+ version: 1.150.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-10-25 00:00:00.000000000 Z
11
+ date: 2022-10-27 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core