aws-sdk-sagemaker 1.101.0 → 1.105.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -260,7 +260,7 @@ module Aws::SageMaker
260
260
  # {
261
261
  # training_image: "AlgorithmImage",
262
262
  # algorithm_name: "ArnOrName",
263
- # training_input_mode: "Pipe", # required, accepts Pipe, File
263
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
264
264
  # metric_definitions: [
265
265
  # {
266
266
  # name: "MetricName", # required
@@ -293,27 +293,45 @@ module Aws::SageMaker
293
293
  # @return [String]
294
294
  #
295
295
  # @!attribute [rw] training_input_mode
296
- # The input mode that the algorithm supports. For the input modes that
297
- # Amazon SageMaker algorithms support, see [Algorithms][1]. If an
298
- # algorithm supports the `File` input mode, Amazon SageMaker downloads
299
- # the training data from S3 to the provisioned ML storage Volume, and
300
- # mounts the directory to docker volume for training container. If an
301
- # algorithm supports the `Pipe` input mode, Amazon SageMaker streams
302
- # data directly from S3 to the container.
303
- #
304
- # In File mode, make sure you provision ML storage volume with
305
- # sufficient capacity to accommodate the data download from S3. In
306
- # addition to the training data, the ML storage volume also stores the
307
- # output model. The algorithm container use ML storage volume to also
308
- # store intermediate information, if any.
309
- #
310
- # For distributed algorithms using File mode, training data is
311
- # distributed uniformly, and your training duration is predictable if
312
- # the input data objects size is approximately same. Amazon SageMaker
313
- # does not split the files any further for model training. If the
314
- # object sizes are skewed, training won't be optimal as the data
315
- # distribution is also skewed where one host in a training cluster is
316
- # overloaded, thus becoming bottleneck in training.
296
+ # The training input mode that the algorithm supports. For more
297
+ # information about input modes, see [Algorithms][1].
298
+ #
299
+ # **Pipe mode**
300
+ #
301
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
302
+ # directly from Amazon S3 to the container.
303
+ #
304
+ # **File mode**
305
+ #
306
+ # If an algorithm supports `File` mode, SageMaker downloads the
307
+ # training data from S3 to the provisioned ML storage volume, and
308
+ # mounts the directory to the Docker volume for the training
309
+ # container.
310
+ #
311
+ # You must provision the ML storage volume with sufficient capacity to
312
+ # accommodate the data downloaded from S3. In addition to the training
313
+ # data, the ML storage volume also stores the output model. The
314
+ # algorithm container uses the ML storage volume to also store
315
+ # intermediate information, if any.
316
+ #
317
+ # For distributed algorithms, training data is distributed uniformly.
318
+ # Your training duration is predictable if the input data objects
319
+ # sizes are approximately the same. SageMaker does not split the files
320
+ # any further for model training. If the object sizes are skewed,
321
+ # training won't be optimal as the data distribution is also skewed
322
+ # when one host in a training cluster is overloaded, thus becoming a
323
+ # bottleneck in training.
324
+ #
325
+ # **FastFile mode**
326
+ #
327
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
328
+ # directly from S3 to the container with no code changes, and provides
329
+ # file system access to the data. Users can author their training
330
+ # script to interact with these files as if they were stored on disk.
331
+ #
332
+ # `FastFile` mode works best when the data is read sequentially.
333
+ # Augmented manifest files aren't supported. The startup time is
334
+ # lower when there are fewer files in the S3 bucket provided.
317
335
  #
318
336
  #
319
337
  #
@@ -451,7 +469,7 @@ module Aws::SageMaker
451
469
  # {
452
470
  # profile_name: "EntityName", # required
453
471
  # training_job_definition: { # required
454
- # training_input_mode: "Pipe", # required, accepts Pipe, File
472
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
455
473
  # hyper_parameters: {
456
474
  # "HyperParameterKey" => "HyperParameterValue",
457
475
  # },
@@ -475,7 +493,7 @@ module Aws::SageMaker
475
493
  # content_type: "ContentType",
476
494
  # compression_type: "None", # accepts None, Gzip
477
495
  # record_wrapper_type: "None", # accepts None, RecordIO
478
- # input_mode: "Pipe", # accepts Pipe, File
496
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
479
497
  # shuffle_config: {
480
498
  # seed: 1, # required
481
499
  # },
@@ -565,7 +583,7 @@ module Aws::SageMaker
565
583
  # {
566
584
  # profile_name: "EntityName", # required
567
585
  # training_job_definition: { # required
568
- # training_input_mode: "Pipe", # required, accepts Pipe, File
586
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
569
587
  # hyper_parameters: {
570
588
  # "HyperParameterKey" => "HyperParameterValue",
571
589
  # },
@@ -589,7 +607,7 @@ module Aws::SageMaker
589
607
  # content_type: "ContentType",
590
608
  # compression_type: "None", # accepts None, Gzip
591
609
  # record_wrapper_type: "None", # accepts None, RecordIO
592
- # input_mode: "Pipe", # accepts Pipe, File
610
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
593
611
  # shuffle_config: {
594
612
  # seed: 1, # required
595
613
  # },
@@ -2063,12 +2081,20 @@ module Aws::SageMaker
2063
2081
  # @return [Integer]
2064
2082
  #
2065
2083
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2066
- # The maximum time, in seconds, a training job is allowed to run as
2067
- # part of an AutoML job.
2084
+ # The maximum time, in seconds, that each training job is allowed to
2085
+ # run as part of a hyperparameter tuning job. For more information,
2086
+ # see the used by the action.
2068
2087
  # @return [Integer]
2069
2088
  #
2070
2089
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
2071
2090
  # The maximum runtime, in seconds, an AutoML job has to complete.
2091
+ #
2092
+ # If an AutoML job exceeds the maximum runtime, the job is stopped
2093
+ # automatically and its processing is ended gracefully. The AutoML job
2094
+ # identifies the best model whose training was completed and marks it
2095
+ # as the best-performing model. Any unfinished steps of the job, such
2096
+ # as automatic one-click Autopilot model deployment, will not be
2097
+ # completed.
2072
2098
  # @return [Integer]
2073
2099
  #
2074
2100
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -2400,6 +2426,110 @@ module Aws::SageMaker
2400
2426
  include Aws::Structure
2401
2427
  end
2402
2428
 
2429
+ # The error code and error description associated with the resource.
2430
+ #
2431
+ # @!attribute [rw] error_code
2432
+ # @return [String]
2433
+ #
2434
+ # @!attribute [rw] error_response
2435
+ # @return [String]
2436
+ #
2437
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageError AWS API Documentation
2438
+ #
2439
+ class BatchDescribeModelPackageError < Struct.new(
2440
+ :error_code,
2441
+ :error_response)
2442
+ SENSITIVE = []
2443
+ include Aws::Structure
2444
+ end
2445
+
2446
+ # @note When making an API call, you may pass BatchDescribeModelPackageInput
2447
+ # data as a hash:
2448
+ #
2449
+ # {
2450
+ # model_package_arn_list: ["ModelPackageArn"], # required
2451
+ # }
2452
+ #
2453
+ # @!attribute [rw] model_package_arn_list
2454
+ # The list of Amazon Resource Name (ARN) of the model package groups.
2455
+ # @return [Array<String>]
2456
+ #
2457
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageInput AWS API Documentation
2458
+ #
2459
+ class BatchDescribeModelPackageInput < Struct.new(
2460
+ :model_package_arn_list)
2461
+ SENSITIVE = []
2462
+ include Aws::Structure
2463
+ end
2464
+
2465
+ # @!attribute [rw] model_package_summaries
2466
+ # The summaries for the model package versions
2467
+ # @return [Hash<String,Types::BatchDescribeModelPackageSummary>]
2468
+ #
2469
+ # @!attribute [rw] batch_describe_model_package_error_map
2470
+ # A map of the resource and BatchDescribeModelPackageError objects
2471
+ # reporting the error associated with describing the model package.
2472
+ # @return [Hash<String,Types::BatchDescribeModelPackageError>]
2473
+ #
2474
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageOutput AWS API Documentation
2475
+ #
2476
+ class BatchDescribeModelPackageOutput < Struct.new(
2477
+ :model_package_summaries,
2478
+ :batch_describe_model_package_error_map)
2479
+ SENSITIVE = []
2480
+ include Aws::Structure
2481
+ end
2482
+
2483
+ # Provides summary information about the model package.
2484
+ #
2485
+ # @!attribute [rw] model_package_group_name
2486
+ # The group name for the model package
2487
+ # @return [String]
2488
+ #
2489
+ # @!attribute [rw] model_package_version
2490
+ # The version number of a versioned model.
2491
+ # @return [Integer]
2492
+ #
2493
+ # @!attribute [rw] model_package_arn
2494
+ # The Amazon Resource Name (ARN) of the model package.
2495
+ # @return [String]
2496
+ #
2497
+ # @!attribute [rw] model_package_description
2498
+ # The description of the model package.
2499
+ # @return [String]
2500
+ #
2501
+ # @!attribute [rw] creation_time
2502
+ # The creation time of the mortgage package summary.
2503
+ # @return [Time]
2504
+ #
2505
+ # @!attribute [rw] inference_specification
2506
+ # Defines how to perform inference generation after a training job is
2507
+ # run.
2508
+ # @return [Types::InferenceSpecification]
2509
+ #
2510
+ # @!attribute [rw] model_package_status
2511
+ # The status of the mortgage package.
2512
+ # @return [String]
2513
+ #
2514
+ # @!attribute [rw] model_approval_status
2515
+ # The approval status of the model.
2516
+ # @return [String]
2517
+ #
2518
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageSummary AWS API Documentation
2519
+ #
2520
+ class BatchDescribeModelPackageSummary < Struct.new(
2521
+ :model_package_group_name,
2522
+ :model_package_version,
2523
+ :model_package_arn,
2524
+ :model_package_description,
2525
+ :creation_time,
2526
+ :inference_specification,
2527
+ :model_package_status,
2528
+ :model_approval_status)
2529
+ SENSITIVE = []
2530
+ include Aws::Structure
2531
+ end
2532
+
2403
2533
  # Contains bias metrics for a model.
2404
2534
  #
2405
2535
  # @note When making an API call, you may pass Bias
@@ -2676,7 +2806,7 @@ module Aws::SageMaker
2676
2806
  # content_type: "ContentType",
2677
2807
  # compression_type: "None", # accepts None, Gzip
2678
2808
  # record_wrapper_type: "None", # accepts None, RecordIO
2679
- # input_mode: "Pipe", # accepts Pipe, File
2809
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
2680
2810
  # shuffle_config: {
2681
2811
  # seed: 1, # required
2682
2812
  # },
@@ -2775,7 +2905,7 @@ module Aws::SageMaker
2775
2905
  # is_required: false,
2776
2906
  # supported_content_types: ["ContentType"], # required
2777
2907
  # supported_compression_types: ["None"], # accepts None, Gzip
2778
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
2908
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
2779
2909
  # }
2780
2910
  #
2781
2911
  # @!attribute [rw] name
@@ -3549,7 +3679,7 @@ module Aws::SageMaker
3549
3679
  # is_required: false,
3550
3680
  # supported_content_types: ["ContentType"], # required
3551
3681
  # supported_compression_types: ["None"], # accepts None, Gzip
3552
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
3682
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
3553
3683
  # },
3554
3684
  # ],
3555
3685
  # supported_tuning_job_objective_metrics: [
@@ -3583,7 +3713,7 @@ module Aws::SageMaker
3583
3713
  # {
3584
3714
  # profile_name: "EntityName", # required
3585
3715
  # training_job_definition: { # required
3586
- # training_input_mode: "Pipe", # required, accepts Pipe, File
3716
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
3587
3717
  # hyper_parameters: {
3588
3718
  # "HyperParameterKey" => "HyperParameterValue",
3589
3719
  # },
@@ -3607,7 +3737,7 @@ module Aws::SageMaker
3607
3737
  # content_type: "ContentType",
3608
3738
  # compression_type: "None", # accepts None, Gzip
3609
3739
  # record_wrapper_type: "None", # accepts None, RecordIO
3610
- # input_mode: "Pipe", # accepts Pipe, File
3740
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
3611
3741
  # shuffle_config: {
3612
3742
  # seed: 1, # required
3613
3743
  # },
@@ -5255,12 +5385,19 @@ module Aws::SageMaker
5255
5385
  # `OfflineStore`.
5256
5386
  #
5257
5387
  # * A configuration for an Amazon Web Services Glue or Amazon Web
5258
- # Services Hive data cataolgue.
5388
+ # Services Hive data catalog.
5259
5389
  #
5260
5390
  # * An KMS encryption key to encrypt the Amazon S3 location used for
5261
- # `OfflineStore`.
5391
+ # `OfflineStore`. If KMS encryption key is not specified, by default
5392
+ # we encrypt all data at rest using Amazon Web Services KMS key. By
5393
+ # defining your [bucket-level key][1] for SSE, you can reduce Amazon
5394
+ # Web Services KMS requests costs by up to 99 percent.
5262
5395
  #
5263
5396
  # To learn more about this parameter, see OfflineStoreConfig.
5397
+ #
5398
+ #
5399
+ #
5400
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
5264
5401
  # @return [Types::OfflineStoreConfig]
5265
5402
  #
5266
5403
  # @!attribute [rw] role_arn
@@ -5544,7 +5681,7 @@ module Aws::SageMaker
5544
5681
  # },
5545
5682
  # algorithm_specification: { # required
5546
5683
  # training_image: "AlgorithmImage",
5547
- # training_input_mode: "Pipe", # required, accepts Pipe, File
5684
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
5548
5685
  # algorithm_name: "ArnOrName",
5549
5686
  # metric_definitions: [
5550
5687
  # {
@@ -5574,7 +5711,7 @@ module Aws::SageMaker
5574
5711
  # content_type: "ContentType",
5575
5712
  # compression_type: "None", # accepts None, Gzip
5576
5713
  # record_wrapper_type: "None", # accepts None, RecordIO
5577
- # input_mode: "Pipe", # accepts Pipe, File
5714
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
5578
5715
  # shuffle_config: {
5579
5716
  # seed: 1, # required
5580
5717
  # },
@@ -5645,7 +5782,7 @@ module Aws::SageMaker
5645
5782
  # },
5646
5783
  # algorithm_specification: { # required
5647
5784
  # training_image: "AlgorithmImage",
5648
- # training_input_mode: "Pipe", # required, accepts Pipe, File
5785
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
5649
5786
  # algorithm_name: "ArnOrName",
5650
5787
  # metric_definitions: [
5651
5788
  # {
@@ -5675,7 +5812,7 @@ module Aws::SageMaker
5675
5812
  # content_type: "ContentType",
5676
5813
  # compression_type: "None", # accepts None, Gzip
5677
5814
  # record_wrapper_type: "None", # accepts None, RecordIO
5678
- # input_mode: "Pipe", # accepts Pipe, File
5815
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
5679
5816
  # shuffle_config: {
5680
5817
  # seed: 1, # required
5681
5818
  # },
@@ -6739,7 +6876,7 @@ module Aws::SageMaker
6739
6876
  #
6740
6877
  # {
6741
6878
  # model_package_name: "EntityName",
6742
- # model_package_group_name: "EntityName",
6879
+ # model_package_group_name: "ArnOrName",
6743
6880
  # model_package_description: "EntityDescription",
6744
6881
  # inference_specification: {
6745
6882
  # containers: [ # required
@@ -6860,6 +6997,9 @@ module Aws::SageMaker
6860
6997
  # },
6861
6998
  # },
6862
6999
  # client_token: "ClientToken",
7000
+ # customer_metadata_properties: {
7001
+ # "CustomerMetadataKey" => "CustomerMetadataValue",
7002
+ # },
6863
7003
  # }
6864
7004
  #
6865
7005
  # @!attribute [rw] model_package_name
@@ -6871,7 +7011,8 @@ module Aws::SageMaker
6871
7011
  # @return [String]
6872
7012
  #
6873
7013
  # @!attribute [rw] model_package_group_name
6874
- # The name of the model group that this model version belongs to.
7014
+ # The name or Amazon Resource Name (ARN) of the model package group
7015
+ # that this model version belongs to.
6875
7016
  #
6876
7017
  # This parameter is required for versioned models, and does not apply
6877
7018
  # to unversioned models.
@@ -6950,6 +7091,10 @@ module Aws::SageMaker
6950
7091
  # not need to pass this option.
6951
7092
  # @return [String]
6952
7093
  #
7094
+ # @!attribute [rw] customer_metadata_properties
7095
+ # The metadata properties associated with the model package versions.
7096
+ # @return [Hash<String,String>]
7097
+ #
6953
7098
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelPackageInput AWS API Documentation
6954
7099
  #
6955
7100
  class CreateModelPackageInput < Struct.new(
@@ -6964,7 +7109,8 @@ module Aws::SageMaker
6964
7109
  :model_approval_status,
6965
7110
  :metadata_properties,
6966
7111
  :model_metrics,
6967
- :client_token)
7112
+ :client_token,
7113
+ :customer_metadata_properties)
6968
7114
  SENSITIVE = []
6969
7115
  include Aws::Structure
6970
7116
  end
@@ -7906,7 +8052,7 @@ module Aws::SageMaker
7906
8052
  # project_description: "EntityDescription",
7907
8053
  # service_catalog_provisioning_details: { # required
7908
8054
  # product_id: "ServiceCatalogEntityId", # required
7909
- # provisioning_artifact_id: "ServiceCatalogEntityId", # required
8055
+ # provisioning_artifact_id: "ServiceCatalogEntityId",
7910
8056
  # path_id: "ServiceCatalogEntityId",
7911
8057
  # provisioning_parameters: [
7912
8058
  # {
@@ -7933,8 +8079,10 @@ module Aws::SageMaker
7933
8079
  #
7934
8080
  # @!attribute [rw] service_catalog_provisioning_details
7935
8081
  # The product ID and provisioning artifact ID to provision a service
7936
- # catalog. For information, see [What is Amazon Web Services Service
7937
- # Catalog][1].
8082
+ # catalog. The provisioning artifact ID will default to the latest
8083
+ # provisioning artifact ID of the product, if you don't provide the
8084
+ # provisioning artifact ID. For more information, see [What is Amazon
8085
+ # Web Services Service Catalog][1].
7938
8086
  #
7939
8087
  #
7940
8088
  #
@@ -8048,7 +8196,7 @@ module Aws::SageMaker
8048
8196
  # algorithm_specification: { # required
8049
8197
  # training_image: "AlgorithmImage",
8050
8198
  # algorithm_name: "ArnOrName",
8051
- # training_input_mode: "Pipe", # required, accepts Pipe, File
8199
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
8052
8200
  # metric_definitions: [
8053
8201
  # {
8054
8202
  # name: "MetricName", # required
@@ -8078,7 +8226,7 @@ module Aws::SageMaker
8078
8226
  # content_type: "ContentType",
8079
8227
  # compression_type: "None", # accepts None, Gzip
8080
8228
  # record_wrapper_type: "None", # accepts None, RecordIO
8081
- # input_mode: "Pipe", # accepts Pipe, File
8229
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
8082
8230
  # shuffle_config: {
8083
8231
  # seed: 1, # required
8084
8232
  # },
@@ -9383,19 +9531,18 @@ module Aws::SageMaker
9383
9531
  # specify `OutputFilter` as an additional filter to select a portion
9384
9532
  # of the joined dataset and store it in the output file.
9385
9533
  #
9386
- # For JSON or JSONLines objects, such as a JSON array, Amazon
9387
- # SageMaker adds the transformed data to the input JSON object in an
9388
- # attribute called `SageMakerOutput`. The joined result for JSON must
9389
- # be a key-value pair object. If the input is not a key-value pair
9390
- # object, Amazon SageMaker creates a new JSON file. In the new JSON
9391
- # file, and the input data is stored under the `SageMakerInput` key
9392
- # and the results are stored in `SageMakerOutput`.
9534
+ # For JSON or JSONLines objects, such as a JSON array, SageMaker adds
9535
+ # the transformed data to the input JSON object in an attribute called
9536
+ # `SageMakerOutput`. The joined result for JSON must be a key-value
9537
+ # pair object. If the input is not a key-value pair object, SageMaker
9538
+ # creates a new JSON file. In the new JSON file, and the input data is
9539
+ # stored under the `SageMakerInput` key and the results are stored in
9540
+ # `SageMakerOutput`.
9393
9541
  #
9394
- # For CSV data, Amazon SageMaker takes each row as a JSON array and
9395
- # joins the transformed data with the input by appending each
9396
- # transformed row to the end of the input. The joined data has the
9397
- # original input data followed by the transformed data and the output
9398
- # is a CSV file.
9542
+ # For CSV data, SageMaker takes each row as a JSON array and joins the
9543
+ # transformed data with the input by appending each transformed row to
9544
+ # the end of the input. The joined data has the original input data
9545
+ # followed by the transformed data and the output is a CSV file.
9399
9546
  #
9400
9547
  # For information on how joining in applied, see [Workflow for
9401
9548
  # Associating Inferences with Input Records][1].
@@ -11173,6 +11320,9 @@ module Aws::SageMaker
11173
11320
  #
11174
11321
  # @!attribute [rw] last_user_activity_timestamp
11175
11322
  # The timestamp of the last user's activity.
11323
+ # `LastUserActivityTimestamp` is also updated when SageMaker performs
11324
+ # health checks without user activity. As a result, this value is set
11325
+ # to the same value as `LastHealthCheckTimestamp`.
11176
11326
  # @return [Time]
11177
11327
  #
11178
11328
  # @!attribute [rw] creation_time
@@ -13498,8 +13648,8 @@ module Aws::SageMaker
13498
13648
  # @return [Types::SourceAlgorithmSpecification]
13499
13649
  #
13500
13650
  # @!attribute [rw] validation_specification
13501
- # Configurations for one or more transform jobs that Amazon SageMaker
13502
- # runs to test the model package.
13651
+ # Configurations for one or more transform jobs that SageMaker runs to
13652
+ # test the model package.
13503
13653
  # @return [Types::ModelPackageValidationSpecification]
13504
13654
  #
13505
13655
  # @!attribute [rw] model_package_status
@@ -13546,6 +13696,10 @@ module Aws::SageMaker
13546
13696
  # A description provided for the model approval.
13547
13697
  # @return [String]
13548
13698
  #
13699
+ # @!attribute [rw] customer_metadata_properties
13700
+ # The metadata properties associated with the model package versions.
13701
+ # @return [Hash<String,String>]
13702
+ #
13549
13703
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageOutput AWS API Documentation
13550
13704
  #
13551
13705
  class DescribeModelPackageOutput < Struct.new(
@@ -13567,7 +13721,8 @@ module Aws::SageMaker
13567
13721
  :model_metrics,
13568
13722
  :last_modified_time,
13569
13723
  :last_modified_by,
13570
- :approval_description)
13724
+ :approval_description,
13725
+ :customer_metadata_properties)
13571
13726
  SENSITIVE = []
13572
13727
  include Aws::Structure
13573
13728
  end
@@ -14412,6 +14567,15 @@ module Aws::SageMaker
14412
14567
  # The time when the project was created.
14413
14568
  # @return [Time]
14414
14569
  #
14570
+ # @!attribute [rw] last_modified_time
14571
+ # The timestamp when project was last modified.
14572
+ # @return [Time]
14573
+ #
14574
+ # @!attribute [rw] last_modified_by
14575
+ # Information about the user who created or modified an experiment,
14576
+ # trial, trial component, or project.
14577
+ # @return [Types::UserContext]
14578
+ #
14415
14579
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeProjectOutput AWS API Documentation
14416
14580
  #
14417
14581
  class DescribeProjectOutput < Struct.new(
@@ -14423,7 +14587,9 @@ module Aws::SageMaker
14423
14587
  :service_catalog_provisioned_product_details,
14424
14588
  :project_status,
14425
14589
  :created_by,
14426
- :creation_time)
14590
+ :creation_time,
14591
+ :last_modified_time,
14592
+ :last_modified_by)
14427
14593
  SENSITIVE = []
14428
14594
  include Aws::Structure
14429
14595
  end
@@ -14777,8 +14943,8 @@ module Aws::SageMaker
14777
14943
  #
14778
14944
  # Multiply `BillableTimeInSeconds` by the number of instances
14779
14945
  # (`InstanceCount`) in your training cluster to get the total compute
14780
- # time Amazon SageMaker will bill you if you run distributed training.
14781
- # The formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14946
+ # time SageMaker will bill you if you run distributed training. The
14947
+ # formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14782
14948
  #
14783
14949
  # You can calculate the savings from using managed spot training using
14784
14950
  # the formula `(1 - BillableTimeInSeconds / TrainingTimeInSeconds) *
@@ -16072,7 +16238,7 @@ module Aws::SageMaker
16072
16238
  #
16073
16239
  # @!attribute [rw] s3_input_mode
16074
16240
  # Whether the `Pipe` or `File` is used as the input mode for
16075
- # transfering data for the monitoring job. `Pipe` mode is recommended
16241
+ # transferring data for the monitoring job. `Pipe` mode is recommended
16076
16242
  # for large datasets. `File` mode is useful for small files that fit
16077
16243
  # in memory. Defaults to `File`.
16078
16244
  # @return [String]
@@ -18383,7 +18549,7 @@ module Aws::SageMaker
18383
18549
  #
18384
18550
  # {
18385
18551
  # training_image: "AlgorithmImage",
18386
- # training_input_mode: "Pipe", # required, accepts Pipe, File
18552
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
18387
18553
  # algorithm_name: "ArnOrName",
18388
18554
  # metric_definitions: [
18389
18555
  # {
@@ -18409,21 +18575,45 @@ module Aws::SageMaker
18409
18575
  # @return [String]
18410
18576
  #
18411
18577
  # @!attribute [rw] training_input_mode
18412
- # The input mode that the algorithm supports: File or Pipe. In File
18413
- # input mode, Amazon SageMaker downloads the training data from Amazon
18414
- # S3 to the storage volume that is attached to the training instance
18415
- # and mounts the directory to the Docker volume for the training
18416
- # container. In Pipe input mode, Amazon SageMaker streams data
18578
+ # The training input mode that the algorithm supports. For more
18579
+ # information about input modes, see [Algorithms][1].
18580
+ #
18581
+ # **Pipe mode**
18582
+ #
18583
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
18417
18584
  # directly from Amazon S3 to the container.
18418
18585
  #
18419
- # If you specify File mode, make sure that you provision the storage
18420
- # volume that is attached to the training instance with enough
18421
- # capacity to accommodate the training data downloaded from Amazon S3,
18422
- # the model artifacts, and intermediate information.
18586
+ # **File mode**
18423
18587
  #
18588
+ # If an algorithm supports `File` mode, SageMaker downloads the
18589
+ # training data from S3 to the provisioned ML storage volume, and
18590
+ # mounts the directory to the Docker volume for the training
18591
+ # container.
18424
18592
  #
18593
+ # You must provision the ML storage volume with sufficient capacity to
18594
+ # accommodate the data downloaded from S3. In addition to the training
18595
+ # data, the ML storage volume also stores the output model. The
18596
+ # algorithm container uses the ML storage volume to also store
18597
+ # intermediate information, if any.
18425
18598
  #
18426
- # For more information about input modes, see [Algorithms][1].
18599
+ # For distributed algorithms, training data is distributed uniformly.
18600
+ # Your training duration is predictable if the input data objects
18601
+ # sizes are approximately the same. SageMaker does not split the files
18602
+ # any further for model training. If the object sizes are skewed,
18603
+ # training won't be optimal as the data distribution is also skewed
18604
+ # when one host in a training cluster is overloaded, thus becoming a
18605
+ # bottleneck in training.
18606
+ #
18607
+ # **FastFile mode**
18608
+ #
18609
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
18610
+ # directly from S3 to the container with no code changes, and provides
18611
+ # file system access to the data. Users can author their training
18612
+ # script to interact with these files as if they were stored on disk.
18613
+ #
18614
+ # `FastFile` mode works best when the data is read sequentially.
18615
+ # Augmented manifest files aren't supported. The startup time is
18616
+ # lower when there are fewer files in the S3 bucket provided.
18427
18617
  #
18428
18618
  #
18429
18619
  #
@@ -18564,7 +18754,7 @@ module Aws::SageMaker
18564
18754
  # },
18565
18755
  # algorithm_specification: { # required
18566
18756
  # training_image: "AlgorithmImage",
18567
- # training_input_mode: "Pipe", # required, accepts Pipe, File
18757
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
18568
18758
  # algorithm_name: "ArnOrName",
18569
18759
  # metric_definitions: [
18570
18760
  # {
@@ -18594,7 +18784,7 @@ module Aws::SageMaker
18594
18784
  # content_type: "ContentType",
18595
18785
  # compression_type: "None", # accepts None, Gzip
18596
18786
  # record_wrapper_type: "None", # accepts None, RecordIO
18597
- # input_mode: "Pipe", # accepts Pipe, File
18787
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
18598
18788
  # shuffle_config: {
18599
18789
  # seed: 1, # required
18600
18790
  # },
@@ -25296,7 +25486,7 @@ module Aws::SageMaker
25296
25486
  # model artifacts.
25297
25487
  #
25298
25488
  # Model artifacts are the output that results from training a model, and
25299
- # typically consist of trained parameters, a model defintion that
25489
+ # typically consist of trained parameters, a model definition that
25300
25490
  # describes how to compute inferences, and other metadata.
25301
25491
  #
25302
25492
  # @!attribute [rw] s3_model_artifacts
@@ -25858,6 +26048,10 @@ module Aws::SageMaker
25858
26048
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
25859
26049
  # @return [Array<Types::Tag>]
25860
26050
  #
26051
+ # @!attribute [rw] customer_metadata_properties
26052
+ # The metadata properties for the model package.
26053
+ # @return [Hash<String,String>]
26054
+ #
25861
26055
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackage AWS API Documentation
25862
26056
  #
25863
26057
  class ModelPackage < Struct.new(
@@ -25880,7 +26074,8 @@ module Aws::SageMaker
25880
26074
  :last_modified_time,
25881
26075
  :last_modified_by,
25882
26076
  :approval_description,
25883
- :tags)
26077
+ :tags,
26078
+ :customer_metadata_properties)
25884
26079
  SENSITIVE = []
25885
26080
  include Aws::Structure
25886
26081
  end
@@ -30082,6 +30277,15 @@ module Aws::SageMaker
30082
30277
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
30083
30278
  # @return [Array<Types::Tag>]
30084
30279
  #
30280
+ # @!attribute [rw] last_modified_time
30281
+ # A timestamp container for when the project was last modified.
30282
+ # @return [Time]
30283
+ #
30284
+ # @!attribute [rw] last_modified_by
30285
+ # Information about the user who created or modified an experiment,
30286
+ # trial, trial component, or project.
30287
+ # @return [Types::UserContext]
30288
+ #
30085
30289
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Project AWS API Documentation
30086
30290
  #
30087
30291
  class Project < Struct.new(
@@ -30094,7 +30298,9 @@ module Aws::SageMaker
30094
30298
  :project_status,
30095
30299
  :created_by,
30096
30300
  :creation_time,
30097
- :tags)
30301
+ :tags,
30302
+ :last_modified_time,
30303
+ :last_modified_by)
30098
30304
  SENSITIVE = []
30099
30305
  include Aws::Structure
30100
30306
  end
@@ -31864,7 +32070,7 @@ module Aws::SageMaker
31864
32070
  #
31865
32071
  # {
31866
32072
  # product_id: "ServiceCatalogEntityId", # required
31867
- # provisioning_artifact_id: "ServiceCatalogEntityId", # required
32073
+ # provisioning_artifact_id: "ServiceCatalogEntityId",
31868
32074
  # path_id: "ServiceCatalogEntityId",
31869
32075
  # provisioning_parameters: [
31870
32076
  # {
@@ -31904,6 +32110,45 @@ module Aws::SageMaker
31904
32110
  include Aws::Structure
31905
32111
  end
31906
32112
 
32113
+ # Details that you specify to provision a service catalog product. For
32114
+ # information about service catalog, see [What is AWS Service
32115
+ # Catalog][1].
32116
+ #
32117
+ #
32118
+ #
32119
+ # [1]: https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html
32120
+ #
32121
+ # @note When making an API call, you may pass ServiceCatalogProvisioningUpdateDetails
32122
+ # data as a hash:
32123
+ #
32124
+ # {
32125
+ # provisioning_artifact_id: "ServiceCatalogEntityId",
32126
+ # provisioning_parameters: [
32127
+ # {
32128
+ # key: "ProvisioningParameterKey",
32129
+ # value: "ProvisioningParameterValue",
32130
+ # },
32131
+ # ],
32132
+ # }
32133
+ #
32134
+ # @!attribute [rw] provisioning_artifact_id
32135
+ # The ID of the provisioning artifact.
32136
+ # @return [String]
32137
+ #
32138
+ # @!attribute [rw] provisioning_parameters
32139
+ # A list of key value pairs that you specify when you provision a
32140
+ # product.
32141
+ # @return [Array<Types::ProvisioningParameter>]
32142
+ #
32143
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ServiceCatalogProvisioningUpdateDetails AWS API Documentation
32144
+ #
32145
+ class ServiceCatalogProvisioningUpdateDetails < Struct.new(
32146
+ :provisioning_artifact_id,
32147
+ :provisioning_parameters)
32148
+ SENSITIVE = []
32149
+ include Aws::Structure
32150
+ end
32151
+
31907
32152
  # Specifies options for sharing SageMaker Studio notebooks. These
31908
32153
  # settings are specified as part of `DefaultUserSettings` when the
31909
32154
  # `CreateDomain` API is called, and as part of `UserSettings` when the
@@ -32422,11 +32667,11 @@ module Aws::SageMaker
32422
32667
  include Aws::Structure
32423
32668
  end
32424
32669
 
32425
- # Specifies a limit to how long a model training job, model compilation
32426
- # job, or hyperparameter tuning job can run. It also specifies how long
32427
- # a managed Spot training job has to complete. When the job reaches the
32428
- # time limit, Amazon SageMaker ends the training or compilation job. Use
32429
- # this API to cap model training costs.
32670
+ # Specifies a limit to how long a model training job or model
32671
+ # compilation job can run. It also specifies how long a managed spot
32672
+ # training job has to complete. When the job reaches the time limit,
32673
+ # Amazon SageMaker ends the training or compilation job. Use this API to
32674
+ # cap model training costs.
32430
32675
  #
32431
32676
  # To stop a training job, Amazon SageMaker sends the algorithm the
32432
32677
  # `SIGTERM` signal, which delays job termination for 120 seconds.
@@ -32588,12 +32833,12 @@ module Aws::SageMaker
32588
32833
  end
32589
32834
 
32590
32835
  # A tag object that consists of a key and an optional value, used to
32591
- # manage metadata for Amazon SageMaker Amazon Web Services resources.
32836
+ # manage metadata for SageMaker Amazon Web Services resources.
32592
32837
  #
32593
32838
  # You can add tags to notebook instances, training jobs, hyperparameter
32594
32839
  # tuning jobs, batch transform jobs, models, labeling jobs, work teams,
32595
32840
  # endpoint configurations, and endpoints. For more information on adding
32596
- # tags to Amazon SageMaker resources, see AddTags.
32841
+ # tags to SageMaker resources, see AddTags.
32597
32842
  #
32598
32843
  # For more information on adding metadata to your Amazon Web Services
32599
32844
  # resources with tagging, see [Tagging Amazon Web Services
@@ -33122,7 +33367,7 @@ module Aws::SageMaker
33122
33367
  # data as a hash:
33123
33368
  #
33124
33369
  # {
33125
- # training_input_mode: "Pipe", # required, accepts Pipe, File
33370
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
33126
33371
  # hyper_parameters: {
33127
33372
  # "HyperParameterKey" => "HyperParameterValue",
33128
33373
  # },
@@ -33146,7 +33391,7 @@ module Aws::SageMaker
33146
33391
  # content_type: "ContentType",
33147
33392
  # compression_type: "None", # accepts None, Gzip
33148
33393
  # record_wrapper_type: "None", # accepts None, RecordIO
33149
- # input_mode: "Pipe", # accepts Pipe, File
33394
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
33150
33395
  # shuffle_config: {
33151
33396
  # seed: 1, # required
33152
33397
  # },
@@ -33169,15 +33414,45 @@ module Aws::SageMaker
33169
33414
  # }
33170
33415
  #
33171
33416
  # @!attribute [rw] training_input_mode
33172
- # The input mode used by the algorithm for the training job. For the
33173
- # input modes that Amazon SageMaker algorithms support, see
33174
- # [Algorithms][1].
33417
+ # The training input mode that the algorithm supports. For more
33418
+ # information about input modes, see [Algorithms][1].
33175
33419
  #
33176
- # If an algorithm supports the `File` input mode, Amazon SageMaker
33177
- # downloads the training data from S3 to the provisioned ML storage
33178
- # Volume, and mounts the directory to docker volume for training
33179
- # container. If an algorithm supports the `Pipe` input mode, Amazon
33180
- # SageMaker streams data directly from S3 to the container.
33420
+ # **Pipe mode**
33421
+ #
33422
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
33423
+ # directly from Amazon S3 to the container.
33424
+ #
33425
+ # **File mode**
33426
+ #
33427
+ # If an algorithm supports `File` mode, SageMaker downloads the
33428
+ # training data from S3 to the provisioned ML storage volume, and
33429
+ # mounts the directory to the Docker volume for the training
33430
+ # container.
33431
+ #
33432
+ # You must provision the ML storage volume with sufficient capacity to
33433
+ # accommodate the data downloaded from S3. In addition to the training
33434
+ # data, the ML storage volume also stores the output model. The
33435
+ # algorithm container uses the ML storage volume to also store
33436
+ # intermediate information, if any.
33437
+ #
33438
+ # For distributed algorithms, training data is distributed uniformly.
33439
+ # Your training duration is predictable if the input data objects
33440
+ # sizes are approximately the same. SageMaker does not split the files
33441
+ # any further for model training. If the object sizes are skewed,
33442
+ # training won't be optimal as the data distribution is also skewed
33443
+ # when one host in a training cluster is overloaded, thus becoming a
33444
+ # bottleneck in training.
33445
+ #
33446
+ # **FastFile mode**
33447
+ #
33448
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
33449
+ # directly from S3 to the container with no code changes, and provides
33450
+ # file system access to the data. Users can author their training
33451
+ # script to interact with these files as if they were stored on disk.
33452
+ #
33453
+ # `FastFile` mode works best when the data is read sequentially.
33454
+ # Augmented manifest files aren't supported. The startup time is
33455
+ # lower when there are fewer files in the S3 bucket provided.
33181
33456
  #
33182
33457
  #
33183
33458
  #
@@ -33371,7 +33646,7 @@ module Aws::SageMaker
33371
33646
  # is_required: false,
33372
33647
  # supported_content_types: ["ContentType"], # required
33373
33648
  # supported_compression_types: ["None"], # accepts None, Gzip
33374
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
33649
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
33375
33650
  # },
33376
33651
  # ],
33377
33652
  # supported_tuning_job_objective_metrics: [
@@ -35550,12 +35825,16 @@ module Aws::SageMaker
35550
35825
  #
35551
35826
  # {
35552
35827
  # model_package_arn: "ModelPackageArn", # required
35553
- # model_approval_status: "Approved", # required, accepts Approved, Rejected, PendingManualApproval
35828
+ # model_approval_status: "Approved", # accepts Approved, Rejected, PendingManualApproval
35554
35829
  # approval_description: "ApprovalDescription",
35830
+ # customer_metadata_properties: {
35831
+ # "CustomerMetadataKey" => "CustomerMetadataValue",
35832
+ # },
35833
+ # customer_metadata_properties_to_remove: ["CustomerMetadataKey"],
35555
35834
  # }
35556
35835
  #
35557
35836
  # @!attribute [rw] model_package_arn
35558
- # The Amazon Resource Name (ARN) of the model.
35837
+ # The Amazon Resource Name (ARN) of the model package.
35559
35838
  # @return [String]
35560
35839
  #
35561
35840
  # @!attribute [rw] model_approval_status
@@ -35566,12 +35845,23 @@ module Aws::SageMaker
35566
35845
  # A description for the approval status of the model.
35567
35846
  # @return [String]
35568
35847
  #
35848
+ # @!attribute [rw] customer_metadata_properties
35849
+ # The metadata properties associated with the model package versions.
35850
+ # @return [Hash<String,String>]
35851
+ #
35852
+ # @!attribute [rw] customer_metadata_properties_to_remove
35853
+ # The metadata properties associated with the model package versions
35854
+ # to remove.
35855
+ # @return [Array<String>]
35856
+ #
35569
35857
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateModelPackageInput AWS API Documentation
35570
35858
  #
35571
35859
  class UpdateModelPackageInput < Struct.new(
35572
35860
  :model_package_arn,
35573
35861
  :model_approval_status,
35574
- :approval_description)
35862
+ :approval_description,
35863
+ :customer_metadata_properties,
35864
+ :customer_metadata_properties_to_remove)
35575
35865
  SENSITIVE = []
35576
35866
  include Aws::Structure
35577
35867
  end
@@ -36016,6 +36306,82 @@ module Aws::SageMaker
36016
36306
  include Aws::Structure
36017
36307
  end
36018
36308
 
36309
+ # @note When making an API call, you may pass UpdateProjectInput
36310
+ # data as a hash:
36311
+ #
36312
+ # {
36313
+ # project_name: "ProjectEntityName", # required
36314
+ # project_description: "EntityDescription",
36315
+ # service_catalog_provisioning_update_details: {
36316
+ # provisioning_artifact_id: "ServiceCatalogEntityId",
36317
+ # provisioning_parameters: [
36318
+ # {
36319
+ # key: "ProvisioningParameterKey",
36320
+ # value: "ProvisioningParameterValue",
36321
+ # },
36322
+ # ],
36323
+ # },
36324
+ # tags: [
36325
+ # {
36326
+ # key: "TagKey", # required
36327
+ # value: "TagValue", # required
36328
+ # },
36329
+ # ],
36330
+ # }
36331
+ #
36332
+ # @!attribute [rw] project_name
36333
+ # The name of the project.
36334
+ # @return [String]
36335
+ #
36336
+ # @!attribute [rw] project_description
36337
+ # The description for the project.
36338
+ # @return [String]
36339
+ #
36340
+ # @!attribute [rw] service_catalog_provisioning_update_details
36341
+ # The product ID and provisioning artifact ID to provision a service
36342
+ # catalog. The provisioning artifact ID will default to the latest
36343
+ # provisioning artifact ID of the product, if you don't provide the
36344
+ # provisioning artifact ID. For more information, see [What is AWS
36345
+ # Service Catalog][1].
36346
+ #
36347
+ #
36348
+ #
36349
+ # [1]: https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html
36350
+ # @return [Types::ServiceCatalogProvisioningUpdateDetails]
36351
+ #
36352
+ # @!attribute [rw] tags
36353
+ # An array of key-value pairs. You can use tags to categorize your AWS
36354
+ # resources in different ways, for example, by purpose, owner, or
36355
+ # environment. For more information, see [Tagging AWS Resources][1].
36356
+ #
36357
+ #
36358
+ #
36359
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
36360
+ # @return [Array<Types::Tag>]
36361
+ #
36362
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateProjectInput AWS API Documentation
36363
+ #
36364
+ class UpdateProjectInput < Struct.new(
36365
+ :project_name,
36366
+ :project_description,
36367
+ :service_catalog_provisioning_update_details,
36368
+ :tags)
36369
+ SENSITIVE = []
36370
+ include Aws::Structure
36371
+ end
36372
+
36373
+ # @!attribute [rw] project_arn
36374
+ # The Amazon Resource Name (ARN) of the project.
36375
+ # @return [String]
36376
+ #
36377
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateProjectOutput AWS API Documentation
36378
+ #
36379
+ class UpdateProjectOutput < Struct.new(
36380
+ :project_arn)
36381
+ SENSITIVE = []
36382
+ include Aws::Structure
36383
+ end
36384
+
36019
36385
  # @note When making an API call, you may pass UpdateTrainingJobRequest
36020
36386
  # data as a hash:
36021
36387
  #