aws-sdk-sagemaker 1.12.0 → 1.13.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 4bc9398e9b075cc03b7dde79c0172490b5505749
4
- data.tar.gz: 1b1a8207370694e13e3cdf89565bd17b351ce889
3
+ metadata.gz: 3db3d2b7678a1c4907ee07897ea241188ac9b998
4
+ data.tar.gz: 3c8e7f983b3fb40d00643246902583c95a06018b
5
5
  SHA512:
6
- metadata.gz: 7de3c26a985699efca5c44924c3449d1c46c508fd4f1d6fea0461367ee1020bc55fb8184e474447f5740620d8645c6ac06bf78a91582ab9cb1e03dd17c52c70e
7
- data.tar.gz: bcdb1f14c3ff79b55ab1134fe38ca9a1af219785e7487695b879c7c6cfb56950085fcd82c9a3dcee843e956cf98795b3344fab7ada238e1087fa33bd70610120
6
+ metadata.gz: a8250dd5c214786fc167ff632700f620bc7339d50dc89d5fd0a1cc9c2b3b94b13087a009083cd341e80950e3c40fc8832899675adf2d28bab9e4fe910a4a954c
7
+ data.tar.gz: c259358233431991d888795105d95f83a08b6fb8649798f554973bf5d3c719b81931a24f8ca0e2cbe1bb157d481d69a36490ca9d0cd93a1798b6a5eea6a3a0bb
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.12.0'
46
+ GEM_VERSION = '1.13.0'
47
47
 
48
48
  end
@@ -1108,8 +1108,9 @@ module Aws::SageMaker
1108
1108
  req.send_request(options)
1109
1109
  end
1110
1110
 
1111
- # Starts a transform job. After the results are obtained, Amazon
1112
- # SageMaker saves them to an Amazon S3 location that you specify.
1111
+ # Starts a transform job. A transform job uses a trained model to get
1112
+ # inferences on a dataset and saves these results to an Amazon S3
1113
+ # location that you specify.
1113
1114
  #
1114
1115
  # To perform batch transformations, you create a transform job and use
1115
1116
  # the data that you have readily available.
@@ -1119,7 +1120,9 @@ module Aws::SageMaker
1119
1120
  # * `TransformJobName` - Identifies the transform job. The name must be
1120
1121
  # unique within an AWS Region in an AWS account.
1121
1122
  #
1122
- # * `ModelName` - Identifies the model to use.
1123
+ # * `ModelName` - Identifies the model to use. `ModelName` must be the
1124
+ # name of an existing Amazon SageMaker model within an AWS Region in
1125
+ # an AWS account.
1123
1126
  #
1124
1127
  # * `TransformInput` - Describes the dataset to be transformed and the
1125
1128
  # Amazon S3 location where it is stored.
@@ -1143,29 +1146,38 @@ module Aws::SageMaker
1143
1146
  #
1144
1147
  # @option params [required, String] :model_name
1145
1148
  # The name of the model that you want to use for the transform job.
1149
+ # `ModelName` must be the name of an existing Amazon SageMaker model
1150
+ # within an AWS Region in an AWS account.
1146
1151
  #
1147
1152
  # @option params [Integer] :max_concurrent_transforms
1148
- # The maximum number of parallel requests on each instance node that can
1149
- # be launched in a transform job. The default value is `1`. To allow
1150
- # Amazon SageMaker to determine the appropriate number for
1153
+ # The maximum number of parallel requests that can be sent to each
1154
+ # instance in a transform job. This is good for algorithms that
1155
+ # implement multiple workers on larger instances . The default value is
1156
+ # `1`. To allow Amazon SageMaker to determine the appropriate number for
1151
1157
  # `MaxConcurrentTransforms`, set the value to `0`.
1152
1158
  #
1153
1159
  # @option params [Integer] :max_payload_in_mb
1154
1160
  # The maximum payload size allowed, in MB. A payload is the data portion
1155
1161
  # of a record (without metadata). The value in `MaxPayloadInMB` must be
1156
- # greater than the size of a single record.You can approximate the size
1157
- # of a record by dividing the size of your dataset by the number of
1158
- # records. The value you enter should be proportional to the number of
1159
- # records you want per batch. It is recommended to enter a slightly
1160
- # higher value to ensure the records will fit within the maximum payload
1162
+ # greater or equal to the size of a single record. You can approximate
1163
+ # the size of a record by dividing the size of your dataset by the
1164
+ # number of records. Then multiply this value by the number of records
1165
+ # you want in a mini-batch. It is recommended to enter a value slightly
1166
+ # larger than this to ensure the records fit within the maximum payload
1161
1167
  # size. The default value is `6` MB. For an unlimited payload size, set
1162
1168
  # the value to `0`.
1163
1169
  #
1164
1170
  # @option params [String] :batch_strategy
1165
- # Determins the number of records included in a single batch.
1166
- # `SingleRecord` means only one record is used per batch. `MultiRecord`
1167
- # means a batch is set to contain as many records that could possibly
1168
- # fit within the `MaxPayloadInMB` limit.
1171
+ # Determines the number of records included in a single mini-batch.
1172
+ # `SingleRecord` means only one record is used per mini-batch.
1173
+ # `MultiRecord` means a mini-batch is set to contain as many records
1174
+ # that can fit within the `MaxPayloadInMB` limit.
1175
+ #
1176
+ # Batch transform will automatically split your input data into whatever
1177
+ # payload size is specified if you set `SplitType` to `Line` and
1178
+ # `BatchStrategy` to `MultiRecord`. There's no need to split the
1179
+ # dataset into smaller files or to use larger payload sizes unless the
1180
+ # records in your dataset are very large.
1169
1181
  #
1170
1182
  # @option params [Hash<String,String>] :environment
1171
1183
  # The environment variables to set in the Docker container. We support
@@ -1250,6 +1262,14 @@ module Aws::SageMaker
1250
1262
  # Deletes an endpoint. Amazon SageMaker frees up all of the resources
1251
1263
  # that were deployed when the endpoint was created.
1252
1264
  #
1265
+ # Amazon SageMaker retires any custom KMS key grants associated with the
1266
+ # endpoint, meaning you don't need to use the [RevokeGrant][1] API
1267
+ # call.
1268
+ #
1269
+ #
1270
+ #
1271
+ # [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
1272
+ #
1253
1273
  # @option params [required, String] :endpoint_name
1254
1274
  # The name of the endpoint that you want to delete.
1255
1275
  #
@@ -1776,6 +1796,7 @@ module Aws::SageMaker
1776
1796
  # * {Types::DescribeTrainingJobResponse#training_start_time #training_start_time} => Time
1777
1797
  # * {Types::DescribeTrainingJobResponse#training_end_time #training_end_time} => Time
1778
1798
  # * {Types::DescribeTrainingJobResponse#last_modified_time #last_modified_time} => Time
1799
+ # * {Types::DescribeTrainingJobResponse#secondary_status_transitions #secondary_status_transitions} => Array&lt;Types::SecondaryStatusTransition&gt;
1779
1800
  #
1780
1801
  # @example Request syntax with placeholder values
1781
1802
  #
@@ -1790,7 +1811,7 @@ module Aws::SageMaker
1790
1811
  # resp.tuning_job_arn #=> String
1791
1812
  # resp.model_artifacts.s3_model_artifacts #=> String
1792
1813
  # resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
1793
- # resp.secondary_status #=> String, one of "Starting", "Downloading", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed"
1814
+ # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed"
1794
1815
  # resp.failure_reason #=> String
1795
1816
  # resp.hyper_parameters #=> Hash
1796
1817
  # resp.hyper_parameters["ParameterKey"] #=> String
@@ -1820,6 +1841,11 @@ module Aws::SageMaker
1820
1841
  # resp.training_start_time #=> Time
1821
1842
  # resp.training_end_time #=> Time
1822
1843
  # resp.last_modified_time #=> Time
1844
+ # resp.secondary_status_transitions #=> Array
1845
+ # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed"
1846
+ # resp.secondary_status_transitions[0].start_time #=> Time
1847
+ # resp.secondary_status_transitions[0].end_time #=> Time
1848
+ # resp.secondary_status_transitions[0].status_message #=> String
1823
1849
  #
1824
1850
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJob AWS API Documentation
1825
1851
  #
@@ -2979,7 +3005,7 @@ module Aws::SageMaker
2979
3005
  params: params,
2980
3006
  config: config)
2981
3007
  context[:gem_name] = 'aws-sdk-sagemaker'
2982
- context[:gem_version] = '1.12.0'
3008
+ context[:gem_version] = '1.13.0'
2983
3009
  Seahorse::Client::Request.new(handlers, context)
2984
3010
  end
2985
3011
 
@@ -205,6 +205,8 @@ module Aws::SageMaker
205
205
  S3DataType = Shapes::StringShape.new(name: 'S3DataType')
206
206
  S3Uri = Shapes::StringShape.new(name: 'S3Uri')
207
207
  SecondaryStatus = Shapes::StringShape.new(name: 'SecondaryStatus')
208
+ SecondaryStatusTransition = Shapes::StructureShape.new(name: 'SecondaryStatusTransition')
209
+ SecondaryStatusTransitions = Shapes::ListShape.new(name: 'SecondaryStatusTransitions')
208
210
  SecurityGroupId = Shapes::StringShape.new(name: 'SecurityGroupId')
209
211
  SecurityGroupIds = Shapes::ListShape.new(name: 'SecurityGroupIds')
210
212
  SessionExpirationDurationInSeconds = Shapes::IntegerShape.new(name: 'SessionExpirationDurationInSeconds')
@@ -212,6 +214,7 @@ module Aws::SageMaker
212
214
  SortOrder = Shapes::StringShape.new(name: 'SortOrder')
213
215
  SplitType = Shapes::StringShape.new(name: 'SplitType')
214
216
  StartNotebookInstanceInput = Shapes::StructureShape.new(name: 'StartNotebookInstanceInput')
217
+ StatusMessage = Shapes::StringShape.new(name: 'StatusMessage')
215
218
  StopHyperParameterTuningJobRequest = Shapes::StructureShape.new(name: 'StopHyperParameterTuningJobRequest')
216
219
  StopNotebookInstanceInput = Shapes::StructureShape.new(name: 'StopNotebookInstanceInput')
217
220
  StopTrainingJobRequest = Shapes::StructureShape.new(name: 'StopTrainingJobRequest')
@@ -534,6 +537,7 @@ module Aws::SageMaker
534
537
  DescribeTrainingJobResponse.add_member(:training_start_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TrainingStartTime"))
535
538
  DescribeTrainingJobResponse.add_member(:training_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TrainingEndTime"))
536
539
  DescribeTrainingJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
540
+ DescribeTrainingJobResponse.add_member(:secondary_status_transitions, Shapes::ShapeRef.new(shape: SecondaryStatusTransitions, location_name: "SecondaryStatusTransitions"))
537
541
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
538
542
 
539
543
  DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
@@ -886,6 +890,14 @@ module Aws::SageMaker
886
890
  S3DataSource.add_member(:s3_data_distribution_type, Shapes::ShapeRef.new(shape: S3DataDistribution, location_name: "S3DataDistributionType"))
887
891
  S3DataSource.struct_class = Types::S3DataSource
888
892
 
893
+ SecondaryStatusTransition.add_member(:status, Shapes::ShapeRef.new(shape: SecondaryStatus, required: true, location_name: "Status"))
894
+ SecondaryStatusTransition.add_member(:start_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "StartTime"))
895
+ SecondaryStatusTransition.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
896
+ SecondaryStatusTransition.add_member(:status_message, Shapes::ShapeRef.new(shape: StatusMessage, location_name: "StatusMessage"))
897
+ SecondaryStatusTransition.struct_class = Types::SecondaryStatusTransition
898
+
899
+ SecondaryStatusTransitions.member = Shapes::ShapeRef.new(shape: SecondaryStatusTransition)
900
+
889
901
  SecurityGroupIds.member = Shapes::ShapeRef.new(shape: SecurityGroupId)
890
902
 
891
903
  StartNotebookInstanceInput.add_member(:notebook_instance_name, Shapes::ShapeRef.new(shape: NotebookInstanceName, required: true, location_name: "NotebookInstanceName"))
@@ -1121,32 +1121,41 @@ module Aws::SageMaker
1121
1121
  #
1122
1122
  # @!attribute [rw] model_name
1123
1123
  # The name of the model that you want to use for the transform job.
1124
+ # `ModelName` must be the name of an existing Amazon SageMaker model
1125
+ # within an AWS Region in an AWS account.
1124
1126
  # @return [String]
1125
1127
  #
1126
1128
  # @!attribute [rw] max_concurrent_transforms
1127
- # The maximum number of parallel requests on each instance node that
1128
- # can be launched in a transform job. The default value is `1`. To
1129
- # allow Amazon SageMaker to determine the appropriate number for
1130
- # `MaxConcurrentTransforms`, set the value to `0`.
1129
+ # The maximum number of parallel requests that can be sent to each
1130
+ # instance in a transform job. This is good for algorithms that
1131
+ # implement multiple workers on larger instances . The default value
1132
+ # is `1`. To allow Amazon SageMaker to determine the appropriate
1133
+ # number for `MaxConcurrentTransforms`, set the value to `0`.
1131
1134
  # @return [Integer]
1132
1135
  #
1133
1136
  # @!attribute [rw] max_payload_in_mb
1134
1137
  # The maximum payload size allowed, in MB. A payload is the data
1135
1138
  # portion of a record (without metadata). The value in
1136
- # `MaxPayloadInMB` must be greater than the size of a single
1137
- # record.You can approximate the size of a record by dividing the size
1138
- # of your dataset by the number of records. The value you enter should
1139
- # be proportional to the number of records you want per batch. It is
1140
- # recommended to enter a slightly higher value to ensure the records
1141
- # will fit within the maximum payload size. The default value is `6`
1142
- # MB. For an unlimited payload size, set the value to `0`.
1139
+ # `MaxPayloadInMB` must be greater or equal to the size of a single
1140
+ # record. You can approximate the size of a record by dividing the
1141
+ # size of your dataset by the number of records. Then multiply this
1142
+ # value by the number of records you want in a mini-batch. It is
1143
+ # recommended to enter a value slightly larger than this to ensure the
1144
+ # records fit within the maximum payload size. The default value is
1145
+ # `6` MB. For an unlimited payload size, set the value to `0`.
1143
1146
  # @return [Integer]
1144
1147
  #
1145
1148
  # @!attribute [rw] batch_strategy
1146
- # Determins the number of records included in a single batch.
1147
- # `SingleRecord` means only one record is used per batch.
1148
- # `MultiRecord` means a batch is set to contain as many records that
1149
- # could possibly fit within the `MaxPayloadInMB` limit.
1149
+ # Determines the number of records included in a single mini-batch.
1150
+ # `SingleRecord` means only one record is used per mini-batch.
1151
+ # `MultiRecord` means a mini-batch is set to contain as many records
1152
+ # that can fit within the `MaxPayloadInMB` limit.
1153
+ #
1154
+ # Batch transform will automatically split your input data into
1155
+ # whatever payload size is specified if you set `SplitType` to `Line`
1156
+ # and `BatchStrategy` to `MultiRecord`. There's no need to split the
1157
+ # dataset into smaller files or to use larger payload sizes unless the
1158
+ # records in your dataset are very large.
1150
1159
  # @return [String]
1151
1160
  #
1152
1161
  # @!attribute [rw] environment
@@ -1888,6 +1897,38 @@ module Aws::SageMaker
1888
1897
  # @!attribute [rw] secondary_status
1889
1898
  # Provides granular information about the system state. For more
1890
1899
  # information, see `TrainingJobStatus`.
1900
+ #
1901
+ # * `Starting` - starting the training job.
1902
+ #
1903
+ # * `LaunchingMLInstances` - launching ML instances for the training
1904
+ # job.
1905
+ #
1906
+ # * `PreparingTrainingStack` - preparing the ML instances for the
1907
+ # training job.
1908
+ #
1909
+ # * `Downloading` - downloading the input data.
1910
+ #
1911
+ # * `DownloadingTrainingImage` - downloading the training algorithm
1912
+ # image.
1913
+ #
1914
+ # * `Training` - model training is in progress.
1915
+ #
1916
+ # * `Uploading` - uploading the trained model.
1917
+ #
1918
+ # * `Stopping` - stopping the training job.
1919
+ #
1920
+ # * `Stopped` - the training job has stopped.
1921
+ #
1922
+ # * `MaxRuntimeExceeded` - the training job exceeded the specified max
1923
+ # run time and has been stopped.
1924
+ #
1925
+ # * `Completed` - the training job has completed.
1926
+ #
1927
+ # * `Failed` - the training job has failed. The failure reason is
1928
+ # provided in the `StatusMessage`.
1929
+ #
1930
+ # The valid values for `SecondaryStatus` are subject to change. They
1931
+ # primarily provide information on the progress of the training job.
1891
1932
  # @return [String]
1892
1933
  #
1893
1934
  # @!attribute [rw] failure_reason
@@ -1960,6 +2001,12 @@ module Aws::SageMaker
1960
2001
  # last modified.
1961
2002
  # @return [Time]
1962
2003
  #
2004
+ # @!attribute [rw] secondary_status_transitions
2005
+ # To give an overview of the training job lifecycle,
2006
+ # `SecondaryStatusTransitions` is a log of time-ordered secondary
2007
+ # statuses that a training job has transitioned.
2008
+ # @return [Array<Types::SecondaryStatusTransition>]
2009
+ #
1963
2010
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
1964
2011
  #
1965
2012
  class DescribeTrainingJobResponse < Struct.new(
@@ -1981,7 +2028,8 @@ module Aws::SageMaker
1981
2028
  :creation_time,
1982
2029
  :training_start_time,
1983
2030
  :training_end_time,
1984
- :last_modified_time)
2031
+ :last_modified_time,
2032
+ :secondary_status_transitions)
1985
2033
  include Aws::Structure
1986
2034
  end
1987
2035
 
@@ -2035,8 +2083,8 @@ module Aws::SageMaker
2035
2083
  #
2036
2084
  # @!attribute [rw] batch_strategy
2037
2085
  # SingleRecord means only one record was used per a batch.
2038
- # &lt;code&gt;MultiRecord&lt;/code&gt; means batches contained as many
2039
- # records that could possibly fit within the `MaxPayloadInMB` limit.
2086
+ # `MultiRecord` means batches contained as many records that could
2087
+ # possibly fit within the `MaxPayloadInMB` limit.
2040
2088
  # @return [String]
2041
2089
  #
2042
2090
  # @!attribute [rw] environment
@@ -4158,6 +4206,45 @@ module Aws::SageMaker
4158
4206
  include Aws::Structure
4159
4207
  end
4160
4208
 
4209
+ # Specifies a secondary status the job has transitioned into. It
4210
+ # includes a start timestamp and later an end timestamp. The end
4211
+ # timestamp is added either after the job transitions to a different
4212
+ # secondary status or after the job has ended.
4213
+ #
4214
+ # @!attribute [rw] status
4215
+ # Provides granular information about the system state. For more
4216
+ # information, see `SecondaryStatus` under the DescribeTrainingJob
4217
+ # response elements.
4218
+ # @return [String]
4219
+ #
4220
+ # @!attribute [rw] start_time
4221
+ # A timestamp that shows when the training job has entered this
4222
+ # secondary status.
4223
+ # @return [Time]
4224
+ #
4225
+ # @!attribute [rw] end_time
4226
+ # A timestamp that shows when the secondary status has ended and the
4227
+ # job has transitioned into another secondary status. The `EndTime`
4228
+ # timestamp is also set after the training job has ended.
4229
+ # @return [Time]
4230
+ #
4231
+ # @!attribute [rw] status_message
4232
+ # Shows a brief description and other information about the secondary
4233
+ # status. For example, the `LaunchingMLInstances` secondary status
4234
+ # could show a status message of "Insufficent capacity error while
4235
+ # launching instances".
4236
+ # @return [String]
4237
+ #
4238
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SecondaryStatusTransition AWS API Documentation
4239
+ #
4240
+ class SecondaryStatusTransition < Struct.new(
4241
+ :status,
4242
+ :start_time,
4243
+ :end_time,
4244
+ :status_message)
4245
+ include Aws::Structure
4246
+ end
4247
+
4161
4248
  # @note When making an API call, you may pass StartNotebookInstanceInput
4162
4249
  # data as a hash:
4163
4250
  #
@@ -4454,9 +4541,9 @@ module Aws::SageMaker
4454
4541
  # @!attribute [rw] split_type
4455
4542
  # The method to use to split the transform job's data into smaller
4456
4543
  # batches. The default value is `None`. If you don't want to split
4457
- # the data, specify (`None`). If you want to split records on a
4458
- # newline character boundary, specify `Line`. To split records
4459
- # according to the RecordIO format, specify `RecordIO`.
4544
+ # the data, specify `None`. If you want to split records on a newline
4545
+ # character boundary, specify `Line`. To split records according to
4546
+ # the RecordIO format, specify `RecordIO`.
4460
4547
  #
4461
4548
  # Amazon SageMaker will send maximum number of records per batch in
4462
4549
  # each request up to the MaxPayloadInMB limit. For more information,
@@ -4548,7 +4635,7 @@ module Aws::SageMaker
4548
4635
  #
4549
4636
  # For every S3 object used as input for the transform job, the
4550
4637
  # transformed data is stored in a corresponding subfolder in the
4551
- # location under the output prefix.For example, the input data
4638
+ # location under the output prefix. For example, the input data
4552
4639
  # `s3://bucket-name/input-name-prefix/dataset01/data.csv` will have
4553
4640
  # the transformed data stored at
4554
4641
  # `s3://bucket-name/key-name-prefix/dataset01/`, based on the original
@@ -4563,7 +4650,7 @@ module Aws::SageMaker
4563
4650
  #
4564
4651
  # @!attribute [rw] assemble_with
4565
4652
  # Defines how to assemble the results of the transform job as a single
4566
- # S3 object. You should select a format that is most convienant to
4653
+ # S3 object. You should select a format that is most convenient to
4567
4654
  # you. To concatenate the results in binary format, specify `None`. To
4568
4655
  # add a newline character at the end of every transformed record,
4569
4656
  # specify `Line`. To assemble the output in RecordIO format, specify
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.12.0
4
+ version: 1.13.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2018-07-17 00:00:00.000000000 Z
11
+ date: 2018-07-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core