aws-sdk-sagemaker 1.101.0 → 1.105.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -260,7 +260,7 @@ module Aws::SageMaker
260
260
  # {
261
261
  # training_image: "AlgorithmImage",
262
262
  # algorithm_name: "ArnOrName",
263
- # training_input_mode: "Pipe", # required, accepts Pipe, File
263
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
264
264
  # metric_definitions: [
265
265
  # {
266
266
  # name: "MetricName", # required
@@ -293,27 +293,45 @@ module Aws::SageMaker
293
293
  # @return [String]
294
294
  #
295
295
  # @!attribute [rw] training_input_mode
296
- # The input mode that the algorithm supports. For the input modes that
297
- # Amazon SageMaker algorithms support, see [Algorithms][1]. If an
298
- # algorithm supports the `File` input mode, Amazon SageMaker downloads
299
- # the training data from S3 to the provisioned ML storage Volume, and
300
- # mounts the directory to docker volume for training container. If an
301
- # algorithm supports the `Pipe` input mode, Amazon SageMaker streams
302
- # data directly from S3 to the container.
303
- #
304
- # In File mode, make sure you provision ML storage volume with
305
- # sufficient capacity to accommodate the data download from S3. In
306
- # addition to the training data, the ML storage volume also stores the
307
- # output model. The algorithm container use ML storage volume to also
308
- # store intermediate information, if any.
309
- #
310
- # For distributed algorithms using File mode, training data is
311
- # distributed uniformly, and your training duration is predictable if
312
- # the input data objects size is approximately same. Amazon SageMaker
313
- # does not split the files any further for model training. If the
314
- # object sizes are skewed, training won't be optimal as the data
315
- # distribution is also skewed where one host in a training cluster is
316
- # overloaded, thus becoming bottleneck in training.
296
+ # The training input mode that the algorithm supports. For more
297
+ # information about input modes, see [Algorithms][1].
298
+ #
299
+ # **Pipe mode**
300
+ #
301
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
302
+ # directly from Amazon S3 to the container.
303
+ #
304
+ # **File mode**
305
+ #
306
+ # If an algorithm supports `File` mode, SageMaker downloads the
307
+ # training data from S3 to the provisioned ML storage volume, and
308
+ # mounts the directory to the Docker volume for the training
309
+ # container.
310
+ #
311
+ # You must provision the ML storage volume with sufficient capacity to
312
+ # accommodate the data downloaded from S3. In addition to the training
313
+ # data, the ML storage volume also stores the output model. The
314
+ # algorithm container uses the ML storage volume to also store
315
+ # intermediate information, if any.
316
+ #
317
+ # For distributed algorithms, training data is distributed uniformly.
318
+ # Your training duration is predictable if the input data objects
319
+ # sizes are approximately the same. SageMaker does not split the files
320
+ # any further for model training. If the object sizes are skewed,
321
+ # training won't be optimal as the data distribution is also skewed
322
+ # when one host in a training cluster is overloaded, thus becoming a
323
+ # bottleneck in training.
324
+ #
325
+ # **FastFile mode**
326
+ #
327
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
328
+ # directly from S3 to the container with no code changes, and provides
329
+ # file system access to the data. Users can author their training
330
+ # script to interact with these files as if they were stored on disk.
331
+ #
332
+ # `FastFile` mode works best when the data is read sequentially.
333
+ # Augmented manifest files aren't supported. The startup time is
334
+ # lower when there are fewer files in the S3 bucket provided.
317
335
  #
318
336
  #
319
337
  #
@@ -451,7 +469,7 @@ module Aws::SageMaker
451
469
  # {
452
470
  # profile_name: "EntityName", # required
453
471
  # training_job_definition: { # required
454
- # training_input_mode: "Pipe", # required, accepts Pipe, File
472
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
455
473
  # hyper_parameters: {
456
474
  # "HyperParameterKey" => "HyperParameterValue",
457
475
  # },
@@ -475,7 +493,7 @@ module Aws::SageMaker
475
493
  # content_type: "ContentType",
476
494
  # compression_type: "None", # accepts None, Gzip
477
495
  # record_wrapper_type: "None", # accepts None, RecordIO
478
- # input_mode: "Pipe", # accepts Pipe, File
496
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
479
497
  # shuffle_config: {
480
498
  # seed: 1, # required
481
499
  # },
@@ -565,7 +583,7 @@ module Aws::SageMaker
565
583
  # {
566
584
  # profile_name: "EntityName", # required
567
585
  # training_job_definition: { # required
568
- # training_input_mode: "Pipe", # required, accepts Pipe, File
586
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
569
587
  # hyper_parameters: {
570
588
  # "HyperParameterKey" => "HyperParameterValue",
571
589
  # },
@@ -589,7 +607,7 @@ module Aws::SageMaker
589
607
  # content_type: "ContentType",
590
608
  # compression_type: "None", # accepts None, Gzip
591
609
  # record_wrapper_type: "None", # accepts None, RecordIO
592
- # input_mode: "Pipe", # accepts Pipe, File
610
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
593
611
  # shuffle_config: {
594
612
  # seed: 1, # required
595
613
  # },
@@ -2063,12 +2081,20 @@ module Aws::SageMaker
2063
2081
  # @return [Integer]
2064
2082
  #
2065
2083
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2066
- # The maximum time, in seconds, a training job is allowed to run as
2067
- # part of an AutoML job.
2084
+ # The maximum time, in seconds, that each training job is allowed to
2085
+ # run as part of a hyperparameter tuning job. For more information,
2086
+ # see the used by the action.
2068
2087
  # @return [Integer]
2069
2088
  #
2070
2089
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
2071
2090
  # The maximum runtime, in seconds, an AutoML job has to complete.
2091
+ #
2092
+ # If an AutoML job exceeds the maximum runtime, the job is stopped
2093
+ # automatically and its processing is ended gracefully. The AutoML job
2094
+ # identifies the best model whose training was completed and marks it
2095
+ # as the best-performing model. Any unfinished steps of the job, such
2096
+ # as automatic one-click Autopilot model deployment, will not be
2097
+ # completed.
2072
2098
  # @return [Integer]
2073
2099
  #
2074
2100
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -2400,6 +2426,110 @@ module Aws::SageMaker
2400
2426
  include Aws::Structure
2401
2427
  end
2402
2428
 
2429
+ # The error code and error description associated with the resource.
2430
+ #
2431
+ # @!attribute [rw] error_code
2432
+ # @return [String]
2433
+ #
2434
+ # @!attribute [rw] error_response
2435
+ # @return [String]
2436
+ #
2437
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageError AWS API Documentation
2438
+ #
2439
+ class BatchDescribeModelPackageError < Struct.new(
2440
+ :error_code,
2441
+ :error_response)
2442
+ SENSITIVE = []
2443
+ include Aws::Structure
2444
+ end
2445
+
2446
+ # @note When making an API call, you may pass BatchDescribeModelPackageInput
2447
+ # data as a hash:
2448
+ #
2449
+ # {
2450
+ # model_package_arn_list: ["ModelPackageArn"], # required
2451
+ # }
2452
+ #
2453
+ # @!attribute [rw] model_package_arn_list
2454
+ # The list of Amazon Resource Name (ARN) of the model package groups.
2455
+ # @return [Array<String>]
2456
+ #
2457
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageInput AWS API Documentation
2458
+ #
2459
+ class BatchDescribeModelPackageInput < Struct.new(
2460
+ :model_package_arn_list)
2461
+ SENSITIVE = []
2462
+ include Aws::Structure
2463
+ end
2464
+
2465
+ # @!attribute [rw] model_package_summaries
2466
+ # The summaries for the model package versions
2467
+ # @return [Hash<String,Types::BatchDescribeModelPackageSummary>]
2468
+ #
2469
+ # @!attribute [rw] batch_describe_model_package_error_map
2470
+ # A map of the resource and BatchDescribeModelPackageError objects
2471
+ # reporting the error associated with describing the model package.
2472
+ # @return [Hash<String,Types::BatchDescribeModelPackageError>]
2473
+ #
2474
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageOutput AWS API Documentation
2475
+ #
2476
+ class BatchDescribeModelPackageOutput < Struct.new(
2477
+ :model_package_summaries,
2478
+ :batch_describe_model_package_error_map)
2479
+ SENSITIVE = []
2480
+ include Aws::Structure
2481
+ end
2482
+
2483
+ # Provides summary information about the model package.
2484
+ #
2485
+ # @!attribute [rw] model_package_group_name
2486
+ # The group name for the model package
2487
+ # @return [String]
2488
+ #
2489
+ # @!attribute [rw] model_package_version
2490
+ # The version number of a versioned model.
2491
+ # @return [Integer]
2492
+ #
2493
+ # @!attribute [rw] model_package_arn
2494
+ # The Amazon Resource Name (ARN) of the model package.
2495
+ # @return [String]
2496
+ #
2497
+ # @!attribute [rw] model_package_description
2498
+ # The description of the model package.
2499
+ # @return [String]
2500
+ #
2501
+ # @!attribute [rw] creation_time
2502
+ # The creation time of the mortgage package summary.
2503
+ # @return [Time]
2504
+ #
2505
+ # @!attribute [rw] inference_specification
2506
+ # Defines how to perform inference generation after a training job is
2507
+ # run.
2508
+ # @return [Types::InferenceSpecification]
2509
+ #
2510
+ # @!attribute [rw] model_package_status
2511
+ # The status of the mortgage package.
2512
+ # @return [String]
2513
+ #
2514
+ # @!attribute [rw] model_approval_status
2515
+ # The approval status of the model.
2516
+ # @return [String]
2517
+ #
2518
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BatchDescribeModelPackageSummary AWS API Documentation
2519
+ #
2520
+ class BatchDescribeModelPackageSummary < Struct.new(
2521
+ :model_package_group_name,
2522
+ :model_package_version,
2523
+ :model_package_arn,
2524
+ :model_package_description,
2525
+ :creation_time,
2526
+ :inference_specification,
2527
+ :model_package_status,
2528
+ :model_approval_status)
2529
+ SENSITIVE = []
2530
+ include Aws::Structure
2531
+ end
2532
+
2403
2533
  # Contains bias metrics for a model.
2404
2534
  #
2405
2535
  # @note When making an API call, you may pass Bias
@@ -2676,7 +2806,7 @@ module Aws::SageMaker
2676
2806
  # content_type: "ContentType",
2677
2807
  # compression_type: "None", # accepts None, Gzip
2678
2808
  # record_wrapper_type: "None", # accepts None, RecordIO
2679
- # input_mode: "Pipe", # accepts Pipe, File
2809
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
2680
2810
  # shuffle_config: {
2681
2811
  # seed: 1, # required
2682
2812
  # },
@@ -2775,7 +2905,7 @@ module Aws::SageMaker
2775
2905
  # is_required: false,
2776
2906
  # supported_content_types: ["ContentType"], # required
2777
2907
  # supported_compression_types: ["None"], # accepts None, Gzip
2778
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
2908
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
2779
2909
  # }
2780
2910
  #
2781
2911
  # @!attribute [rw] name
@@ -3549,7 +3679,7 @@ module Aws::SageMaker
3549
3679
  # is_required: false,
3550
3680
  # supported_content_types: ["ContentType"], # required
3551
3681
  # supported_compression_types: ["None"], # accepts None, Gzip
3552
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
3682
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
3553
3683
  # },
3554
3684
  # ],
3555
3685
  # supported_tuning_job_objective_metrics: [
@@ -3583,7 +3713,7 @@ module Aws::SageMaker
3583
3713
  # {
3584
3714
  # profile_name: "EntityName", # required
3585
3715
  # training_job_definition: { # required
3586
- # training_input_mode: "Pipe", # required, accepts Pipe, File
3716
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
3587
3717
  # hyper_parameters: {
3588
3718
  # "HyperParameterKey" => "HyperParameterValue",
3589
3719
  # },
@@ -3607,7 +3737,7 @@ module Aws::SageMaker
3607
3737
  # content_type: "ContentType",
3608
3738
  # compression_type: "None", # accepts None, Gzip
3609
3739
  # record_wrapper_type: "None", # accepts None, RecordIO
3610
- # input_mode: "Pipe", # accepts Pipe, File
3740
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
3611
3741
  # shuffle_config: {
3612
3742
  # seed: 1, # required
3613
3743
  # },
@@ -5255,12 +5385,19 @@ module Aws::SageMaker
5255
5385
  # `OfflineStore`.
5256
5386
  #
5257
5387
  # * A configuration for an Amazon Web Services Glue or Amazon Web
5258
- # Services Hive data cataolgue.
5388
+ # Services Hive data catalog.
5259
5389
  #
5260
5390
  # * An KMS encryption key to encrypt the Amazon S3 location used for
5261
- # `OfflineStore`.
5391
+ # `OfflineStore`. If KMS encryption key is not specified, by default
5392
+ # we encrypt all data at rest using Amazon Web Services KMS key. By
5393
+ # defining your [bucket-level key][1] for SSE, you can reduce Amazon
5394
+ # Web Services KMS requests costs by up to 99 percent.
5262
5395
  #
5263
5396
  # To learn more about this parameter, see OfflineStoreConfig.
5397
+ #
5398
+ #
5399
+ #
5400
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
5264
5401
  # @return [Types::OfflineStoreConfig]
5265
5402
  #
5266
5403
  # @!attribute [rw] role_arn
@@ -5544,7 +5681,7 @@ module Aws::SageMaker
5544
5681
  # },
5545
5682
  # algorithm_specification: { # required
5546
5683
  # training_image: "AlgorithmImage",
5547
- # training_input_mode: "Pipe", # required, accepts Pipe, File
5684
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
5548
5685
  # algorithm_name: "ArnOrName",
5549
5686
  # metric_definitions: [
5550
5687
  # {
@@ -5574,7 +5711,7 @@ module Aws::SageMaker
5574
5711
  # content_type: "ContentType",
5575
5712
  # compression_type: "None", # accepts None, Gzip
5576
5713
  # record_wrapper_type: "None", # accepts None, RecordIO
5577
- # input_mode: "Pipe", # accepts Pipe, File
5714
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
5578
5715
  # shuffle_config: {
5579
5716
  # seed: 1, # required
5580
5717
  # },
@@ -5645,7 +5782,7 @@ module Aws::SageMaker
5645
5782
  # },
5646
5783
  # algorithm_specification: { # required
5647
5784
  # training_image: "AlgorithmImage",
5648
- # training_input_mode: "Pipe", # required, accepts Pipe, File
5785
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
5649
5786
  # algorithm_name: "ArnOrName",
5650
5787
  # metric_definitions: [
5651
5788
  # {
@@ -5675,7 +5812,7 @@ module Aws::SageMaker
5675
5812
  # content_type: "ContentType",
5676
5813
  # compression_type: "None", # accepts None, Gzip
5677
5814
  # record_wrapper_type: "None", # accepts None, RecordIO
5678
- # input_mode: "Pipe", # accepts Pipe, File
5815
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
5679
5816
  # shuffle_config: {
5680
5817
  # seed: 1, # required
5681
5818
  # },
@@ -6739,7 +6876,7 @@ module Aws::SageMaker
6739
6876
  #
6740
6877
  # {
6741
6878
  # model_package_name: "EntityName",
6742
- # model_package_group_name: "EntityName",
6879
+ # model_package_group_name: "ArnOrName",
6743
6880
  # model_package_description: "EntityDescription",
6744
6881
  # inference_specification: {
6745
6882
  # containers: [ # required
@@ -6860,6 +6997,9 @@ module Aws::SageMaker
6860
6997
  # },
6861
6998
  # },
6862
6999
  # client_token: "ClientToken",
7000
+ # customer_metadata_properties: {
7001
+ # "CustomerMetadataKey" => "CustomerMetadataValue",
7002
+ # },
6863
7003
  # }
6864
7004
  #
6865
7005
  # @!attribute [rw] model_package_name
@@ -6871,7 +7011,8 @@ module Aws::SageMaker
6871
7011
  # @return [String]
6872
7012
  #
6873
7013
  # @!attribute [rw] model_package_group_name
6874
- # The name of the model group that this model version belongs to.
7014
+ # The name or Amazon Resource Name (ARN) of the model package group
7015
+ # that this model version belongs to.
6875
7016
  #
6876
7017
  # This parameter is required for versioned models, and does not apply
6877
7018
  # to unversioned models.
@@ -6950,6 +7091,10 @@ module Aws::SageMaker
6950
7091
  # not need to pass this option.
6951
7092
  # @return [String]
6952
7093
  #
7094
+ # @!attribute [rw] customer_metadata_properties
7095
+ # The metadata properties associated with the model package versions.
7096
+ # @return [Hash<String,String>]
7097
+ #
6953
7098
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelPackageInput AWS API Documentation
6954
7099
  #
6955
7100
  class CreateModelPackageInput < Struct.new(
@@ -6964,7 +7109,8 @@ module Aws::SageMaker
6964
7109
  :model_approval_status,
6965
7110
  :metadata_properties,
6966
7111
  :model_metrics,
6967
- :client_token)
7112
+ :client_token,
7113
+ :customer_metadata_properties)
6968
7114
  SENSITIVE = []
6969
7115
  include Aws::Structure
6970
7116
  end
@@ -7906,7 +8052,7 @@ module Aws::SageMaker
7906
8052
  # project_description: "EntityDescription",
7907
8053
  # service_catalog_provisioning_details: { # required
7908
8054
  # product_id: "ServiceCatalogEntityId", # required
7909
- # provisioning_artifact_id: "ServiceCatalogEntityId", # required
8055
+ # provisioning_artifact_id: "ServiceCatalogEntityId",
7910
8056
  # path_id: "ServiceCatalogEntityId",
7911
8057
  # provisioning_parameters: [
7912
8058
  # {
@@ -7933,8 +8079,10 @@ module Aws::SageMaker
7933
8079
  #
7934
8080
  # @!attribute [rw] service_catalog_provisioning_details
7935
8081
  # The product ID and provisioning artifact ID to provision a service
7936
- # catalog. For information, see [What is Amazon Web Services Service
7937
- # Catalog][1].
8082
+ # catalog. The provisioning artifact ID will default to the latest
8083
+ # provisioning artifact ID of the product, if you don't provide the
8084
+ # provisioning artifact ID. For more information, see [What is Amazon
8085
+ # Web Services Service Catalog][1].
7938
8086
  #
7939
8087
  #
7940
8088
  #
@@ -8048,7 +8196,7 @@ module Aws::SageMaker
8048
8196
  # algorithm_specification: { # required
8049
8197
  # training_image: "AlgorithmImage",
8050
8198
  # algorithm_name: "ArnOrName",
8051
- # training_input_mode: "Pipe", # required, accepts Pipe, File
8199
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
8052
8200
  # metric_definitions: [
8053
8201
  # {
8054
8202
  # name: "MetricName", # required
@@ -8078,7 +8226,7 @@ module Aws::SageMaker
8078
8226
  # content_type: "ContentType",
8079
8227
  # compression_type: "None", # accepts None, Gzip
8080
8228
  # record_wrapper_type: "None", # accepts None, RecordIO
8081
- # input_mode: "Pipe", # accepts Pipe, File
8229
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
8082
8230
  # shuffle_config: {
8083
8231
  # seed: 1, # required
8084
8232
  # },
@@ -9383,19 +9531,18 @@ module Aws::SageMaker
9383
9531
  # specify `OutputFilter` as an additional filter to select a portion
9384
9532
  # of the joined dataset and store it in the output file.
9385
9533
  #
9386
- # For JSON or JSONLines objects, such as a JSON array, Amazon
9387
- # SageMaker adds the transformed data to the input JSON object in an
9388
- # attribute called `SageMakerOutput`. The joined result for JSON must
9389
- # be a key-value pair object. If the input is not a key-value pair
9390
- # object, Amazon SageMaker creates a new JSON file. In the new JSON
9391
- # file, and the input data is stored under the `SageMakerInput` key
9392
- # and the results are stored in `SageMakerOutput`.
9534
+ # For JSON or JSONLines objects, such as a JSON array, SageMaker adds
9535
+ # the transformed data to the input JSON object in an attribute called
9536
+ # `SageMakerOutput`. The joined result for JSON must be a key-value
9537
+ # pair object. If the input is not a key-value pair object, SageMaker
9538
+ # creates a new JSON file. In the new JSON file, and the input data is
9539
+ # stored under the `SageMakerInput` key and the results are stored in
9540
+ # `SageMakerOutput`.
9393
9541
  #
9394
- # For CSV data, Amazon SageMaker takes each row as a JSON array and
9395
- # joins the transformed data with the input by appending each
9396
- # transformed row to the end of the input. The joined data has the
9397
- # original input data followed by the transformed data and the output
9398
- # is a CSV file.
9542
+ # For CSV data, SageMaker takes each row as a JSON array and joins the
9543
+ # transformed data with the input by appending each transformed row to
9544
+ # the end of the input. The joined data has the original input data
9545
+ # followed by the transformed data and the output is a CSV file.
9399
9546
  #
9400
9547
  # For information on how joining in applied, see [Workflow for
9401
9548
  # Associating Inferences with Input Records][1].
@@ -11173,6 +11320,9 @@ module Aws::SageMaker
11173
11320
  #
11174
11321
  # @!attribute [rw] last_user_activity_timestamp
11175
11322
  # The timestamp of the last user's activity.
11323
+ # `LastUserActivityTimestamp` is also updated when SageMaker performs
11324
+ # health checks without user activity. As a result, this value is set
11325
+ # to the same value as `LastHealthCheckTimestamp`.
11176
11326
  # @return [Time]
11177
11327
  #
11178
11328
  # @!attribute [rw] creation_time
@@ -13498,8 +13648,8 @@ module Aws::SageMaker
13498
13648
  # @return [Types::SourceAlgorithmSpecification]
13499
13649
  #
13500
13650
  # @!attribute [rw] validation_specification
13501
- # Configurations for one or more transform jobs that Amazon SageMaker
13502
- # runs to test the model package.
13651
+ # Configurations for one or more transform jobs that SageMaker runs to
13652
+ # test the model package.
13503
13653
  # @return [Types::ModelPackageValidationSpecification]
13504
13654
  #
13505
13655
  # @!attribute [rw] model_package_status
@@ -13546,6 +13696,10 @@ module Aws::SageMaker
13546
13696
  # A description provided for the model approval.
13547
13697
  # @return [String]
13548
13698
  #
13699
+ # @!attribute [rw] customer_metadata_properties
13700
+ # The metadata properties associated with the model package versions.
13701
+ # @return [Hash<String,String>]
13702
+ #
13549
13703
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageOutput AWS API Documentation
13550
13704
  #
13551
13705
  class DescribeModelPackageOutput < Struct.new(
@@ -13567,7 +13721,8 @@ module Aws::SageMaker
13567
13721
  :model_metrics,
13568
13722
  :last_modified_time,
13569
13723
  :last_modified_by,
13570
- :approval_description)
13724
+ :approval_description,
13725
+ :customer_metadata_properties)
13571
13726
  SENSITIVE = []
13572
13727
  include Aws::Structure
13573
13728
  end
@@ -14412,6 +14567,15 @@ module Aws::SageMaker
14412
14567
  # The time when the project was created.
14413
14568
  # @return [Time]
14414
14569
  #
14570
+ # @!attribute [rw] last_modified_time
14571
+ # The timestamp when project was last modified.
14572
+ # @return [Time]
14573
+ #
14574
+ # @!attribute [rw] last_modified_by
14575
+ # Information about the user who created or modified an experiment,
14576
+ # trial, trial component, or project.
14577
+ # @return [Types::UserContext]
14578
+ #
14415
14579
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeProjectOutput AWS API Documentation
14416
14580
  #
14417
14581
  class DescribeProjectOutput < Struct.new(
@@ -14423,7 +14587,9 @@ module Aws::SageMaker
14423
14587
  :service_catalog_provisioned_product_details,
14424
14588
  :project_status,
14425
14589
  :created_by,
14426
- :creation_time)
14590
+ :creation_time,
14591
+ :last_modified_time,
14592
+ :last_modified_by)
14427
14593
  SENSITIVE = []
14428
14594
  include Aws::Structure
14429
14595
  end
@@ -14777,8 +14943,8 @@ module Aws::SageMaker
14777
14943
  #
14778
14944
  # Multiply `BillableTimeInSeconds` by the number of instances
14779
14945
  # (`InstanceCount`) in your training cluster to get the total compute
14780
- # time Amazon SageMaker will bill you if you run distributed training.
14781
- # The formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14946
+ # time SageMaker will bill you if you run distributed training. The
14947
+ # formula is as follows: `BillableTimeInSeconds * InstanceCount` .
14782
14948
  #
14783
14949
  # You can calculate the savings from using managed spot training using
14784
14950
  # the formula `(1 - BillableTimeInSeconds / TrainingTimeInSeconds) *
@@ -16072,7 +16238,7 @@ module Aws::SageMaker
16072
16238
  #
16073
16239
  # @!attribute [rw] s3_input_mode
16074
16240
  # Whether the `Pipe` or `File` is used as the input mode for
16075
- # transfering data for the monitoring job. `Pipe` mode is recommended
16241
+ # transferring data for the monitoring job. `Pipe` mode is recommended
16076
16242
  # for large datasets. `File` mode is useful for small files that fit
16077
16243
  # in memory. Defaults to `File`.
16078
16244
  # @return [String]
@@ -18383,7 +18549,7 @@ module Aws::SageMaker
18383
18549
  #
18384
18550
  # {
18385
18551
  # training_image: "AlgorithmImage",
18386
- # training_input_mode: "Pipe", # required, accepts Pipe, File
18552
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
18387
18553
  # algorithm_name: "ArnOrName",
18388
18554
  # metric_definitions: [
18389
18555
  # {
@@ -18409,21 +18575,45 @@ module Aws::SageMaker
18409
18575
  # @return [String]
18410
18576
  #
18411
18577
  # @!attribute [rw] training_input_mode
18412
- # The input mode that the algorithm supports: File or Pipe. In File
18413
- # input mode, Amazon SageMaker downloads the training data from Amazon
18414
- # S3 to the storage volume that is attached to the training instance
18415
- # and mounts the directory to the Docker volume for the training
18416
- # container. In Pipe input mode, Amazon SageMaker streams data
18578
+ # The training input mode that the algorithm supports. For more
18579
+ # information about input modes, see [Algorithms][1].
18580
+ #
18581
+ # **Pipe mode**
18582
+ #
18583
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
18417
18584
  # directly from Amazon S3 to the container.
18418
18585
  #
18419
- # If you specify File mode, make sure that you provision the storage
18420
- # volume that is attached to the training instance with enough
18421
- # capacity to accommodate the training data downloaded from Amazon S3,
18422
- # the model artifacts, and intermediate information.
18586
+ # **File mode**
18423
18587
  #
18588
+ # If an algorithm supports `File` mode, SageMaker downloads the
18589
+ # training data from S3 to the provisioned ML storage volume, and
18590
+ # mounts the directory to the Docker volume for the training
18591
+ # container.
18424
18592
  #
18593
+ # You must provision the ML storage volume with sufficient capacity to
18594
+ # accommodate the data downloaded from S3. In addition to the training
18595
+ # data, the ML storage volume also stores the output model. The
18596
+ # algorithm container uses the ML storage volume to also store
18597
+ # intermediate information, if any.
18425
18598
  #
18426
- # For more information about input modes, see [Algorithms][1].
18599
+ # For distributed algorithms, training data is distributed uniformly.
18600
+ # Your training duration is predictable if the input data objects
18601
+ # sizes are approximately the same. SageMaker does not split the files
18602
+ # any further for model training. If the object sizes are skewed,
18603
+ # training won't be optimal as the data distribution is also skewed
18604
+ # when one host in a training cluster is overloaded, thus becoming a
18605
+ # bottleneck in training.
18606
+ #
18607
+ # **FastFile mode**
18608
+ #
18609
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
18610
+ # directly from S3 to the container with no code changes, and provides
18611
+ # file system access to the data. Users can author their training
18612
+ # script to interact with these files as if they were stored on disk.
18613
+ #
18614
+ # `FastFile` mode works best when the data is read sequentially.
18615
+ # Augmented manifest files aren't supported. The startup time is
18616
+ # lower when there are fewer files in the S3 bucket provided.
18427
18617
  #
18428
18618
  #
18429
18619
  #
@@ -18564,7 +18754,7 @@ module Aws::SageMaker
18564
18754
  # },
18565
18755
  # algorithm_specification: { # required
18566
18756
  # training_image: "AlgorithmImage",
18567
- # training_input_mode: "Pipe", # required, accepts Pipe, File
18757
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
18568
18758
  # algorithm_name: "ArnOrName",
18569
18759
  # metric_definitions: [
18570
18760
  # {
@@ -18594,7 +18784,7 @@ module Aws::SageMaker
18594
18784
  # content_type: "ContentType",
18595
18785
  # compression_type: "None", # accepts None, Gzip
18596
18786
  # record_wrapper_type: "None", # accepts None, RecordIO
18597
- # input_mode: "Pipe", # accepts Pipe, File
18787
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
18598
18788
  # shuffle_config: {
18599
18789
  # seed: 1, # required
18600
18790
  # },
@@ -25296,7 +25486,7 @@ module Aws::SageMaker
25296
25486
  # model artifacts.
25297
25487
  #
25298
25488
  # Model artifacts are the output that results from training a model, and
25299
- # typically consist of trained parameters, a model defintion that
25489
+ # typically consist of trained parameters, a model definition that
25300
25490
  # describes how to compute inferences, and other metadata.
25301
25491
  #
25302
25492
  # @!attribute [rw] s3_model_artifacts
@@ -25858,6 +26048,10 @@ module Aws::SageMaker
25858
26048
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
25859
26049
  # @return [Array<Types::Tag>]
25860
26050
  #
26051
+ # @!attribute [rw] customer_metadata_properties
26052
+ # The metadata properties for the model package.
26053
+ # @return [Hash<String,String>]
26054
+ #
25861
26055
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackage AWS API Documentation
25862
26056
  #
25863
26057
  class ModelPackage < Struct.new(
@@ -25880,7 +26074,8 @@ module Aws::SageMaker
25880
26074
  :last_modified_time,
25881
26075
  :last_modified_by,
25882
26076
  :approval_description,
25883
- :tags)
26077
+ :tags,
26078
+ :customer_metadata_properties)
25884
26079
  SENSITIVE = []
25885
26080
  include Aws::Structure
25886
26081
  end
@@ -30082,6 +30277,15 @@ module Aws::SageMaker
30082
30277
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
30083
30278
  # @return [Array<Types::Tag>]
30084
30279
  #
30280
+ # @!attribute [rw] last_modified_time
30281
+ # A timestamp container for when the project was last modified.
30282
+ # @return [Time]
30283
+ #
30284
+ # @!attribute [rw] last_modified_by
30285
+ # Information about the user who created or modified an experiment,
30286
+ # trial, trial component, or project.
30287
+ # @return [Types::UserContext]
30288
+ #
30085
30289
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Project AWS API Documentation
30086
30290
  #
30087
30291
  class Project < Struct.new(
@@ -30094,7 +30298,9 @@ module Aws::SageMaker
30094
30298
  :project_status,
30095
30299
  :created_by,
30096
30300
  :creation_time,
30097
- :tags)
30301
+ :tags,
30302
+ :last_modified_time,
30303
+ :last_modified_by)
30098
30304
  SENSITIVE = []
30099
30305
  include Aws::Structure
30100
30306
  end
@@ -31864,7 +32070,7 @@ module Aws::SageMaker
31864
32070
  #
31865
32071
  # {
31866
32072
  # product_id: "ServiceCatalogEntityId", # required
31867
- # provisioning_artifact_id: "ServiceCatalogEntityId", # required
32073
+ # provisioning_artifact_id: "ServiceCatalogEntityId",
31868
32074
  # path_id: "ServiceCatalogEntityId",
31869
32075
  # provisioning_parameters: [
31870
32076
  # {
@@ -31904,6 +32110,45 @@ module Aws::SageMaker
31904
32110
  include Aws::Structure
31905
32111
  end
31906
32112
 
32113
+ # Details that you specify to provision a service catalog product. For
32114
+ # information about service catalog, see [What is AWS Service
32115
+ # Catalog][1].
32116
+ #
32117
+ #
32118
+ #
32119
+ # [1]: https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html
32120
+ #
32121
+ # @note When making an API call, you may pass ServiceCatalogProvisioningUpdateDetails
32122
+ # data as a hash:
32123
+ #
32124
+ # {
32125
+ # provisioning_artifact_id: "ServiceCatalogEntityId",
32126
+ # provisioning_parameters: [
32127
+ # {
32128
+ # key: "ProvisioningParameterKey",
32129
+ # value: "ProvisioningParameterValue",
32130
+ # },
32131
+ # ],
32132
+ # }
32133
+ #
32134
+ # @!attribute [rw] provisioning_artifact_id
32135
+ # The ID of the provisioning artifact.
32136
+ # @return [String]
32137
+ #
32138
+ # @!attribute [rw] provisioning_parameters
32139
+ # A list of key value pairs that you specify when you provision a
32140
+ # product.
32141
+ # @return [Array<Types::ProvisioningParameter>]
32142
+ #
32143
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ServiceCatalogProvisioningUpdateDetails AWS API Documentation
32144
+ #
32145
+ class ServiceCatalogProvisioningUpdateDetails < Struct.new(
32146
+ :provisioning_artifact_id,
32147
+ :provisioning_parameters)
32148
+ SENSITIVE = []
32149
+ include Aws::Structure
32150
+ end
32151
+
31907
32152
  # Specifies options for sharing SageMaker Studio notebooks. These
31908
32153
  # settings are specified as part of `DefaultUserSettings` when the
31909
32154
  # `CreateDomain` API is called, and as part of `UserSettings` when the
@@ -32422,11 +32667,11 @@ module Aws::SageMaker
32422
32667
  include Aws::Structure
32423
32668
  end
32424
32669
 
32425
- # Specifies a limit to how long a model training job, model compilation
32426
- # job, or hyperparameter tuning job can run. It also specifies how long
32427
- # a managed Spot training job has to complete. When the job reaches the
32428
- # time limit, Amazon SageMaker ends the training or compilation job. Use
32429
- # this API to cap model training costs.
32670
+ # Specifies a limit to how long a model training job or model
32671
+ # compilation job can run. It also specifies how long a managed spot
32672
+ # training job has to complete. When the job reaches the time limit,
32673
+ # Amazon SageMaker ends the training or compilation job. Use this API to
32674
+ # cap model training costs.
32430
32675
  #
32431
32676
  # To stop a training job, Amazon SageMaker sends the algorithm the
32432
32677
  # `SIGTERM` signal, which delays job termination for 120 seconds.
@@ -32588,12 +32833,12 @@ module Aws::SageMaker
32588
32833
  end
32589
32834
 
32590
32835
  # A tag object that consists of a key and an optional value, used to
32591
- # manage metadata for Amazon SageMaker Amazon Web Services resources.
32836
+ # manage metadata for SageMaker Amazon Web Services resources.
32592
32837
  #
32593
32838
  # You can add tags to notebook instances, training jobs, hyperparameter
32594
32839
  # tuning jobs, batch transform jobs, models, labeling jobs, work teams,
32595
32840
  # endpoint configurations, and endpoints. For more information on adding
32596
- # tags to Amazon SageMaker resources, see AddTags.
32841
+ # tags to SageMaker resources, see AddTags.
32597
32842
  #
32598
32843
  # For more information on adding metadata to your Amazon Web Services
32599
32844
  # resources with tagging, see [Tagging Amazon Web Services
@@ -33122,7 +33367,7 @@ module Aws::SageMaker
33122
33367
  # data as a hash:
33123
33368
  #
33124
33369
  # {
33125
- # training_input_mode: "Pipe", # required, accepts Pipe, File
33370
+ # training_input_mode: "Pipe", # required, accepts Pipe, File, FastFile
33126
33371
  # hyper_parameters: {
33127
33372
  # "HyperParameterKey" => "HyperParameterValue",
33128
33373
  # },
@@ -33146,7 +33391,7 @@ module Aws::SageMaker
33146
33391
  # content_type: "ContentType",
33147
33392
  # compression_type: "None", # accepts None, Gzip
33148
33393
  # record_wrapper_type: "None", # accepts None, RecordIO
33149
- # input_mode: "Pipe", # accepts Pipe, File
33394
+ # input_mode: "Pipe", # accepts Pipe, File, FastFile
33150
33395
  # shuffle_config: {
33151
33396
  # seed: 1, # required
33152
33397
  # },
@@ -33169,15 +33414,45 @@ module Aws::SageMaker
33169
33414
  # }
33170
33415
  #
33171
33416
  # @!attribute [rw] training_input_mode
33172
- # The input mode used by the algorithm for the training job. For the
33173
- # input modes that Amazon SageMaker algorithms support, see
33174
- # [Algorithms][1].
33417
+ # The training input mode that the algorithm supports. For more
33418
+ # information about input modes, see [Algorithms][1].
33175
33419
  #
33176
- # If an algorithm supports the `File` input mode, Amazon SageMaker
33177
- # downloads the training data from S3 to the provisioned ML storage
33178
- # Volume, and mounts the directory to docker volume for training
33179
- # container. If an algorithm supports the `Pipe` input mode, Amazon
33180
- # SageMaker streams data directly from S3 to the container.
33420
+ # **Pipe mode**
33421
+ #
33422
+ # If an algorithm supports `Pipe` mode, Amazon SageMaker streams data
33423
+ # directly from Amazon S3 to the container.
33424
+ #
33425
+ # **File mode**
33426
+ #
33427
+ # If an algorithm supports `File` mode, SageMaker downloads the
33428
+ # training data from S3 to the provisioned ML storage volume, and
33429
+ # mounts the directory to the Docker volume for the training
33430
+ # container.
33431
+ #
33432
+ # You must provision the ML storage volume with sufficient capacity to
33433
+ # accommodate the data downloaded from S3. In addition to the training
33434
+ # data, the ML storage volume also stores the output model. The
33435
+ # algorithm container uses the ML storage volume to also store
33436
+ # intermediate information, if any.
33437
+ #
33438
+ # For distributed algorithms, training data is distributed uniformly.
33439
+ # Your training duration is predictable if the input data objects
33440
+ # sizes are approximately the same. SageMaker does not split the files
33441
+ # any further for model training. If the object sizes are skewed,
33442
+ # training won't be optimal as the data distribution is also skewed
33443
+ # when one host in a training cluster is overloaded, thus becoming a
33444
+ # bottleneck in training.
33445
+ #
33446
+ # **FastFile mode**
33447
+ #
33448
+ # If an algorithm supports `FastFile` mode, SageMaker streams data
33449
+ # directly from S3 to the container with no code changes, and provides
33450
+ # file system access to the data. Users can author their training
33451
+ # script to interact with these files as if they were stored on disk.
33452
+ #
33453
+ # `FastFile` mode works best when the data is read sequentially.
33454
+ # Augmented manifest files aren't supported. The startup time is
33455
+ # lower when there are fewer files in the S3 bucket provided.
33181
33456
  #
33182
33457
  #
33183
33458
  #
@@ -33371,7 +33646,7 @@ module Aws::SageMaker
33371
33646
  # is_required: false,
33372
33647
  # supported_content_types: ["ContentType"], # required
33373
33648
  # supported_compression_types: ["None"], # accepts None, Gzip
33374
- # supported_input_modes: ["Pipe"], # required, accepts Pipe, File
33649
+ # supported_input_modes: ["Pipe"], # required, accepts Pipe, File, FastFile
33375
33650
  # },
33376
33651
  # ],
33377
33652
  # supported_tuning_job_objective_metrics: [
@@ -35550,12 +35825,16 @@ module Aws::SageMaker
35550
35825
  #
35551
35826
  # {
35552
35827
  # model_package_arn: "ModelPackageArn", # required
35553
- # model_approval_status: "Approved", # required, accepts Approved, Rejected, PendingManualApproval
35828
+ # model_approval_status: "Approved", # accepts Approved, Rejected, PendingManualApproval
35554
35829
  # approval_description: "ApprovalDescription",
35830
+ # customer_metadata_properties: {
35831
+ # "CustomerMetadataKey" => "CustomerMetadataValue",
35832
+ # },
35833
+ # customer_metadata_properties_to_remove: ["CustomerMetadataKey"],
35555
35834
  # }
35556
35835
  #
35557
35836
  # @!attribute [rw] model_package_arn
35558
- # The Amazon Resource Name (ARN) of the model.
35837
+ # The Amazon Resource Name (ARN) of the model package.
35559
35838
  # @return [String]
35560
35839
  #
35561
35840
  # @!attribute [rw] model_approval_status
@@ -35566,12 +35845,23 @@ module Aws::SageMaker
35566
35845
  # A description for the approval status of the model.
35567
35846
  # @return [String]
35568
35847
  #
35848
+ # @!attribute [rw] customer_metadata_properties
35849
+ # The metadata properties associated with the model package versions.
35850
+ # @return [Hash<String,String>]
35851
+ #
35852
+ # @!attribute [rw] customer_metadata_properties_to_remove
35853
+ # The metadata properties associated with the model package versions
35854
+ # to remove.
35855
+ # @return [Array<String>]
35856
+ #
35569
35857
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateModelPackageInput AWS API Documentation
35570
35858
  #
35571
35859
  class UpdateModelPackageInput < Struct.new(
35572
35860
  :model_package_arn,
35573
35861
  :model_approval_status,
35574
- :approval_description)
35862
+ :approval_description,
35863
+ :customer_metadata_properties,
35864
+ :customer_metadata_properties_to_remove)
35575
35865
  SENSITIVE = []
35576
35866
  include Aws::Structure
35577
35867
  end
@@ -36016,6 +36306,82 @@ module Aws::SageMaker
36016
36306
  include Aws::Structure
36017
36307
  end
36018
36308
 
36309
+ # @note When making an API call, you may pass UpdateProjectInput
36310
+ # data as a hash:
36311
+ #
36312
+ # {
36313
+ # project_name: "ProjectEntityName", # required
36314
+ # project_description: "EntityDescription",
36315
+ # service_catalog_provisioning_update_details: {
36316
+ # provisioning_artifact_id: "ServiceCatalogEntityId",
36317
+ # provisioning_parameters: [
36318
+ # {
36319
+ # key: "ProvisioningParameterKey",
36320
+ # value: "ProvisioningParameterValue",
36321
+ # },
36322
+ # ],
36323
+ # },
36324
+ # tags: [
36325
+ # {
36326
+ # key: "TagKey", # required
36327
+ # value: "TagValue", # required
36328
+ # },
36329
+ # ],
36330
+ # }
36331
+ #
36332
+ # @!attribute [rw] project_name
36333
+ # The name of the project.
36334
+ # @return [String]
36335
+ #
36336
+ # @!attribute [rw] project_description
36337
+ # The description for the project.
36338
+ # @return [String]
36339
+ #
36340
+ # @!attribute [rw] service_catalog_provisioning_update_details
36341
+ # The product ID and provisioning artifact ID to provision a service
36342
+ # catalog. The provisioning artifact ID will default to the latest
36343
+ # provisioning artifact ID of the product, if you don't provide the
36344
+ # provisioning artifact ID. For more information, see [What is AWS
36345
+ # Service Catalog][1].
36346
+ #
36347
+ #
36348
+ #
36349
+ # [1]: https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html
36350
+ # @return [Types::ServiceCatalogProvisioningUpdateDetails]
36351
+ #
36352
+ # @!attribute [rw] tags
36353
+ # An array of key-value pairs. You can use tags to categorize your AWS
36354
+ # resources in different ways, for example, by purpose, owner, or
36355
+ # environment. For more information, see [Tagging AWS Resources][1].
36356
+ #
36357
+ #
36358
+ #
36359
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
36360
+ # @return [Array<Types::Tag>]
36361
+ #
36362
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateProjectInput AWS API Documentation
36363
+ #
36364
+ class UpdateProjectInput < Struct.new(
36365
+ :project_name,
36366
+ :project_description,
36367
+ :service_catalog_provisioning_update_details,
36368
+ :tags)
36369
+ SENSITIVE = []
36370
+ include Aws::Structure
36371
+ end
36372
+
36373
+ # @!attribute [rw] project_arn
36374
+ # The Amazon Resource Name (ARN) of the project.
36375
+ # @return [String]
36376
+ #
36377
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateProjectOutput AWS API Documentation
36378
+ #
36379
+ class UpdateProjectOutput < Struct.new(
36380
+ :project_arn)
36381
+ SENSITIVE = []
36382
+ include Aws::Structure
36383
+ end
36384
+
36019
36385
  # @note When making an API call, you may pass UpdateTrainingJobRequest
36020
36386
  # data as a hash:
36021
36387
  #