aws-sdk-sagemaker 1.0.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,14 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing guide for more information:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws::SageMaker
9
+ module Errors
10
+
11
+ extend Aws::Errors::DynamicErrors
12
+
13
+ end
14
+ end
@@ -0,0 +1,23 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing guide for more information:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws::SageMaker
9
+ class Resource
10
+
11
+ # @param options ({})
12
+ # @option options [Client] :client
13
+ def initialize(options = {})
14
+ @client = options[:client] || Client.new(options)
15
+ end
16
+
17
+ # @return [Client]
18
+ def client
19
+ @client
20
+ end
21
+
22
+ end
23
+ end
@@ -0,0 +1,2514 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing guide for more information:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws::SageMaker
9
+ module Types
10
+
11
+ # @note When making an API call, you may pass AddTagsInput
12
+ # data as a hash:
13
+ #
14
+ # {
15
+ # resource_arn: "ResourceArn", # required
16
+ # tags: [ # required
17
+ # {
18
+ # key: "TagKey", # required
19
+ # value: "TagValue", # required
20
+ # },
21
+ # ],
22
+ # }
23
+ #
24
+ # @!attribute [rw] resource_arn
25
+ # The Amazon Resource Name (ARN) of the resource that you want to tag.
26
+ # @return [String]
27
+ #
28
+ # @!attribute [rw] tags
29
+ # An array of `Tag` objects. Each tag is a key-value pair. Only the
30
+ # `key` parameter is required. If you don't specify a value, Amazon
31
+ # SageMaker sets the value to an empty string.
32
+ # @return [Array<Types::Tag>]
33
+ #
34
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsInput AWS API Documentation
35
+ #
36
+ class AddTagsInput < Struct.new(
37
+ :resource_arn,
38
+ :tags)
39
+ include Aws::Structure
40
+ end
41
+
42
+ # @!attribute [rw] tags
43
+ # A list of tags associated with the Amazon SageMaker resource.
44
+ # @return [Array<Types::Tag>]
45
+ #
46
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
47
+ #
48
+ class AddTagsOutput < Struct.new(
49
+ :tags)
50
+ include Aws::Structure
51
+ end
52
+
53
+ # Specifies the training algorithm to use in a [CreateTrainingJob][1]
54
+ # request.
55
+ #
56
+ # For more information about algorithms provided by Amazon SageMaker,
57
+ # see [Algorithms][2]. For information about using your own algorithms,
58
+ # see [Bring Your Own Algorithms ][3].
59
+ #
60
+ #
61
+ #
62
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html
63
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
64
+ # [3]: http://docs.aws.amazon.com/sagemaker/latest/dg/adv-topics-own-algo.html
65
+ #
66
+ # @note When making an API call, you may pass AlgorithmSpecification
67
+ # data as a hash:
68
+ #
69
+ # {
70
+ # training_image: "AlgorithmImage", # required
71
+ # training_input_mode: "Pipe", # required, accepts Pipe, File
72
+ # }
73
+ #
74
+ # @!attribute [rw] training_image
75
+ # The registry path of the Docker image that contains the training
76
+ # algorithm. For information about using your own algorithms, see
77
+ # [Docker Registry Paths for Algorithms Provided by Amazon SageMaker
78
+ # ][1].
79
+ #
80
+ #
81
+ #
82
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos-docker-registry-paths.html
83
+ # @return [String]
84
+ #
85
+ # @!attribute [rw] training_input_mode
86
+ # The input mode that the algorithm supports. For the input modes that
87
+ # Amazon SageMaker algorithms support, see [Algorithms][1]. If an
88
+ # algorithm supports the `File` input mode, Amazon SageMaker downloads
89
+ # the training data from S3 to the provisioned ML storage Volume, and
90
+ # mounts the directory to docker volume for training container. If an
91
+ # algorithm supports the `Pipe` input mode, Amazon SageMaker streams
92
+ # data directly from S3 to the container.
93
+ #
94
+ # In File mode, make sure you provision ML storage volume with
95
+ # sufficient capacity to accomodate the data download from S3. In
96
+ # addition to the training data, the ML storage volume also stores the
97
+ # output model. The algorithm container use ML storage volume to also
98
+ # store intermediate information, if any.
99
+ #
100
+ # For distributed algorithms using File mode, training data is
101
+ # distributed uniformly, and your training duration is predictable if
102
+ # the input data objects size is approximately same. Amazon SageMaker
103
+ # does not split the files any further for model training. If the
104
+ # object sizes are skewed, training won't be optimal as the data
105
+ # distribution is also skewed where one host in a training cluster is
106
+ # overloaded, thus becoming bottleneck in training.
107
+ #
108
+ #
109
+ #
110
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
111
+ # @return [String]
112
+ #
113
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmSpecification AWS API Documentation
114
+ #
115
+ class AlgorithmSpecification < Struct.new(
116
+ :training_image,
117
+ :training_input_mode)
118
+ include Aws::Structure
119
+ end
120
+
121
+ # A channel is a named input source that training algorithms can
122
+ # consume.
123
+ #
124
+ # @note When making an API call, you may pass Channel
125
+ # data as a hash:
126
+ #
127
+ # {
128
+ # channel_name: "ChannelName", # required
129
+ # data_source: { # required
130
+ # s3_data_source: { # required
131
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
132
+ # s3_uri: "S3Uri", # required
133
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
134
+ # },
135
+ # },
136
+ # content_type: "ContentType",
137
+ # compression_type: "None", # accepts None, Gzip
138
+ # record_wrapper_type: "None", # accepts None, RecordIO
139
+ # }
140
+ #
141
+ # @!attribute [rw] channel_name
142
+ # The name of the channel.
143
+ # @return [String]
144
+ #
145
+ # @!attribute [rw] data_source
146
+ # The location of the channel data.
147
+ # @return [Types::DataSource]
148
+ #
149
+ # @!attribute [rw] content_type
150
+ # The MIME type of the data.
151
+ # @return [String]
152
+ #
153
+ # @!attribute [rw] compression_type
154
+ # If training data is compressed, the compression type. The default
155
+ # value is `None`. `CompressionType` is used only in PIPE input mode.
156
+ # In FILE mode, leave this field unset or set it to None.
157
+ # @return [String]
158
+ #
159
+ # @!attribute [rw] record_wrapper_type
160
+ # Specify RecordIO as the value when input data is in raw format but
161
+ # the training algorithm requires the RecordIO format, in which
162
+ # caseAmazon SageMaker wraps each individual S3 object in a RecordIO
163
+ # record. If the input data is already in RecordIO format, you don't
164
+ # need to set this attribute. For more information, see [Create a
165
+ # Dataset Using RecordIO][1].
166
+ #
167
+ # In FILE mode, leave this field unset or set it to None.
168
+ #
169
+ #
170
+ #
171
+ #
172
+ #
173
+ # [1]: https://mxnet.incubator.apache.org/how_to/recordio.html?highlight=im2rec
174
+ # @return [String]
175
+ #
176
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Channel AWS API Documentation
177
+ #
178
+ class Channel < Struct.new(
179
+ :channel_name,
180
+ :data_source,
181
+ :content_type,
182
+ :compression_type,
183
+ :record_wrapper_type)
184
+ include Aws::Structure
185
+ end
186
+
187
+ # Describes the container, as part of model definition.
188
+ #
189
+ # @note When making an API call, you may pass ContainerDefinition
190
+ # data as a hash:
191
+ #
192
+ # {
193
+ # container_hostname: "ContainerHostname",
194
+ # image: "Image", # required
195
+ # model_data_url: "Url",
196
+ # environment: {
197
+ # "EnvironmentKey" => "EnvironmentValue",
198
+ # },
199
+ # }
200
+ #
201
+ # @!attribute [rw] container_hostname
202
+ # The DNS host name for the container after Amazon SageMaker deploys
203
+ # it.
204
+ # @return [String]
205
+ #
206
+ # @!attribute [rw] image
207
+ # The Amazon EC2 Container Registry (Amazon ECR) path where inference
208
+ # code is stored. If you are using your own custom algorithm instead
209
+ # of an algorithm provided by Amazon SageMaker, the inference code
210
+ # must meet Amazon SageMaker requirements. For more information, see
211
+ # [Using Your Own Algorithms with Amazon SageMaker][1]
212
+ #
213
+ #
214
+ #
215
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
216
+ # @return [String]
217
+ #
218
+ # @!attribute [rw] model_data_url
219
+ # The S3 path where the model artifacts, which result from model
220
+ # training, are stored. This path must point to a single gzip
221
+ # compressed tar archive (.tar.gz suffix).
222
+ # @return [String]
223
+ #
224
+ # @!attribute [rw] environment
225
+ # The environment variables to set in the Docker container. Each key
226
+ # and value in the `Environment` string to string map can have length
227
+ # of up to 1024. We support up to 16 entries in the map.
228
+ # @return [Hash<String,String>]
229
+ #
230
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContainerDefinition AWS API Documentation
231
+ #
232
+ class ContainerDefinition < Struct.new(
233
+ :container_hostname,
234
+ :image,
235
+ :model_data_url,
236
+ :environment)
237
+ include Aws::Structure
238
+ end
239
+
240
+ # @note When making an API call, you may pass CreateEndpointConfigInput
241
+ # data as a hash:
242
+ #
243
+ # {
244
+ # endpoint_config_name: "EndpointConfigName", # required
245
+ # production_variants: [ # required
246
+ # {
247
+ # variant_name: "VariantName", # required
248
+ # model_name: "ModelName", # required
249
+ # initial_instance_count: 1, # required
250
+ # instance_type: "ml.c4.2xlarge", # required, accepts ml.c4.2xlarge, ml.c4.8xlarge, ml.c4.xlarge, ml.c5.2xlarge, ml.c5.9xlarge, ml.c5.xlarge, ml.m4.xlarge, ml.p2.xlarge, ml.p3.2xlarge, ml.t2.medium
251
+ # initial_variant_weight: 1.0,
252
+ # },
253
+ # ],
254
+ # tags: [
255
+ # {
256
+ # key: "TagKey", # required
257
+ # value: "TagValue", # required
258
+ # },
259
+ # ],
260
+ # }
261
+ #
262
+ # @!attribute [rw] endpoint_config_name
263
+ # The name of the endpoint configuration. You specify this name in a
264
+ # [CreateEndpoint][1] request.
265
+ #
266
+ #
267
+ #
268
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html
269
+ # @return [String]
270
+ #
271
+ # @!attribute [rw] production_variants
272
+ # An array of `ProductionVariant` objects, one for each model that you
273
+ # want to host at this endpoint.
274
+ # @return [Array<Types::ProductionVariant>]
275
+ #
276
+ # @!attribute [rw] tags
277
+ # An array of key-value pairs. For more information, see [Using Cost
278
+ # Allocation Tags][1] in the *AWS Billing and Cost Management User
279
+ # Guide*.
280
+ #
281
+ #
282
+ #
283
+ # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
284
+ # @return [Array<Types::Tag>]
285
+ #
286
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointConfigInput AWS API Documentation
287
+ #
288
+ class CreateEndpointConfigInput < Struct.new(
289
+ :endpoint_config_name,
290
+ :production_variants,
291
+ :tags)
292
+ include Aws::Structure
293
+ end
294
+
295
+ # @!attribute [rw] endpoint_config_arn
296
+ # The Amazon Resource Name (ARN) of the endpoint configuration.
297
+ # @return [String]
298
+ #
299
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointConfigOutput AWS API Documentation
300
+ #
301
+ class CreateEndpointConfigOutput < Struct.new(
302
+ :endpoint_config_arn)
303
+ include Aws::Structure
304
+ end
305
+
306
+ # @note When making an API call, you may pass CreateEndpointInput
307
+ # data as a hash:
308
+ #
309
+ # {
310
+ # endpoint_name: "EndpointName", # required
311
+ # endpoint_config_name: "EndpointConfigName", # required
312
+ # tags: [
313
+ # {
314
+ # key: "TagKey", # required
315
+ # value: "TagValue", # required
316
+ # },
317
+ # ],
318
+ # }
319
+ #
320
+ # @!attribute [rw] endpoint_name
321
+ # The name of the endpoint. The name must be unique within an AWS
322
+ # Region in your AWS account.
323
+ # @return [String]
324
+ #
325
+ # @!attribute [rw] endpoint_config_name
326
+ # The name of an endpoint configuration. For more information, see
327
+ # [CreateEndpointConfig][1].
328
+ #
329
+ #
330
+ #
331
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html
332
+ # @return [String]
333
+ #
334
+ # @!attribute [rw] tags
335
+ # An array of key-value pairs. For more information, see [Using Cost
336
+ # Allocation Tags][1]in the *AWS Billing and Cost Management User
337
+ # Guide*.
338
+ #
339
+ #
340
+ #
341
+ # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
342
+ # @return [Array<Types::Tag>]
343
+ #
344
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointInput AWS API Documentation
345
+ #
346
+ class CreateEndpointInput < Struct.new(
347
+ :endpoint_name,
348
+ :endpoint_config_name,
349
+ :tags)
350
+ include Aws::Structure
351
+ end
352
+
353
+ # @!attribute [rw] endpoint_arn
354
+ # The Amazon Resource Name (ARN) of the endpoint.
355
+ # @return [String]
356
+ #
357
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointOutput AWS API Documentation
358
+ #
359
+ class CreateEndpointOutput < Struct.new(
360
+ :endpoint_arn)
361
+ include Aws::Structure
362
+ end
363
+
364
+ # @note When making an API call, you may pass CreateModelInput
365
+ # data as a hash:
366
+ #
367
+ # {
368
+ # model_name: "ModelName", # required
369
+ # primary_container: { # required
370
+ # container_hostname: "ContainerHostname",
371
+ # image: "Image", # required
372
+ # model_data_url: "Url",
373
+ # environment: {
374
+ # "EnvironmentKey" => "EnvironmentValue",
375
+ # },
376
+ # },
377
+ # supplemental_containers: [
378
+ # {
379
+ # container_hostname: "ContainerHostname",
380
+ # image: "Image", # required
381
+ # model_data_url: "Url",
382
+ # environment: {
383
+ # "EnvironmentKey" => "EnvironmentValue",
384
+ # },
385
+ # },
386
+ # ],
387
+ # execution_role_arn: "RoleArn",
388
+ # tags: [
389
+ # {
390
+ # key: "TagKey", # required
391
+ # value: "TagValue", # required
392
+ # },
393
+ # ],
394
+ # }
395
+ #
396
+ # @!attribute [rw] model_name
397
+ # The name of the new model.
398
+ # @return [String]
399
+ #
400
+ # @!attribute [rw] primary_container
401
+ # The location of the primary docker image containing inference code,
402
+ # associated artifacts, and custom environment map that the inference
403
+ # code uses when the model is deployed into production.
404
+ # @return [Types::ContainerDefinition]
405
+ #
406
+ # @!attribute [rw] supplemental_containers
407
+ # The additional optional containers to deploy.
408
+ # @return [Array<Types::ContainerDefinition>]
409
+ #
410
+ # @!attribute [rw] execution_role_arn
411
+ # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
412
+ # can assume to access model artifacts and docker image for deployment
413
+ # on ML compute instances. Deploying on ML compute instances is part
414
+ # of model hosting. For more information, see [Amazon SageMaker
415
+ # Roles][1].
416
+ #
417
+ #
418
+ #
419
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
420
+ # @return [String]
421
+ #
422
+ # @!attribute [rw] tags
423
+ # An array of key-value pairs. For more information, see [Using Cost
424
+ # Allocation Tags][1] in the *AWS Billing and Cost Management User
425
+ # Guide*.
426
+ #
427
+ #
428
+ #
429
+ # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
430
+ # @return [Array<Types::Tag>]
431
+ #
432
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelInput AWS API Documentation
433
+ #
434
+ class CreateModelInput < Struct.new(
435
+ :model_name,
436
+ :primary_container,
437
+ :supplemental_containers,
438
+ :execution_role_arn,
439
+ :tags)
440
+ include Aws::Structure
441
+ end
442
+
443
+ # @!attribute [rw] model_arn
444
+ # The ARN of the model created in Amazon SageMaker.
445
+ # @return [String]
446
+ #
447
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
448
+ #
449
+ class CreateModelOutput < Struct.new(
450
+ :model_arn)
451
+ include Aws::Structure
452
+ end
453
+
454
+ # @note When making an API call, you may pass CreateNotebookInstanceInput
455
+ # data as a hash:
456
+ #
457
+ # {
458
+ # notebook_instance_name: "NotebookInstanceName", # required
459
+ # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.m4.xlarge, ml.p2.xlarge
460
+ # subnet_id: "SubnetId",
461
+ # security_group_ids: ["SecurityGroupId"],
462
+ # role_arn: "RoleArn", # required
463
+ # kms_key_id: "KmsKeyId",
464
+ # tags: [
465
+ # {
466
+ # key: "TagKey", # required
467
+ # value: "TagValue", # required
468
+ # },
469
+ # ],
470
+ # }
471
+ #
472
+ # @!attribute [rw] notebook_instance_name
473
+ # The name of the new notebook instance.
474
+ # @return [String]
475
+ #
476
+ # @!attribute [rw] instance_type
477
+ # The type of ML compute instance to launch for the notebook instance.
478
+ # @return [String]
479
+ #
480
+ # @!attribute [rw] subnet_id
481
+ # The ID of the subnet in a VPC to which you would like to have a
482
+ # connectivity from your ML compute instance.
483
+ # @return [String]
484
+ #
485
+ # @!attribute [rw] security_group_ids
486
+ # The VPC security group IDs, in the form sg-xxxxxxxx. The security
487
+ # groups must be for the same VPC as specified in the subnet.
488
+ # @return [Array<String>]
489
+ #
490
+ # @!attribute [rw] role_arn
491
+ # When you send any requests to AWS resources from the notebook
492
+ # instance, Amazon SageMaker assumes this role to perform tasks on
493
+ # your behalf. You must grant this role necessary permissions so
494
+ # Amazon SageMaker can perform these tasks. The policy must allow the
495
+ # Amazon SageMaker service principal (sagemaker.amazonaws.com)
496
+ # permissions to assume this role. For more information, see [Amazon
497
+ # SageMaker Roles][1].
498
+ #
499
+ #
500
+ #
501
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
502
+ # @return [String]
503
+ #
504
+ # @!attribute [rw] kms_key_id
505
+ # If you provide a AWS KMS key ID, Amazon SageMaker uses it to encrypt
506
+ # data at rest on the ML storage volume that is attached to your
507
+ # notebook instance.
508
+ # @return [String]
509
+ #
510
+ # @!attribute [rw] tags
511
+ # A list of tags to associate with the notebook instance. You can add
512
+ # tags later by using the `CreateTags` API.
513
+ # @return [Array<Types::Tag>]
514
+ #
515
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateNotebookInstanceInput AWS API Documentation
516
+ #
517
+ class CreateNotebookInstanceInput < Struct.new(
518
+ :notebook_instance_name,
519
+ :instance_type,
520
+ :subnet_id,
521
+ :security_group_ids,
522
+ :role_arn,
523
+ :kms_key_id,
524
+ :tags)
525
+ include Aws::Structure
526
+ end
527
+
528
+ # @!attribute [rw] notebook_instance_arn
529
+ # The Amazon Resource Name (ARN) of the notebook instance.
530
+ # @return [String]
531
+ #
532
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateNotebookInstanceOutput AWS API Documentation
533
+ #
534
+ class CreateNotebookInstanceOutput < Struct.new(
535
+ :notebook_instance_arn)
536
+ include Aws::Structure
537
+ end
538
+
539
+ # @note When making an API call, you may pass CreatePresignedNotebookInstanceUrlInput
540
+ # data as a hash:
541
+ #
542
+ # {
543
+ # notebook_instance_name: "NotebookInstanceName", # required
544
+ # session_expiration_duration_in_seconds: 1,
545
+ # }
546
+ #
547
+ # @!attribute [rw] notebook_instance_name
548
+ # The name of the notebook instance.
549
+ # @return [String]
550
+ #
551
+ # @!attribute [rw] session_expiration_duration_in_seconds
552
+ # The duration of the session, in seconds. The default is 12 hours.
553
+ # @return [Integer]
554
+ #
555
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrlInput AWS API Documentation
556
+ #
557
+ class CreatePresignedNotebookInstanceUrlInput < Struct.new(
558
+ :notebook_instance_name,
559
+ :session_expiration_duration_in_seconds)
560
+ include Aws::Structure
561
+ end
562
+
563
+ # @!attribute [rw] authorized_url
564
+ # A JSON object that contains the URL string.
565
+ # @return [String]
566
+ #
567
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrlOutput AWS API Documentation
568
+ #
569
+ class CreatePresignedNotebookInstanceUrlOutput < Struct.new(
570
+ :authorized_url)
571
+ include Aws::Structure
572
+ end
573
+
574
+ # @note When making an API call, you may pass CreateTrainingJobRequest
575
+ # data as a hash:
576
+ #
577
+ # {
578
+ # training_job_name: "TrainingJobName", # required
579
+ # hyper_parameters: {
580
+ # "ParameterKey" => "ParameterValue",
581
+ # },
582
+ # algorithm_specification: { # required
583
+ # training_image: "AlgorithmImage", # required
584
+ # training_input_mode: "Pipe", # required, accepts Pipe, File
585
+ # },
586
+ # role_arn: "RoleArn", # required
587
+ # input_data_config: [ # required
588
+ # {
589
+ # channel_name: "ChannelName", # required
590
+ # data_source: { # required
591
+ # s3_data_source: { # required
592
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
593
+ # s3_uri: "S3Uri", # required
594
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
595
+ # },
596
+ # },
597
+ # content_type: "ContentType",
598
+ # compression_type: "None", # accepts None, Gzip
599
+ # record_wrapper_type: "None", # accepts None, RecordIO
600
+ # },
601
+ # ],
602
+ # output_data_config: { # required
603
+ # kms_key_id: "KmsKeyId",
604
+ # s3_output_path: "S3Uri", # required
605
+ # },
606
+ # resource_config: { # required
607
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
608
+ # instance_count: 1, # required
609
+ # volume_size_in_gb: 1, # required
610
+ # },
611
+ # stopping_condition: { # required
612
+ # max_runtime_in_seconds: 1,
613
+ # },
614
+ # tags: [
615
+ # {
616
+ # key: "TagKey", # required
617
+ # value: "TagValue", # required
618
+ # },
619
+ # ],
620
+ # }
621
+ #
622
+ # @!attribute [rw] training_job_name
623
+ # The name of the training job. The name must be unique within an AWS
624
+ # Region in an AWS account. It appears in the Amazon SageMaker
625
+ # console.
626
+ # @return [String]
627
+ #
628
+ # @!attribute [rw] hyper_parameters
629
+ # Algorithm-specific parameters. You set hyperparameters before you
630
+ # start the learning process. Hyperparameters influence the quality of
631
+ # the model. For a list of hyperparameters for each training algorithm
632
+ # provided by Amazon SageMaker, see [Algorithms][1].
633
+ #
634
+ # You can specify a maximum of 100 hyperparameters. Each
635
+ # hyperparameter is a key-value pair. Each key and value is limited to
636
+ # 256 characters, as specified by the `Length Constraint`.
637
+ #
638
+ #
639
+ #
640
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
641
+ # @return [Hash<String,String>]
642
+ #
643
+ # @!attribute [rw] algorithm_specification
644
+ # The registry path of the Docker image that contains the training
645
+ # algorithm and algorithm-specific metadata, including the input mode.
646
+ # For more information about algorithms provided by Amazon SageMaker,
647
+ # see [Algorithms][1]. For information about providing your own
648
+ # algorithms, see [Bring Your Own Algorithms ][2].
649
+ #
650
+ #
651
+ #
652
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
653
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/adv-topics-own-algo.html
654
+ # @return [Types::AlgorithmSpecification]
655
+ #
656
+ # @!attribute [rw] role_arn
657
+ # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
658
+ # can assume to perform tasks on your behalf.
659
+ #
660
+ # During model training, Amazon SageMaker needs your permission to
661
+ # read input data from an S3 bucket, download a Docker image that
662
+ # contains training code, write model artifacts to an S3 bucket, write
663
+ # logs to Amazon CloudWatch Logs, and publish metrics to Amazon
664
+ # CloudWatch. You grant permissions for all of these tasks to an IAM
665
+ # role. For more information, see [Amazon SageMaker Roles][1].
666
+ #
667
+ #
668
+ #
669
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
670
+ # @return [String]
671
+ #
672
+ # @!attribute [rw] input_data_config
673
+ # An array of `Channel` objects. Each channel is a named input source.
674
+ # `InputDataConfig` describes the input data and its location.
675
+ #
676
+ # Algorithms can accept input data from one or more channels. For
677
+ # example, an algorithm might have two channels of input data,
678
+ # `training_data` and `validation_data`. The configuration for each
679
+ # channel provides the S3 location where the input data is stored. It
680
+ # also provides information about the stored data: the MIME type,
681
+ # compression method, and whether the data is wrapped in RecordIO
682
+ # format.
683
+ #
684
+ # Depending on the input mode that the algorithm supports, Amazon
685
+ # SageMaker either copies input data files from an S3 bucket to a
686
+ # local directory in the Docker container, or makes it available as
687
+ # input streams.
688
+ # @return [Array<Types::Channel>]
689
+ #
690
+ # @!attribute [rw] output_data_config
691
+ # Specifies the path to the S3 bucket where you want to store model
692
+ # artifacts. Amazon SageMaker creates subfolders for the artifacts.
693
+ # @return [Types::OutputDataConfig]
694
+ #
695
+ # @!attribute [rw] resource_config
696
+ # The resources, including the ML compute instances and ML storage
697
+ # volumes, to use for model training.
698
+ #
699
+ # ML storage volumes store model artifacts and incremental states.
700
+ # Training algorithms might also use ML storage volumes for scratch
701
+ # space. If you want Amazon SageMaker to use the ML storage volume to
702
+ # store the training data, choose `File` as the `TrainingInputMode` in
703
+ # the algorithm specification. For distributed training algorithms,
704
+ # specify an instance count greater than 1.
705
+ # @return [Types::ResourceConfig]
706
+ #
707
+ # @!attribute [rw] stopping_condition
708
+ # Sets a duration for training. Use this parameter to cap model
709
+ # training costs. To stop a job, Amazon SageMaker sends the algorithm
710
+ # the `SIGTERM` signal, which delays job termination for 120 seconds.
711
+ # Algorithms might use this 120-second window to save the model
712
+ # artifacts.
713
+ #
714
+ # When Amazon SageMaker terminates a job because the stopping
715
+ # condition has been met, training algorithms provided by Amazon
716
+ # SageMaker save the intermediate results of the job. This
717
+ # intermediate data is a valid model artifact. You can use it to
718
+ # create a model using the `CreateModel` API.
719
+ # @return [Types::StoppingCondition]
720
+ #
721
+ # @!attribute [rw] tags
722
+ # An array of key-value pairs. For more information, see [Using Cost
723
+ # Allocation Tags][1] in the *AWS Billing and Cost Management User
724
+ # Guide*.
725
+ #
726
+ #
727
+ #
728
+ # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
729
+ # @return [Array<Types::Tag>]
730
+ #
731
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
732
+ #
733
+ class CreateTrainingJobRequest < Struct.new(
734
+ :training_job_name,
735
+ :hyper_parameters,
736
+ :algorithm_specification,
737
+ :role_arn,
738
+ :input_data_config,
739
+ :output_data_config,
740
+ :resource_config,
741
+ :stopping_condition,
742
+ :tags)
743
+ include Aws::Structure
744
+ end
745
+
746
+ # @!attribute [rw] training_job_arn
747
+ # The Amazon Resource Name (ARN) of the training job.
748
+ # @return [String]
749
+ #
750
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobResponse AWS API Documentation
751
+ #
752
+ class CreateTrainingJobResponse < Struct.new(
753
+ :training_job_arn)
754
+ include Aws::Structure
755
+ end
756
+
757
+ # Describes the location of the channel data.
758
+ #
759
+ # @note When making an API call, you may pass DataSource
760
+ # data as a hash:
761
+ #
762
+ # {
763
+ # s3_data_source: { # required
764
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
765
+ # s3_uri: "S3Uri", # required
766
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
767
+ # },
768
+ # }
769
+ #
770
+ # @!attribute [rw] s3_data_source
771
+ # The S3 location of the data source that is associated with a
772
+ # channel.
773
+ # @return [Types::S3DataSource]
774
+ #
775
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataSource AWS API Documentation
776
+ #
777
+ class DataSource < Struct.new(
778
+ :s3_data_source)
779
+ include Aws::Structure
780
+ end
781
+
782
+ # @note When making an API call, you may pass DeleteEndpointConfigInput
783
+ # data as a hash:
784
+ #
785
+ # {
786
+ # endpoint_config_name: "EndpointConfigName", # required
787
+ # }
788
+ #
789
+ # @!attribute [rw] endpoint_config_name
790
+ # The name of the endpoint configuration that you want to delete.
791
+ # @return [String]
792
+ #
793
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteEndpointConfigInput AWS API Documentation
794
+ #
795
+ class DeleteEndpointConfigInput < Struct.new(
796
+ :endpoint_config_name)
797
+ include Aws::Structure
798
+ end
799
+
800
+ # @note When making an API call, you may pass DeleteEndpointInput
801
+ # data as a hash:
802
+ #
803
+ # {
804
+ # endpoint_name: "EndpointName", # required
805
+ # }
806
+ #
807
+ # @!attribute [rw] endpoint_name
808
+ # The name of the endpoint that you want to delete.
809
+ # @return [String]
810
+ #
811
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteEndpointInput AWS API Documentation
812
+ #
813
+ class DeleteEndpointInput < Struct.new(
814
+ :endpoint_name)
815
+ include Aws::Structure
816
+ end
817
+
818
+ # @note When making an API call, you may pass DeleteModelInput
819
+ # data as a hash:
820
+ #
821
+ # {
822
+ # model_name: "ModelName", # required
823
+ # }
824
+ #
825
+ # @!attribute [rw] model_name
826
+ # The name of the model to delete.
827
+ # @return [String]
828
+ #
829
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteModelInput AWS API Documentation
830
+ #
831
+ class DeleteModelInput < Struct.new(
832
+ :model_name)
833
+ include Aws::Structure
834
+ end
835
+
836
+ # @note When making an API call, you may pass DeleteNotebookInstanceInput
837
+ # data as a hash:
838
+ #
839
+ # {
840
+ # notebook_instance_name: "NotebookInstanceName", # required
841
+ # }
842
+ #
843
+ # @!attribute [rw] notebook_instance_name
844
+ # The name of the Amazon SageMaker notebook instance to delete.
845
+ # @return [String]
846
+ #
847
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
848
+ #
849
+ class DeleteNotebookInstanceInput < Struct.new(
850
+ :notebook_instance_name)
851
+ include Aws::Structure
852
+ end
853
+
854
+ # @note When making an API call, you may pass DeleteTagsInput
855
+ # data as a hash:
856
+ #
857
+ # {
858
+ # resource_arn: "ResourceArn", # required
859
+ # tag_keys: ["TagKey"], # required
860
+ # }
861
+ #
862
+ # @!attribute [rw] resource_arn
863
+ # The Amazon Resource Name (ARN) of the resource whose tags you want
864
+ # to delete.
865
+ # @return [String]
866
+ #
867
+ # @!attribute [rw] tag_keys
868
+ # An array or one or more tag keys to delete.
869
+ # @return [Array<String>]
870
+ #
871
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteTagsInput AWS API Documentation
872
+ #
873
+ class DeleteTagsInput < Struct.new(
874
+ :resource_arn,
875
+ :tag_keys)
876
+ include Aws::Structure
877
+ end
878
+
879
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteTagsOutput AWS API Documentation
880
+ #
881
+ class DeleteTagsOutput < Aws::EmptyStructure; end
882
+
883
+ # @note When making an API call, you may pass DescribeEndpointConfigInput
884
+ # data as a hash:
885
+ #
886
+ # {
887
+ # endpoint_config_name: "EndpointConfigName", # required
888
+ # }
889
+ #
890
+ # @!attribute [rw] endpoint_config_name
891
+ # The name of the endpoint configuration.
892
+ # @return [String]
893
+ #
894
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointConfigInput AWS API Documentation
895
+ #
896
+ class DescribeEndpointConfigInput < Struct.new(
897
+ :endpoint_config_name)
898
+ include Aws::Structure
899
+ end
900
+
901
+ # @!attribute [rw] endpoint_config_name
902
+ # Name of the Amazon SageMaker endpoint configuration.
903
+ # @return [String]
904
+ #
905
+ # @!attribute [rw] endpoint_config_arn
906
+ # The Amazon Resource Name (ARN) of the endpoint configuration.
907
+ # @return [String]
908
+ #
909
+ # @!attribute [rw] production_variants
910
+ # An array of `ProductionVariant` objects, one for each model that you
911
+ # want to host at this endpoint.
912
+ # @return [Array<Types::ProductionVariant>]
913
+ #
914
+ # @!attribute [rw] creation_time
915
+ # A timestamp that shows when the endpoint configuration was created.
916
+ # @return [Time]
917
+ #
918
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointConfigOutput AWS API Documentation
919
+ #
920
+ class DescribeEndpointConfigOutput < Struct.new(
921
+ :endpoint_config_name,
922
+ :endpoint_config_arn,
923
+ :production_variants,
924
+ :creation_time)
925
+ include Aws::Structure
926
+ end
927
+
928
+ # @note When making an API call, you may pass DescribeEndpointInput
929
+ # data as a hash:
930
+ #
931
+ # {
932
+ # endpoint_name: "EndpointName", # required
933
+ # }
934
+ #
935
+ # @!attribute [rw] endpoint_name
936
+ # The name of the endpoint.
937
+ # @return [String]
938
+ #
939
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointInput AWS API Documentation
940
+ #
941
+ class DescribeEndpointInput < Struct.new(
942
+ :endpoint_name)
943
+ include Aws::Structure
944
+ end
945
+
946
+ # @!attribute [rw] endpoint_name
947
+ # Name of the endpoint.
948
+ # @return [String]
949
+ #
950
+ # @!attribute [rw] endpoint_arn
951
+ # The Amazon Resource Name (ARN) of the endpoint.
952
+ # @return [String]
953
+ #
954
+ # @!attribute [rw] endpoint_config_name
955
+ # The name of the endpoint configuration associated with this
956
+ # endpoint.
957
+ # @return [String]
958
+ #
959
+ # @!attribute [rw] production_variants
960
+ # An array of ProductionVariant objects, one for each model hosted
961
+ # behind this endpoint.
962
+ # @return [Array<Types::ProductionVariantSummary>]
963
+ #
964
+ # @!attribute [rw] endpoint_status
965
+ # The status of the endpoint.
966
+ # @return [String]
967
+ #
968
+ # @!attribute [rw] failure_reason
969
+ # If the status of the endpoint is `Failed`, the reason why it failed.
970
+ # @return [String]
971
+ #
972
+ # @!attribute [rw] creation_time
973
+ # A timestamp that shows when the endpoint was created.
974
+ # @return [Time]
975
+ #
976
+ # @!attribute [rw] last_modified_time
977
+ # A timestamp that shows when the endpoint was last modified.
978
+ # @return [Time]
979
+ #
980
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointOutput AWS API Documentation
981
+ #
982
+ class DescribeEndpointOutput < Struct.new(
983
+ :endpoint_name,
984
+ :endpoint_arn,
985
+ :endpoint_config_name,
986
+ :production_variants,
987
+ :endpoint_status,
988
+ :failure_reason,
989
+ :creation_time,
990
+ :last_modified_time)
991
+ include Aws::Structure
992
+ end
993
+
994
+ # @note When making an API call, you may pass DescribeModelInput
995
+ # data as a hash:
996
+ #
997
+ # {
998
+ # model_name: "ModelName", # required
999
+ # }
1000
+ #
1001
+ # @!attribute [rw] model_name
1002
+ # The name of the model.
1003
+ # @return [String]
1004
+ #
1005
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelInput AWS API Documentation
1006
+ #
1007
+ class DescribeModelInput < Struct.new(
1008
+ :model_name)
1009
+ include Aws::Structure
1010
+ end
1011
+
1012
+ # @!attribute [rw] model_name
1013
+ # Name of the Amazon SageMaker model.
1014
+ # @return [String]
1015
+ #
1016
+ # @!attribute [rw] primary_container
1017
+ # The location of the primary inference code, associated artifacts,
1018
+ # and custom environment map that the inference code uses when it is
1019
+ # deployed in production.
1020
+ # @return [Types::ContainerDefinition]
1021
+ #
1022
+ # @!attribute [rw] supplemental_containers
1023
+ # The description of additional optional containers that you defined
1024
+ # when creating the model.
1025
+ # @return [Array<Types::ContainerDefinition>]
1026
+ #
1027
+ # @!attribute [rw] execution_role_arn
1028
+ # The Amazon Resource Name (ARN) of the IAM role that you specified
1029
+ # for the model.
1030
+ # @return [String]
1031
+ #
1032
+ # @!attribute [rw] creation_time
1033
+ # A timestamp that shows when the model was created.
1034
+ # @return [Time]
1035
+ #
1036
+ # @!attribute [rw] model_arn
1037
+ # The Amazon Resource Name (ARN) of the model.
1038
+ # @return [String]
1039
+ #
1040
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelOutput AWS API Documentation
1041
+ #
1042
+ class DescribeModelOutput < Struct.new(
1043
+ :model_name,
1044
+ :primary_container,
1045
+ :supplemental_containers,
1046
+ :execution_role_arn,
1047
+ :creation_time,
1048
+ :model_arn)
1049
+ include Aws::Structure
1050
+ end
1051
+
1052
+ # @note When making an API call, you may pass DescribeNotebookInstanceInput
1053
+ # data as a hash:
1054
+ #
1055
+ # {
1056
+ # notebook_instance_name: "NotebookInstanceName", # required
1057
+ # }
1058
+ #
1059
+ # @!attribute [rw] notebook_instance_name
1060
+ # The name of the notebook instance that you want information about.
1061
+ # @return [String]
1062
+ #
1063
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeNotebookInstanceInput AWS API Documentation
1064
+ #
1065
+ class DescribeNotebookInstanceInput < Struct.new(
1066
+ :notebook_instance_name)
1067
+ include Aws::Structure
1068
+ end
1069
+
1070
+ # @!attribute [rw] notebook_instance_arn
1071
+ # The Amazon Resource Name (ARN) of the notebook instance.
1072
+ # @return [String]
1073
+ #
1074
+ # @!attribute [rw] notebook_instance_name
1075
+ # Name of the Amazon SageMaker notebook instance.
1076
+ # @return [String]
1077
+ #
1078
+ # @!attribute [rw] notebook_instance_status
1079
+ # The status of the notebook instance.
1080
+ # @return [String]
1081
+ #
1082
+ # @!attribute [rw] failure_reason
1083
+ # If staus is failed, the reason it failed.
1084
+ # @return [String]
1085
+ #
1086
+ # @!attribute [rw] url
1087
+ # The URL that you use to connect to the Jupyter notebook that is
1088
+ # running in your notebook instance.
1089
+ # @return [String]
1090
+ #
1091
+ # @!attribute [rw] instance_type
1092
+ # The type of ML compute instance running on the notebook instance.
1093
+ # @return [String]
1094
+ #
1095
+ # @!attribute [rw] subnet_id
1096
+ # The ID of the VPC subnet.
1097
+ # @return [String]
1098
+ #
1099
+ # @!attribute [rw] security_groups
1100
+ # The IDs of the VPC security groups.
1101
+ # @return [Array<String>]
1102
+ #
1103
+ # @!attribute [rw] role_arn
1104
+ # Amazon Resource Name (ARN) of the IAM role associated with the
1105
+ # instance.
1106
+ # @return [String]
1107
+ #
1108
+ # @!attribute [rw] kms_key_id
1109
+ # AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it
1110
+ # on the ML storage volume attached to the instance.
1111
+ # @return [String]
1112
+ #
1113
+ # @!attribute [rw] network_interface_id
1114
+ # Network interface IDs that Amazon SageMaker created at the time of
1115
+ # creating the instance.
1116
+ # @return [String]
1117
+ #
1118
+ # @!attribute [rw] last_modified_time
1119
+ # A timestamp. Use this parameter to retrieve the time when the
1120
+ # notebook instance was last modified.
1121
+ # @return [Time]
1122
+ #
1123
+ # @!attribute [rw] creation_time
1124
+ # A timestamp. Use this parameter to return the time when the notebook
1125
+ # instance was created
1126
+ # @return [Time]
1127
+ #
1128
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeNotebookInstanceOutput AWS API Documentation
1129
+ #
1130
+ class DescribeNotebookInstanceOutput < Struct.new(
1131
+ :notebook_instance_arn,
1132
+ :notebook_instance_name,
1133
+ :notebook_instance_status,
1134
+ :failure_reason,
1135
+ :url,
1136
+ :instance_type,
1137
+ :subnet_id,
1138
+ :security_groups,
1139
+ :role_arn,
1140
+ :kms_key_id,
1141
+ :network_interface_id,
1142
+ :last_modified_time,
1143
+ :creation_time)
1144
+ include Aws::Structure
1145
+ end
1146
+
1147
+ # @note When making an API call, you may pass DescribeTrainingJobRequest
1148
+ # data as a hash:
1149
+ #
1150
+ # {
1151
+ # training_job_name: "TrainingJobName", # required
1152
+ # }
1153
+ #
1154
+ # @!attribute [rw] training_job_name
1155
+ # The name of the training job.
1156
+ # @return [String]
1157
+ #
1158
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobRequest AWS API Documentation
1159
+ #
1160
+ class DescribeTrainingJobRequest < Struct.new(
1161
+ :training_job_name)
1162
+ include Aws::Structure
1163
+ end
1164
+
1165
+ # @!attribute [rw] training_job_name
1166
+ # Name of the model training job.
1167
+ # @return [String]
1168
+ #
1169
+ # @!attribute [rw] training_job_arn
1170
+ # The Amazon Resource Name (ARN) of the training job.
1171
+ # @return [String]
1172
+ #
1173
+ # @!attribute [rw] model_artifacts
1174
+ # Information about the Amazon S3 location that is configured for
1175
+ # storing model artifacts.
1176
+ # @return [Types::ModelArtifacts]
1177
+ #
1178
+ # @!attribute [rw] training_job_status
1179
+ # The status of the training job.
1180
+ #
1181
+ # For the `InProgress` status, Amazon SageMaker can return these
1182
+ # secondary statuses:
1183
+ #
1184
+ # * Starting - Preparing for training.
1185
+ #
1186
+ # * Downloading - Optional stage for algorithms that support File
1187
+ # training input mode. It indicates data is being downloaded to ML
1188
+ # storage volumes.
1189
+ #
1190
+ # * Training - Training is in progress.
1191
+ #
1192
+ # * Uploading - Training is complete and model upload is in progress.
1193
+ #
1194
+ # For the `Stopped` training status, Amazon SageMaker can return these
1195
+ # secondary statuses:
1196
+ #
1197
+ # * MaxRuntimeExceeded - Job stopped as a result of maximum allowed
1198
+ # runtime exceeded.
1199
+ #
1200
+ # ^
1201
+ # @return [String]
1202
+ #
1203
+ # @!attribute [rw] secondary_status
1204
+ # Provides granular information about the system state. For more
1205
+ # information, see `TrainingJobStatus`.
1206
+ # @return [String]
1207
+ #
1208
+ # @!attribute [rw] failure_reason
1209
+ # If the training job failed, the reason it failed.
1210
+ # @return [String]
1211
+ #
1212
+ # @!attribute [rw] hyper_parameters
1213
+ # Algorithm-specific parameters.
1214
+ # @return [Hash<String,String>]
1215
+ #
1216
+ # @!attribute [rw] algorithm_specification
1217
+ # Information about the algorithm used for training, and algorithm
1218
+ # metadata.
1219
+ # @return [Types::AlgorithmSpecification]
1220
+ #
1221
+ # @!attribute [rw] role_arn
1222
+ # The AWS Identity and Access Management (IAM) role configured for the
1223
+ # training job.
1224
+ # @return [String]
1225
+ #
1226
+ # @!attribute [rw] input_data_config
1227
+ # An array of `Channel` objects that describes each data input
1228
+ # channel.
1229
+ # @return [Array<Types::Channel>]
1230
+ #
1231
+ # @!attribute [rw] output_data_config
1232
+ # The S3 path where model artifacts that you configured when creating
1233
+ # the job are stored. Amazon SageMaker creates subfolders for model
1234
+ # artifacts.
1235
+ # @return [Types::OutputDataConfig]
1236
+ #
1237
+ # @!attribute [rw] resource_config
1238
+ # Resources, including ML compute instances and ML storage volumes,
1239
+ # that are configured for model training.
1240
+ # @return [Types::ResourceConfig]
1241
+ #
1242
+ # @!attribute [rw] stopping_condition
1243
+ # The condition under which to stop the training job.
1244
+ # @return [Types::StoppingCondition]
1245
+ #
1246
+ # @!attribute [rw] creation_time
1247
+ # A timestamp that indicates when the training job was created.
1248
+ # @return [Time]
1249
+ #
1250
+ # @!attribute [rw] training_start_time
1251
+ # A timestamp that indicates when training started.
1252
+ # @return [Time]
1253
+ #
1254
+ # @!attribute [rw] training_end_time
1255
+ # A timestamp that indicates when model training ended.
1256
+ # @return [Time]
1257
+ #
1258
+ # @!attribute [rw] last_modified_time
1259
+ # A timestamp that indicates when the status of the training job was
1260
+ # last modified.
1261
+ # @return [Time]
1262
+ #
1263
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
1264
+ #
1265
+ class DescribeTrainingJobResponse < Struct.new(
1266
+ :training_job_name,
1267
+ :training_job_arn,
1268
+ :model_artifacts,
1269
+ :training_job_status,
1270
+ :secondary_status,
1271
+ :failure_reason,
1272
+ :hyper_parameters,
1273
+ :algorithm_specification,
1274
+ :role_arn,
1275
+ :input_data_config,
1276
+ :output_data_config,
1277
+ :resource_config,
1278
+ :stopping_condition,
1279
+ :creation_time,
1280
+ :training_start_time,
1281
+ :training_end_time,
1282
+ :last_modified_time)
1283
+ include Aws::Structure
1284
+ end
1285
+
1286
+ # Specifies weight and capacity values for a production variant.
1287
+ #
1288
+ # @note When making an API call, you may pass DesiredWeightAndCapacity
1289
+ # data as a hash:
1290
+ #
1291
+ # {
1292
+ # variant_name: "VariantName", # required
1293
+ # desired_weight: 1.0,
1294
+ # desired_instance_count: 1,
1295
+ # }
1296
+ #
1297
+ # @!attribute [rw] variant_name
1298
+ # The name of the variant to update.
1299
+ # @return [String]
1300
+ #
1301
+ # @!attribute [rw] desired_weight
1302
+ # The variant's weight.
1303
+ # @return [Float]
1304
+ #
1305
+ # @!attribute [rw] desired_instance_count
1306
+ # The variant's capacity.
1307
+ # @return [Integer]
1308
+ #
1309
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DesiredWeightAndCapacity AWS API Documentation
1310
+ #
1311
+ class DesiredWeightAndCapacity < Struct.new(
1312
+ :variant_name,
1313
+ :desired_weight,
1314
+ :desired_instance_count)
1315
+ include Aws::Structure
1316
+ end
1317
+
1318
+ # Provides summary information for an endpoint configuration.
1319
+ #
1320
+ # @!attribute [rw] endpoint_config_name
1321
+ # The name of the endpoint configuration.
1322
+ # @return [String]
1323
+ #
1324
+ # @!attribute [rw] endpoint_config_arn
1325
+ # The Amazon Resource Name (ARN) of the endpoint configuration.
1326
+ # @return [String]
1327
+ #
1328
+ # @!attribute [rw] creation_time
1329
+ # A timestamp that shows when the endpoint configuration was created.
1330
+ # @return [Time]
1331
+ #
1332
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EndpointConfigSummary AWS API Documentation
1333
+ #
1334
+ class EndpointConfigSummary < Struct.new(
1335
+ :endpoint_config_name,
1336
+ :endpoint_config_arn,
1337
+ :creation_time)
1338
+ include Aws::Structure
1339
+ end
1340
+
1341
+ # Provides summary information for an endpoint.
1342
+ #
1343
+ # @!attribute [rw] endpoint_name
1344
+ # The name of the endpoint.
1345
+ # @return [String]
1346
+ #
1347
+ # @!attribute [rw] endpoint_arn
1348
+ # The Amazon Resource Name (ARN) of the endpoint.
1349
+ # @return [String]
1350
+ #
1351
+ # @!attribute [rw] creation_time
1352
+ # A timestamp that shows when the endpoint was created.
1353
+ # @return [Time]
1354
+ #
1355
+ # @!attribute [rw] last_modified_time
1356
+ # A timestamp that shows when the endpoint was last modified.
1357
+ # @return [Time]
1358
+ #
1359
+ # @!attribute [rw] endpoint_status
1360
+ # The status of the endpoint.
1361
+ # @return [String]
1362
+ #
1363
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EndpointSummary AWS API Documentation
1364
+ #
1365
+ class EndpointSummary < Struct.new(
1366
+ :endpoint_name,
1367
+ :endpoint_arn,
1368
+ :creation_time,
1369
+ :last_modified_time,
1370
+ :endpoint_status)
1371
+ include Aws::Structure
1372
+ end
1373
+
1374
+ # @note When making an API call, you may pass ListEndpointConfigsInput
1375
+ # data as a hash:
1376
+ #
1377
+ # {
1378
+ # sort_by: "Name", # accepts Name, CreationTime
1379
+ # sort_order: "Ascending", # accepts Ascending, Descending
1380
+ # next_token: "PaginationToken",
1381
+ # max_results: 1,
1382
+ # name_contains: "EndpointConfigNameContains",
1383
+ # creation_time_before: Time.now,
1384
+ # creation_time_after: Time.now,
1385
+ # }
1386
+ #
1387
+ # @!attribute [rw] sort_by
1388
+ # The field to sort results by. The default is `CreationTime`.
1389
+ # @return [String]
1390
+ #
1391
+ # @!attribute [rw] sort_order
1392
+ # The sort order for results. The default is `Ascending`.
1393
+ # @return [String]
1394
+ #
1395
+ # @!attribute [rw] next_token
1396
+ # If the result of the previous `ListEndpointConfig` request was
1397
+ # truncated, the response includes a `NextToken`. To retrieve the next
1398
+ # set of endpoint configurations, use the token in the next request.
1399
+ # @return [String]
1400
+ #
1401
+ # @!attribute [rw] max_results
1402
+ # The maximum number of training jobs to return in the response.
1403
+ # @return [Integer]
1404
+ #
1405
+ # @!attribute [rw] name_contains
1406
+ # A string in the endpoint configuration name. This filter returns
1407
+ # only endpoint configurations whose name contains the specified
1408
+ # string.
1409
+ # @return [String]
1410
+ #
1411
+ # @!attribute [rw] creation_time_before
1412
+ # A filter that returns only endpoint configurations created before
1413
+ # the specified time (timestamp).
1414
+ # @return [Time]
1415
+ #
1416
+ # @!attribute [rw] creation_time_after
1417
+ # A filter that returns only endpoint configurations created after the
1418
+ # specified time (timestamp).
1419
+ # @return [Time]
1420
+ #
1421
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpointConfigsInput AWS API Documentation
1422
+ #
1423
+ class ListEndpointConfigsInput < Struct.new(
1424
+ :sort_by,
1425
+ :sort_order,
1426
+ :next_token,
1427
+ :max_results,
1428
+ :name_contains,
1429
+ :creation_time_before,
1430
+ :creation_time_after)
1431
+ include Aws::Structure
1432
+ end
1433
+
1434
+ # @!attribute [rw] endpoint_configs
1435
+ # An array of endpoint configurations.
1436
+ # @return [Array<Types::EndpointConfigSummary>]
1437
+ #
1438
+ # @!attribute [rw] next_token
1439
+ # If the response is truncated, Amazon SageMaker returns this token.
1440
+ # To retrieve the next set of endpoint configurations, use it in the
1441
+ # subsequent request
1442
+ # @return [String]
1443
+ #
1444
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpointConfigsOutput AWS API Documentation
1445
+ #
1446
+ class ListEndpointConfigsOutput < Struct.new(
1447
+ :endpoint_configs,
1448
+ :next_token)
1449
+ include Aws::Structure
1450
+ end
1451
+
1452
+ # @note When making an API call, you may pass ListEndpointsInput
1453
+ # data as a hash:
1454
+ #
1455
+ # {
1456
+ # sort_by: "Name", # accepts Name, CreationTime, Status
1457
+ # sort_order: "Ascending", # accepts Ascending, Descending
1458
+ # next_token: "PaginationToken",
1459
+ # max_results: 1,
1460
+ # name_contains: "EndpointNameContains",
1461
+ # creation_time_before: Time.now,
1462
+ # creation_time_after: Time.now,
1463
+ # last_modified_time_before: Time.now,
1464
+ # last_modified_time_after: Time.now,
1465
+ # status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, RollingBack, InService, Deleting, Failed
1466
+ # }
1467
+ #
1468
+ # @!attribute [rw] sort_by
1469
+ # Sorts the list of results. The default is `CreationTime`.
1470
+ # @return [String]
1471
+ #
1472
+ # @!attribute [rw] sort_order
1473
+ # The sort order for results. The default is `Ascending`.
1474
+ # @return [String]
1475
+ #
1476
+ # @!attribute [rw] next_token
1477
+ # If the result of a `ListEndpoints` request was truncated, the
1478
+ # response includes a `NextToken`. To retrieve the next set of
1479
+ # endpoints, use the token in the next request.
1480
+ # @return [String]
1481
+ #
1482
+ # @!attribute [rw] max_results
1483
+ # The maximum number of endpoints to return in the response.
1484
+ # @return [Integer]
1485
+ #
1486
+ # @!attribute [rw] name_contains
1487
+ # A string in endpoint names. This filter returns only endpoints whose
1488
+ # name contains the specified string.
1489
+ # @return [String]
1490
+ #
1491
+ # @!attribute [rw] creation_time_before
1492
+ # A filter that returns only endpoints that were created before the
1493
+ # specified time (timestamp).
1494
+ # @return [Time]
1495
+ #
1496
+ # @!attribute [rw] creation_time_after
1497
+ # A filter that returns only endpoints that were created after the
1498
+ # specified time (timestamp).
1499
+ # @return [Time]
1500
+ #
1501
+ # @!attribute [rw] last_modified_time_before
1502
+ # A filter that returns only endpoints that were modified before the
1503
+ # specified timestamp.
1504
+ # @return [Time]
1505
+ #
1506
+ # @!attribute [rw] last_modified_time_after
1507
+ # A filter that returns only endpoints that were modified after the
1508
+ # specified timestamp.
1509
+ # @return [Time]
1510
+ #
1511
+ # @!attribute [rw] status_equals
1512
+ # A filter that returns only endpoints with the specified status.
1513
+ # @return [String]
1514
+ #
1515
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpointsInput AWS API Documentation
1516
+ #
1517
+ class ListEndpointsInput < Struct.new(
1518
+ :sort_by,
1519
+ :sort_order,
1520
+ :next_token,
1521
+ :max_results,
1522
+ :name_contains,
1523
+ :creation_time_before,
1524
+ :creation_time_after,
1525
+ :last_modified_time_before,
1526
+ :last_modified_time_after,
1527
+ :status_equals)
1528
+ include Aws::Structure
1529
+ end
1530
+
1531
+ # @!attribute [rw] endpoints
1532
+ # An array or endpoint objects.
1533
+ # @return [Array<Types::EndpointSummary>]
1534
+ #
1535
+ # @!attribute [rw] next_token
1536
+ # If the response is truncated, Amazon SageMaker returns this token.
1537
+ # To retrieve the next set of training jobs, use it in the subsequent
1538
+ # request.
1539
+ # @return [String]
1540
+ #
1541
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpointsOutput AWS API Documentation
1542
+ #
1543
+ class ListEndpointsOutput < Struct.new(
1544
+ :endpoints,
1545
+ :next_token)
1546
+ include Aws::Structure
1547
+ end
1548
+
1549
+ # @note When making an API call, you may pass ListModelsInput
1550
+ # data as a hash:
1551
+ #
1552
+ # {
1553
+ # sort_by: "Name", # accepts Name, CreationTime
1554
+ # sort_order: "Ascending", # accepts Ascending, Descending
1555
+ # next_token: "PaginationToken",
1556
+ # max_results: 1,
1557
+ # name_contains: "ModelNameContains",
1558
+ # creation_time_before: Time.now,
1559
+ # creation_time_after: Time.now,
1560
+ # }
1561
+ #
1562
+ # @!attribute [rw] sort_by
1563
+ # Sorts the list of results. The default is `CreationTime`.
1564
+ # @return [String]
1565
+ #
1566
+ # @!attribute [rw] sort_order
1567
+ # The sort order for results. The default is `Ascending`.
1568
+ # @return [String]
1569
+ #
1570
+ # @!attribute [rw] next_token
1571
+ # If the response to a previous `ListModels` request was truncated,
1572
+ # the response includes a `NextToken`. To retrieve the next set of
1573
+ # models, use the token in the next request.
1574
+ # @return [String]
1575
+ #
1576
+ # @!attribute [rw] max_results
1577
+ # The maximum number of models to return in the response.
1578
+ # @return [Integer]
1579
+ #
1580
+ # @!attribute [rw] name_contains
1581
+ # A string in the training job name. This filter returns only models
1582
+ # in the training job whose name contains the specified string.
1583
+ # @return [String]
1584
+ #
1585
+ # @!attribute [rw] creation_time_before
1586
+ # A filter that returns only models created before the specified time
1587
+ # (timestamp).
1588
+ # @return [Time]
1589
+ #
1590
+ # @!attribute [rw] creation_time_after
1591
+ # A filter that returns only models created after the specified time
1592
+ # (timestamp).
1593
+ # @return [Time]
1594
+ #
1595
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsInput AWS API Documentation
1596
+ #
1597
+ class ListModelsInput < Struct.new(
1598
+ :sort_by,
1599
+ :sort_order,
1600
+ :next_token,
1601
+ :max_results,
1602
+ :name_contains,
1603
+ :creation_time_before,
1604
+ :creation_time_after)
1605
+ include Aws::Structure
1606
+ end
1607
+
1608
+ # @!attribute [rw] models
1609
+ # An array of `ModelSummary` objects, each of which lists a model.
1610
+ # @return [Array<Types::ModelSummary>]
1611
+ #
1612
+ # @!attribute [rw] next_token
1613
+ # If the response is truncated, Amazon SageMaker returns this token.
1614
+ # To retrieve the next set of models, use it in the subsequent
1615
+ # request.
1616
+ # @return [String]
1617
+ #
1618
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
1619
+ #
1620
+ class ListModelsOutput < Struct.new(
1621
+ :models,
1622
+ :next_token)
1623
+ include Aws::Structure
1624
+ end
1625
+
1626
+ # @note When making an API call, you may pass ListNotebookInstancesInput
1627
+ # data as a hash:
1628
+ #
1629
+ # {
1630
+ # next_token: "NextToken",
1631
+ # max_results: 1,
1632
+ # sort_by: "Name", # accepts Name, CreationTime, Status
1633
+ # sort_order: "Ascending", # accepts Ascending, Descending
1634
+ # name_contains: "NotebookInstanceNameContains",
1635
+ # creation_time_before: Time.now,
1636
+ # creation_time_after: Time.now,
1637
+ # last_modified_time_before: Time.now,
1638
+ # last_modified_time_after: Time.now,
1639
+ # status_equals: "Pending", # accepts Pending, InService, Stopping, Stopped, Failed, Deleting
1640
+ # }
1641
+ #
1642
+ # @!attribute [rw] next_token
1643
+ # If the previous call to the `ListNotebookInstances` is truncated,
1644
+ # the response includes a `NextToken`. You can use this token in your
1645
+ # subsequent `ListNotebookInstances` request to fetch the next set of
1646
+ # notebook instances.
1647
+ #
1648
+ # <note markdown="1"> You might specify a filter or a sort order in your request. When
1649
+ # response is truncated, you must use the same values for the filer
1650
+ # and sort order in the next request.
1651
+ #
1652
+ # </note>
1653
+ # @return [String]
1654
+ #
1655
+ # @!attribute [rw] max_results
1656
+ # The maximum number of notebook instances to return.
1657
+ # @return [Integer]
1658
+ #
1659
+ # @!attribute [rw] sort_by
1660
+ # The field to sort results by. The default is `Name`.
1661
+ # @return [String]
1662
+ #
1663
+ # @!attribute [rw] sort_order
1664
+ # The sort order for results.
1665
+ # @return [String]
1666
+ #
1667
+ # @!attribute [rw] name_contains
1668
+ # A string in the notebook instances' name. This filter returns only
1669
+ # notebook instances whose name contains the specified string.
1670
+ # @return [String]
1671
+ #
1672
+ # @!attribute [rw] creation_time_before
1673
+ # A filter that returns only notebook instances that were created
1674
+ # before the specified time (timestamp).
1675
+ # @return [Time]
1676
+ #
1677
+ # @!attribute [rw] creation_time_after
1678
+ # A filter that returns only notebook instances that were created
1679
+ # after the specified time (timestamp).
1680
+ # @return [Time]
1681
+ #
1682
+ # @!attribute [rw] last_modified_time_before
1683
+ # A filter that returns only notebook instances that were modified
1684
+ # before the specified time (timestamp).
1685
+ # @return [Time]
1686
+ #
1687
+ # @!attribute [rw] last_modified_time_after
1688
+ # A filter that returns only notebook instances that were modified
1689
+ # after the specified time (timestamp).
1690
+ # @return [Time]
1691
+ #
1692
+ # @!attribute [rw] status_equals
1693
+ # A filter that returns only notebook instances with the specified
1694
+ # status.
1695
+ # @return [String]
1696
+ #
1697
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListNotebookInstancesInput AWS API Documentation
1698
+ #
1699
+ class ListNotebookInstancesInput < Struct.new(
1700
+ :next_token,
1701
+ :max_results,
1702
+ :sort_by,
1703
+ :sort_order,
1704
+ :name_contains,
1705
+ :creation_time_before,
1706
+ :creation_time_after,
1707
+ :last_modified_time_before,
1708
+ :last_modified_time_after,
1709
+ :status_equals)
1710
+ include Aws::Structure
1711
+ end
1712
+
1713
+ # @!attribute [rw] next_token
1714
+ # If the response to the previous `ListNotebookInstances` request was
1715
+ # truncated, Amazon SageMaker returns this token. To retrieve the next
1716
+ # set of notebook instances, use the token in the next request.
1717
+ # @return [String]
1718
+ #
1719
+ # @!attribute [rw] notebook_instances
1720
+ # An array of `NotebookInstanceSummary` objects, one for each notebook
1721
+ # instance.
1722
+ # @return [Array<Types::NotebookInstanceSummary>]
1723
+ #
1724
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListNotebookInstancesOutput AWS API Documentation
1725
+ #
1726
+ class ListNotebookInstancesOutput < Struct.new(
1727
+ :next_token,
1728
+ :notebook_instances)
1729
+ include Aws::Structure
1730
+ end
1731
+
1732
+ # @note When making an API call, you may pass ListTagsInput
1733
+ # data as a hash:
1734
+ #
1735
+ # {
1736
+ # resource_arn: "ResourceArn", # required
1737
+ # next_token: "NextToken",
1738
+ # max_results: 1,
1739
+ # }
1740
+ #
1741
+ # @!attribute [rw] resource_arn
1742
+ # The Amazon Resource Name (ARN) of the resource whose tags you want
1743
+ # to retrieve.
1744
+ # @return [String]
1745
+ #
1746
+ # @!attribute [rw] next_token
1747
+ # If the response to the previous `ListTags` request is truncated,
1748
+ # Amazon SageMaker returns this token. To retrieve the next set of
1749
+ # tags, use it in the subsequent request.
1750
+ # @return [String]
1751
+ #
1752
+ # @!attribute [rw] max_results
1753
+ # Maximum number of tags to return.
1754
+ # @return [Integer]
1755
+ #
1756
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTagsInput AWS API Documentation
1757
+ #
1758
+ class ListTagsInput < Struct.new(
1759
+ :resource_arn,
1760
+ :next_token,
1761
+ :max_results)
1762
+ include Aws::Structure
1763
+ end
1764
+
1765
+ # @!attribute [rw] tags
1766
+ # An array of `Tag` objects, each with a tag key and a value.
1767
+ # @return [Array<Types::Tag>]
1768
+ #
1769
+ # @!attribute [rw] next_token
1770
+ # If response is truncated, Amazon SageMaker includes a token in the
1771
+ # response. You can use this token in your subsequent request to fetch
1772
+ # next set of tokens.
1773
+ # @return [String]
1774
+ #
1775
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTagsOutput AWS API Documentation
1776
+ #
1777
+ class ListTagsOutput < Struct.new(
1778
+ :tags,
1779
+ :next_token)
1780
+ include Aws::Structure
1781
+ end
1782
+
1783
+ # @note When making an API call, you may pass ListTrainingJobsRequest
1784
+ # data as a hash:
1785
+ #
1786
+ # {
1787
+ # next_token: "NextToken",
1788
+ # max_results: 1,
1789
+ # creation_time_after: Time.now,
1790
+ # creation_time_before: Time.now,
1791
+ # last_modified_time_after: Time.now,
1792
+ # last_modified_time_before: Time.now,
1793
+ # name_contains: "NameContains",
1794
+ # status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
1795
+ # sort_by: "Name", # accepts Name, CreationTime, Status
1796
+ # sort_order: "Ascending", # accepts Ascending, Descending
1797
+ # }
1798
+ #
1799
+ # @!attribute [rw] next_token
1800
+ # If the result of the previous `ListTrainingJobs` request was
1801
+ # truncated, the response includes a `NextToken`. To retrieve the next
1802
+ # set of training jobs, use the token in the next request.
1803
+ # @return [String]
1804
+ #
1805
+ # @!attribute [rw] max_results
1806
+ # The maximum number of training jobs to return in the response.
1807
+ # @return [Integer]
1808
+ #
1809
+ # @!attribute [rw] creation_time_after
1810
+ # A filter that only training jobs created after the specified time
1811
+ # (timestamp).
1812
+ # @return [Time]
1813
+ #
1814
+ # @!attribute [rw] creation_time_before
1815
+ # A filter that returns only training jobs created before the
1816
+ # specified time (timestamp).
1817
+ # @return [Time]
1818
+ #
1819
+ # @!attribute [rw] last_modified_time_after
1820
+ # A filter that returns only training jobs modified after the
1821
+ # specified time (timestamp).
1822
+ # @return [Time]
1823
+ #
1824
+ # @!attribute [rw] last_modified_time_before
1825
+ # A filter that returns only training jobs modified before the
1826
+ # specified time (timestamp).
1827
+ # @return [Time]
1828
+ #
1829
+ # @!attribute [rw] name_contains
1830
+ # A string in the training job name. This filter returns only models
1831
+ # whose name contains the specified string.
1832
+ # @return [String]
1833
+ #
1834
+ # @!attribute [rw] status_equals
1835
+ # A filter that retrieves only training jobs with a specific status.
1836
+ # @return [String]
1837
+ #
1838
+ # @!attribute [rw] sort_by
1839
+ # The field to sort results by. The default is `CreationTime`.
1840
+ # @return [String]
1841
+ #
1842
+ # @!attribute [rw] sort_order
1843
+ # The sort order for results. The default is `Ascending`.
1844
+ # @return [String]
1845
+ #
1846
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTrainingJobsRequest AWS API Documentation
1847
+ #
1848
+ class ListTrainingJobsRequest < Struct.new(
1849
+ :next_token,
1850
+ :max_results,
1851
+ :creation_time_after,
1852
+ :creation_time_before,
1853
+ :last_modified_time_after,
1854
+ :last_modified_time_before,
1855
+ :name_contains,
1856
+ :status_equals,
1857
+ :sort_by,
1858
+ :sort_order)
1859
+ include Aws::Structure
1860
+ end
1861
+
1862
+ # @!attribute [rw] training_job_summaries
1863
+ # An array of `TrainingJobSummary` objects, each listing a training
1864
+ # job.
1865
+ # @return [Array<Types::TrainingJobSummary>]
1866
+ #
1867
+ # @!attribute [rw] next_token
1868
+ # If the response is truncated, Amazon SageMaker returns this token.
1869
+ # To retrieve the next set of training jobs, use it in the subsequent
1870
+ # request.
1871
+ # @return [String]
1872
+ #
1873
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTrainingJobsResponse AWS API Documentation
1874
+ #
1875
+ class ListTrainingJobsResponse < Struct.new(
1876
+ :training_job_summaries,
1877
+ :next_token)
1878
+ include Aws::Structure
1879
+ end
1880
+
1881
+ # Provides information about the location that is configured for storing
1882
+ # model artifacts.
1883
+ #
1884
+ # @!attribute [rw] s3_model_artifacts
1885
+ # The path of the S3 object that contains the model artifacts. For
1886
+ # example, `s3://bucket-name/keynameprefix/model.tar.gz`.
1887
+ # @return [String]
1888
+ #
1889
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelArtifacts AWS API Documentation
1890
+ #
1891
+ class ModelArtifacts < Struct.new(
1892
+ :s3_model_artifacts)
1893
+ include Aws::Structure
1894
+ end
1895
+
1896
+ # Provides summary information about a model.
1897
+ #
1898
+ # @!attribute [rw] model_name
1899
+ # The name of the model that you want a summary for.
1900
+ # @return [String]
1901
+ #
1902
+ # @!attribute [rw] model_arn
1903
+ # The Amazon Resource Name (ARN) of the model.
1904
+ # @return [String]
1905
+ #
1906
+ # @!attribute [rw] creation_time
1907
+ # A timestamp that indicates when the model was created.
1908
+ # @return [Time]
1909
+ #
1910
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelSummary AWS API Documentation
1911
+ #
1912
+ class ModelSummary < Struct.new(
1913
+ :model_name,
1914
+ :model_arn,
1915
+ :creation_time)
1916
+ include Aws::Structure
1917
+ end
1918
+
1919
+ # Provides summary information for an Amazon SageMaker notebook
1920
+ # instance.
1921
+ #
1922
+ # @!attribute [rw] notebook_instance_name
1923
+ # The name of the notebook instance that you want a summary for.
1924
+ # @return [String]
1925
+ #
1926
+ # @!attribute [rw] notebook_instance_arn
1927
+ # The Amazon Resource Name (ARN) of the notebook instance.
1928
+ # @return [String]
1929
+ #
1930
+ # @!attribute [rw] notebook_instance_status
1931
+ # The status of the notebook instance.
1932
+ # @return [String]
1933
+ #
1934
+ # @!attribute [rw] url
1935
+ # The URL that you use to connect to the Jupyter instance running in
1936
+ # your notebook instance.
1937
+ # @return [String]
1938
+ #
1939
+ # @!attribute [rw] instance_type
1940
+ # The type of ML compute instance that the notebook instance is
1941
+ # running on.
1942
+ # @return [String]
1943
+ #
1944
+ # @!attribute [rw] creation_time
1945
+ # A timestamp that shows when the notebook instance was created.
1946
+ # @return [Time]
1947
+ #
1948
+ # @!attribute [rw] last_modified_time
1949
+ # A timestamp that shows when the notebook instance was last modified.
1950
+ # @return [Time]
1951
+ #
1952
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/NotebookInstanceSummary AWS API Documentation
1953
+ #
1954
+ class NotebookInstanceSummary < Struct.new(
1955
+ :notebook_instance_name,
1956
+ :notebook_instance_arn,
1957
+ :notebook_instance_status,
1958
+ :url,
1959
+ :instance_type,
1960
+ :creation_time,
1961
+ :last_modified_time)
1962
+ include Aws::Structure
1963
+ end
1964
+
1965
+ # Provides information about how to store model training results (model
1966
+ # artifacts).
1967
+ #
1968
+ # @note When making an API call, you may pass OutputDataConfig
1969
+ # data as a hash:
1970
+ #
1971
+ # {
1972
+ # kms_key_id: "KmsKeyId",
1973
+ # s3_output_path: "S3Uri", # required
1974
+ # }
1975
+ #
1976
+ # @!attribute [rw] kms_key_id
1977
+ # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
1978
+ # uses to encrypt the model artifacts at rest using Amazon S3
1979
+ # server-side encryption.
1980
+ #
1981
+ # <note markdown="1"> If the configuration of the output S3 bucket requires server-side
1982
+ # encryption for objects, and you don't provide the KMS key ID,
1983
+ # Amazon SageMaker uses the default service key. For more information,
1984
+ # see [KMS-Managed Encryption Keys][1] in Amazon Simple Storage
1985
+ # Service developer guide.
1986
+ #
1987
+ # </note>
1988
+ #
1989
+ # <note markdown="1"> The KMS key policy must grant permission to the IAM role you specify
1990
+ # in your `CreateTrainingJob` request. [Using Key Policies in AWS
1991
+ # KMS][2] in the AWS Key Management Service Developer Guide.
1992
+ #
1993
+ # </note>
1994
+ #
1995
+ #
1996
+ #
1997
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
1998
+ # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
1999
+ # @return [String]
2000
+ #
2001
+ # @!attribute [rw] s3_output_path
2002
+ # Identifies the S3 path where you want Amazon SageMaker to store the
2003
+ # model artifacts. For example, `s3://bucket-name/key-name-prefix`.
2004
+ # @return [String]
2005
+ #
2006
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
2007
+ #
2008
+ class OutputDataConfig < Struct.new(
2009
+ :kms_key_id,
2010
+ :s3_output_path)
2011
+ include Aws::Structure
2012
+ end
2013
+
2014
+ # Identifies a model that you want to host and the resources to deploy
2015
+ # for hosting it. If you are deploying multiple models, tell Amazon
2016
+ # SageMaker how to distribute traffic among the models by specifying
2017
+ # variant weights.
2018
+ #
2019
+ # @note When making an API call, you may pass ProductionVariant
2020
+ # data as a hash:
2021
+ #
2022
+ # {
2023
+ # variant_name: "VariantName", # required
2024
+ # model_name: "ModelName", # required
2025
+ # initial_instance_count: 1, # required
2026
+ # instance_type: "ml.c4.2xlarge", # required, accepts ml.c4.2xlarge, ml.c4.8xlarge, ml.c4.xlarge, ml.c5.2xlarge, ml.c5.9xlarge, ml.c5.xlarge, ml.m4.xlarge, ml.p2.xlarge, ml.p3.2xlarge, ml.t2.medium
2027
+ # initial_variant_weight: 1.0,
2028
+ # }
2029
+ #
2030
+ # @!attribute [rw] variant_name
2031
+ # The name of the production variant.
2032
+ # @return [String]
2033
+ #
2034
+ # @!attribute [rw] model_name
2035
+ # The name of the model that you want to host. This is the name that
2036
+ # you specified when creating the model.
2037
+ # @return [String]
2038
+ #
2039
+ # @!attribute [rw] initial_instance_count
2040
+ # Number of instances to launch initially.
2041
+ # @return [Integer]
2042
+ #
2043
+ # @!attribute [rw] instance_type
2044
+ # The ML compute instance type.
2045
+ # @return [String]
2046
+ #
2047
+ # @!attribute [rw] initial_variant_weight
2048
+ # Determines initial traffic distribution among all of the models that
2049
+ # you specify in the endpoint configuration. The traffic to a
2050
+ # production variant is determined by the ratio of the `VariantWeight`
2051
+ # to the sum of all `VariantWeight` values across all
2052
+ # ProductionVariants. If unspecified, it defaults to 1.0.
2053
+ # @return [Float]
2054
+ #
2055
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
2056
+ #
2057
+ class ProductionVariant < Struct.new(
2058
+ :variant_name,
2059
+ :model_name,
2060
+ :initial_instance_count,
2061
+ :instance_type,
2062
+ :initial_variant_weight)
2063
+ include Aws::Structure
2064
+ end
2065
+
2066
+ # Describes weight and capacities for a production variant associated
2067
+ # with an endpoint. If you sent a request to the
2068
+ # `UpdateWeightAndCapacities` API and the endpoint status is `Updating`,
2069
+ # you get different desired and current values.
2070
+ #
2071
+ # @!attribute [rw] variant_name
2072
+ # The name of the variant.
2073
+ # @return [String]
2074
+ #
2075
+ # @!attribute [rw] current_weight
2076
+ # The weight associated with the variant.
2077
+ # @return [Float]
2078
+ #
2079
+ # @!attribute [rw] desired_weight
2080
+ # The requested weight, as specified in the
2081
+ # `UpdateWeightAndCapacities` request.
2082
+ # @return [Float]
2083
+ #
2084
+ # @!attribute [rw] current_instance_count
2085
+ # The number of instances associated with the variant.
2086
+ # @return [Integer]
2087
+ #
2088
+ # @!attribute [rw] desired_instance_count
2089
+ # The number of instances requested in the `UpdateWeightAndCapacities`
2090
+ # request.
2091
+ # @return [Integer]
2092
+ #
2093
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
2094
+ #
2095
+ class ProductionVariantSummary < Struct.new(
2096
+ :variant_name,
2097
+ :current_weight,
2098
+ :desired_weight,
2099
+ :current_instance_count,
2100
+ :desired_instance_count)
2101
+ include Aws::Structure
2102
+ end
2103
+
2104
+ # Describes the resources, including ML compute instances and ML storage
2105
+ # volumes, to use for model training.
2106
+ #
2107
+ # @note When making an API call, you may pass ResourceConfig
2108
+ # data as a hash:
2109
+ #
2110
+ # {
2111
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
2112
+ # instance_count: 1, # required
2113
+ # volume_size_in_gb: 1, # required
2114
+ # }
2115
+ #
2116
+ # @!attribute [rw] instance_type
2117
+ # The ML compute instance type.
2118
+ # @return [String]
2119
+ #
2120
+ # @!attribute [rw] instance_count
2121
+ # The number of ML compute instances to use. For distributed training,
2122
+ # provide a value greater than 1.
2123
+ # @return [Integer]
2124
+ #
2125
+ # @!attribute [rw] volume_size_in_gb
2126
+ # The size of the ML storage volume that you want to provision.
2127
+ #
2128
+ # ML storage volumes store model artifacts and incremental states.
2129
+ # Training algorithms might also use the ML storage volume for scratch
2130
+ # space. If you want to store the training data in the ML storage
2131
+ # volume, choose `File` as the `TrainingInputMode` in the algorithm
2132
+ # specification.
2133
+ #
2134
+ # You must specify sufficient ML storage for your scenario.
2135
+ #
2136
+ # <note markdown="1"> Amazon SageMaker supports only the General Purpose SSD (gp2) ML
2137
+ # storage volume type.
2138
+ #
2139
+ # </note>
2140
+ # @return [Integer]
2141
+ #
2142
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ResourceConfig AWS API Documentation
2143
+ #
2144
+ class ResourceConfig < Struct.new(
2145
+ :instance_type,
2146
+ :instance_count,
2147
+ :volume_size_in_gb)
2148
+ include Aws::Structure
2149
+ end
2150
+
2151
+ # Describes the S3 data source.
2152
+ #
2153
+ # @note When making an API call, you may pass S3DataSource
2154
+ # data as a hash:
2155
+ #
2156
+ # {
2157
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
2158
+ # s3_uri: "S3Uri", # required
2159
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
2160
+ # }
2161
+ #
2162
+ # @!attribute [rw] s3_data_type
2163
+ # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
2164
+ # Amazon SageMaker uses all objects with the specified key name prefix
2165
+ # for model training.
2166
+ #
2167
+ # If you choose `ManifestFile`, `S3Uri` identifies an object that is a
2168
+ # manifest file containing a list of object keys that you want Amazon
2169
+ # SageMaker to use for model training.
2170
+ # @return [String]
2171
+ #
2172
+ # @!attribute [rw] s3_uri
2173
+ # Depending on the value specified for the `S3DataType`, identifies
2174
+ # either a key name prefix or a manifest. For example:
2175
+ #
2176
+ # * A key name prefix might look like this:
2177
+ # `s3://bucketname/exampleprefix`.
2178
+ #
2179
+ # * A manifest might look like this:
2180
+ # `s3://bucketname/example.manifest`
2181
+ #
2182
+ # The manifest is an S3 object which is a JSON file with the
2183
+ # following format:
2184
+ #
2185
+ # `[`
2186
+ #
2187
+ # ` \{"prefix": "s3://customer_bucket/some/prefix/"\},`
2188
+ #
2189
+ # ` "relative/path/to/custdata-1",`
2190
+ #
2191
+ # ` "relative/path/custdata-2",`
2192
+ #
2193
+ # ` ...`
2194
+ #
2195
+ # ` ]`
2196
+ #
2197
+ # The preceding JSON matches the following `s3Uris`\:
2198
+ #
2199
+ # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
2200
+ #
2201
+ # `s3://customer_bucket/some/prefix/relative/path/custdata-1`
2202
+ #
2203
+ # `...`
2204
+ #
2205
+ # The complete set of `s3uris` in this manifest constitutes the
2206
+ # input data for the channel for this datasource. The object that
2207
+ # each `s3uris` points to must readable by the IAM role that Amazon
2208
+ # SageMaker uses to perform tasks on your behalf.
2209
+ # @return [String]
2210
+ #
2211
+ # @!attribute [rw] s3_data_distribution_type
2212
+ # If you want Amazon SageMaker to replicate the entire dataset on each
2213
+ # ML compute instance that is launched for model training, specify
2214
+ # `FullyReplicated`.
2215
+ #
2216
+ # If you want Amazon SageMaker to replicate a subset of data on each
2217
+ # ML compute instance that is launched for model training, specify
2218
+ # `ShardedByS3Key`. If there are *n* ML compute instances launched for
2219
+ # a training job, each instance gets approximately 1/*n* of the number
2220
+ # of S3 objects. In this case, model training on each machine uses
2221
+ # only the subset of training data.
2222
+ #
2223
+ # Don't choose more ML compute instances for training than available
2224
+ # S3 objects. If you do, some nodes won't get any data and you will
2225
+ # pay for nodes that aren't getting any training data. This applies
2226
+ # in both FILE and PIPE modes. Keep this in mind when developing
2227
+ # algorithms.
2228
+ #
2229
+ # In distributed training, where you use multiple ML compute EC2
2230
+ # instances, you might choose `ShardedByS3Key`. If the algorithm
2231
+ # requires copying training data to the ML storage volume (when
2232
+ # `TrainingInputMode` is set to `File`), this copies 1/*n* of the
2233
+ # number of objects.
2234
+ # @return [String]
2235
+ #
2236
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3DataSource AWS API Documentation
2237
+ #
2238
+ class S3DataSource < Struct.new(
2239
+ :s3_data_type,
2240
+ :s3_uri,
2241
+ :s3_data_distribution_type)
2242
+ include Aws::Structure
2243
+ end
2244
+
2245
+ # @note When making an API call, you may pass StartNotebookInstanceInput
2246
+ # data as a hash:
2247
+ #
2248
+ # {
2249
+ # notebook_instance_name: "NotebookInstanceName", # required
2250
+ # }
2251
+ #
2252
+ # @!attribute [rw] notebook_instance_name
2253
+ # The name of the notebook instance to start.
2254
+ # @return [String]
2255
+ #
2256
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StartNotebookInstanceInput AWS API Documentation
2257
+ #
2258
+ class StartNotebookInstanceInput < Struct.new(
2259
+ :notebook_instance_name)
2260
+ include Aws::Structure
2261
+ end
2262
+
2263
+ # @note When making an API call, you may pass StopNotebookInstanceInput
2264
+ # data as a hash:
2265
+ #
2266
+ # {
2267
+ # notebook_instance_name: "NotebookInstanceName", # required
2268
+ # }
2269
+ #
2270
+ # @!attribute [rw] notebook_instance_name
2271
+ # The name of the notebook instance to terminate.
2272
+ # @return [String]
2273
+ #
2274
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StopNotebookInstanceInput AWS API Documentation
2275
+ #
2276
+ class StopNotebookInstanceInput < Struct.new(
2277
+ :notebook_instance_name)
2278
+ include Aws::Structure
2279
+ end
2280
+
2281
+ # @note When making an API call, you may pass StopTrainingJobRequest
2282
+ # data as a hash:
2283
+ #
2284
+ # {
2285
+ # training_job_name: "TrainingJobName", # required
2286
+ # }
2287
+ #
2288
+ # @!attribute [rw] training_job_name
2289
+ # The name of the training job to stop.
2290
+ # @return [String]
2291
+ #
2292
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StopTrainingJobRequest AWS API Documentation
2293
+ #
2294
+ class StopTrainingJobRequest < Struct.new(
2295
+ :training_job_name)
2296
+ include Aws::Structure
2297
+ end
2298
+
2299
+ # Specifies how long model training can run. When model training reaches
2300
+ # the limit, Amazon SageMaker ends the training job. Use this API to cap
2301
+ # model training cost.
2302
+ #
2303
+ # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
2304
+ # signal, which delays job termination for120 seconds. Algorithms might
2305
+ # use this 120-second window to save the model artifacts, so the results
2306
+ # of training is not lost.
2307
+ #
2308
+ # Training algorithms provided by Amazon SageMaker automatically saves
2309
+ # the intermediate results of a model training job (it is best effort
2310
+ # case, as model might not be ready to save as some stages, for example
2311
+ # training just started). This intermediate data is a valid model
2312
+ # artifact. You can use it to create a model (`CreateModel`).
2313
+ #
2314
+ # @note When making an API call, you may pass StoppingCondition
2315
+ # data as a hash:
2316
+ #
2317
+ # {
2318
+ # max_runtime_in_seconds: 1,
2319
+ # }
2320
+ #
2321
+ # @!attribute [rw] max_runtime_in_seconds
2322
+ # The maximum length of time, in seconds, that the training job can
2323
+ # run. If model training does not complete during this time, Amazon
2324
+ # SageMaker ends the job. If value is not specified, default value is
2325
+ # 1 day. Maximum value is 5 days.
2326
+ # @return [Integer]
2327
+ #
2328
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
2329
+ #
2330
+ class StoppingCondition < Struct.new(
2331
+ :max_runtime_in_seconds)
2332
+ include Aws::Structure
2333
+ end
2334
+
2335
+ # Describes a tag.
2336
+ #
2337
+ # @note When making an API call, you may pass Tag
2338
+ # data as a hash:
2339
+ #
2340
+ # {
2341
+ # key: "TagKey", # required
2342
+ # value: "TagValue", # required
2343
+ # }
2344
+ #
2345
+ # @!attribute [rw] key
2346
+ # The tag key.
2347
+ # @return [String]
2348
+ #
2349
+ # @!attribute [rw] value
2350
+ # The tag value.
2351
+ # @return [String]
2352
+ #
2353
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Tag AWS API Documentation
2354
+ #
2355
+ class Tag < Struct.new(
2356
+ :key,
2357
+ :value)
2358
+ include Aws::Structure
2359
+ end
2360
+
2361
+ # Provides summary information about a training job.
2362
+ #
2363
+ # @!attribute [rw] training_job_name
2364
+ # The name of the training job that you want a summary for.
2365
+ # @return [String]
2366
+ #
2367
+ # @!attribute [rw] training_job_arn
2368
+ # The Amazon Resource Name (ARN) of the training job.
2369
+ # @return [String]
2370
+ #
2371
+ # @!attribute [rw] creation_time
2372
+ # A timestamp that shows when the training job was created.
2373
+ # @return [Time]
2374
+ #
2375
+ # @!attribute [rw] training_end_time
2376
+ # A timestamp that shows when the training job ended. This field is
2377
+ # set only if the training job has one of the terminal statuses
2378
+ # (`Completed`, `Failed`, or `Stopped`).
2379
+ # @return [Time]
2380
+ #
2381
+ # @!attribute [rw] last_modified_time
2382
+ # Timestamp when the training job was last modified.
2383
+ # @return [Time]
2384
+ #
2385
+ # @!attribute [rw] training_job_status
2386
+ # The status of the training job.
2387
+ # @return [String]
2388
+ #
2389
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobSummary AWS API Documentation
2390
+ #
2391
+ class TrainingJobSummary < Struct.new(
2392
+ :training_job_name,
2393
+ :training_job_arn,
2394
+ :creation_time,
2395
+ :training_end_time,
2396
+ :last_modified_time,
2397
+ :training_job_status)
2398
+ include Aws::Structure
2399
+ end
2400
+
2401
+ # @note When making an API call, you may pass UpdateEndpointInput
2402
+ # data as a hash:
2403
+ #
2404
+ # {
2405
+ # endpoint_name: "EndpointName", # required
2406
+ # endpoint_config_name: "EndpointConfigName", # required
2407
+ # }
2408
+ #
2409
+ # @!attribute [rw] endpoint_name
2410
+ # The name of the endpoint whose configuration you want to update.
2411
+ # @return [String]
2412
+ #
2413
+ # @!attribute [rw] endpoint_config_name
2414
+ # The name of the new endpoint configuration.
2415
+ # @return [String]
2416
+ #
2417
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateEndpointInput AWS API Documentation
2418
+ #
2419
+ class UpdateEndpointInput < Struct.new(
2420
+ :endpoint_name,
2421
+ :endpoint_config_name)
2422
+ include Aws::Structure
2423
+ end
2424
+
2425
+ # @!attribute [rw] endpoint_arn
2426
+ # The Amazon Resource Name (ARN) of the endpoint.
2427
+ # @return [String]
2428
+ #
2429
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateEndpointOutput AWS API Documentation
2430
+ #
2431
+ class UpdateEndpointOutput < Struct.new(
2432
+ :endpoint_arn)
2433
+ include Aws::Structure
2434
+ end
2435
+
2436
+ # @note When making an API call, you may pass UpdateEndpointWeightsAndCapacitiesInput
2437
+ # data as a hash:
2438
+ #
2439
+ # {
2440
+ # endpoint_name: "EndpointName", # required
2441
+ # desired_weights_and_capacities: [ # required
2442
+ # {
2443
+ # variant_name: "VariantName", # required
2444
+ # desired_weight: 1.0,
2445
+ # desired_instance_count: 1,
2446
+ # },
2447
+ # ],
2448
+ # }
2449
+ #
2450
+ # @!attribute [rw] endpoint_name
2451
+ # The name of an existing Amazon SageMaker endpoint.
2452
+ # @return [String]
2453
+ #
2454
+ # @!attribute [rw] desired_weights_and_capacities
2455
+ # An object that provides new capacity and weight values for a
2456
+ # variant.
2457
+ # @return [Array<Types::DesiredWeightAndCapacity>]
2458
+ #
2459
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacitiesInput AWS API Documentation
2460
+ #
2461
+ class UpdateEndpointWeightsAndCapacitiesInput < Struct.new(
2462
+ :endpoint_name,
2463
+ :desired_weights_and_capacities)
2464
+ include Aws::Structure
2465
+ end
2466
+
2467
+ # @!attribute [rw] endpoint_arn
2468
+ # The Amazon Resource Name (ARN) of the updated endpoint.
2469
+ # @return [String]
2470
+ #
2471
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacitiesOutput AWS API Documentation
2472
+ #
2473
+ class UpdateEndpointWeightsAndCapacitiesOutput < Struct.new(
2474
+ :endpoint_arn)
2475
+ include Aws::Structure
2476
+ end
2477
+
2478
+ # @note When making an API call, you may pass UpdateNotebookInstanceInput
2479
+ # data as a hash:
2480
+ #
2481
+ # {
2482
+ # notebook_instance_name: "NotebookInstanceName", # required
2483
+ # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.m4.xlarge, ml.p2.xlarge
2484
+ # role_arn: "RoleArn",
2485
+ # }
2486
+ #
2487
+ # @!attribute [rw] notebook_instance_name
2488
+ # The name of the notebook instance to update.
2489
+ # @return [String]
2490
+ #
2491
+ # @!attribute [rw] instance_type
2492
+ # The Amazon ML compute instance type.
2493
+ # @return [String]
2494
+ #
2495
+ # @!attribute [rw] role_arn
2496
+ # Amazon Resource Name (ARN) of the IAM role to associate with the
2497
+ # instance.
2498
+ # @return [String]
2499
+ #
2500
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
2501
+ #
2502
+ class UpdateNotebookInstanceInput < Struct.new(
2503
+ :notebook_instance_name,
2504
+ :instance_type,
2505
+ :role_arn)
2506
+ include Aws::Structure
2507
+ end
2508
+
2509
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceOutput AWS API Documentation
2510
+ #
2511
+ class UpdateNotebookInstanceOutput < Aws::EmptyStructure; end
2512
+
2513
+ end
2514
+ end