aws-sdk-sagemaker 1.136.0 → 1.139.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d80d5b8575376a58f53e78eddc2834265833517675b1eebf23190c63cc49171b
4
- data.tar.gz: 026cd25eb71724a5e462330b3afa632a9d4371db3804eaf9d02969e8c7bbf390
3
+ metadata.gz: 7deb3524a9430ff017818162aedf6e3bd8043f7ba2b728f8c64efaac5a527c0c
4
+ data.tar.gz: fb76d74dc54301fb330152d44fd95643b9360ea1e0f0cfd42c08a8b16e4547e2
5
5
  SHA512:
6
- metadata.gz: 22ff9c97e218d4489f91965bd8b6ae10602edbc8663fe2cfc0b4ed5922f8ecb289e1642dc43d23851f0c4a7b604f97be0015dcc6673ef4cd8024a6cd73590e2d
7
- data.tar.gz: 6ef2f79b680b9469cd6babbce914b92935587946e9abae38551e16ade9b6d4bf81778871c207461df75e86792282a3567c8337ac5d2584ef3d02608c6bd15f76
6
+ metadata.gz: 4ae359d7efd1f2ee6e89f8f7b0c915b6de05162569c528111ccf3266381ad26003c9577df84a892f695ed05172fa566c8afc22e5650a5caead70aa73185bd68e
7
+ data.tar.gz: 29f83537ae4e0c80aeee9aa286ec7de6af46bdf6c9472832ea96fd2223c2c1e737057dcd9aa3e95801be0e84b0f0d09aad1a9c1711ebd5ff6e2781f98bdeb689
data/CHANGELOG.md CHANGED
@@ -1,6 +1,21 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.139.0 (2022-09-08)
5
+ ------------------
6
+
7
+ * Feature - This release adds Mode to AutoMLJobConfig.
8
+
9
+ 1.138.0 (2022-09-07)
10
+ ------------------
11
+
12
+ * Feature - SageMaker Hosting now allows customization on ML instance storage volume size, model data download timeout and inference container startup ping health check timeout for each ProductionVariant in CreateEndpointConfig API.
13
+
14
+ 1.137.0 (2022-09-06)
15
+ ------------------
16
+
17
+ * Feature - This release adds HyperParameterTuningJob type in Search API.
18
+
4
19
  1.136.0 (2022-09-02)
5
20
  ------------------
6
21
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.136.0
1
+ 1.139.0
@@ -1260,6 +1260,7 @@ module Aws::SageMaker
1260
1260
  # candidate_generation_config: {
1261
1261
  # feature_specification_s3_uri: "S3Uri",
1262
1262
  # },
1263
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
1263
1264
  # },
1264
1265
  # role_arn: "RoleArn", # required
1265
1266
  # generate_candidate_definitions_only: false,
@@ -2491,6 +2492,9 @@ module Aws::SageMaker
2491
2492
  # memory_size_in_mb: 1, # required
2492
2493
  # max_concurrency: 1, # required
2493
2494
  # },
2495
+ # volume_size_in_gb: 1,
2496
+ # model_data_download_timeout_in_seconds: 1,
2497
+ # container_startup_health_check_timeout_in_seconds: 1,
2494
2498
  # },
2495
2499
  # ],
2496
2500
  # data_capture_config: {
@@ -5831,6 +5835,12 @@ module Aws::SageMaker
5831
5835
  # a list of hyperparameters for each training algorithm provided by
5832
5836
  # SageMaker, see [Algorithms][1].
5833
5837
  #
5838
+ # You must not include any security-sensitive information, such as
5839
+ # account access IDs, secrets, and tokens, in the dictionary for
5840
+ # configuring hyperparameters. SageMaker rejects the training job
5841
+ # request and returns an exception error for detected credentials, if
5842
+ # such user input is found.
5843
+ #
5834
5844
  # * `InputDataConfig` - Describes the training dataset and the Amazon
5835
5845
  # S3, EFS, or FSx location where it is stored.
5836
5846
  #
@@ -5883,6 +5893,12 @@ module Aws::SageMaker
5883
5893
  # is a key-value pair. Each key and value is limited to 256 characters,
5884
5894
  # as specified by the `Length Constraint`.
5885
5895
  #
5896
+ # You must not include any security-sensitive information, such as
5897
+ # account access IDs, secrets, and tokens, in the dictionary for
5898
+ # configuring hyperparameters. SageMaker rejects the training job
5899
+ # request and returns an exception error for detected credentials, if
5900
+ # such user input is found.
5901
+ #
5886
5902
  #
5887
5903
  #
5888
5904
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
@@ -8568,6 +8584,7 @@ module Aws::SageMaker
8568
8584
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
8569
8585
  # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
8570
8586
  # resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
8587
+ # resp.auto_ml_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
8571
8588
  # resp.creation_time #=> Time
8572
8589
  # resp.end_time #=> Time
8573
8590
  # resp.last_modified_time #=> Time
@@ -9370,6 +9387,9 @@ module Aws::SageMaker
9370
9387
  # resp.production_variants[0].core_dump_config.kms_key_id #=> String
9371
9388
  # resp.production_variants[0].serverless_config.memory_size_in_mb #=> Integer
9372
9389
  # resp.production_variants[0].serverless_config.max_concurrency #=> Integer
9390
+ # resp.production_variants[0].volume_size_in_gb #=> Integer
9391
+ # resp.production_variants[0].model_data_download_timeout_in_seconds #=> Integer
9392
+ # resp.production_variants[0].container_startup_health_check_timeout_in_seconds #=> Integer
9373
9393
  # resp.data_capture_config.enable_capture #=> Boolean
9374
9394
  # resp.data_capture_config.initial_sampling_percentage #=> Integer
9375
9395
  # resp.data_capture_config.destination_s3_uri #=> String
@@ -12299,7 +12319,7 @@ module Aws::SageMaker
12299
12319
  # @example Request syntax with placeholder values
12300
12320
  #
12301
12321
  # resp = client.get_search_suggestions({
12302
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata
12322
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata, HyperParameterTuningJob
12303
12323
  # suggestion_query: {
12304
12324
  # property_name_query: {
12305
12325
  # property_name_hint: "PropertyNameHint", # required
@@ -17102,7 +17122,7 @@ module Aws::SageMaker
17102
17122
  # @example Request syntax with placeholder values
17103
17123
  #
17104
17124
  # resp = client.search({
17105
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata
17125
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata, HyperParameterTuningJob
17106
17126
  # search_expression: {
17107
17127
  # filters: [
17108
17128
  # {
@@ -17925,6 +17945,229 @@ module Aws::SageMaker
17925
17945
  # resp.results[0].feature_metadata.parameters #=> Array
17926
17946
  # resp.results[0].feature_metadata.parameters[0].key #=> String
17927
17947
  # resp.results[0].feature_metadata.parameters[0].value #=> String
17948
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
17949
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
17950
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
17951
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
17952
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
17953
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
17954
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_parallel_training_jobs #=> Integer
17955
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges #=> Array
17956
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
17957
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
17958
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].max_value #=> String
17959
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
17960
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges #=> Array
17961
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].name #=> String
17962
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
17963
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
17964
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
17965
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges #=> Array
17966
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String
17967
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array
17968
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
17969
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.training_job_early_stopping_type #=> String, one of "Off", "Auto"
17970
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.target_objective_metric_value #=> Float
17971
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.definition_name #=> String
17972
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.tuning_objective.type #=> String, one of "Maximize", "Minimize"
17973
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.tuning_objective.metric_name #=> String
17974
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges #=> Array
17975
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].name #=> String
17976
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].min_value #=> String
17977
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].max_value #=> String
17978
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
17979
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges #=> Array
17980
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].name #=> String
17981
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
17982
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
17983
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
17984
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges #=> Array
17985
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].name #=> String
17986
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].values #=> Array
17987
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
17988
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.static_hyper_parameters #=> Hash
17989
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.static_hyper_parameters["HyperParameterKey"] #=> String
17990
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.training_image #=> String
17991
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File", "FastFile"
17992
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.algorithm_name #=> String
17993
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.metric_definitions #=> Array
17994
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.metric_definitions[0].name #=> String
17995
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.metric_definitions[0].regex #=> String
17996
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.role_arn #=> String
17997
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config #=> Array
17998
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].channel_name #=> String
17999
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
18000
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
18001
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
18002
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
18003
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
18004
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.instance_group_names #=> Array
18005
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.instance_group_names[0] #=> String
18006
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
18007
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
18008
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
18009
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.file_system_data_source.directory_path #=> String
18010
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].content_type #=> String
18011
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
18012
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
18013
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].input_mode #=> String, one of "Pipe", "File", "FastFile"
18014
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].shuffle_config.seed #=> Integer
18015
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.vpc_config.security_group_ids #=> Array
18016
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.vpc_config.security_group_ids[0] #=> String
18017
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.vpc_config.subnets #=> Array
18018
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.vpc_config.subnets[0] #=> String
18019
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.output_data_config.kms_key_id #=> String
18020
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.output_data_config.s3_output_path #=> String
18021
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18022
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_count #=> Integer
18023
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.volume_size_in_gb #=> Integer
18024
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.volume_kms_key_id #=> String
18025
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_groups #=> Array
18026
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_groups[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18027
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_groups[0].instance_count #=> Integer
18028
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_groups[0].instance_group_name #=> String
18029
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.stopping_condition.max_runtime_in_seconds #=> Integer
18030
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.stopping_condition.max_wait_time_in_seconds #=> Integer
18031
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.enable_network_isolation #=> Boolean
18032
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.enable_inter_container_traffic_encryption #=> Boolean
18033
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.enable_managed_spot_training #=> Boolean
18034
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.checkpoint_config.s3_uri #=> String
18035
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.checkpoint_config.local_path #=> String
18036
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
18037
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18038
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_count #=> Integer
18039
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.volume_size_in_gb #=> Integer
18040
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.volume_kms_key_id #=> String
18041
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.allocation_strategy #=> String, one of "Prioritized"
18042
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs #=> Array
18043
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18044
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].instance_count #=> Integer
18045
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].volume_size_in_gb #=> Integer
18046
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions #=> Array
18047
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].definition_name #=> String
18048
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
18049
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].tuning_objective.metric_name #=> String
18050
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges #=> Array
18051
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].name #=> String
18052
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].min_value #=> String
18053
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].max_value #=> String
18054
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
18055
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges #=> Array
18056
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].name #=> String
18057
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
18058
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
18059
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
18060
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges #=> Array
18061
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].name #=> String
18062
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].values #=> Array
18063
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
18064
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].static_hyper_parameters #=> Hash
18065
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].static_hyper_parameters["HyperParameterKey"] #=> String
18066
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.training_image #=> String
18067
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.training_input_mode #=> String, one of "Pipe", "File", "FastFile"
18068
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.algorithm_name #=> String
18069
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.metric_definitions #=> Array
18070
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.metric_definitions[0].name #=> String
18071
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.metric_definitions[0].regex #=> String
18072
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].role_arn #=> String
18073
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config #=> Array
18074
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].channel_name #=> String
18075
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
18076
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_uri #=> String
18077
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
18078
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
18079
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
18080
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.instance_group_names #=> Array
18081
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.instance_group_names[0] #=> String
18082
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
18083
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
18084
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
18085
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.directory_path #=> String
18086
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].content_type #=> String
18087
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].compression_type #=> String, one of "None", "Gzip"
18088
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
18089
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].input_mode #=> String, one of "Pipe", "File", "FastFile"
18090
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].shuffle_config.seed #=> Integer
18091
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].vpc_config.security_group_ids #=> Array
18092
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].vpc_config.security_group_ids[0] #=> String
18093
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].vpc_config.subnets #=> Array
18094
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].vpc_config.subnets[0] #=> String
18095
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].output_data_config.kms_key_id #=> String
18096
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].output_data_config.s3_output_path #=> String
18097
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18098
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_count #=> Integer
18099
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.volume_size_in_gb #=> Integer
18100
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.volume_kms_key_id #=> String
18101
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_groups #=> Array
18102
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_groups[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18103
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_groups[0].instance_count #=> Integer
18104
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_groups[0].instance_group_name #=> String
18105
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].stopping_condition.max_runtime_in_seconds #=> Integer
18106
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].stopping_condition.max_wait_time_in_seconds #=> Integer
18107
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].enable_network_isolation #=> Boolean
18108
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].enable_inter_container_traffic_encryption #=> Boolean
18109
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].enable_managed_spot_training #=> Boolean
18110
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].checkpoint_config.s3_uri #=> String
18111
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].checkpoint_config.local_path #=> String
18112
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
18113
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18114
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_count #=> Integer
18115
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.volume_size_in_gb #=> Integer
18116
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.volume_kms_key_id #=> String
18117
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.allocation_strategy #=> String, one of "Prioritized"
18118
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs #=> Array
18119
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18120
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].instance_count #=> Integer
18121
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].volume_size_in_gb #=> Integer
18122
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
18123
+ # resp.results[0].hyper_parameter_tuning_job.creation_time #=> Time
18124
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_end_time #=> Time
18125
+ # resp.results[0].hyper_parameter_tuning_job.last_modified_time #=> Time
18126
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.completed #=> Integer
18127
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.in_progress #=> Integer
18128
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.retryable_error #=> Integer
18129
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.non_retryable_error #=> Integer
18130
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.stopped #=> Integer
18131
+ # resp.results[0].hyper_parameter_tuning_job.objective_status_counters.succeeded #=> Integer
18132
+ # resp.results[0].hyper_parameter_tuning_job.objective_status_counters.pending #=> Integer
18133
+ # resp.results[0].hyper_parameter_tuning_job.objective_status_counters.failed #=> Integer
18134
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_job_definition_name #=> String
18135
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_job_name #=> String
18136
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_job_arn #=> String
18137
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.tuning_job_name #=> String
18138
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.creation_time #=> Time
18139
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_start_time #=> Time
18140
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_end_time #=> Time
18141
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
18142
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.tuned_hyper_parameters #=> Hash
18143
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.tuned_hyper_parameters["HyperParameterKey"] #=> String
18144
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.failure_reason #=> String
18145
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
18146
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
18147
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
18148
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
18149
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_job_definition_name #=> String
18150
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_job_name #=> String
18151
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_job_arn #=> String
18152
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.tuning_job_name #=> String
18153
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.creation_time #=> Time
18154
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_start_time #=> Time
18155
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_end_time #=> Time
18156
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
18157
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.tuned_hyper_parameters #=> Hash
18158
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.tuned_hyper_parameters["HyperParameterKey"] #=> String
18159
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.failure_reason #=> String
18160
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
18161
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
18162
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
18163
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
18164
+ # resp.results[0].hyper_parameter_tuning_job.warm_start_config.parent_hyper_parameter_tuning_jobs #=> Array
18165
+ # resp.results[0].hyper_parameter_tuning_job.warm_start_config.parent_hyper_parameter_tuning_jobs[0].hyper_parameter_tuning_job_name #=> String
18166
+ # resp.results[0].hyper_parameter_tuning_job.warm_start_config.warm_start_type #=> String, one of "IdenticalDataAndAlgorithm", "TransferLearning"
18167
+ # resp.results[0].hyper_parameter_tuning_job.failure_reason #=> String
18168
+ # resp.results[0].hyper_parameter_tuning_job.tags #=> Array
18169
+ # resp.results[0].hyper_parameter_tuning_job.tags[0].key #=> String
18170
+ # resp.results[0].hyper_parameter_tuning_job.tags[0].value #=> String
17928
18171
  # resp.next_token #=> String
17929
18172
  #
17930
18173
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Search AWS API Documentation
@@ -20353,7 +20596,7 @@ module Aws::SageMaker
20353
20596
  params: params,
20354
20597
  config: config)
20355
20598
  context[:gem_name] = 'aws-sdk-sagemaker'
20356
- context[:gem_version] = '1.136.0'
20599
+ context[:gem_version] = '1.139.0'
20357
20600
  Seahorse::Client::Request.new(handlers, context)
20358
20601
  end
20359
20602
 
@@ -121,6 +121,7 @@ module Aws::SageMaker
121
121
  AutoMLMaxResults = Shapes::IntegerShape.new(name: 'AutoMLMaxResults')
122
122
  AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
123
123
  AutoMLMetricExtendedEnum = Shapes::StringShape.new(name: 'AutoMLMetricExtendedEnum')
124
+ AutoMLMode = Shapes::StringShape.new(name: 'AutoMLMode')
124
125
  AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
125
126
  AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
126
127
  AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
@@ -750,6 +751,7 @@ module Aws::SageMaker
750
751
  HyperParameterTuningJobObjective = Shapes::StructureShape.new(name: 'HyperParameterTuningJobObjective')
751
752
  HyperParameterTuningJobObjectiveType = Shapes::StringShape.new(name: 'HyperParameterTuningJobObjectiveType')
752
753
  HyperParameterTuningJobObjectives = Shapes::ListShape.new(name: 'HyperParameterTuningJobObjectives')
754
+ HyperParameterTuningJobSearchEntity = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSearchEntity')
753
755
  HyperParameterTuningJobSortByOptions = Shapes::StringShape.new(name: 'HyperParameterTuningJobSortByOptions')
754
756
  HyperParameterTuningJobStatus = Shapes::StringShape.new(name: 'HyperParameterTuningJobStatus')
755
757
  HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
@@ -1274,14 +1276,17 @@ module Aws::SageMaker
1274
1276
  ProductListings = Shapes::ListShape.new(name: 'ProductListings')
1275
1277
  ProductionVariant = Shapes::StructureShape.new(name: 'ProductionVariant')
1276
1278
  ProductionVariantAcceleratorType = Shapes::StringShape.new(name: 'ProductionVariantAcceleratorType')
1279
+ ProductionVariantContainerStartupHealthCheckTimeoutInSeconds = Shapes::IntegerShape.new(name: 'ProductionVariantContainerStartupHealthCheckTimeoutInSeconds')
1277
1280
  ProductionVariantCoreDumpConfig = Shapes::StructureShape.new(name: 'ProductionVariantCoreDumpConfig')
1278
1281
  ProductionVariantInstanceType = Shapes::StringShape.new(name: 'ProductionVariantInstanceType')
1279
1282
  ProductionVariantList = Shapes::ListShape.new(name: 'ProductionVariantList')
1283
+ ProductionVariantModelDataDownloadTimeoutInSeconds = Shapes::IntegerShape.new(name: 'ProductionVariantModelDataDownloadTimeoutInSeconds')
1280
1284
  ProductionVariantServerlessConfig = Shapes::StructureShape.new(name: 'ProductionVariantServerlessConfig')
1281
1285
  ProductionVariantStatus = Shapes::StructureShape.new(name: 'ProductionVariantStatus')
1282
1286
  ProductionVariantStatusList = Shapes::ListShape.new(name: 'ProductionVariantStatusList')
1283
1287
  ProductionVariantSummary = Shapes::StructureShape.new(name: 'ProductionVariantSummary')
1284
1288
  ProductionVariantSummaryList = Shapes::ListShape.new(name: 'ProductionVariantSummaryList')
1289
+ ProductionVariantVolumeSizeInGB = Shapes::IntegerShape.new(name: 'ProductionVariantVolumeSizeInGB')
1285
1290
  ProfilerConfig = Shapes::StructureShape.new(name: 'ProfilerConfig')
1286
1291
  ProfilerConfigForUpdate = Shapes::StructureShape.new(name: 'ProfilerConfigForUpdate')
1287
1292
  ProfilerRuleConfiguration = Shapes::StructureShape.new(name: 'ProfilerRuleConfiguration')
@@ -1948,6 +1953,7 @@ module Aws::SageMaker
1948
1953
  AutoMLJobConfig.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
1949
1954
  AutoMLJobConfig.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
1950
1955
  AutoMLJobConfig.add_member(:candidate_generation_config, Shapes::ShapeRef.new(shape: AutoMLCandidateGenerationConfig, location_name: "CandidateGenerationConfig"))
1956
+ AutoMLJobConfig.add_member(:mode, Shapes::ShapeRef.new(shape: AutoMLMode, location_name: "Mode"))
1951
1957
  AutoMLJobConfig.struct_class = Types::AutoMLJobConfig
1952
1958
 
1953
1959
  AutoMLJobObjective.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, required: true, location_name: "MetricName"))
@@ -4528,6 +4534,24 @@ module Aws::SageMaker
4528
4534
 
4529
4535
  HyperParameterTuningJobObjectives.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective)
4530
4536
 
4537
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, location_name: "HyperParameterTuningJobName"))
4538
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_job_arn, Shapes::ShapeRef.new(shape: HyperParameterTuningJobArn, location_name: "HyperParameterTuningJobArn"))
4539
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_job_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConfig, location_name: "HyperParameterTuningJobConfig"))
4540
+ HyperParameterTuningJobSearchEntity.add_member(:training_job_definition, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition, location_name: "TrainingJobDefinition"))
4541
+ HyperParameterTuningJobSearchEntity.add_member(:training_job_definitions, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinitions, location_name: "TrainingJobDefinitions"))
4542
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_job_status, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStatus, location_name: "HyperParameterTuningJobStatus"))
4543
+ HyperParameterTuningJobSearchEntity.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
4544
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "HyperParameterTuningEndTime"))
4545
+ HyperParameterTuningJobSearchEntity.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
4546
+ HyperParameterTuningJobSearchEntity.add_member(:training_job_status_counters, Shapes::ShapeRef.new(shape: TrainingJobStatusCounters, location_name: "TrainingJobStatusCounters"))
4547
+ HyperParameterTuningJobSearchEntity.add_member(:objective_status_counters, Shapes::ShapeRef.new(shape: ObjectiveStatusCounters, location_name: "ObjectiveStatusCounters"))
4548
+ HyperParameterTuningJobSearchEntity.add_member(:best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "BestTrainingJob"))
4549
+ HyperParameterTuningJobSearchEntity.add_member(:overall_best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "OverallBestTrainingJob"))
4550
+ HyperParameterTuningJobSearchEntity.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
4551
+ HyperParameterTuningJobSearchEntity.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
4552
+ HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
4553
+ HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
4554
+
4531
4555
  HyperParameterTuningJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobSummary)
4532
4556
 
4533
4557
  HyperParameterTuningJobSummary.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
@@ -6329,6 +6353,9 @@ module Aws::SageMaker
6329
6353
  ProductionVariant.add_member(:accelerator_type, Shapes::ShapeRef.new(shape: ProductionVariantAcceleratorType, location_name: "AcceleratorType"))
6330
6354
  ProductionVariant.add_member(:core_dump_config, Shapes::ShapeRef.new(shape: ProductionVariantCoreDumpConfig, location_name: "CoreDumpConfig"))
6331
6355
  ProductionVariant.add_member(:serverless_config, Shapes::ShapeRef.new(shape: ProductionVariantServerlessConfig, location_name: "ServerlessConfig"))
6356
+ ProductionVariant.add_member(:volume_size_in_gb, Shapes::ShapeRef.new(shape: ProductionVariantVolumeSizeInGB, location_name: "VolumeSizeInGB"))
6357
+ ProductionVariant.add_member(:model_data_download_timeout_in_seconds, Shapes::ShapeRef.new(shape: ProductionVariantModelDataDownloadTimeoutInSeconds, location_name: "ModelDataDownloadTimeoutInSeconds"))
6358
+ ProductionVariant.add_member(:container_startup_health_check_timeout_in_seconds, Shapes::ShapeRef.new(shape: ProductionVariantContainerStartupHealthCheckTimeoutInSeconds, location_name: "ContainerStartupHealthCheckTimeoutInSeconds"))
6332
6359
  ProductionVariant.struct_class = Types::ProductionVariant
6333
6360
 
6334
6361
  ProductionVariantCoreDumpConfig.add_member(:destination_s3_uri, Shapes::ShapeRef.new(shape: DestinationS3Uri, required: true, location_name: "DestinationS3Uri"))
@@ -6680,6 +6707,7 @@ module Aws::SageMaker
6680
6707
  SearchRecord.add_member(:feature_group, Shapes::ShapeRef.new(shape: FeatureGroup, location_name: "FeatureGroup"))
6681
6708
  SearchRecord.add_member(:project, Shapes::ShapeRef.new(shape: Project, location_name: "Project"))
6682
6709
  SearchRecord.add_member(:feature_metadata, Shapes::ShapeRef.new(shape: FeatureMetadata, location_name: "FeatureMetadata"))
6710
+ SearchRecord.add_member(:hyper_parameter_tuning_job, Shapes::ShapeRef.new(shape: HyperParameterTuningJobSearchEntity, location_name: "HyperParameterTuningJob"))
6683
6711
  SearchRecord.struct_class = Types::SearchRecord
6684
6712
 
6685
6713
  SearchRequest.add_member(:resource, Shapes::ShapeRef.new(shape: ResourceType, required: true, location_name: "Resource"))
@@ -2338,6 +2338,7 @@ module Aws::SageMaker
2338
2338
  # candidate_generation_config: {
2339
2339
  # feature_specification_s3_uri: "S3Uri",
2340
2340
  # },
2341
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
2341
2342
  # }
2342
2343
  #
2343
2344
  # @!attribute [rw] completion_criteria
@@ -2361,13 +2362,43 @@ module Aws::SageMaker
2361
2362
  # (optional).
2362
2363
  # @return [Types::AutoMLCandidateGenerationConfig]
2363
2364
  #
2365
+ # @!attribute [rw] mode
2366
+ # The method that Autopilot uses to train the data. You can either
2367
+ # specify the mode manually or let Autopilot choose for you based on
2368
+ # the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
2369
+ # chooses `ENSEMBLING` for datasets smaller than 100 MB, and
2370
+ # `HYPERPARAMETER_TUNING` for larger ones.
2371
+ #
2372
+ # The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
2373
+ # classification and regression tasks directly from your dataset. This
2374
+ # machine learning mode combines several base models to produce an
2375
+ # optimal predictive model. It then uses a stacking ensemble method to
2376
+ # combine predictions from contributing members. A multi-stack
2377
+ # ensemble model can provide better performance over a single model by
2378
+ # combining the predictive capabilities of multiple models. See
2379
+ # [Autopilot algorithm support][1] for a list of algorithms supported
2380
+ # by `ENSEMBLING` mode.
2381
+ #
2382
+ # The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
2383
+ # to train the best version of a model. HPO will automatically select
2384
+ # an algorithm for the type of problem you want to solve. Then HPO
2385
+ # finds the best hyperparameters according to your objective metric.
2386
+ # See [Autopilot algorithm support][1] for a list of algorithms
2387
+ # supported by `HYPERPARAMETER_TUNING` mode.
2388
+ #
2389
+ #
2390
+ #
2391
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt
2392
+ # @return [String]
2393
+ #
2364
2394
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
2365
2395
  #
2366
2396
  class AutoMLJobConfig < Struct.new(
2367
2397
  :completion_criteria,
2368
2398
  :security_config,
2369
2399
  :data_split_config,
2370
- :candidate_generation_config)
2400
+ :candidate_generation_config,
2401
+ :mode)
2371
2402
  SENSITIVE = []
2372
2403
  include Aws::Structure
2373
2404
  end
@@ -4591,6 +4622,7 @@ module Aws::SageMaker
4591
4622
  # candidate_generation_config: {
4592
4623
  # feature_specification_s3_uri: "S3Uri",
4593
4624
  # },
4625
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
4594
4626
  # },
4595
4627
  # role_arn: "RoleArn", # required
4596
4628
  # generate_candidate_definitions_only: false,
@@ -5616,6 +5648,9 @@ module Aws::SageMaker
5616
5648
  # memory_size_in_mb: 1, # required
5617
5649
  # max_concurrency: 1, # required
5618
5650
  # },
5651
+ # volume_size_in_gb: 1,
5652
+ # model_data_download_timeout_in_seconds: 1,
5653
+ # container_startup_health_check_timeout_in_seconds: 1,
5619
5654
  # },
5620
5655
  # ],
5621
5656
  # data_capture_config: {
@@ -9380,6 +9415,12 @@ module Aws::SageMaker
9380
9415
  # hyperparameter is a key-value pair. Each key and value is limited to
9381
9416
  # 256 characters, as specified by the `Length Constraint`.
9382
9417
  #
9418
+ # You must not include any security-sensitive information, such as
9419
+ # account access IDs, secrets, and tokens, in the dictionary for
9420
+ # configuring hyperparameters. SageMaker rejects the training job
9421
+ # request and returns an exception error for detected credentials, if
9422
+ # such user input is found.
9423
+ #
9383
9424
  #
9384
9425
  #
9385
9426
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
@@ -19889,7 +19930,7 @@ module Aws::SageMaker
19889
19930
  # data as a hash:
19890
19931
  #
19891
19932
  # {
19892
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata
19933
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata, HyperParameterTuningJob
19893
19934
  # suggestion_query: {
19894
19935
  # property_name_query: {
19895
19936
  # property_name_hint: "PropertyNameHint", # required
@@ -21943,6 +21984,123 @@ module Aws::SageMaker
21943
21984
  include Aws::Structure
21944
21985
  end
21945
21986
 
21987
+ # An entity having characteristics over which a user can search for a
21988
+ # hyperparameter tuning job.
21989
+ #
21990
+ # @!attribute [rw] hyper_parameter_tuning_job_name
21991
+ # The name of a hyperparameter tuning job.
21992
+ # @return [String]
21993
+ #
21994
+ # @!attribute [rw] hyper_parameter_tuning_job_arn
21995
+ # The Amazon Resource Name (ARN) of a hyperparameter tuning job.
21996
+ # @return [String]
21997
+ #
21998
+ # @!attribute [rw] hyper_parameter_tuning_job_config
21999
+ # Configures a hyperparameter tuning job.
22000
+ # @return [Types::HyperParameterTuningJobConfig]
22001
+ #
22002
+ # @!attribute [rw] training_job_definition
22003
+ # Defines the training jobs launched by a hyperparameter tuning job.
22004
+ # @return [Types::HyperParameterTrainingJobDefinition]
22005
+ #
22006
+ # @!attribute [rw] training_job_definitions
22007
+ # The job definitions included in a hyperparameter tuning job.
22008
+ # @return [Array<Types::HyperParameterTrainingJobDefinition>]
22009
+ #
22010
+ # @!attribute [rw] hyper_parameter_tuning_job_status
22011
+ # The status of a hyperparameter tuning job.
22012
+ # @return [String]
22013
+ #
22014
+ # @!attribute [rw] creation_time
22015
+ # The time that a hyperparameter tuning job was created.
22016
+ # @return [Time]
22017
+ #
22018
+ # @!attribute [rw] hyper_parameter_tuning_end_time
22019
+ # The time that a hyperparameter tuning job ended.
22020
+ # @return [Time]
22021
+ #
22022
+ # @!attribute [rw] last_modified_time
22023
+ # The time that a hyperparameter tuning job was last modified.
22024
+ # @return [Time]
22025
+ #
22026
+ # @!attribute [rw] training_job_status_counters
22027
+ # The numbers of training jobs launched by a hyperparameter tuning
22028
+ # job, categorized by status.
22029
+ # @return [Types::TrainingJobStatusCounters]
22030
+ #
22031
+ # @!attribute [rw] objective_status_counters
22032
+ # Specifies the number of training jobs that this hyperparameter
22033
+ # tuning job launched, categorized by the status of their objective
22034
+ # metric. The objective metric status shows whether the final
22035
+ # objective metric for the training job has been evaluated by the
22036
+ # tuning job and used in the hyperparameter tuning process.
22037
+ # @return [Types::ObjectiveStatusCounters]
22038
+ #
22039
+ # @!attribute [rw] best_training_job
22040
+ # The container for the summary information about a training job.
22041
+ # @return [Types::HyperParameterTrainingJobSummary]
22042
+ #
22043
+ # @!attribute [rw] overall_best_training_job
22044
+ # The container for the summary information about a training job.
22045
+ # @return [Types::HyperParameterTrainingJobSummary]
22046
+ #
22047
+ # @!attribute [rw] warm_start_config
22048
+ # Specifies the configuration for a hyperparameter tuning job that
22049
+ # uses one or more previous hyperparameter tuning jobs as a starting
22050
+ # point. The results of previous tuning jobs are used to inform which
22051
+ # combinations of hyperparameters to search over in the new tuning
22052
+ # job.
22053
+ #
22054
+ # All training jobs launched by the new hyperparameter tuning job are
22055
+ # evaluated by using the objective metric, and the training job that
22056
+ # performs the best is compared to the best training jobs from the
22057
+ # parent tuning jobs. From these, the training job that performs the
22058
+ # best as measured by the objective metric is returned as the overall
22059
+ # best training job.
22060
+ #
22061
+ # <note markdown="1"> All training jobs launched by parent hyperparameter tuning jobs and
22062
+ # the new hyperparameter tuning jobs count against the limit of
22063
+ # training jobs for the tuning job.
22064
+ #
22065
+ # </note>
22066
+ # @return [Types::HyperParameterTuningJobWarmStartConfig]
22067
+ #
22068
+ # @!attribute [rw] failure_reason
22069
+ # The error that was created when a hyperparameter tuning job failed.
22070
+ # @return [String]
22071
+ #
22072
+ # @!attribute [rw] tags
22073
+ # The tags associated with a hyperparameter tuning job. For more
22074
+ # information see [Tagging Amazon Web Services resources][1].
22075
+ #
22076
+ #
22077
+ #
22078
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
22079
+ # @return [Array<Types::Tag>]
22080
+ #
22081
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobSearchEntity AWS API Documentation
22082
+ #
22083
+ class HyperParameterTuningJobSearchEntity < Struct.new(
22084
+ :hyper_parameter_tuning_job_name,
22085
+ :hyper_parameter_tuning_job_arn,
22086
+ :hyper_parameter_tuning_job_config,
22087
+ :training_job_definition,
22088
+ :training_job_definitions,
22089
+ :hyper_parameter_tuning_job_status,
22090
+ :creation_time,
22091
+ :hyper_parameter_tuning_end_time,
22092
+ :last_modified_time,
22093
+ :training_job_status_counters,
22094
+ :objective_status_counters,
22095
+ :best_training_job,
22096
+ :overall_best_training_job,
22097
+ :warm_start_config,
22098
+ :failure_reason,
22099
+ :tags)
22100
+ SENSITIVE = []
22101
+ include Aws::Structure
22102
+ end
22103
+
21946
22104
  # Provides summary information about a hyperparameter tuning job.
21947
22105
  #
21948
22106
  # @!attribute [rw] hyper_parameter_tuning_job_name
@@ -33918,6 +34076,9 @@ module Aws::SageMaker
33918
34076
  # memory_size_in_mb: 1, # required
33919
34077
  # max_concurrency: 1, # required
33920
34078
  # },
34079
+ # volume_size_in_gb: 1,
34080
+ # model_data_download_timeout_in_seconds: 1,
34081
+ # container_startup_health_check_timeout_in_seconds: 1,
33921
34082
  # }
33922
34083
  #
33923
34084
  # @!attribute [rw] variant_name
@@ -33967,6 +34128,29 @@ module Aws::SageMaker
33967
34128
  # configuration.
33968
34129
  # @return [Types::ProductionVariantServerlessConfig]
33969
34130
  #
34131
+ # @!attribute [rw] volume_size_in_gb
34132
+ # The size, in GB, of the ML storage volume attached to individual
34133
+ # inference instance associated with the production variant. Currenly
34134
+ # only Amazon EBS gp2 storage volumes are supported.
34135
+ # @return [Integer]
34136
+ #
34137
+ # @!attribute [rw] model_data_download_timeout_in_seconds
34138
+ # The timeout value, in seconds, to download and extract the model
34139
+ # that you want to host from Amazon S3 to the individual inference
34140
+ # instance associated with this production variant.
34141
+ # @return [Integer]
34142
+ #
34143
+ # @!attribute [rw] container_startup_health_check_timeout_in_seconds
34144
+ # The timeout value, in seconds, for your inference container to pass
34145
+ # health check by SageMaker Hosting. For more information about health
34146
+ # check, see [How Your Container Should Respond to Health Check (Ping)
34147
+ # Requests][1].
34148
+ #
34149
+ #
34150
+ #
34151
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests
34152
+ # @return [Integer]
34153
+ #
33970
34154
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
33971
34155
  #
33972
34156
  class ProductionVariant < Struct.new(
@@ -33977,7 +34161,10 @@ module Aws::SageMaker
33977
34161
  :initial_variant_weight,
33978
34162
  :accelerator_type,
33979
34163
  :core_dump_config,
33980
- :serverless_config)
34164
+ :serverless_config,
34165
+ :volume_size_in_gb,
34166
+ :model_data_download_timeout_in_seconds,
34167
+ :container_startup_health_check_timeout_in_seconds)
33981
34168
  SENSITIVE = []
33982
34169
  include Aws::Structure
33983
34170
  end
@@ -36724,6 +36911,10 @@ module Aws::SageMaker
36724
36911
  # The feature metadata used to search through the features.
36725
36912
  # @return [Types::FeatureMetadata]
36726
36913
  #
36914
+ # @!attribute [rw] hyper_parameter_tuning_job
36915
+ # The properties of a hyperparameter tuning job.
36916
+ # @return [Types::HyperParameterTuningJobSearchEntity]
36917
+ #
36727
36918
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SearchRecord AWS API Documentation
36728
36919
  #
36729
36920
  class SearchRecord < Struct.new(
@@ -36738,7 +36929,8 @@ module Aws::SageMaker
36738
36929
  :pipeline_execution,
36739
36930
  :feature_group,
36740
36931
  :project,
36741
- :feature_metadata)
36932
+ :feature_metadata,
36933
+ :hyper_parameter_tuning_job)
36742
36934
  SENSITIVE = []
36743
36935
  include Aws::Structure
36744
36936
  end
@@ -36747,7 +36939,7 @@ module Aws::SageMaker
36747
36939
  # data as a hash:
36748
36940
  #
36749
36941
  # {
36750
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata
36942
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata, HyperParameterTuningJob
36751
36943
  # search_expression: {
36752
36944
  # filters: [
36753
36945
  # {
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.136.0'
52
+ GEM_VERSION = '1.139.0'
53
53
 
54
54
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.136.0
4
+ version: 1.139.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-09-02 00:00:00.000000000 Z
11
+ date: 2022-09-08 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core