aws-sdk-sagemaker 1.134.0 → 1.137.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: f89e4ea8f9378e14dc002a7b2a51d7aeddfe818355308cfb52b5d7a9d53d621a
4
- data.tar.gz: d087c696fff9c70d62b5c12afb3f1720fe17e341f2f8d36d7785428b2dfd4a01
3
+ metadata.gz: 7b1520bfa7b1e33ac5873643ddd92b6acb27999bb7d445c496296c172316e539
4
+ data.tar.gz: a017be858fcd498081e11fa068afeaac4f60f28ee17fdb4381527df618662fa7
5
5
  SHA512:
6
- metadata.gz: 1907804d9566081d42051892ecf708da306bd9e2215603b371b645fea2834c1224871c162a5fea329505da2f9fbdb2ced2717246e30303b7960c3f99471f798e
7
- data.tar.gz: 51ae3877e58dc71f248cccc111466639a161d4e1ba3c7540490d08f9041d161e2199567f96d5469d803479e4395b067670f7cb52a94d251e95eb6824ef6782d8
6
+ metadata.gz: 9eda2e73dec3f11c60802552ff67501bcb02cc08d3fa4c5abe7ff23e64c3d6d2a5186b0508c6129766be59e5c7fdba7beb6e8e9008ccde130af73bef9498422a
7
+ data.tar.gz: 78d8779380790fffa00e7da4402a28c6dffd18fa687ed19e3fc807cf55222161b79a14541f2eb01e8778accf2ced585764152d153555649a722cdc129960a693
data/CHANGELOG.md CHANGED
@@ -1,6 +1,21 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.137.0 (2022-09-06)
5
+ ------------------
6
+
7
+ * Feature - This release adds HyperParameterTuningJob type in Search API.
8
+
9
+ 1.136.0 (2022-09-02)
10
+ ------------------
11
+
12
+ * Feature - This release enables administrators to attribute user activity and API calls from Studio notebooks, Data Wrangler and Canvas to specific users even when users share the same execution IAM role. ExecutionRoleIdentityConfig at Sagemaker domain level enables this feature.
13
+
14
+ 1.135.0 (2022-08-31)
15
+ ------------------
16
+
17
+ * Feature - SageMaker Inference Recommender now accepts Inference Recommender fields: Domain, Task, Framework, SamplePayloadUrl, SupportedContentTypes, SupportedInstanceTypes, directly in our CreateInferenceRecommendationsJob API through ContainerConfig
18
+
4
19
  1.134.0 (2022-08-09)
5
20
  ------------------
6
21
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.134.0
1
+ 1.137.0
@@ -1986,6 +1986,7 @@ module Aws::SageMaker
1986
1986
  # lifecycle_config_arn: "StudioLifecycleConfigArn",
1987
1987
  # },
1988
1988
  # },
1989
+ # execution_role_identity_config: "USER_PROFILE_NAME", # accepts USER_PROFILE_NAME, DISABLED
1989
1990
  # },
1990
1991
  # })
1991
1992
  #
@@ -3515,6 +3516,18 @@ module Aws::SageMaker
3515
3516
  # },
3516
3517
  # ],
3517
3518
  # volume_kms_key_id: "KmsKeyId",
3519
+ # container_config: {
3520
+ # domain: "String",
3521
+ # task: "String",
3522
+ # framework: "String",
3523
+ # framework_version: "String",
3524
+ # payload_config: {
3525
+ # sample_payload_url: "String",
3526
+ # supported_content_types: ["String"],
3527
+ # },
3528
+ # nearest_model_name: "String",
3529
+ # supported_instance_types: ["String"],
3530
+ # },
3518
3531
  # },
3519
3532
  # job_description: "RecommendationJobDescription",
3520
3533
  # stopping_conditions: {
@@ -5376,7 +5389,7 @@ module Aws::SageMaker
5376
5389
  # This operation can only be called when the authentication mode equals
5377
5390
  # IAM.
5378
5391
  #
5379
- # The IAM role or user used to call this API defines the permissions to
5392
+ # The IAM role or user passed to this API defines the permissions to
5380
5393
  # access the app. Once the presigned URL is created, no additional
5381
5394
  # permission is required to access this URL. IAM authorization policies
5382
5395
  # for this API are also enforced for every HTTP request and WebSocket
@@ -6631,10 +6644,11 @@ module Aws::SageMaker
6631
6644
  # a domain, and is the main way to reference a "person" for the
6632
6645
  # purposes of sharing, reporting, and other user-oriented features. This
6633
6646
  # entity is created when a user onboards to Amazon SageMaker Studio. If
6634
- # an administrator invites a person by email or imports them from SSO, a
6635
- # user profile is automatically created. A user profile is the primary
6636
- # holder of settings for an individual user and has a reference to the
6637
- # user's private Amazon Elastic File System (EFS) home directory.
6647
+ # an administrator invites a person by email or imports them from Amazon
6648
+ # Web Services SSO, a user profile is automatically created. A user
6649
+ # profile is the primary holder of settings for an individual user and
6650
+ # has a reference to the user's private Amazon Elastic File System
6651
+ # (EFS) home directory.
6638
6652
  #
6639
6653
  # @option params [required, String] :domain_id
6640
6654
  # The ID of the associated Domain.
@@ -6645,14 +6659,16 @@ module Aws::SageMaker
6645
6659
  # @option params [String] :single_sign_on_user_identifier
6646
6660
  # A specifier for the type of value specified in SingleSignOnUserValue.
6647
6661
  # Currently, the only supported value is "UserName". If the Domain's
6648
- # AuthMode is SSO, this field is required. If the Domain's AuthMode is
6649
- # not SSO, this field cannot be specified.
6662
+ # AuthMode is Amazon Web Services SSO, this field is required. If the
6663
+ # Domain's AuthMode is not Amazon Web Services SSO, this field cannot
6664
+ # be specified.
6650
6665
  #
6651
6666
  # @option params [String] :single_sign_on_user_value
6652
6667
  # The username of the associated Amazon Web Services Single Sign-On User
6653
- # for this UserProfile. If the Domain's AuthMode is SSO, this field is
6654
- # required, and must match a valid username of a user in your directory.
6655
- # If the Domain's AuthMode is not SSO, this field cannot be specified.
6668
+ # for this UserProfile. If the Domain's AuthMode is Amazon Web Services
6669
+ # SSO, this field is required, and must match a valid username of a user
6670
+ # in your directory. If the Domain's AuthMode is not Amazon Web
6671
+ # Services SSO, this field cannot be specified.
6656
6672
  #
6657
6673
  # @option params [Array<Types::Tag>] :tags
6658
6674
  # Each tag consists of a key and an optional value. Tag keys must be
@@ -7251,9 +7267,9 @@ module Aws::SageMaker
7251
7267
  end
7252
7268
 
7253
7269
  # Used to delete a domain. If you onboarded with IAM mode, you will need
7254
- # to delete your domain to onboard again using SSO. Use with caution.
7255
- # All of the members of the domain will lose access to their EFS volume,
7256
- # including data, notebooks, and other artifacts.
7270
+ # to delete your domain to onboard again using Amazon Web Services SSO.
7271
+ # Use with caution. All of the members of the domain will lose access to
7272
+ # their EFS volume, including data, notebooks, and other artifacts.
7257
7273
  #
7258
7274
  # @option params [required, String] :domain_id
7259
7275
  # The domain ID.
@@ -9059,6 +9075,7 @@ module Aws::SageMaker
9059
9075
  # resp.domain_settings.r_studio_server_pro_domain_settings.default_resource_spec.sage_maker_image_version_arn #=> String
9060
9076
  # resp.domain_settings.r_studio_server_pro_domain_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
9061
9077
  # resp.domain_settings.r_studio_server_pro_domain_settings.default_resource_spec.lifecycle_config_arn #=> String
9078
+ # resp.domain_settings.execution_role_identity_config #=> String, one of "USER_PROFILE_NAME", "DISABLED"
9062
9079
  # resp.app_security_group_management #=> String, one of "Service", "Customer"
9063
9080
  # resp.security_group_id_for_domain_boundary #=> String
9064
9081
  #
@@ -10077,6 +10094,16 @@ module Aws::SageMaker
10077
10094
  # resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value #=> Array
10078
10095
  # resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value[0] #=> String
10079
10096
  # resp.input_config.volume_kms_key_id #=> String
10097
+ # resp.input_config.container_config.domain #=> String
10098
+ # resp.input_config.container_config.task #=> String
10099
+ # resp.input_config.container_config.framework #=> String
10100
+ # resp.input_config.container_config.framework_version #=> String
10101
+ # resp.input_config.container_config.payload_config.sample_payload_url #=> String
10102
+ # resp.input_config.container_config.payload_config.supported_content_types #=> Array
10103
+ # resp.input_config.container_config.payload_config.supported_content_types[0] #=> String
10104
+ # resp.input_config.container_config.nearest_model_name #=> String
10105
+ # resp.input_config.container_config.supported_instance_types #=> Array
10106
+ # resp.input_config.container_config.supported_instance_types[0] #=> String
10080
10107
  # resp.stopping_conditions.max_invocations #=> Integer
10081
10108
  # resp.stopping_conditions.model_latency_thresholds #=> Array
10082
10109
  # resp.stopping_conditions.model_latency_thresholds[0].percentile #=> String
@@ -12272,7 +12299,7 @@ module Aws::SageMaker
12272
12299
  # @example Request syntax with placeholder values
12273
12300
  #
12274
12301
  # resp = client.get_search_suggestions({
12275
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata
12302
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata, HyperParameterTuningJob
12276
12303
  # suggestion_query: {
12277
12304
  # property_name_query: {
12278
12305
  # property_name_hint: "PropertyNameHint", # required
@@ -17075,7 +17102,7 @@ module Aws::SageMaker
17075
17102
  # @example Request syntax with placeholder values
17076
17103
  #
17077
17104
  # resp = client.search({
17078
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata
17105
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata, HyperParameterTuningJob
17079
17106
  # search_expression: {
17080
17107
  # filters: [
17081
17108
  # {
@@ -17898,6 +17925,229 @@ module Aws::SageMaker
17898
17925
  # resp.results[0].feature_metadata.parameters #=> Array
17899
17926
  # resp.results[0].feature_metadata.parameters[0].key #=> String
17900
17927
  # resp.results[0].feature_metadata.parameters[0].value #=> String
17928
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
17929
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
17930
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
17931
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
17932
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
17933
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
17934
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_parallel_training_jobs #=> Integer
17935
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges #=> Array
17936
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
17937
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
17938
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].max_value #=> String
17939
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
17940
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges #=> Array
17941
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].name #=> String
17942
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
17943
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
17944
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
17945
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges #=> Array
17946
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String
17947
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array
17948
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
17949
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.training_job_early_stopping_type #=> String, one of "Off", "Auto"
17950
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.target_objective_metric_value #=> Float
17951
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.definition_name #=> String
17952
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.tuning_objective.type #=> String, one of "Maximize", "Minimize"
17953
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.tuning_objective.metric_name #=> String
17954
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges #=> Array
17955
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].name #=> String
17956
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].min_value #=> String
17957
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].max_value #=> String
17958
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
17959
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges #=> Array
17960
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].name #=> String
17961
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
17962
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
17963
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
17964
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges #=> Array
17965
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].name #=> String
17966
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].values #=> Array
17967
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
17968
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.static_hyper_parameters #=> Hash
17969
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.static_hyper_parameters["HyperParameterKey"] #=> String
17970
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.training_image #=> String
17971
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File", "FastFile"
17972
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.algorithm_name #=> String
17973
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.metric_definitions #=> Array
17974
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.metric_definitions[0].name #=> String
17975
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.algorithm_specification.metric_definitions[0].regex #=> String
17976
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.role_arn #=> String
17977
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config #=> Array
17978
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].channel_name #=> String
17979
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
17980
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
17981
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
17982
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
17983
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
17984
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.instance_group_names #=> Array
17985
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.s3_data_source.instance_group_names[0] #=> String
17986
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
17987
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
17988
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
17989
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].data_source.file_system_data_source.directory_path #=> String
17990
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].content_type #=> String
17991
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
17992
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
17993
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].input_mode #=> String, one of "Pipe", "File", "FastFile"
17994
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.input_data_config[0].shuffle_config.seed #=> Integer
17995
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.vpc_config.security_group_ids #=> Array
17996
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.vpc_config.security_group_ids[0] #=> String
17997
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.vpc_config.subnets #=> Array
17998
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.vpc_config.subnets[0] #=> String
17999
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.output_data_config.kms_key_id #=> String
18000
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.output_data_config.s3_output_path #=> String
18001
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18002
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_count #=> Integer
18003
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.volume_size_in_gb #=> Integer
18004
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.volume_kms_key_id #=> String
18005
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_groups #=> Array
18006
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_groups[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18007
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_groups[0].instance_count #=> Integer
18008
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.resource_config.instance_groups[0].instance_group_name #=> String
18009
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.stopping_condition.max_runtime_in_seconds #=> Integer
18010
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.stopping_condition.max_wait_time_in_seconds #=> Integer
18011
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.enable_network_isolation #=> Boolean
18012
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.enable_inter_container_traffic_encryption #=> Boolean
18013
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.enable_managed_spot_training #=> Boolean
18014
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.checkpoint_config.s3_uri #=> String
18015
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.checkpoint_config.local_path #=> String
18016
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
18017
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18018
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_count #=> Integer
18019
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.volume_size_in_gb #=> Integer
18020
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.volume_kms_key_id #=> String
18021
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.allocation_strategy #=> String, one of "Prioritized"
18022
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs #=> Array
18023
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18024
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].instance_count #=> Integer
18025
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definition.hyper_parameter_tuning_resource_config.instance_configs[0].volume_size_in_gb #=> Integer
18026
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions #=> Array
18027
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].definition_name #=> String
18028
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
18029
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].tuning_objective.metric_name #=> String
18030
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges #=> Array
18031
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].name #=> String
18032
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].min_value #=> String
18033
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].max_value #=> String
18034
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
18035
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges #=> Array
18036
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].name #=> String
18037
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
18038
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
18039
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
18040
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges #=> Array
18041
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].name #=> String
18042
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].values #=> Array
18043
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
18044
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].static_hyper_parameters #=> Hash
18045
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].static_hyper_parameters["HyperParameterKey"] #=> String
18046
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.training_image #=> String
18047
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.training_input_mode #=> String, one of "Pipe", "File", "FastFile"
18048
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.algorithm_name #=> String
18049
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.metric_definitions #=> Array
18050
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.metric_definitions[0].name #=> String
18051
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].algorithm_specification.metric_definitions[0].regex #=> String
18052
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].role_arn #=> String
18053
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config #=> Array
18054
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].channel_name #=> String
18055
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
18056
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_uri #=> String
18057
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
18058
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.attribute_names #=> Array
18059
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.attribute_names[0] #=> String
18060
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.instance_group_names #=> Array
18061
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.s3_data_source.instance_group_names[0] #=> String
18062
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_id #=> String
18063
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_access_mode #=> String, one of "rw", "ro"
18064
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.file_system_type #=> String, one of "EFS", "FSxLustre"
18065
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].data_source.file_system_data_source.directory_path #=> String
18066
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].content_type #=> String
18067
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].compression_type #=> String, one of "None", "Gzip"
18068
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
18069
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].input_mode #=> String, one of "Pipe", "File", "FastFile"
18070
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].input_data_config[0].shuffle_config.seed #=> Integer
18071
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].vpc_config.security_group_ids #=> Array
18072
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].vpc_config.security_group_ids[0] #=> String
18073
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].vpc_config.subnets #=> Array
18074
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].vpc_config.subnets[0] #=> String
18075
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].output_data_config.kms_key_id #=> String
18076
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].output_data_config.s3_output_path #=> String
18077
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18078
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_count #=> Integer
18079
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.volume_size_in_gb #=> Integer
18080
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.volume_kms_key_id #=> String
18081
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_groups #=> Array
18082
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_groups[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18083
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_groups[0].instance_count #=> Integer
18084
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].resource_config.instance_groups[0].instance_group_name #=> String
18085
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].stopping_condition.max_runtime_in_seconds #=> Integer
18086
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].stopping_condition.max_wait_time_in_seconds #=> Integer
18087
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].enable_network_isolation #=> Boolean
18088
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].enable_inter_container_traffic_encryption #=> Boolean
18089
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].enable_managed_spot_training #=> Boolean
18090
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].checkpoint_config.s3_uri #=> String
18091
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].checkpoint_config.local_path #=> String
18092
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
18093
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18094
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_count #=> Integer
18095
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.volume_size_in_gb #=> Integer
18096
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.volume_kms_key_id #=> String
18097
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.allocation_strategy #=> String, one of "Prioritized"
18098
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs #=> Array
18099
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4d.24xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
18100
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].instance_count #=> Integer
18101
+ # resp.results[0].hyper_parameter_tuning_job.training_job_definitions[0].hyper_parameter_tuning_resource_config.instance_configs[0].volume_size_in_gb #=> Integer
18102
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
18103
+ # resp.results[0].hyper_parameter_tuning_job.creation_time #=> Time
18104
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_end_time #=> Time
18105
+ # resp.results[0].hyper_parameter_tuning_job.last_modified_time #=> Time
18106
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.completed #=> Integer
18107
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.in_progress #=> Integer
18108
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.retryable_error #=> Integer
18109
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.non_retryable_error #=> Integer
18110
+ # resp.results[0].hyper_parameter_tuning_job.training_job_status_counters.stopped #=> Integer
18111
+ # resp.results[0].hyper_parameter_tuning_job.objective_status_counters.succeeded #=> Integer
18112
+ # resp.results[0].hyper_parameter_tuning_job.objective_status_counters.pending #=> Integer
18113
+ # resp.results[0].hyper_parameter_tuning_job.objective_status_counters.failed #=> Integer
18114
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_job_definition_name #=> String
18115
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_job_name #=> String
18116
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_job_arn #=> String
18117
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.tuning_job_name #=> String
18118
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.creation_time #=> Time
18119
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_start_time #=> Time
18120
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_end_time #=> Time
18121
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
18122
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.tuned_hyper_parameters #=> Hash
18123
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.tuned_hyper_parameters["HyperParameterKey"] #=> String
18124
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.failure_reason #=> String
18125
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
18126
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
18127
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
18128
+ # resp.results[0].hyper_parameter_tuning_job.best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
18129
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_job_definition_name #=> String
18130
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_job_name #=> String
18131
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_job_arn #=> String
18132
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.tuning_job_name #=> String
18133
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.creation_time #=> Time
18134
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_start_time #=> Time
18135
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_end_time #=> Time
18136
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
18137
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.tuned_hyper_parameters #=> Hash
18138
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.tuned_hyper_parameters["HyperParameterKey"] #=> String
18139
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.failure_reason #=> String
18140
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
18141
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
18142
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
18143
+ # resp.results[0].hyper_parameter_tuning_job.overall_best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
18144
+ # resp.results[0].hyper_parameter_tuning_job.warm_start_config.parent_hyper_parameter_tuning_jobs #=> Array
18145
+ # resp.results[0].hyper_parameter_tuning_job.warm_start_config.parent_hyper_parameter_tuning_jobs[0].hyper_parameter_tuning_job_name #=> String
18146
+ # resp.results[0].hyper_parameter_tuning_job.warm_start_config.warm_start_type #=> String, one of "IdenticalDataAndAlgorithm", "TransferLearning"
18147
+ # resp.results[0].hyper_parameter_tuning_job.failure_reason #=> String
18148
+ # resp.results[0].hyper_parameter_tuning_job.tags #=> Array
18149
+ # resp.results[0].hyper_parameter_tuning_job.tags[0].key #=> String
18150
+ # resp.results[0].hyper_parameter_tuning_job.tags[0].value #=> String
17901
18151
  # resp.next_token #=> String
17902
18152
  #
17903
18153
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Search AWS API Documentation
@@ -18898,6 +19148,7 @@ module Aws::SageMaker
18898
19148
  # lifecycle_config_arn: "StudioLifecycleConfigArn",
18899
19149
  # },
18900
19150
  # },
19151
+ # execution_role_identity_config: "USER_PROFILE_NAME", # accepts USER_PROFILE_NAME, DISABLED
18901
19152
  # },
18902
19153
  # })
18903
19154
  #
@@ -20325,7 +20576,7 @@ module Aws::SageMaker
20325
20576
  params: params,
20326
20577
  config: config)
20327
20578
  context[:gem_name] = 'aws-sdk-sagemaker'
20328
- context[:gem_version] = '1.134.0'
20579
+ context[:gem_version] = '1.137.0'
20329
20580
  Seahorse::Client::Request.new(handlers, context)
20330
20581
  end
20331
20582
 
@@ -633,6 +633,7 @@ module Aws::SageMaker
633
633
  EnvironmentParameterRanges = Shapes::StructureShape.new(name: 'EnvironmentParameterRanges')
634
634
  EnvironmentParameters = Shapes::ListShape.new(name: 'EnvironmentParameters')
635
635
  EnvironmentValue = Shapes::StringShape.new(name: 'EnvironmentValue')
636
+ ExecutionRoleIdentityConfig = Shapes::StringShape.new(name: 'ExecutionRoleIdentityConfig')
636
637
  ExecutionStatus = Shapes::StringShape.new(name: 'ExecutionStatus')
637
638
  ExitMessage = Shapes::StringShape.new(name: 'ExitMessage')
638
639
  Experiment = Shapes::StructureShape.new(name: 'Experiment')
@@ -749,6 +750,7 @@ module Aws::SageMaker
749
750
  HyperParameterTuningJobObjective = Shapes::StructureShape.new(name: 'HyperParameterTuningJobObjective')
750
751
  HyperParameterTuningJobObjectiveType = Shapes::StringShape.new(name: 'HyperParameterTuningJobObjectiveType')
751
752
  HyperParameterTuningJobObjectives = Shapes::ListShape.new(name: 'HyperParameterTuningJobObjectives')
753
+ HyperParameterTuningJobSearchEntity = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSearchEntity')
752
754
  HyperParameterTuningJobSortByOptions = Shapes::StringShape.new(name: 'HyperParameterTuningJobSortByOptions')
753
755
  HyperParameterTuningJobStatus = Shapes::StringShape.new(name: 'HyperParameterTuningJobStatus')
754
756
  HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
@@ -1330,13 +1332,17 @@ module Aws::SageMaker
1330
1332
  RealtimeInferenceInstanceTypes = Shapes::ListShape.new(name: 'RealtimeInferenceInstanceTypes')
1331
1333
  RecommendationJobArn = Shapes::StringShape.new(name: 'RecommendationJobArn')
1332
1334
  RecommendationJobCompiledOutputConfig = Shapes::StructureShape.new(name: 'RecommendationJobCompiledOutputConfig')
1335
+ RecommendationJobContainerConfig = Shapes::StructureShape.new(name: 'RecommendationJobContainerConfig')
1333
1336
  RecommendationJobDescription = Shapes::StringShape.new(name: 'RecommendationJobDescription')
1334
1337
  RecommendationJobInputConfig = Shapes::StructureShape.new(name: 'RecommendationJobInputConfig')
1335
1338
  RecommendationJobName = Shapes::StringShape.new(name: 'RecommendationJobName')
1336
1339
  RecommendationJobOutputConfig = Shapes::StructureShape.new(name: 'RecommendationJobOutputConfig')
1340
+ RecommendationJobPayloadConfig = Shapes::StructureShape.new(name: 'RecommendationJobPayloadConfig')
1337
1341
  RecommendationJobResourceLimit = Shapes::StructureShape.new(name: 'RecommendationJobResourceLimit')
1338
1342
  RecommendationJobStatus = Shapes::StringShape.new(name: 'RecommendationJobStatus')
1339
1343
  RecommendationJobStoppingConditions = Shapes::StructureShape.new(name: 'RecommendationJobStoppingConditions')
1344
+ RecommendationJobSupportedContentTypes = Shapes::ListShape.new(name: 'RecommendationJobSupportedContentTypes')
1345
+ RecommendationJobSupportedInstanceTypes = Shapes::ListShape.new(name: 'RecommendationJobSupportedInstanceTypes')
1340
1346
  RecommendationJobType = Shapes::StringShape.new(name: 'RecommendationJobType')
1341
1347
  RecommendationMetrics = Shapes::StructureShape.new(name: 'RecommendationMetrics')
1342
1348
  RecordWrapper = Shapes::StringShape.new(name: 'RecordWrapper')
@@ -4023,9 +4029,11 @@ module Aws::SageMaker
4023
4029
 
4024
4030
  DomainSettings.add_member(:security_group_ids, Shapes::ShapeRef.new(shape: DomainSecurityGroupIds, location_name: "SecurityGroupIds"))
4025
4031
  DomainSettings.add_member(:r_studio_server_pro_domain_settings, Shapes::ShapeRef.new(shape: RStudioServerProDomainSettings, location_name: "RStudioServerProDomainSettings"))
4032
+ DomainSettings.add_member(:execution_role_identity_config, Shapes::ShapeRef.new(shape: ExecutionRoleIdentityConfig, location_name: "ExecutionRoleIdentityConfig"))
4026
4033
  DomainSettings.struct_class = Types::DomainSettings
4027
4034
 
4028
4035
  DomainSettingsForUpdate.add_member(:r_studio_server_pro_domain_settings_for_update, Shapes::ShapeRef.new(shape: RStudioServerProDomainSettingsForUpdate, location_name: "RStudioServerProDomainSettingsForUpdate"))
4036
+ DomainSettingsForUpdate.add_member(:execution_role_identity_config, Shapes::ShapeRef.new(shape: ExecutionRoleIdentityConfig, location_name: "ExecutionRoleIdentityConfig"))
4029
4037
  DomainSettingsForUpdate.struct_class = Types::DomainSettingsForUpdate
4030
4038
 
4031
4039
  DriftCheckBaselines.add_member(:bias, Shapes::ShapeRef.new(shape: DriftCheckBias, location_name: "Bias"))
@@ -4521,6 +4529,24 @@ module Aws::SageMaker
4521
4529
 
4522
4530
  HyperParameterTuningJobObjectives.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective)
4523
4531
 
4532
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, location_name: "HyperParameterTuningJobName"))
4533
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_job_arn, Shapes::ShapeRef.new(shape: HyperParameterTuningJobArn, location_name: "HyperParameterTuningJobArn"))
4534
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_job_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConfig, location_name: "HyperParameterTuningJobConfig"))
4535
+ HyperParameterTuningJobSearchEntity.add_member(:training_job_definition, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition, location_name: "TrainingJobDefinition"))
4536
+ HyperParameterTuningJobSearchEntity.add_member(:training_job_definitions, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinitions, location_name: "TrainingJobDefinitions"))
4537
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_job_status, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStatus, location_name: "HyperParameterTuningJobStatus"))
4538
+ HyperParameterTuningJobSearchEntity.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
4539
+ HyperParameterTuningJobSearchEntity.add_member(:hyper_parameter_tuning_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "HyperParameterTuningEndTime"))
4540
+ HyperParameterTuningJobSearchEntity.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
4541
+ HyperParameterTuningJobSearchEntity.add_member(:training_job_status_counters, Shapes::ShapeRef.new(shape: TrainingJobStatusCounters, location_name: "TrainingJobStatusCounters"))
4542
+ HyperParameterTuningJobSearchEntity.add_member(:objective_status_counters, Shapes::ShapeRef.new(shape: ObjectiveStatusCounters, location_name: "ObjectiveStatusCounters"))
4543
+ HyperParameterTuningJobSearchEntity.add_member(:best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "BestTrainingJob"))
4544
+ HyperParameterTuningJobSearchEntity.add_member(:overall_best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "OverallBestTrainingJob"))
4545
+ HyperParameterTuningJobSearchEntity.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
4546
+ HyperParameterTuningJobSearchEntity.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
4547
+ HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
4548
+ HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
4549
+
4524
4550
  HyperParameterTuningJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobSummary)
4525
4551
 
4526
4552
  HyperParameterTuningJobSummary.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
@@ -6503,18 +6529,32 @@ module Aws::SageMaker
6503
6529
  RecommendationJobCompiledOutputConfig.add_member(:s3_output_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "S3OutputUri"))
6504
6530
  RecommendationJobCompiledOutputConfig.struct_class = Types::RecommendationJobCompiledOutputConfig
6505
6531
 
6532
+ RecommendationJobContainerConfig.add_member(:domain, Shapes::ShapeRef.new(shape: String, location_name: "Domain"))
6533
+ RecommendationJobContainerConfig.add_member(:task, Shapes::ShapeRef.new(shape: String, location_name: "Task"))
6534
+ RecommendationJobContainerConfig.add_member(:framework, Shapes::ShapeRef.new(shape: String, location_name: "Framework"))
6535
+ RecommendationJobContainerConfig.add_member(:framework_version, Shapes::ShapeRef.new(shape: String, location_name: "FrameworkVersion"))
6536
+ RecommendationJobContainerConfig.add_member(:payload_config, Shapes::ShapeRef.new(shape: RecommendationJobPayloadConfig, location_name: "PayloadConfig"))
6537
+ RecommendationJobContainerConfig.add_member(:nearest_model_name, Shapes::ShapeRef.new(shape: String, location_name: "NearestModelName"))
6538
+ RecommendationJobContainerConfig.add_member(:supported_instance_types, Shapes::ShapeRef.new(shape: RecommendationJobSupportedInstanceTypes, location_name: "SupportedInstanceTypes"))
6539
+ RecommendationJobContainerConfig.struct_class = Types::RecommendationJobContainerConfig
6540
+
6506
6541
  RecommendationJobInputConfig.add_member(:model_package_version_arn, Shapes::ShapeRef.new(shape: ModelPackageArn, required: true, location_name: "ModelPackageVersionArn"))
6507
6542
  RecommendationJobInputConfig.add_member(:job_duration_in_seconds, Shapes::ShapeRef.new(shape: JobDurationInSeconds, location_name: "JobDurationInSeconds"))
6508
6543
  RecommendationJobInputConfig.add_member(:traffic_pattern, Shapes::ShapeRef.new(shape: TrafficPattern, location_name: "TrafficPattern"))
6509
6544
  RecommendationJobInputConfig.add_member(:resource_limit, Shapes::ShapeRef.new(shape: RecommendationJobResourceLimit, location_name: "ResourceLimit"))
6510
6545
  RecommendationJobInputConfig.add_member(:endpoint_configurations, Shapes::ShapeRef.new(shape: EndpointInputConfigurations, location_name: "EndpointConfigurations"))
6511
6546
  RecommendationJobInputConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
6547
+ RecommendationJobInputConfig.add_member(:container_config, Shapes::ShapeRef.new(shape: RecommendationJobContainerConfig, location_name: "ContainerConfig"))
6512
6548
  RecommendationJobInputConfig.struct_class = Types::RecommendationJobInputConfig
6513
6549
 
6514
6550
  RecommendationJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
6515
6551
  RecommendationJobOutputConfig.add_member(:compiled_output_config, Shapes::ShapeRef.new(shape: RecommendationJobCompiledOutputConfig, location_name: "CompiledOutputConfig"))
6516
6552
  RecommendationJobOutputConfig.struct_class = Types::RecommendationJobOutputConfig
6517
6553
 
6554
+ RecommendationJobPayloadConfig.add_member(:sample_payload_url, Shapes::ShapeRef.new(shape: String, location_name: "SamplePayloadUrl"))
6555
+ RecommendationJobPayloadConfig.add_member(:supported_content_types, Shapes::ShapeRef.new(shape: RecommendationJobSupportedContentTypes, location_name: "SupportedContentTypes"))
6556
+ RecommendationJobPayloadConfig.struct_class = Types::RecommendationJobPayloadConfig
6557
+
6518
6558
  RecommendationJobResourceLimit.add_member(:max_number_of_tests, Shapes::ShapeRef.new(shape: MaxNumberOfTests, location_name: "MaxNumberOfTests"))
6519
6559
  RecommendationJobResourceLimit.add_member(:max_parallel_of_tests, Shapes::ShapeRef.new(shape: MaxParallelOfTests, location_name: "MaxParallelOfTests"))
6520
6560
  RecommendationJobResourceLimit.struct_class = Types::RecommendationJobResourceLimit
@@ -6523,6 +6563,10 @@ module Aws::SageMaker
6523
6563
  RecommendationJobStoppingConditions.add_member(:model_latency_thresholds, Shapes::ShapeRef.new(shape: ModelLatencyThresholds, location_name: "ModelLatencyThresholds"))
6524
6564
  RecommendationJobStoppingConditions.struct_class = Types::RecommendationJobStoppingConditions
6525
6565
 
6566
+ RecommendationJobSupportedContentTypes.member = Shapes::ShapeRef.new(shape: String)
6567
+
6568
+ RecommendationJobSupportedInstanceTypes.member = Shapes::ShapeRef.new(shape: String)
6569
+
6526
6570
  RecommendationMetrics.add_member(:cost_per_hour, Shapes::ShapeRef.new(shape: Float, required: true, location_name: "CostPerHour"))
6527
6571
  RecommendationMetrics.add_member(:cost_per_inference, Shapes::ShapeRef.new(shape: Float, required: true, location_name: "CostPerInference"))
6528
6572
  RecommendationMetrics.add_member(:max_invocations, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "MaxInvocations"))
@@ -6655,6 +6699,7 @@ module Aws::SageMaker
6655
6699
  SearchRecord.add_member(:feature_group, Shapes::ShapeRef.new(shape: FeatureGroup, location_name: "FeatureGroup"))
6656
6700
  SearchRecord.add_member(:project, Shapes::ShapeRef.new(shape: Project, location_name: "Project"))
6657
6701
  SearchRecord.add_member(:feature_metadata, Shapes::ShapeRef.new(shape: FeatureMetadata, location_name: "FeatureMetadata"))
6702
+ SearchRecord.add_member(:hyper_parameter_tuning_job, Shapes::ShapeRef.new(shape: HyperParameterTuningJobSearchEntity, location_name: "HyperParameterTuningJob"))
6658
6703
  SearchRecord.struct_class = Types::SearchRecord
6659
6704
 
6660
6705
  SearchRequest.add_member(:resource, Shapes::ShapeRef.new(shape: ResourceType, required: true, location_name: "Resource"))
@@ -2287,9 +2287,9 @@ module Aws::SageMaker
2287
2287
  # @return [Integer]
2288
2288
  #
2289
2289
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2290
- # The maximum time, in seconds, that each training job is allowed to
2291
- # run as part of a hyperparameter tuning job. For more information,
2292
- # see the used by the action.
2290
+ # The maximum time, in seconds, that each training job executed inside
2291
+ # hyperparameter tuning is allowed to run as part of a hyperparameter
2292
+ # tuning job. For more information, see the used by the action.
2293
2293
  # @return [Integer]
2294
2294
  #
2295
2295
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
@@ -5293,6 +5293,7 @@ module Aws::SageMaker
5293
5293
  # lifecycle_config_arn: "StudioLifecycleConfigArn",
5294
5294
  # },
5295
5295
  # },
5296
+ # execution_role_identity_config: "USER_PROFILE_NAME", # accepts USER_PROFILE_NAME, DISABLED
5296
5297
  # },
5297
5298
  # }
5298
5299
  #
@@ -6807,6 +6808,18 @@ module Aws::SageMaker
6807
6808
  # },
6808
6809
  # ],
6809
6810
  # volume_kms_key_id: "KmsKeyId",
6811
+ # container_config: {
6812
+ # domain: "String",
6813
+ # task: "String",
6814
+ # framework: "String",
6815
+ # framework_version: "String",
6816
+ # payload_config: {
6817
+ # sample_payload_url: "String",
6818
+ # supported_content_types: ["String"],
6819
+ # },
6820
+ # nearest_model_name: "String",
6821
+ # supported_instance_types: ["String"],
6822
+ # },
6810
6823
  # },
6811
6824
  # job_description: "RecommendationJobDescription",
6812
6825
  # stopping_conditions: {
@@ -10112,17 +10125,17 @@ module Aws::SageMaker
10112
10125
  # @!attribute [rw] single_sign_on_user_identifier
10113
10126
  # A specifier for the type of value specified in
10114
10127
  # SingleSignOnUserValue. Currently, the only supported value is
10115
- # "UserName". If the Domain's AuthMode is SSO, this field is
10116
- # required. If the Domain's AuthMode is not SSO, this field cannot be
10117
- # specified.
10128
+ # "UserName". If the Domain's AuthMode is Amazon Web Services SSO,
10129
+ # this field is required. If the Domain's AuthMode is not Amazon Web
10130
+ # Services SSO, this field cannot be specified.
10118
10131
  # @return [String]
10119
10132
  #
10120
10133
  # @!attribute [rw] single_sign_on_user_value
10121
10134
  # The username of the associated Amazon Web Services Single Sign-On
10122
- # User for this UserProfile. If the Domain's AuthMode is SSO, this
10123
- # field is required, and must match a valid username of a user in your
10124
- # directory. If the Domain's AuthMode is not SSO, this field cannot
10125
- # be specified.
10135
+ # User for this UserProfile. If the Domain's AuthMode is Amazon Web
10136
+ # Services SSO, this field is required, and must match a valid
10137
+ # username of a user in your directory. If the Domain's AuthMode is
10138
+ # not Amazon Web Services SSO, this field cannot be specified.
10126
10139
  # @return [String]
10127
10140
  #
10128
10141
  # @!attribute [rw] tags
@@ -13371,7 +13384,7 @@ module Aws::SageMaker
13371
13384
  # @return [String]
13372
13385
  #
13373
13386
  # @!attribute [rw] single_sign_on_managed_application_instance_id
13374
- # The SSO managed application instance ID.
13387
+ # The Amazon Web Services SSO managed application instance ID.
13375
13388
  # @return [String]
13376
13389
  #
13377
13390
  # @!attribute [rw] status
@@ -17173,11 +17186,11 @@ module Aws::SageMaker
17173
17186
  # @return [String]
17174
17187
  #
17175
17188
  # @!attribute [rw] single_sign_on_user_identifier
17176
- # The SSO user identifier.
17189
+ # The Amazon Web Services SSO user identifier.
17177
17190
  # @return [String]
17178
17191
  #
17179
17192
  # @!attribute [rw] single_sign_on_user_value
17180
- # The SSO user value.
17193
+ # The Amazon Web Services SSO user value.
17181
17194
  # @return [String]
17182
17195
  #
17183
17196
  # @!attribute [rw] user_settings
@@ -17662,6 +17675,7 @@ module Aws::SageMaker
17662
17675
  # lifecycle_config_arn: "StudioLifecycleConfigArn",
17663
17676
  # },
17664
17677
  # },
17678
+ # execution_role_identity_config: "USER_PROFILE_NAME", # accepts USER_PROFILE_NAME, DISABLED
17665
17679
  # }
17666
17680
  #
17667
17681
  # @!attribute [rw] security_group_ids
@@ -17675,11 +17689,21 @@ module Aws::SageMaker
17675
17689
  # Domain-level app.
17676
17690
  # @return [Types::RStudioServerProDomainSettings]
17677
17691
  #
17692
+ # @!attribute [rw] execution_role_identity_config
17693
+ # The configuration for attaching a SageMaker user profile name to the
17694
+ # execution role as a [ `sts:SourceIdentity` key][1].
17695
+ #
17696
+ #
17697
+ #
17698
+ # [1]: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
17699
+ # @return [String]
17700
+ #
17678
17701
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DomainSettings AWS API Documentation
17679
17702
  #
17680
17703
  class DomainSettings < Struct.new(
17681
17704
  :security_group_ids,
17682
- :r_studio_server_pro_domain_settings)
17705
+ :r_studio_server_pro_domain_settings,
17706
+ :execution_role_identity_config)
17683
17707
  SENSITIVE = []
17684
17708
  include Aws::Structure
17685
17709
  end
@@ -17699,6 +17723,7 @@ module Aws::SageMaker
17699
17723
  # lifecycle_config_arn: "StudioLifecycleConfigArn",
17700
17724
  # },
17701
17725
  # },
17726
+ # execution_role_identity_config: "USER_PROFILE_NAME", # accepts USER_PROFILE_NAME, DISABLED
17702
17727
  # }
17703
17728
  #
17704
17729
  # @!attribute [rw] r_studio_server_pro_domain_settings_for_update
@@ -17706,10 +17731,22 @@ module Aws::SageMaker
17706
17731
  # update.
17707
17732
  # @return [Types::RStudioServerProDomainSettingsForUpdate]
17708
17733
  #
17734
+ # @!attribute [rw] execution_role_identity_config
17735
+ # The configuration for attaching a SageMaker user profile name to the
17736
+ # execution role as a [ `sts:SourceIdentity` key][1]. This
17737
+ # configuration can only be modified if there are no apps in the
17738
+ # `InService` or `Pending` state.
17739
+ #
17740
+ #
17741
+ #
17742
+ # [1]: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
17743
+ # @return [String]
17744
+ #
17709
17745
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DomainSettingsForUpdate AWS API Documentation
17710
17746
  #
17711
17747
  class DomainSettingsForUpdate < Struct.new(
17712
- :r_studio_server_pro_domain_settings_for_update)
17748
+ :r_studio_server_pro_domain_settings_for_update,
17749
+ :execution_role_identity_config)
17713
17750
  SENSITIVE = []
17714
17751
  include Aws::Structure
17715
17752
  end
@@ -19852,7 +19889,7 @@ module Aws::SageMaker
19852
19889
  # data as a hash:
19853
19890
  #
19854
19891
  # {
19855
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata
19892
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata, HyperParameterTuningJob
19856
19893
  # suggestion_query: {
19857
19894
  # property_name_query: {
19858
19895
  # property_name_hint: "PropertyNameHint", # required
@@ -21586,7 +21623,7 @@ module Aws::SageMaker
21586
21623
  # the compute instances and storage volumes, used for training jobs
21587
21624
  # launched by the tuning job. By default, storage volumes hold model
21588
21625
  # artifacts and incremental states. Choose `File` for
21589
- # `TrainingInputMode` in the `AlgorithmSpecification`parameter to
21626
+ # `TrainingInputMode` in the `AlgorithmSpecification` parameter to
21590
21627
  # additionally store training data in the storage volume (optional).
21591
21628
  # @return [Types::HyperParameterTuningResourceConfig]
21592
21629
  #
@@ -21906,6 +21943,123 @@ module Aws::SageMaker
21906
21943
  include Aws::Structure
21907
21944
  end
21908
21945
 
21946
+ # An entity having characteristics over which a user can search for a
21947
+ # hyperparameter tuning job.
21948
+ #
21949
+ # @!attribute [rw] hyper_parameter_tuning_job_name
21950
+ # The name of a hyperparameter tuning job.
21951
+ # @return [String]
21952
+ #
21953
+ # @!attribute [rw] hyper_parameter_tuning_job_arn
21954
+ # The Amazon Resource Name (ARN) of a hyperparameter tuning job.
21955
+ # @return [String]
21956
+ #
21957
+ # @!attribute [rw] hyper_parameter_tuning_job_config
21958
+ # Configures a hyperparameter tuning job.
21959
+ # @return [Types::HyperParameterTuningJobConfig]
21960
+ #
21961
+ # @!attribute [rw] training_job_definition
21962
+ # Defines the training jobs launched by a hyperparameter tuning job.
21963
+ # @return [Types::HyperParameterTrainingJobDefinition]
21964
+ #
21965
+ # @!attribute [rw] training_job_definitions
21966
+ # The job definitions included in a hyperparameter tuning job.
21967
+ # @return [Array<Types::HyperParameterTrainingJobDefinition>]
21968
+ #
21969
+ # @!attribute [rw] hyper_parameter_tuning_job_status
21970
+ # The status of a hyperparameter tuning job.
21971
+ # @return [String]
21972
+ #
21973
+ # @!attribute [rw] creation_time
21974
+ # The time that a hyperparameter tuning job was created.
21975
+ # @return [Time]
21976
+ #
21977
+ # @!attribute [rw] hyper_parameter_tuning_end_time
21978
+ # The time that a hyperparameter tuning job ended.
21979
+ # @return [Time]
21980
+ #
21981
+ # @!attribute [rw] last_modified_time
21982
+ # The time that a hyperparameter tuning job was last modified.
21983
+ # @return [Time]
21984
+ #
21985
+ # @!attribute [rw] training_job_status_counters
21986
+ # The numbers of training jobs launched by a hyperparameter tuning
21987
+ # job, categorized by status.
21988
+ # @return [Types::TrainingJobStatusCounters]
21989
+ #
21990
+ # @!attribute [rw] objective_status_counters
21991
+ # Specifies the number of training jobs that this hyperparameter
21992
+ # tuning job launched, categorized by the status of their objective
21993
+ # metric. The objective metric status shows whether the final
21994
+ # objective metric for the training job has been evaluated by the
21995
+ # tuning job and used in the hyperparameter tuning process.
21996
+ # @return [Types::ObjectiveStatusCounters]
21997
+ #
21998
+ # @!attribute [rw] best_training_job
21999
+ # The container for the summary information about a training job.
22000
+ # @return [Types::HyperParameterTrainingJobSummary]
22001
+ #
22002
+ # @!attribute [rw] overall_best_training_job
22003
+ # The container for the summary information about a training job.
22004
+ # @return [Types::HyperParameterTrainingJobSummary]
22005
+ #
22006
+ # @!attribute [rw] warm_start_config
22007
+ # Specifies the configuration for a hyperparameter tuning job that
22008
+ # uses one or more previous hyperparameter tuning jobs as a starting
22009
+ # point. The results of previous tuning jobs are used to inform which
22010
+ # combinations of hyperparameters to search over in the new tuning
22011
+ # job.
22012
+ #
22013
+ # All training jobs launched by the new hyperparameter tuning job are
22014
+ # evaluated by using the objective metric, and the training job that
22015
+ # performs the best is compared to the best training jobs from the
22016
+ # parent tuning jobs. From these, the training job that performs the
22017
+ # best as measured by the objective metric is returned as the overall
22018
+ # best training job.
22019
+ #
22020
+ # <note markdown="1"> All training jobs launched by parent hyperparameter tuning jobs and
22021
+ # the new hyperparameter tuning jobs count against the limit of
22022
+ # training jobs for the tuning job.
22023
+ #
22024
+ # </note>
22025
+ # @return [Types::HyperParameterTuningJobWarmStartConfig]
22026
+ #
22027
+ # @!attribute [rw] failure_reason
22028
+ # The error that was created when a hyperparameter tuning job failed.
22029
+ # @return [String]
22030
+ #
22031
+ # @!attribute [rw] tags
22032
+ # The tags associated with a hyperparameter tuning job. For more
22033
+ # information see [Tagging Amazon Web Services resources][1].
22034
+ #
22035
+ #
22036
+ #
22037
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
22038
+ # @return [Array<Types::Tag>]
22039
+ #
22040
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobSearchEntity AWS API Documentation
22041
+ #
22042
+ class HyperParameterTuningJobSearchEntity < Struct.new(
22043
+ :hyper_parameter_tuning_job_name,
22044
+ :hyper_parameter_tuning_job_arn,
22045
+ :hyper_parameter_tuning_job_config,
22046
+ :training_job_definition,
22047
+ :training_job_definitions,
22048
+ :hyper_parameter_tuning_job_status,
22049
+ :creation_time,
22050
+ :hyper_parameter_tuning_end_time,
22051
+ :last_modified_time,
22052
+ :training_job_status_counters,
22053
+ :objective_status_counters,
22054
+ :best_training_job,
22055
+ :overall_best_training_job,
22056
+ :warm_start_config,
22057
+ :failure_reason,
22058
+ :tags)
22059
+ SENSITIVE = []
22060
+ include Aws::Structure
22061
+ end
22062
+
21909
22063
  # Provides summary information about a hyperparameter tuning job.
21910
22064
  #
21911
22065
  # @!attribute [rw] hyper_parameter_tuning_job_name
@@ -22062,8 +22216,8 @@ module Aws::SageMaker
22062
22216
  # tuning jobs. Specify one or more instance type and count and the
22063
22217
  # allocation strategy for instance selection.
22064
22218
  #
22065
- # <note markdown="1"> HyperParameterTuningResourceConfig supports all of the capabilities of
22066
- # ResourceConfig with added functionality for flexible instance
22219
+ # <note markdown="1"> `HyperParameterTuningResourceConfig` supports all of the capabilities
22220
+ # of ResourceConfig with added functionality for flexible instance
22067
22221
  # management.
22068
22222
  #
22069
22223
  # </note>
@@ -22124,21 +22278,21 @@ module Aws::SageMaker
22124
22278
  #
22125
22279
  #
22126
22280
  #
22127
- # [1]: https://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/
22281
+ # [1]: http://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/
22128
22282
  # [2]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
22129
22283
  # @return [Integer]
22130
22284
  #
22131
22285
  # @!attribute [rw] volume_kms_key_id
22132
- # A key used by AWS Key Management Service to encrypt data on the
22133
- # storage volume attached to the compute instances used to run the
22134
- # training job. You can use either of the following formats to specify
22135
- # a key.
22286
+ # A key used by Amazon Web Services Key Management Service to encrypt
22287
+ # data on the storage volume attached to the compute instances used to
22288
+ # run the training job. You can use either of the following formats to
22289
+ # specify a key.
22136
22290
  #
22137
22291
  # KMS Key ID:
22138
22292
  #
22139
22293
  # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
22140
22294
  #
22141
- # Amazon Resource Name (ARN) of a AWS KMS key:
22295
+ # Amazon Resource Name (ARN) of a KMS key:
22142
22296
  #
22143
22297
  # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
22144
22298
  #
@@ -22146,13 +22300,13 @@ module Aws::SageMaker
22146
22300
  # encrypt][1] storage volumes. If you choose one of these instance
22147
22301
  # types, you cannot request a `VolumeKmsKeyId`. For a list of instance
22148
22302
  # types that use local storage, see [instance store volumes][2]. For
22149
- # more information about AWS Key Management Service, see [AWS KMS
22150
- # encryption][3] for more information.
22303
+ # more information about Amazon Web Services Key Management Service,
22304
+ # see [KMS encryption][3] for more information.
22151
22305
  #
22152
22306
  #
22153
22307
  #
22154
22308
  # [1]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
22155
- # [2]: https://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/
22309
+ # [2]: http://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/
22156
22310
  # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-kms-permissions.html
22157
22311
  # @return [String]
22158
22312
  #
@@ -22169,7 +22323,7 @@ module Aws::SageMaker
22169
22323
  # order in which multiple configurations provided in `InstanceConfigs`
22170
22324
  # are used.
22171
22325
  #
22172
- # <note markdown="1"> If you only want to use a single InstanceConfig inside the
22326
+ # <note markdown="1"> If you only want to use a single instance configuration inside the
22173
22327
  # `HyperParameterTuningResourceConfig` API, do not provide a value for
22174
22328
  # `InstanceConfigs`. Instead, use `InstanceType`, `VolumeSizeInGB` and
22175
22329
  # `InstanceCount`. If you use `InstanceConfigs`, do not provide values
@@ -35255,6 +35409,94 @@ module Aws::SageMaker
35255
35409
  include Aws::Structure
35256
35410
  end
35257
35411
 
35412
+ # Specifies mandatory fields for running an Inference Recommender job
35413
+ # directly in the [CreateInferenceRecommendationsJob][1] API. The fields
35414
+ # specified in `ContainerConfig` override the corresponding fields in
35415
+ # the model package. Use `ContainerConfig` if you want to specify these
35416
+ # fields for the recommendation job but don't want to edit them in your
35417
+ # model package.
35418
+ #
35419
+ #
35420
+ #
35421
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html
35422
+ #
35423
+ # @note When making an API call, you may pass RecommendationJobContainerConfig
35424
+ # data as a hash:
35425
+ #
35426
+ # {
35427
+ # domain: "String",
35428
+ # task: "String",
35429
+ # framework: "String",
35430
+ # framework_version: "String",
35431
+ # payload_config: {
35432
+ # sample_payload_url: "String",
35433
+ # supported_content_types: ["String"],
35434
+ # },
35435
+ # nearest_model_name: "String",
35436
+ # supported_instance_types: ["String"],
35437
+ # }
35438
+ #
35439
+ # @!attribute [rw] domain
35440
+ # The machine learning domain of the model and its components.
35441
+ #
35442
+ # Valid Values: `COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING |
35443
+ # MACHINE_LEARNING`
35444
+ # @return [String]
35445
+ #
35446
+ # @!attribute [rw] task
35447
+ # The machine learning task that the model accomplishes.
35448
+ #
35449
+ # Valid Values: `IMAGE_CLASSIFICATION | OBJECT_DETECTION |
35450
+ # TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION |
35451
+ # REGRESSION | OTHER`
35452
+ # @return [String]
35453
+ #
35454
+ # @!attribute [rw] framework
35455
+ # The machine learning framework of the container image.
35456
+ #
35457
+ # Valid Values: `TENSORFLOW | PYTORCH | XGBOOST |
35458
+ # SAGEMAKER-SCIKIT-LEARN`
35459
+ # @return [String]
35460
+ #
35461
+ # @!attribute [rw] framework_version
35462
+ # The framework version of the container image.
35463
+ # @return [String]
35464
+ #
35465
+ # @!attribute [rw] payload_config
35466
+ # Specifies the `SamplePayloadUrl` and all other sample
35467
+ # payload-related fields.
35468
+ # @return [Types::RecommendationJobPayloadConfig]
35469
+ #
35470
+ # @!attribute [rw] nearest_model_name
35471
+ # The name of a pre-trained machine learning model benchmarked by
35472
+ # Amazon SageMaker Inference Recommender that matches your model.
35473
+ #
35474
+ # Valid Values: `efficientnetb7 | unet | xgboost |
35475
+ # faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 |
35476
+ # mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
35477
+ # resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 |
35478
+ # bert-base-cased | xceptionV1-keras | resnet50 | retinanet`
35479
+ # @return [String]
35480
+ #
35481
+ # @!attribute [rw] supported_instance_types
35482
+ # A list of the instance types that are used to generate inferences in
35483
+ # real-time.
35484
+ # @return [Array<String>]
35485
+ #
35486
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobContainerConfig AWS API Documentation
35487
+ #
35488
+ class RecommendationJobContainerConfig < Struct.new(
35489
+ :domain,
35490
+ :task,
35491
+ :framework,
35492
+ :framework_version,
35493
+ :payload_config,
35494
+ :nearest_model_name,
35495
+ :supported_instance_types)
35496
+ SENSITIVE = []
35497
+ include Aws::Structure
35498
+ end
35499
+
35258
35500
  # The input configuration of the recommendation job.
35259
35501
  #
35260
35502
  # @note When making an API call, you may pass RecommendationJobInputConfig
@@ -35292,6 +35534,18 @@ module Aws::SageMaker
35292
35534
  # },
35293
35535
  # ],
35294
35536
  # volume_kms_key_id: "KmsKeyId",
35537
+ # container_config: {
35538
+ # domain: "String",
35539
+ # task: "String",
35540
+ # framework: "String",
35541
+ # framework_version: "String",
35542
+ # payload_config: {
35543
+ # sample_payload_url: "String",
35544
+ # supported_content_types: ["String"],
35545
+ # },
35546
+ # nearest_model_name: "String",
35547
+ # supported_instance_types: ["String"],
35548
+ # },
35295
35549
  # }
35296
35550
  #
35297
35551
  # @!attribute [rw] model_package_version_arn
@@ -35354,6 +35608,12 @@ module Aws::SageMaker
35354
35608
  # [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
35355
35609
  # @return [String]
35356
35610
  #
35611
+ # @!attribute [rw] container_config
35612
+ # Specifies mandatory fields for running an Inference Recommender job.
35613
+ # The fields specified in `ContainerConfig` override the corresponding
35614
+ # fields in the model package.
35615
+ # @return [Types::RecommendationJobContainerConfig]
35616
+ #
35357
35617
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobInputConfig AWS API Documentation
35358
35618
  #
35359
35619
  class RecommendationJobInputConfig < Struct.new(
@@ -35362,7 +35622,8 @@ module Aws::SageMaker
35362
35622
  :traffic_pattern,
35363
35623
  :resource_limit,
35364
35624
  :endpoint_configurations,
35365
- :volume_kms_key_id)
35625
+ :volume_kms_key_id,
35626
+ :container_config)
35366
35627
  SENSITIVE = []
35367
35628
  include Aws::Structure
35368
35629
  end
@@ -35428,6 +35689,35 @@ module Aws::SageMaker
35428
35689
  include Aws::Structure
35429
35690
  end
35430
35691
 
35692
+ # The configuration for the payload for a recommendation job.
35693
+ #
35694
+ # @note When making an API call, you may pass RecommendationJobPayloadConfig
35695
+ # data as a hash:
35696
+ #
35697
+ # {
35698
+ # sample_payload_url: "String",
35699
+ # supported_content_types: ["String"],
35700
+ # }
35701
+ #
35702
+ # @!attribute [rw] sample_payload_url
35703
+ # The Amazon Simple Storage Service (Amazon S3) path where the sample
35704
+ # payload is stored. This path must point to a single gzip compressed
35705
+ # tar archive (.tar.gz suffix).
35706
+ # @return [String]
35707
+ #
35708
+ # @!attribute [rw] supported_content_types
35709
+ # The supported MIME types for the input data.
35710
+ # @return [Array<String>]
35711
+ #
35712
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobPayloadConfig AWS API Documentation
35713
+ #
35714
+ class RecommendationJobPayloadConfig < Struct.new(
35715
+ :sample_payload_url,
35716
+ :supported_content_types)
35717
+ SENSITIVE = []
35718
+ include Aws::Structure
35719
+ end
35720
+
35431
35721
  # Specifies the maximum number of jobs that can run in parallel and the
35432
35722
  # maximum number of jobs that can run.
35433
35723
  #
@@ -35862,29 +36152,32 @@ module Aws::SageMaker
35862
36152
  # volume, choose `File` as the `TrainingInputMode` in the algorithm
35863
36153
  # specification.
35864
36154
  #
35865
- # You must specify sufficient ML storage for your scenario.
36155
+ # When using an ML instance with [NVMe SSD volumes][1], SageMaker
36156
+ # doesn't provision Amazon EBS General Purpose SSD (gp2) storage.
36157
+ # Available storage is fixed to the NVMe-type instance's storage
36158
+ # capacity. SageMaker configures storage paths for training datasets,
36159
+ # checkpoints, model artifacts, and outputs to use the entire capacity
36160
+ # of the instance storage. For example, ML instance families with the
36161
+ # NVMe-type instance storage include `ml.p4d`, `ml.g4dn`, and `ml.g5`.
35866
36162
  #
35867
- # <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
35868
- # volume type.
36163
+ # When using an ML instance with the EBS-only storage option and
36164
+ # without instance storage, you must define the size of EBS volume
36165
+ # through `VolumeSizeInGB` in the `ResourceConfig` API. For example,
36166
+ # ML instance families that use EBS volumes include `ml.c5` and
36167
+ # `ml.p2`.
35869
36168
  #
35870
- # </note>
36169
+ # To look up instance types and their instance storage types and
36170
+ # volumes, see [Amazon EC2 Instance Types][2].
35871
36171
  #
35872
- # <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
35873
- # total size, dependent on the instance type. When using these
35874
- # instances for training, SageMaker mounts the local instance storage
35875
- # instead of Amazon EBS gp2 storage. You can't request a
35876
- # `VolumeSizeInGB` greater than the total size of the local instance
35877
- # storage.
36172
+ # To find the default local paths defined by the SageMaker training
36173
+ # platform, see [Amazon SageMaker Training Storage Folders for
36174
+ # Training Datasets, Checkpoints, Model Artifacts, and Outputs][3].
35878
36175
  #
35879
- # For a list of instance types that support local instance storage,
35880
- # including the total size per instance type, see [Instance Store
35881
- # Volumes][1].
35882
36176
  #
35883
- # </note>
35884
36177
  #
35885
- #
35886
- #
35887
- # [1]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
36178
+ # [1]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes
36179
+ # [2]: http://aws.amazon.com/ec2/instance-types/
36180
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-train-storage.html
35888
36181
  # @return [Integer]
35889
36182
  #
35890
36183
  # @!attribute [rw] volume_kms_key_id
@@ -36548,6 +36841,10 @@ module Aws::SageMaker
36548
36841
  # The feature metadata used to search through the features.
36549
36842
  # @return [Types::FeatureMetadata]
36550
36843
  #
36844
+ # @!attribute [rw] hyper_parameter_tuning_job
36845
+ # The properties of a hyperparameter tuning job.
36846
+ # @return [Types::HyperParameterTuningJobSearchEntity]
36847
+ #
36551
36848
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SearchRecord AWS API Documentation
36552
36849
  #
36553
36850
  class SearchRecord < Struct.new(
@@ -36562,7 +36859,8 @@ module Aws::SageMaker
36562
36859
  :pipeline_execution,
36563
36860
  :feature_group,
36564
36861
  :project,
36565
- :feature_metadata)
36862
+ :feature_metadata,
36863
+ :hyper_parameter_tuning_job)
36566
36864
  SENSITIVE = []
36567
36865
  include Aws::Structure
36568
36866
  end
@@ -36571,7 +36869,7 @@ module Aws::SageMaker
36571
36869
  # data as a hash:
36572
36870
  #
36573
36871
  # {
36574
- # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata
36872
+ # resource: "TrainingJob", # required, accepts TrainingJob, Experiment, ExperimentTrial, ExperimentTrialComponent, Endpoint, ModelPackage, ModelPackageGroup, Pipeline, PipelineExecution, FeatureGroup, Project, FeatureMetadata, HyperParameterTuningJob
36575
36873
  # search_expression: {
36576
36874
  # filters: [
36577
36875
  # {
@@ -37662,7 +37960,7 @@ module Aws::SageMaker
37662
37960
  #
37663
37961
  # @!attribute [rw] max_runtime_in_seconds
37664
37962
  # The maximum length of time, in seconds, that a training or
37665
- # compilation job can run.
37963
+ # compilation job can run before it is stopped.
37666
37964
  #
37667
37965
  # For compilation jobs, if the job does not complete during this time,
37668
37966
  # a `TimeOut` error is generated. We recommend starting with 900
@@ -37673,6 +37971,10 @@ module Aws::SageMaker
37673
37971
  # request, `MaxRuntimeInSeconds` specifies the maximum time for all of
37674
37972
  # the attempts in total, not each individual attempt. The default
37675
37973
  # value is 1 day. The maximum value is 28 days.
37974
+ #
37975
+ # The maximum time that a `TrainingJob` can run in total, including
37976
+ # any time spent publishing metrics or archiving and uploading models
37977
+ # after it has been stopped, is 30 days.
37676
37978
  # @return [Integer]
37677
37979
  #
37678
37980
  # @!attribute [rw] max_wait_time_in_seconds
@@ -40612,6 +40914,7 @@ module Aws::SageMaker
40612
40914
  # lifecycle_config_arn: "StudioLifecycleConfigArn",
40613
40915
  # },
40614
40916
  # },
40917
+ # execution_role_identity_config: "USER_PROFILE_NAME", # accepts USER_PROFILE_NAME, DISABLED
40615
40918
  # },
40616
40919
  # }
40617
40920
  #
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.134.0'
52
+ GEM_VERSION = '1.137.0'
53
53
 
54
54
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.134.0
4
+ version: 1.137.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-08-09 00:00:00.000000000 Z
11
+ date: 2022-09-06 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core