aws-sdk-sagemaker 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,14 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing guide for more information:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws::SageMaker
9
+ module Errors
10
+
11
+ extend Aws::Errors::DynamicErrors
12
+
13
+ end
14
+ end
@@ -0,0 +1,23 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing guide for more information:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws::SageMaker
9
+ class Resource
10
+
11
+ # @param options ({})
12
+ # @option options [Client] :client
13
+ def initialize(options = {})
14
+ @client = options[:client] || Client.new(options)
15
+ end
16
+
17
+ # @return [Client]
18
+ def client
19
+ @client
20
+ end
21
+
22
+ end
23
+ end
@@ -0,0 +1,2514 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing guide for more information:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws::SageMaker
9
+ module Types
10
+
11
+ # @note When making an API call, you may pass AddTagsInput
12
+ # data as a hash:
13
+ #
14
+ # {
15
+ # resource_arn: "ResourceArn", # required
16
+ # tags: [ # required
17
+ # {
18
+ # key: "TagKey", # required
19
+ # value: "TagValue", # required
20
+ # },
21
+ # ],
22
+ # }
23
+ #
24
+ # @!attribute [rw] resource_arn
25
+ # The Amazon Resource Name (ARN) of the resource that you want to tag.
26
+ # @return [String]
27
+ #
28
+ # @!attribute [rw] tags
29
+ # An array of `Tag` objects. Each tag is a key-value pair. Only the
30
+ # `key` parameter is required. If you don't specify a value, Amazon
31
+ # SageMaker sets the value to an empty string.
32
+ # @return [Array<Types::Tag>]
33
+ #
34
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsInput AWS API Documentation
35
+ #
36
+ class AddTagsInput < Struct.new(
37
+ :resource_arn,
38
+ :tags)
39
+ include Aws::Structure
40
+ end
41
+
42
+ # @!attribute [rw] tags
43
+ # A list of tags associated with the Amazon SageMaker resource.
44
+ # @return [Array<Types::Tag>]
45
+ #
46
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
47
+ #
48
+ class AddTagsOutput < Struct.new(
49
+ :tags)
50
+ include Aws::Structure
51
+ end
52
+
53
+ # Specifies the training algorithm to use in a [CreateTrainingJob][1]
54
+ # request.
55
+ #
56
+ # For more information about algorithms provided by Amazon SageMaker,
57
+ # see [Algorithms][2]. For information about using your own algorithms,
58
+ # see [Bring Your Own Algorithms ][3].
59
+ #
60
+ #
61
+ #
62
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html
63
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
64
+ # [3]: http://docs.aws.amazon.com/sagemaker/latest/dg/adv-topics-own-algo.html
65
+ #
66
+ # @note When making an API call, you may pass AlgorithmSpecification
67
+ # data as a hash:
68
+ #
69
+ # {
70
+ # training_image: "AlgorithmImage", # required
71
+ # training_input_mode: "Pipe", # required, accepts Pipe, File
72
+ # }
73
+ #
74
+ # @!attribute [rw] training_image
75
+ # The registry path of the Docker image that contains the training
76
+ # algorithm. For information about using your own algorithms, see
77
+ # [Docker Registry Paths for Algorithms Provided by Amazon SageMaker
78
+ # ][1].
79
+ #
80
+ #
81
+ #
82
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos-docker-registry-paths.html
83
+ # @return [String]
84
+ #
85
+ # @!attribute [rw] training_input_mode
86
+ # The input mode that the algorithm supports. For the input modes that
87
+ # Amazon SageMaker algorithms support, see [Algorithms][1]. If an
88
+ # algorithm supports the `File` input mode, Amazon SageMaker downloads
89
+ # the training data from S3 to the provisioned ML storage Volume, and
90
+ # mounts the directory to docker volume for training container. If an
91
+ # algorithm supports the `Pipe` input mode, Amazon SageMaker streams
92
+ # data directly from S3 to the container.
93
+ #
94
+ # In File mode, make sure you provision ML storage volume with
95
+ # sufficient capacity to accomodate the data download from S3. In
96
+ # addition to the training data, the ML storage volume also stores the
97
+ # output model. The algorithm container use ML storage volume to also
98
+ # store intermediate information, if any.
99
+ #
100
+ # For distributed algorithms using File mode, training data is
101
+ # distributed uniformly, and your training duration is predictable if
102
+ # the input data objects size is approximately same. Amazon SageMaker
103
+ # does not split the files any further for model training. If the
104
+ # object sizes are skewed, training won't be optimal as the data
105
+ # distribution is also skewed where one host in a training cluster is
106
+ # overloaded, thus becoming bottleneck in training.
107
+ #
108
+ #
109
+ #
110
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
111
+ # @return [String]
112
+ #
113
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmSpecification AWS API Documentation
114
+ #
115
+ class AlgorithmSpecification < Struct.new(
116
+ :training_image,
117
+ :training_input_mode)
118
+ include Aws::Structure
119
+ end
120
+
121
+ # A channel is a named input source that training algorithms can
122
+ # consume.
123
+ #
124
+ # @note When making an API call, you may pass Channel
125
+ # data as a hash:
126
+ #
127
+ # {
128
+ # channel_name: "ChannelName", # required
129
+ # data_source: { # required
130
+ # s3_data_source: { # required
131
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
132
+ # s3_uri: "S3Uri", # required
133
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
134
+ # },
135
+ # },
136
+ # content_type: "ContentType",
137
+ # compression_type: "None", # accepts None, Gzip
138
+ # record_wrapper_type: "None", # accepts None, RecordIO
139
+ # }
140
+ #
141
+ # @!attribute [rw] channel_name
142
+ # The name of the channel.
143
+ # @return [String]
144
+ #
145
+ # @!attribute [rw] data_source
146
+ # The location of the channel data.
147
+ # @return [Types::DataSource]
148
+ #
149
+ # @!attribute [rw] content_type
150
+ # The MIME type of the data.
151
+ # @return [String]
152
+ #
153
+ # @!attribute [rw] compression_type
154
+ # If training data is compressed, the compression type. The default
155
+ # value is `None`. `CompressionType` is used only in PIPE input mode.
156
+ # In FILE mode, leave this field unset or set it to None.
157
+ # @return [String]
158
+ #
159
+ # @!attribute [rw] record_wrapper_type
160
+ # Specify RecordIO as the value when input data is in raw format but
161
+ # the training algorithm requires the RecordIO format, in which
162
+ # caseAmazon SageMaker wraps each individual S3 object in a RecordIO
163
+ # record. If the input data is already in RecordIO format, you don't
164
+ # need to set this attribute. For more information, see [Create a
165
+ # Dataset Using RecordIO][1].
166
+ #
167
+ # In FILE mode, leave this field unset or set it to None.
168
+ #
169
+ #
170
+ #
171
+ #
172
+ #
173
+ # [1]: https://mxnet.incubator.apache.org/how_to/recordio.html?highlight=im2rec
174
+ # @return [String]
175
+ #
176
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Channel AWS API Documentation
177
+ #
178
+ class Channel < Struct.new(
179
+ :channel_name,
180
+ :data_source,
181
+ :content_type,
182
+ :compression_type,
183
+ :record_wrapper_type)
184
+ include Aws::Structure
185
+ end
186
+
187
+ # Describes the container, as part of model definition.
188
+ #
189
+ # @note When making an API call, you may pass ContainerDefinition
190
+ # data as a hash:
191
+ #
192
+ # {
193
+ # container_hostname: "ContainerHostname",
194
+ # image: "Image", # required
195
+ # model_data_url: "Url",
196
+ # environment: {
197
+ # "EnvironmentKey" => "EnvironmentValue",
198
+ # },
199
+ # }
200
+ #
201
+ # @!attribute [rw] container_hostname
202
+ # The DNS host name for the container after Amazon SageMaker deploys
203
+ # it.
204
+ # @return [String]
205
+ #
206
+ # @!attribute [rw] image
207
+ # The Amazon EC2 Container Registry (Amazon ECR) path where inference
208
+ # code is stored. If you are using your own custom algorithm instead
209
+ # of an algorithm provided by Amazon SageMaker, the inference code
210
+ # must meet Amazon SageMaker requirements. For more information, see
211
+ # [Using Your Own Algorithms with Amazon SageMaker][1]
212
+ #
213
+ #
214
+ #
215
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
216
+ # @return [String]
217
+ #
218
+ # @!attribute [rw] model_data_url
219
+ # The S3 path where the model artifacts, which result from model
220
+ # training, are stored. This path must point to a single gzip
221
+ # compressed tar archive (.tar.gz suffix).
222
+ # @return [String]
223
+ #
224
+ # @!attribute [rw] environment
225
+ # The environment variables to set in the Docker container. Each key
226
+ # and value in the `Environment` string to string map can have length
227
+ # of up to 1024. We support up to 16 entries in the map.
228
+ # @return [Hash<String,String>]
229
+ #
230
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContainerDefinition AWS API Documentation
231
+ #
232
+ class ContainerDefinition < Struct.new(
233
+ :container_hostname,
234
+ :image,
235
+ :model_data_url,
236
+ :environment)
237
+ include Aws::Structure
238
+ end
239
+
240
+ # @note When making an API call, you may pass CreateEndpointConfigInput
241
+ # data as a hash:
242
+ #
243
+ # {
244
+ # endpoint_config_name: "EndpointConfigName", # required
245
+ # production_variants: [ # required
246
+ # {
247
+ # variant_name: "VariantName", # required
248
+ # model_name: "ModelName", # required
249
+ # initial_instance_count: 1, # required
250
+ # instance_type: "ml.c4.2xlarge", # required, accepts ml.c4.2xlarge, ml.c4.8xlarge, ml.c4.xlarge, ml.c5.2xlarge, ml.c5.9xlarge, ml.c5.xlarge, ml.m4.xlarge, ml.p2.xlarge, ml.p3.2xlarge, ml.t2.medium
251
+ # initial_variant_weight: 1.0,
252
+ # },
253
+ # ],
254
+ # tags: [
255
+ # {
256
+ # key: "TagKey", # required
257
+ # value: "TagValue", # required
258
+ # },
259
+ # ],
260
+ # }
261
+ #
262
+ # @!attribute [rw] endpoint_config_name
263
+ # The name of the endpoint configuration. You specify this name in a
264
+ # [CreateEndpoint][1] request.
265
+ #
266
+ #
267
+ #
268
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html
269
+ # @return [String]
270
+ #
271
+ # @!attribute [rw] production_variants
272
+ # An array of `ProductionVariant` objects, one for each model that you
273
+ # want to host at this endpoint.
274
+ # @return [Array<Types::ProductionVariant>]
275
+ #
276
+ # @!attribute [rw] tags
277
+ # An array of key-value pairs. For more information, see [Using Cost
278
+ # Allocation Tags][1] in the *AWS Billing and Cost Management User
279
+ # Guide*.
280
+ #
281
+ #
282
+ #
283
+ # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
284
+ # @return [Array<Types::Tag>]
285
+ #
286
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointConfigInput AWS API Documentation
287
+ #
288
+ class CreateEndpointConfigInput < Struct.new(
289
+ :endpoint_config_name,
290
+ :production_variants,
291
+ :tags)
292
+ include Aws::Structure
293
+ end
294
+
295
+ # @!attribute [rw] endpoint_config_arn
296
+ # The Amazon Resource Name (ARN) of the endpoint configuration.
297
+ # @return [String]
298
+ #
299
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointConfigOutput AWS API Documentation
300
+ #
301
+ class CreateEndpointConfigOutput < Struct.new(
302
+ :endpoint_config_arn)
303
+ include Aws::Structure
304
+ end
305
+
306
+ # @note When making an API call, you may pass CreateEndpointInput
307
+ # data as a hash:
308
+ #
309
+ # {
310
+ # endpoint_name: "EndpointName", # required
311
+ # endpoint_config_name: "EndpointConfigName", # required
312
+ # tags: [
313
+ # {
314
+ # key: "TagKey", # required
315
+ # value: "TagValue", # required
316
+ # },
317
+ # ],
318
+ # }
319
+ #
320
+ # @!attribute [rw] endpoint_name
321
+ # The name of the endpoint. The name must be unique within an AWS
322
+ # Region in your AWS account.
323
+ # @return [String]
324
+ #
325
+ # @!attribute [rw] endpoint_config_name
326
+ # The name of an endpoint configuration. For more information, see
327
+ # [CreateEndpointConfig][1].
328
+ #
329
+ #
330
+ #
331
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html
332
+ # @return [String]
333
+ #
334
+ # @!attribute [rw] tags
335
+ # An array of key-value pairs. For more information, see [Using Cost
336
+ # Allocation Tags][1]in the *AWS Billing and Cost Management User
337
+ # Guide*.
338
+ #
339
+ #
340
+ #
341
+ # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
342
+ # @return [Array<Types::Tag>]
343
+ #
344
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointInput AWS API Documentation
345
+ #
346
+ class CreateEndpointInput < Struct.new(
347
+ :endpoint_name,
348
+ :endpoint_config_name,
349
+ :tags)
350
+ include Aws::Structure
351
+ end
352
+
353
+ # @!attribute [rw] endpoint_arn
354
+ # The Amazon Resource Name (ARN) of the endpoint.
355
+ # @return [String]
356
+ #
357
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointOutput AWS API Documentation
358
+ #
359
+ class CreateEndpointOutput < Struct.new(
360
+ :endpoint_arn)
361
+ include Aws::Structure
362
+ end
363
+
364
+ # @note When making an API call, you may pass CreateModelInput
365
+ # data as a hash:
366
+ #
367
+ # {
368
+ # model_name: "ModelName", # required
369
+ # primary_container: { # required
370
+ # container_hostname: "ContainerHostname",
371
+ # image: "Image", # required
372
+ # model_data_url: "Url",
373
+ # environment: {
374
+ # "EnvironmentKey" => "EnvironmentValue",
375
+ # },
376
+ # },
377
+ # supplemental_containers: [
378
+ # {
379
+ # container_hostname: "ContainerHostname",
380
+ # image: "Image", # required
381
+ # model_data_url: "Url",
382
+ # environment: {
383
+ # "EnvironmentKey" => "EnvironmentValue",
384
+ # },
385
+ # },
386
+ # ],
387
+ # execution_role_arn: "RoleArn",
388
+ # tags: [
389
+ # {
390
+ # key: "TagKey", # required
391
+ # value: "TagValue", # required
392
+ # },
393
+ # ],
394
+ # }
395
+ #
396
+ # @!attribute [rw] model_name
397
+ # The name of the new model.
398
+ # @return [String]
399
+ #
400
+ # @!attribute [rw] primary_container
401
+ # The location of the primary docker image containing inference code,
402
+ # associated artifacts, and custom environment map that the inference
403
+ # code uses when the model is deployed into production.
404
+ # @return [Types::ContainerDefinition]
405
+ #
406
+ # @!attribute [rw] supplemental_containers
407
+ # The additional optional containers to deploy.
408
+ # @return [Array<Types::ContainerDefinition>]
409
+ #
410
+ # @!attribute [rw] execution_role_arn
411
+ # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
412
+ # can assume to access model artifacts and docker image for deployment
413
+ # on ML compute instances. Deploying on ML compute instances is part
414
+ # of model hosting. For more information, see [Amazon SageMaker
415
+ # Roles][1].
416
+ #
417
+ #
418
+ #
419
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
420
+ # @return [String]
421
+ #
422
+ # @!attribute [rw] tags
423
+ # An array of key-value pairs. For more information, see [Using Cost
424
+ # Allocation Tags][1] in the *AWS Billing and Cost Management User
425
+ # Guide*.
426
+ #
427
+ #
428
+ #
429
+ # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
430
+ # @return [Array<Types::Tag>]
431
+ #
432
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelInput AWS API Documentation
433
+ #
434
+ class CreateModelInput < Struct.new(
435
+ :model_name,
436
+ :primary_container,
437
+ :supplemental_containers,
438
+ :execution_role_arn,
439
+ :tags)
440
+ include Aws::Structure
441
+ end
442
+
443
+ # @!attribute [rw] model_arn
444
+ # The ARN of the model created in Amazon SageMaker.
445
+ # @return [String]
446
+ #
447
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
448
+ #
449
+ class CreateModelOutput < Struct.new(
450
+ :model_arn)
451
+ include Aws::Structure
452
+ end
453
+
454
+ # @note When making an API call, you may pass CreateNotebookInstanceInput
455
+ # data as a hash:
456
+ #
457
+ # {
458
+ # notebook_instance_name: "NotebookInstanceName", # required
459
+ # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.m4.xlarge, ml.p2.xlarge
460
+ # subnet_id: "SubnetId",
461
+ # security_group_ids: ["SecurityGroupId"],
462
+ # role_arn: "RoleArn", # required
463
+ # kms_key_id: "KmsKeyId",
464
+ # tags: [
465
+ # {
466
+ # key: "TagKey", # required
467
+ # value: "TagValue", # required
468
+ # },
469
+ # ],
470
+ # }
471
+ #
472
+ # @!attribute [rw] notebook_instance_name
473
+ # The name of the new notebook instance.
474
+ # @return [String]
475
+ #
476
+ # @!attribute [rw] instance_type
477
+ # The type of ML compute instance to launch for the notebook instance.
478
+ # @return [String]
479
+ #
480
+ # @!attribute [rw] subnet_id
481
+ # The ID of the subnet in a VPC to which you would like to have a
482
+ # connectivity from your ML compute instance.
483
+ # @return [String]
484
+ #
485
+ # @!attribute [rw] security_group_ids
486
+ # The VPC security group IDs, in the form sg-xxxxxxxx. The security
487
+ # groups must be for the same VPC as specified in the subnet.
488
+ # @return [Array<String>]
489
+ #
490
+ # @!attribute [rw] role_arn
491
+ # When you send any requests to AWS resources from the notebook
492
+ # instance, Amazon SageMaker assumes this role to perform tasks on
493
+ # your behalf. You must grant this role necessary permissions so
494
+ # Amazon SageMaker can perform these tasks. The policy must allow the
495
+ # Amazon SageMaker service principal (sagemaker.amazonaws.com)
496
+ # permissions to assume this role. For more information, see [Amazon
497
+ # SageMaker Roles][1].
498
+ #
499
+ #
500
+ #
501
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
502
+ # @return [String]
503
+ #
504
+ # @!attribute [rw] kms_key_id
505
+ # If you provide a AWS KMS key ID, Amazon SageMaker uses it to encrypt
506
+ # data at rest on the ML storage volume that is attached to your
507
+ # notebook instance.
508
+ # @return [String]
509
+ #
510
+ # @!attribute [rw] tags
511
+ # A list of tags to associate with the notebook instance. You can add
512
+ # tags later by using the `CreateTags` API.
513
+ # @return [Array<Types::Tag>]
514
+ #
515
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateNotebookInstanceInput AWS API Documentation
516
+ #
517
+ class CreateNotebookInstanceInput < Struct.new(
518
+ :notebook_instance_name,
519
+ :instance_type,
520
+ :subnet_id,
521
+ :security_group_ids,
522
+ :role_arn,
523
+ :kms_key_id,
524
+ :tags)
525
+ include Aws::Structure
526
+ end
527
+
528
+ # @!attribute [rw] notebook_instance_arn
529
+ # The Amazon Resource Name (ARN) of the notebook instance.
530
+ # @return [String]
531
+ #
532
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateNotebookInstanceOutput AWS API Documentation
533
+ #
534
+ class CreateNotebookInstanceOutput < Struct.new(
535
+ :notebook_instance_arn)
536
+ include Aws::Structure
537
+ end
538
+
539
+ # @note When making an API call, you may pass CreatePresignedNotebookInstanceUrlInput
540
+ # data as a hash:
541
+ #
542
+ # {
543
+ # notebook_instance_name: "NotebookInstanceName", # required
544
+ # session_expiration_duration_in_seconds: 1,
545
+ # }
546
+ #
547
+ # @!attribute [rw] notebook_instance_name
548
+ # The name of the notebook instance.
549
+ # @return [String]
550
+ #
551
+ # @!attribute [rw] session_expiration_duration_in_seconds
552
+ # The duration of the session, in seconds. The default is 12 hours.
553
+ # @return [Integer]
554
+ #
555
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrlInput AWS API Documentation
556
+ #
557
+ class CreatePresignedNotebookInstanceUrlInput < Struct.new(
558
+ :notebook_instance_name,
559
+ :session_expiration_duration_in_seconds)
560
+ include Aws::Structure
561
+ end
562
+
563
+ # @!attribute [rw] authorized_url
564
+ # A JSON object that contains the URL string.
565
+ # @return [String]
566
+ #
567
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreatePresignedNotebookInstanceUrlOutput AWS API Documentation
568
+ #
569
+ class CreatePresignedNotebookInstanceUrlOutput < Struct.new(
570
+ :authorized_url)
571
+ include Aws::Structure
572
+ end
573
+
574
+ # @note When making an API call, you may pass CreateTrainingJobRequest
575
+ # data as a hash:
576
+ #
577
+ # {
578
+ # training_job_name: "TrainingJobName", # required
579
+ # hyper_parameters: {
580
+ # "ParameterKey" => "ParameterValue",
581
+ # },
582
+ # algorithm_specification: { # required
583
+ # training_image: "AlgorithmImage", # required
584
+ # training_input_mode: "Pipe", # required, accepts Pipe, File
585
+ # },
586
+ # role_arn: "RoleArn", # required
587
+ # input_data_config: [ # required
588
+ # {
589
+ # channel_name: "ChannelName", # required
590
+ # data_source: { # required
591
+ # s3_data_source: { # required
592
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
593
+ # s3_uri: "S3Uri", # required
594
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
595
+ # },
596
+ # },
597
+ # content_type: "ContentType",
598
+ # compression_type: "None", # accepts None, Gzip
599
+ # record_wrapper_type: "None", # accepts None, RecordIO
600
+ # },
601
+ # ],
602
+ # output_data_config: { # required
603
+ # kms_key_id: "KmsKeyId",
604
+ # s3_output_path: "S3Uri", # required
605
+ # },
606
+ # resource_config: { # required
607
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
608
+ # instance_count: 1, # required
609
+ # volume_size_in_gb: 1, # required
610
+ # },
611
+ # stopping_condition: { # required
612
+ # max_runtime_in_seconds: 1,
613
+ # },
614
+ # tags: [
615
+ # {
616
+ # key: "TagKey", # required
617
+ # value: "TagValue", # required
618
+ # },
619
+ # ],
620
+ # }
621
+ #
622
+ # @!attribute [rw] training_job_name
623
+ # The name of the training job. The name must be unique within an AWS
624
+ # Region in an AWS account. It appears in the Amazon SageMaker
625
+ # console.
626
+ # @return [String]
627
+ #
628
+ # @!attribute [rw] hyper_parameters
629
+ # Algorithm-specific parameters. You set hyperparameters before you
630
+ # start the learning process. Hyperparameters influence the quality of
631
+ # the model. For a list of hyperparameters for each training algorithm
632
+ # provided by Amazon SageMaker, see [Algorithms][1].
633
+ #
634
+ # You can specify a maximum of 100 hyperparameters. Each
635
+ # hyperparameter is a key-value pair. Each key and value is limited to
636
+ # 256 characters, as specified by the `Length Constraint`.
637
+ #
638
+ #
639
+ #
640
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
641
+ # @return [Hash<String,String>]
642
+ #
643
+ # @!attribute [rw] algorithm_specification
644
+ # The registry path of the Docker image that contains the training
645
+ # algorithm and algorithm-specific metadata, including the input mode.
646
+ # For more information about algorithms provided by Amazon SageMaker,
647
+ # see [Algorithms][1]. For information about providing your own
648
+ # algorithms, see [Bring Your Own Algorithms ][2].
649
+ #
650
+ #
651
+ #
652
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
653
+ # [2]: http://docs.aws.amazon.com/sagemaker/latest/dg/adv-topics-own-algo.html
654
+ # @return [Types::AlgorithmSpecification]
655
+ #
656
+ # @!attribute [rw] role_arn
657
+ # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
658
+ # can assume to perform tasks on your behalf.
659
+ #
660
+ # During model training, Amazon SageMaker needs your permission to
661
+ # read input data from an S3 bucket, download a Docker image that
662
+ # contains training code, write model artifacts to an S3 bucket, write
663
+ # logs to Amazon CloudWatch Logs, and publish metrics to Amazon
664
+ # CloudWatch. You grant permissions for all of these tasks to an IAM
665
+ # role. For more information, see [Amazon SageMaker Roles][1].
666
+ #
667
+ #
668
+ #
669
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
670
+ # @return [String]
671
+ #
672
+ # @!attribute [rw] input_data_config
673
+ # An array of `Channel` objects. Each channel is a named input source.
674
+ # `InputDataConfig` describes the input data and its location.
675
+ #
676
+ # Algorithms can accept input data from one or more channels. For
677
+ # example, an algorithm might have two channels of input data,
678
+ # `training_data` and `validation_data`. The configuration for each
679
+ # channel provides the S3 location where the input data is stored. It
680
+ # also provides information about the stored data: the MIME type,
681
+ # compression method, and whether the data is wrapped in RecordIO
682
+ # format.
683
+ #
684
+ # Depending on the input mode that the algorithm supports, Amazon
685
+ # SageMaker either copies input data files from an S3 bucket to a
686
+ # local directory in the Docker container, or makes it available as
687
+ # input streams.
688
+ # @return [Array<Types::Channel>]
689
+ #
690
+ # @!attribute [rw] output_data_config
691
+ # Specifies the path to the S3 bucket where you want to store model
692
+ # artifacts. Amazon SageMaker creates subfolders for the artifacts.
693
+ # @return [Types::OutputDataConfig]
694
+ #
695
+ # @!attribute [rw] resource_config
696
+ # The resources, including the ML compute instances and ML storage
697
+ # volumes, to use for model training.
698
+ #
699
+ # ML storage volumes store model artifacts and incremental states.
700
+ # Training algorithms might also use ML storage volumes for scratch
701
+ # space. If you want Amazon SageMaker to use the ML storage volume to
702
+ # store the training data, choose `File` as the `TrainingInputMode` in
703
+ # the algorithm specification. For distributed training algorithms,
704
+ # specify an instance count greater than 1.
705
+ # @return [Types::ResourceConfig]
706
+ #
707
+ # @!attribute [rw] stopping_condition
708
+ # Sets a duration for training. Use this parameter to cap model
709
+ # training costs. To stop a job, Amazon SageMaker sends the algorithm
710
+ # the `SIGTERM` signal, which delays job termination for 120 seconds.
711
+ # Algorithms might use this 120-second window to save the model
712
+ # artifacts.
713
+ #
714
+ # When Amazon SageMaker terminates a job because the stopping
715
+ # condition has been met, training algorithms provided by Amazon
716
+ # SageMaker save the intermediate results of the job. This
717
+ # intermediate data is a valid model artifact. You can use it to
718
+ # create a model using the `CreateModel` API.
719
+ # @return [Types::StoppingCondition]
720
+ #
721
+ # @!attribute [rw] tags
722
+ # An array of key-value pairs. For more information, see [Using Cost
723
+ # Allocation Tags][1] in the *AWS Billing and Cost Management User
724
+ # Guide*.
725
+ #
726
+ #
727
+ #
728
+ # [1]: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
729
+ # @return [Array<Types::Tag>]
730
+ #
731
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
732
+ #
733
+ class CreateTrainingJobRequest < Struct.new(
734
+ :training_job_name,
735
+ :hyper_parameters,
736
+ :algorithm_specification,
737
+ :role_arn,
738
+ :input_data_config,
739
+ :output_data_config,
740
+ :resource_config,
741
+ :stopping_condition,
742
+ :tags)
743
+ include Aws::Structure
744
+ end
745
+
746
+ # @!attribute [rw] training_job_arn
747
+ # The Amazon Resource Name (ARN) of the training job.
748
+ # @return [String]
749
+ #
750
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobResponse AWS API Documentation
751
+ #
752
+ class CreateTrainingJobResponse < Struct.new(
753
+ :training_job_arn)
754
+ include Aws::Structure
755
+ end
756
+
757
+ # Describes the location of the channel data.
758
+ #
759
+ # @note When making an API call, you may pass DataSource
760
+ # data as a hash:
761
+ #
762
+ # {
763
+ # s3_data_source: { # required
764
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
765
+ # s3_uri: "S3Uri", # required
766
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
767
+ # },
768
+ # }
769
+ #
770
+ # @!attribute [rw] s3_data_source
771
+ # The S3 location of the data source that is associated with a
772
+ # channel.
773
+ # @return [Types::S3DataSource]
774
+ #
775
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataSource AWS API Documentation
776
+ #
777
+ class DataSource < Struct.new(
778
+ :s3_data_source)
779
+ include Aws::Structure
780
+ end
781
+
782
+ # @note When making an API call, you may pass DeleteEndpointConfigInput
783
+ # data as a hash:
784
+ #
785
+ # {
786
+ # endpoint_config_name: "EndpointConfigName", # required
787
+ # }
788
+ #
789
+ # @!attribute [rw] endpoint_config_name
790
+ # The name of the endpoint configuration that you want to delete.
791
+ # @return [String]
792
+ #
793
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteEndpointConfigInput AWS API Documentation
794
+ #
795
+ class DeleteEndpointConfigInput < Struct.new(
796
+ :endpoint_config_name)
797
+ include Aws::Structure
798
+ end
799
+
800
+ # @note When making an API call, you may pass DeleteEndpointInput
801
+ # data as a hash:
802
+ #
803
+ # {
804
+ # endpoint_name: "EndpointName", # required
805
+ # }
806
+ #
807
+ # @!attribute [rw] endpoint_name
808
+ # The name of the endpoint that you want to delete.
809
+ # @return [String]
810
+ #
811
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteEndpointInput AWS API Documentation
812
+ #
813
+ class DeleteEndpointInput < Struct.new(
814
+ :endpoint_name)
815
+ include Aws::Structure
816
+ end
817
+
818
+ # @note When making an API call, you may pass DeleteModelInput
819
+ # data as a hash:
820
+ #
821
+ # {
822
+ # model_name: "ModelName", # required
823
+ # }
824
+ #
825
+ # @!attribute [rw] model_name
826
+ # The name of the model to delete.
827
+ # @return [String]
828
+ #
829
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteModelInput AWS API Documentation
830
+ #
831
+ class DeleteModelInput < Struct.new(
832
+ :model_name)
833
+ include Aws::Structure
834
+ end
835
+
836
+ # @note When making an API call, you may pass DeleteNotebookInstanceInput
837
+ # data as a hash:
838
+ #
839
+ # {
840
+ # notebook_instance_name: "NotebookInstanceName", # required
841
+ # }
842
+ #
843
+ # @!attribute [rw] notebook_instance_name
844
+ # The name of the Amazon SageMaker notebook instance to delete.
845
+ # @return [String]
846
+ #
847
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
848
+ #
849
+ class DeleteNotebookInstanceInput < Struct.new(
850
+ :notebook_instance_name)
851
+ include Aws::Structure
852
+ end
853
+
854
+ # @note When making an API call, you may pass DeleteTagsInput
855
+ # data as a hash:
856
+ #
857
+ # {
858
+ # resource_arn: "ResourceArn", # required
859
+ # tag_keys: ["TagKey"], # required
860
+ # }
861
+ #
862
+ # @!attribute [rw] resource_arn
863
+ # The Amazon Resource Name (ARN) of the resource whose tags you want
864
+ # to delete.
865
+ # @return [String]
866
+ #
867
+ # @!attribute [rw] tag_keys
868
+ # An array or one or more tag keys to delete.
869
+ # @return [Array<String>]
870
+ #
871
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteTagsInput AWS API Documentation
872
+ #
873
+ class DeleteTagsInput < Struct.new(
874
+ :resource_arn,
875
+ :tag_keys)
876
+ include Aws::Structure
877
+ end
878
+
879
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteTagsOutput AWS API Documentation
880
+ #
881
+ class DeleteTagsOutput < Aws::EmptyStructure; end
882
+
883
+ # @note When making an API call, you may pass DescribeEndpointConfigInput
884
+ # data as a hash:
885
+ #
886
+ # {
887
+ # endpoint_config_name: "EndpointConfigName", # required
888
+ # }
889
+ #
890
+ # @!attribute [rw] endpoint_config_name
891
+ # The name of the endpoint configuration.
892
+ # @return [String]
893
+ #
894
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointConfigInput AWS API Documentation
895
+ #
896
+ class DescribeEndpointConfigInput < Struct.new(
897
+ :endpoint_config_name)
898
+ include Aws::Structure
899
+ end
900
+
901
+ # @!attribute [rw] endpoint_config_name
902
+ # Name of the Amazon SageMaker endpoint configuration.
903
+ # @return [String]
904
+ #
905
+ # @!attribute [rw] endpoint_config_arn
906
+ # The Amazon Resource Name (ARN) of the endpoint configuration.
907
+ # @return [String]
908
+ #
909
+ # @!attribute [rw] production_variants
910
+ # An array of `ProductionVariant` objects, one for each model that you
911
+ # want to host at this endpoint.
912
+ # @return [Array<Types::ProductionVariant>]
913
+ #
914
+ # @!attribute [rw] creation_time
915
+ # A timestamp that shows when the endpoint configuration was created.
916
+ # @return [Time]
917
+ #
918
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointConfigOutput AWS API Documentation
919
+ #
920
+ class DescribeEndpointConfigOutput < Struct.new(
921
+ :endpoint_config_name,
922
+ :endpoint_config_arn,
923
+ :production_variants,
924
+ :creation_time)
925
+ include Aws::Structure
926
+ end
927
+
928
+ # @note When making an API call, you may pass DescribeEndpointInput
929
+ # data as a hash:
930
+ #
931
+ # {
932
+ # endpoint_name: "EndpointName", # required
933
+ # }
934
+ #
935
+ # @!attribute [rw] endpoint_name
936
+ # The name of the endpoint.
937
+ # @return [String]
938
+ #
939
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointInput AWS API Documentation
940
+ #
941
+ class DescribeEndpointInput < Struct.new(
942
+ :endpoint_name)
943
+ include Aws::Structure
944
+ end
945
+
946
+ # @!attribute [rw] endpoint_name
947
+ # Name of the endpoint.
948
+ # @return [String]
949
+ #
950
+ # @!attribute [rw] endpoint_arn
951
+ # The Amazon Resource Name (ARN) of the endpoint.
952
+ # @return [String]
953
+ #
954
+ # @!attribute [rw] endpoint_config_name
955
+ # The name of the endpoint configuration associated with this
956
+ # endpoint.
957
+ # @return [String]
958
+ #
959
+ # @!attribute [rw] production_variants
960
+ # An array of ProductionVariant objects, one for each model hosted
961
+ # behind this endpoint.
962
+ # @return [Array<Types::ProductionVariantSummary>]
963
+ #
964
+ # @!attribute [rw] endpoint_status
965
+ # The status of the endpoint.
966
+ # @return [String]
967
+ #
968
+ # @!attribute [rw] failure_reason
969
+ # If the status of the endpoint is `Failed`, the reason why it failed.
970
+ # @return [String]
971
+ #
972
+ # @!attribute [rw] creation_time
973
+ # A timestamp that shows when the endpoint was created.
974
+ # @return [Time]
975
+ #
976
+ # @!attribute [rw] last_modified_time
977
+ # A timestamp that shows when the endpoint was last modified.
978
+ # @return [Time]
979
+ #
980
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointOutput AWS API Documentation
981
+ #
982
+ class DescribeEndpointOutput < Struct.new(
983
+ :endpoint_name,
984
+ :endpoint_arn,
985
+ :endpoint_config_name,
986
+ :production_variants,
987
+ :endpoint_status,
988
+ :failure_reason,
989
+ :creation_time,
990
+ :last_modified_time)
991
+ include Aws::Structure
992
+ end
993
+
994
+ # @note When making an API call, you may pass DescribeModelInput
995
+ # data as a hash:
996
+ #
997
+ # {
998
+ # model_name: "ModelName", # required
999
+ # }
1000
+ #
1001
+ # @!attribute [rw] model_name
1002
+ # The name of the model.
1003
+ # @return [String]
1004
+ #
1005
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelInput AWS API Documentation
1006
+ #
1007
+ class DescribeModelInput < Struct.new(
1008
+ :model_name)
1009
+ include Aws::Structure
1010
+ end
1011
+
1012
+ # @!attribute [rw] model_name
1013
+ # Name of the Amazon SageMaker model.
1014
+ # @return [String]
1015
+ #
1016
+ # @!attribute [rw] primary_container
1017
+ # The location of the primary inference code, associated artifacts,
1018
+ # and custom environment map that the inference code uses when it is
1019
+ # deployed in production.
1020
+ # @return [Types::ContainerDefinition]
1021
+ #
1022
+ # @!attribute [rw] supplemental_containers
1023
+ # The description of additional optional containers that you defined
1024
+ # when creating the model.
1025
+ # @return [Array<Types::ContainerDefinition>]
1026
+ #
1027
+ # @!attribute [rw] execution_role_arn
1028
+ # The Amazon Resource Name (ARN) of the IAM role that you specified
1029
+ # for the model.
1030
+ # @return [String]
1031
+ #
1032
+ # @!attribute [rw] creation_time
1033
+ # A timestamp that shows when the model was created.
1034
+ # @return [Time]
1035
+ #
1036
+ # @!attribute [rw] model_arn
1037
+ # The Amazon Resource Name (ARN) of the model.
1038
+ # @return [String]
1039
+ #
1040
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelOutput AWS API Documentation
1041
+ #
1042
+ class DescribeModelOutput < Struct.new(
1043
+ :model_name,
1044
+ :primary_container,
1045
+ :supplemental_containers,
1046
+ :execution_role_arn,
1047
+ :creation_time,
1048
+ :model_arn)
1049
+ include Aws::Structure
1050
+ end
1051
+
1052
+ # @note When making an API call, you may pass DescribeNotebookInstanceInput
1053
+ # data as a hash:
1054
+ #
1055
+ # {
1056
+ # notebook_instance_name: "NotebookInstanceName", # required
1057
+ # }
1058
+ #
1059
+ # @!attribute [rw] notebook_instance_name
1060
+ # The name of the notebook instance that you want information about.
1061
+ # @return [String]
1062
+ #
1063
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeNotebookInstanceInput AWS API Documentation
1064
+ #
1065
+ class DescribeNotebookInstanceInput < Struct.new(
1066
+ :notebook_instance_name)
1067
+ include Aws::Structure
1068
+ end
1069
+
1070
+ # @!attribute [rw] notebook_instance_arn
1071
+ # The Amazon Resource Name (ARN) of the notebook instance.
1072
+ # @return [String]
1073
+ #
1074
+ # @!attribute [rw] notebook_instance_name
1075
+ # Name of the Amazon SageMaker notebook instance.
1076
+ # @return [String]
1077
+ #
1078
+ # @!attribute [rw] notebook_instance_status
1079
+ # The status of the notebook instance.
1080
+ # @return [String]
1081
+ #
1082
+ # @!attribute [rw] failure_reason
1083
+ # If staus is failed, the reason it failed.
1084
+ # @return [String]
1085
+ #
1086
+ # @!attribute [rw] url
1087
+ # The URL that you use to connect to the Jupyter notebook that is
1088
+ # running in your notebook instance.
1089
+ # @return [String]
1090
+ #
1091
+ # @!attribute [rw] instance_type
1092
+ # The type of ML compute instance running on the notebook instance.
1093
+ # @return [String]
1094
+ #
1095
+ # @!attribute [rw] subnet_id
1096
+ # The ID of the VPC subnet.
1097
+ # @return [String]
1098
+ #
1099
+ # @!attribute [rw] security_groups
1100
+ # The IDs of the VPC security groups.
1101
+ # @return [Array<String>]
1102
+ #
1103
+ # @!attribute [rw] role_arn
1104
+ # Amazon Resource Name (ARN) of the IAM role associated with the
1105
+ # instance.
1106
+ # @return [String]
1107
+ #
1108
+ # @!attribute [rw] kms_key_id
1109
+ # AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it
1110
+ # on the ML storage volume attached to the instance.
1111
+ # @return [String]
1112
+ #
1113
+ # @!attribute [rw] network_interface_id
1114
+ # Network interface IDs that Amazon SageMaker created at the time of
1115
+ # creating the instance.
1116
+ # @return [String]
1117
+ #
1118
+ # @!attribute [rw] last_modified_time
1119
+ # A timestamp. Use this parameter to retrieve the time when the
1120
+ # notebook instance was last modified.
1121
+ # @return [Time]
1122
+ #
1123
+ # @!attribute [rw] creation_time
1124
+ # A timestamp. Use this parameter to return the time when the notebook
1125
+ # instance was created
1126
+ # @return [Time]
1127
+ #
1128
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeNotebookInstanceOutput AWS API Documentation
1129
+ #
1130
+ class DescribeNotebookInstanceOutput < Struct.new(
1131
+ :notebook_instance_arn,
1132
+ :notebook_instance_name,
1133
+ :notebook_instance_status,
1134
+ :failure_reason,
1135
+ :url,
1136
+ :instance_type,
1137
+ :subnet_id,
1138
+ :security_groups,
1139
+ :role_arn,
1140
+ :kms_key_id,
1141
+ :network_interface_id,
1142
+ :last_modified_time,
1143
+ :creation_time)
1144
+ include Aws::Structure
1145
+ end
1146
+
1147
+ # @note When making an API call, you may pass DescribeTrainingJobRequest
1148
+ # data as a hash:
1149
+ #
1150
+ # {
1151
+ # training_job_name: "TrainingJobName", # required
1152
+ # }
1153
+ #
1154
+ # @!attribute [rw] training_job_name
1155
+ # The name of the training job.
1156
+ # @return [String]
1157
+ #
1158
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobRequest AWS API Documentation
1159
+ #
1160
+ class DescribeTrainingJobRequest < Struct.new(
1161
+ :training_job_name)
1162
+ include Aws::Structure
1163
+ end
1164
+
1165
+ # @!attribute [rw] training_job_name
1166
+ # Name of the model training job.
1167
+ # @return [String]
1168
+ #
1169
+ # @!attribute [rw] training_job_arn
1170
+ # The Amazon Resource Name (ARN) of the training job.
1171
+ # @return [String]
1172
+ #
1173
+ # @!attribute [rw] model_artifacts
1174
+ # Information about the Amazon S3 location that is configured for
1175
+ # storing model artifacts.
1176
+ # @return [Types::ModelArtifacts]
1177
+ #
1178
+ # @!attribute [rw] training_job_status
1179
+ # The status of the training job.
1180
+ #
1181
+ # For the `InProgress` status, Amazon SageMaker can return these
1182
+ # secondary statuses:
1183
+ #
1184
+ # * Starting - Preparing for training.
1185
+ #
1186
+ # * Downloading - Optional stage for algorithms that support File
1187
+ # training input mode. It indicates data is being downloaded to ML
1188
+ # storage volumes.
1189
+ #
1190
+ # * Training - Training is in progress.
1191
+ #
1192
+ # * Uploading - Training is complete and model upload is in progress.
1193
+ #
1194
+ # For the `Stopped` training status, Amazon SageMaker can return these
1195
+ # secondary statuses:
1196
+ #
1197
+ # * MaxRuntimeExceeded - Job stopped as a result of maximum allowed
1198
+ # runtime exceeded.
1199
+ #
1200
+ # ^
1201
+ # @return [String]
1202
+ #
1203
+ # @!attribute [rw] secondary_status
1204
+ # Provides granular information about the system state. For more
1205
+ # information, see `TrainingJobStatus`.
1206
+ # @return [String]
1207
+ #
1208
+ # @!attribute [rw] failure_reason
1209
+ # If the training job failed, the reason it failed.
1210
+ # @return [String]
1211
+ #
1212
+ # @!attribute [rw] hyper_parameters
1213
+ # Algorithm-specific parameters.
1214
+ # @return [Hash<String,String>]
1215
+ #
1216
+ # @!attribute [rw] algorithm_specification
1217
+ # Information about the algorithm used for training, and algorithm
1218
+ # metadata.
1219
+ # @return [Types::AlgorithmSpecification]
1220
+ #
1221
+ # @!attribute [rw] role_arn
1222
+ # The AWS Identity and Access Management (IAM) role configured for the
1223
+ # training job.
1224
+ # @return [String]
1225
+ #
1226
+ # @!attribute [rw] input_data_config
1227
+ # An array of `Channel` objects that describes each data input
1228
+ # channel.
1229
+ # @return [Array<Types::Channel>]
1230
+ #
1231
+ # @!attribute [rw] output_data_config
1232
+ # The S3 path where model artifacts that you configured when creating
1233
+ # the job are stored. Amazon SageMaker creates subfolders for model
1234
+ # artifacts.
1235
+ # @return [Types::OutputDataConfig]
1236
+ #
1237
+ # @!attribute [rw] resource_config
1238
+ # Resources, including ML compute instances and ML storage volumes,
1239
+ # that are configured for model training.
1240
+ # @return [Types::ResourceConfig]
1241
+ #
1242
+ # @!attribute [rw] stopping_condition
1243
+ # The condition under which to stop the training job.
1244
+ # @return [Types::StoppingCondition]
1245
+ #
1246
+ # @!attribute [rw] creation_time
1247
+ # A timestamp that indicates when the training job was created.
1248
+ # @return [Time]
1249
+ #
1250
+ # @!attribute [rw] training_start_time
1251
+ # A timestamp that indicates when training started.
1252
+ # @return [Time]
1253
+ #
1254
+ # @!attribute [rw] training_end_time
1255
+ # A timestamp that indicates when model training ended.
1256
+ # @return [Time]
1257
+ #
1258
+ # @!attribute [rw] last_modified_time
1259
+ # A timestamp that indicates when the status of the training job was
1260
+ # last modified.
1261
+ # @return [Time]
1262
+ #
1263
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
1264
+ #
1265
+ class DescribeTrainingJobResponse < Struct.new(
1266
+ :training_job_name,
1267
+ :training_job_arn,
1268
+ :model_artifacts,
1269
+ :training_job_status,
1270
+ :secondary_status,
1271
+ :failure_reason,
1272
+ :hyper_parameters,
1273
+ :algorithm_specification,
1274
+ :role_arn,
1275
+ :input_data_config,
1276
+ :output_data_config,
1277
+ :resource_config,
1278
+ :stopping_condition,
1279
+ :creation_time,
1280
+ :training_start_time,
1281
+ :training_end_time,
1282
+ :last_modified_time)
1283
+ include Aws::Structure
1284
+ end
1285
+
1286
+ # Specifies weight and capacity values for a production variant.
1287
+ #
1288
+ # @note When making an API call, you may pass DesiredWeightAndCapacity
1289
+ # data as a hash:
1290
+ #
1291
+ # {
1292
+ # variant_name: "VariantName", # required
1293
+ # desired_weight: 1.0,
1294
+ # desired_instance_count: 1,
1295
+ # }
1296
+ #
1297
+ # @!attribute [rw] variant_name
1298
+ # The name of the variant to update.
1299
+ # @return [String]
1300
+ #
1301
+ # @!attribute [rw] desired_weight
1302
+ # The variant's weight.
1303
+ # @return [Float]
1304
+ #
1305
+ # @!attribute [rw] desired_instance_count
1306
+ # The variant's capacity.
1307
+ # @return [Integer]
1308
+ #
1309
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DesiredWeightAndCapacity AWS API Documentation
1310
+ #
1311
+ class DesiredWeightAndCapacity < Struct.new(
1312
+ :variant_name,
1313
+ :desired_weight,
1314
+ :desired_instance_count)
1315
+ include Aws::Structure
1316
+ end
1317
+
1318
+ # Provides summary information for an endpoint configuration.
1319
+ #
1320
+ # @!attribute [rw] endpoint_config_name
1321
+ # The name of the endpoint configuration.
1322
+ # @return [String]
1323
+ #
1324
+ # @!attribute [rw] endpoint_config_arn
1325
+ # The Amazon Resource Name (ARN) of the endpoint configuration.
1326
+ # @return [String]
1327
+ #
1328
+ # @!attribute [rw] creation_time
1329
+ # A timestamp that shows when the endpoint configuration was created.
1330
+ # @return [Time]
1331
+ #
1332
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EndpointConfigSummary AWS API Documentation
1333
+ #
1334
+ class EndpointConfigSummary < Struct.new(
1335
+ :endpoint_config_name,
1336
+ :endpoint_config_arn,
1337
+ :creation_time)
1338
+ include Aws::Structure
1339
+ end
1340
+
1341
+ # Provides summary information for an endpoint.
1342
+ #
1343
+ # @!attribute [rw] endpoint_name
1344
+ # The name of the endpoint.
1345
+ # @return [String]
1346
+ #
1347
+ # @!attribute [rw] endpoint_arn
1348
+ # The Amazon Resource Name (ARN) of the endpoint.
1349
+ # @return [String]
1350
+ #
1351
+ # @!attribute [rw] creation_time
1352
+ # A timestamp that shows when the endpoint was created.
1353
+ # @return [Time]
1354
+ #
1355
+ # @!attribute [rw] last_modified_time
1356
+ # A timestamp that shows when the endpoint was last modified.
1357
+ # @return [Time]
1358
+ #
1359
+ # @!attribute [rw] endpoint_status
1360
+ # The status of the endpoint.
1361
+ # @return [String]
1362
+ #
1363
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EndpointSummary AWS API Documentation
1364
+ #
1365
+ class EndpointSummary < Struct.new(
1366
+ :endpoint_name,
1367
+ :endpoint_arn,
1368
+ :creation_time,
1369
+ :last_modified_time,
1370
+ :endpoint_status)
1371
+ include Aws::Structure
1372
+ end
1373
+
1374
+ # @note When making an API call, you may pass ListEndpointConfigsInput
1375
+ # data as a hash:
1376
+ #
1377
+ # {
1378
+ # sort_by: "Name", # accepts Name, CreationTime
1379
+ # sort_order: "Ascending", # accepts Ascending, Descending
1380
+ # next_token: "PaginationToken",
1381
+ # max_results: 1,
1382
+ # name_contains: "EndpointConfigNameContains",
1383
+ # creation_time_before: Time.now,
1384
+ # creation_time_after: Time.now,
1385
+ # }
1386
+ #
1387
+ # @!attribute [rw] sort_by
1388
+ # The field to sort results by. The default is `CreationTime`.
1389
+ # @return [String]
1390
+ #
1391
+ # @!attribute [rw] sort_order
1392
+ # The sort order for results. The default is `Ascending`.
1393
+ # @return [String]
1394
+ #
1395
+ # @!attribute [rw] next_token
1396
+ # If the result of the previous `ListEndpointConfig` request was
1397
+ # truncated, the response includes a `NextToken`. To retrieve the next
1398
+ # set of endpoint configurations, use the token in the next request.
1399
+ # @return [String]
1400
+ #
1401
+ # @!attribute [rw] max_results
1402
+ # The maximum number of training jobs to return in the response.
1403
+ # @return [Integer]
1404
+ #
1405
+ # @!attribute [rw] name_contains
1406
+ # A string in the endpoint configuration name. This filter returns
1407
+ # only endpoint configurations whose name contains the specified
1408
+ # string.
1409
+ # @return [String]
1410
+ #
1411
+ # @!attribute [rw] creation_time_before
1412
+ # A filter that returns only endpoint configurations created before
1413
+ # the specified time (timestamp).
1414
+ # @return [Time]
1415
+ #
1416
+ # @!attribute [rw] creation_time_after
1417
+ # A filter that returns only endpoint configurations created after the
1418
+ # specified time (timestamp).
1419
+ # @return [Time]
1420
+ #
1421
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpointConfigsInput AWS API Documentation
1422
+ #
1423
+ class ListEndpointConfigsInput < Struct.new(
1424
+ :sort_by,
1425
+ :sort_order,
1426
+ :next_token,
1427
+ :max_results,
1428
+ :name_contains,
1429
+ :creation_time_before,
1430
+ :creation_time_after)
1431
+ include Aws::Structure
1432
+ end
1433
+
1434
+ # @!attribute [rw] endpoint_configs
1435
+ # An array of endpoint configurations.
1436
+ # @return [Array<Types::EndpointConfigSummary>]
1437
+ #
1438
+ # @!attribute [rw] next_token
1439
+ # If the response is truncated, Amazon SageMaker returns this token.
1440
+ # To retrieve the next set of endpoint configurations, use it in the
1441
+ # subsequent request
1442
+ # @return [String]
1443
+ #
1444
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpointConfigsOutput AWS API Documentation
1445
+ #
1446
+ class ListEndpointConfigsOutput < Struct.new(
1447
+ :endpoint_configs,
1448
+ :next_token)
1449
+ include Aws::Structure
1450
+ end
1451
+
1452
+ # @note When making an API call, you may pass ListEndpointsInput
1453
+ # data as a hash:
1454
+ #
1455
+ # {
1456
+ # sort_by: "Name", # accepts Name, CreationTime, Status
1457
+ # sort_order: "Ascending", # accepts Ascending, Descending
1458
+ # next_token: "PaginationToken",
1459
+ # max_results: 1,
1460
+ # name_contains: "EndpointNameContains",
1461
+ # creation_time_before: Time.now,
1462
+ # creation_time_after: Time.now,
1463
+ # last_modified_time_before: Time.now,
1464
+ # last_modified_time_after: Time.now,
1465
+ # status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, RollingBack, InService, Deleting, Failed
1466
+ # }
1467
+ #
1468
+ # @!attribute [rw] sort_by
1469
+ # Sorts the list of results. The default is `CreationTime`.
1470
+ # @return [String]
1471
+ #
1472
+ # @!attribute [rw] sort_order
1473
+ # The sort order for results. The default is `Ascending`.
1474
+ # @return [String]
1475
+ #
1476
+ # @!attribute [rw] next_token
1477
+ # If the result of a `ListEndpoints` request was truncated, the
1478
+ # response includes a `NextToken`. To retrieve the next set of
1479
+ # endpoints, use the token in the next request.
1480
+ # @return [String]
1481
+ #
1482
+ # @!attribute [rw] max_results
1483
+ # The maximum number of endpoints to return in the response.
1484
+ # @return [Integer]
1485
+ #
1486
+ # @!attribute [rw] name_contains
1487
+ # A string in endpoint names. This filter returns only endpoints whose
1488
+ # name contains the specified string.
1489
+ # @return [String]
1490
+ #
1491
+ # @!attribute [rw] creation_time_before
1492
+ # A filter that returns only endpoints that were created before the
1493
+ # specified time (timestamp).
1494
+ # @return [Time]
1495
+ #
1496
+ # @!attribute [rw] creation_time_after
1497
+ # A filter that returns only endpoints that were created after the
1498
+ # specified time (timestamp).
1499
+ # @return [Time]
1500
+ #
1501
+ # @!attribute [rw] last_modified_time_before
1502
+ # A filter that returns only endpoints that were modified before the
1503
+ # specified timestamp.
1504
+ # @return [Time]
1505
+ #
1506
+ # @!attribute [rw] last_modified_time_after
1507
+ # A filter that returns only endpoints that were modified after the
1508
+ # specified timestamp.
1509
+ # @return [Time]
1510
+ #
1511
+ # @!attribute [rw] status_equals
1512
+ # A filter that returns only endpoints with the specified status.
1513
+ # @return [String]
1514
+ #
1515
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpointsInput AWS API Documentation
1516
+ #
1517
+ class ListEndpointsInput < Struct.new(
1518
+ :sort_by,
1519
+ :sort_order,
1520
+ :next_token,
1521
+ :max_results,
1522
+ :name_contains,
1523
+ :creation_time_before,
1524
+ :creation_time_after,
1525
+ :last_modified_time_before,
1526
+ :last_modified_time_after,
1527
+ :status_equals)
1528
+ include Aws::Structure
1529
+ end
1530
+
1531
+ # @!attribute [rw] endpoints
1532
+ # An array or endpoint objects.
1533
+ # @return [Array<Types::EndpointSummary>]
1534
+ #
1535
+ # @!attribute [rw] next_token
1536
+ # If the response is truncated, Amazon SageMaker returns this token.
1537
+ # To retrieve the next set of training jobs, use it in the subsequent
1538
+ # request.
1539
+ # @return [String]
1540
+ #
1541
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpointsOutput AWS API Documentation
1542
+ #
1543
+ class ListEndpointsOutput < Struct.new(
1544
+ :endpoints,
1545
+ :next_token)
1546
+ include Aws::Structure
1547
+ end
1548
+
1549
+ # @note When making an API call, you may pass ListModelsInput
1550
+ # data as a hash:
1551
+ #
1552
+ # {
1553
+ # sort_by: "Name", # accepts Name, CreationTime
1554
+ # sort_order: "Ascending", # accepts Ascending, Descending
1555
+ # next_token: "PaginationToken",
1556
+ # max_results: 1,
1557
+ # name_contains: "ModelNameContains",
1558
+ # creation_time_before: Time.now,
1559
+ # creation_time_after: Time.now,
1560
+ # }
1561
+ #
1562
+ # @!attribute [rw] sort_by
1563
+ # Sorts the list of results. The default is `CreationTime`.
1564
+ # @return [String]
1565
+ #
1566
+ # @!attribute [rw] sort_order
1567
+ # The sort order for results. The default is `Ascending`.
1568
+ # @return [String]
1569
+ #
1570
+ # @!attribute [rw] next_token
1571
+ # If the response to a previous `ListModels` request was truncated,
1572
+ # the response includes a `NextToken`. To retrieve the next set of
1573
+ # models, use the token in the next request.
1574
+ # @return [String]
1575
+ #
1576
+ # @!attribute [rw] max_results
1577
+ # The maximum number of models to return in the response.
1578
+ # @return [Integer]
1579
+ #
1580
+ # @!attribute [rw] name_contains
1581
+ # A string in the training job name. This filter returns only models
1582
+ # in the training job whose name contains the specified string.
1583
+ # @return [String]
1584
+ #
1585
+ # @!attribute [rw] creation_time_before
1586
+ # A filter that returns only models created before the specified time
1587
+ # (timestamp).
1588
+ # @return [Time]
1589
+ #
1590
+ # @!attribute [rw] creation_time_after
1591
+ # A filter that returns only models created after the specified time
1592
+ # (timestamp).
1593
+ # @return [Time]
1594
+ #
1595
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsInput AWS API Documentation
1596
+ #
1597
+ class ListModelsInput < Struct.new(
1598
+ :sort_by,
1599
+ :sort_order,
1600
+ :next_token,
1601
+ :max_results,
1602
+ :name_contains,
1603
+ :creation_time_before,
1604
+ :creation_time_after)
1605
+ include Aws::Structure
1606
+ end
1607
+
1608
+ # @!attribute [rw] models
1609
+ # An array of `ModelSummary` objects, each of which lists a model.
1610
+ # @return [Array<Types::ModelSummary>]
1611
+ #
1612
+ # @!attribute [rw] next_token
1613
+ # If the response is truncated, Amazon SageMaker returns this token.
1614
+ # To retrieve the next set of models, use it in the subsequent
1615
+ # request.
1616
+ # @return [String]
1617
+ #
1618
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
1619
+ #
1620
+ class ListModelsOutput < Struct.new(
1621
+ :models,
1622
+ :next_token)
1623
+ include Aws::Structure
1624
+ end
1625
+
1626
+ # @note When making an API call, you may pass ListNotebookInstancesInput
1627
+ # data as a hash:
1628
+ #
1629
+ # {
1630
+ # next_token: "NextToken",
1631
+ # max_results: 1,
1632
+ # sort_by: "Name", # accepts Name, CreationTime, Status
1633
+ # sort_order: "Ascending", # accepts Ascending, Descending
1634
+ # name_contains: "NotebookInstanceNameContains",
1635
+ # creation_time_before: Time.now,
1636
+ # creation_time_after: Time.now,
1637
+ # last_modified_time_before: Time.now,
1638
+ # last_modified_time_after: Time.now,
1639
+ # status_equals: "Pending", # accepts Pending, InService, Stopping, Stopped, Failed, Deleting
1640
+ # }
1641
+ #
1642
+ # @!attribute [rw] next_token
1643
+ # If the previous call to the `ListNotebookInstances` is truncated,
1644
+ # the response includes a `NextToken`. You can use this token in your
1645
+ # subsequent `ListNotebookInstances` request to fetch the next set of
1646
+ # notebook instances.
1647
+ #
1648
+ # <note markdown="1"> You might specify a filter or a sort order in your request. When
1649
+ # response is truncated, you must use the same values for the filer
1650
+ # and sort order in the next request.
1651
+ #
1652
+ # </note>
1653
+ # @return [String]
1654
+ #
1655
+ # @!attribute [rw] max_results
1656
+ # The maximum number of notebook instances to return.
1657
+ # @return [Integer]
1658
+ #
1659
+ # @!attribute [rw] sort_by
1660
+ # The field to sort results by. The default is `Name`.
1661
+ # @return [String]
1662
+ #
1663
+ # @!attribute [rw] sort_order
1664
+ # The sort order for results.
1665
+ # @return [String]
1666
+ #
1667
+ # @!attribute [rw] name_contains
1668
+ # A string in the notebook instances' name. This filter returns only
1669
+ # notebook instances whose name contains the specified string.
1670
+ # @return [String]
1671
+ #
1672
+ # @!attribute [rw] creation_time_before
1673
+ # A filter that returns only notebook instances that were created
1674
+ # before the specified time (timestamp).
1675
+ # @return [Time]
1676
+ #
1677
+ # @!attribute [rw] creation_time_after
1678
+ # A filter that returns only notebook instances that were created
1679
+ # after the specified time (timestamp).
1680
+ # @return [Time]
1681
+ #
1682
+ # @!attribute [rw] last_modified_time_before
1683
+ # A filter that returns only notebook instances that were modified
1684
+ # before the specified time (timestamp).
1685
+ # @return [Time]
1686
+ #
1687
+ # @!attribute [rw] last_modified_time_after
1688
+ # A filter that returns only notebook instances that were modified
1689
+ # after the specified time (timestamp).
1690
+ # @return [Time]
1691
+ #
1692
+ # @!attribute [rw] status_equals
1693
+ # A filter that returns only notebook instances with the specified
1694
+ # status.
1695
+ # @return [String]
1696
+ #
1697
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListNotebookInstancesInput AWS API Documentation
1698
+ #
1699
+ class ListNotebookInstancesInput < Struct.new(
1700
+ :next_token,
1701
+ :max_results,
1702
+ :sort_by,
1703
+ :sort_order,
1704
+ :name_contains,
1705
+ :creation_time_before,
1706
+ :creation_time_after,
1707
+ :last_modified_time_before,
1708
+ :last_modified_time_after,
1709
+ :status_equals)
1710
+ include Aws::Structure
1711
+ end
1712
+
1713
+ # @!attribute [rw] next_token
1714
+ # If the response to the previous `ListNotebookInstances` request was
1715
+ # truncated, Amazon SageMaker returns this token. To retrieve the next
1716
+ # set of notebook instances, use the token in the next request.
1717
+ # @return [String]
1718
+ #
1719
+ # @!attribute [rw] notebook_instances
1720
+ # An array of `NotebookInstanceSummary` objects, one for each notebook
1721
+ # instance.
1722
+ # @return [Array<Types::NotebookInstanceSummary>]
1723
+ #
1724
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListNotebookInstancesOutput AWS API Documentation
1725
+ #
1726
+ class ListNotebookInstancesOutput < Struct.new(
1727
+ :next_token,
1728
+ :notebook_instances)
1729
+ include Aws::Structure
1730
+ end
1731
+
1732
+ # @note When making an API call, you may pass ListTagsInput
1733
+ # data as a hash:
1734
+ #
1735
+ # {
1736
+ # resource_arn: "ResourceArn", # required
1737
+ # next_token: "NextToken",
1738
+ # max_results: 1,
1739
+ # }
1740
+ #
1741
+ # @!attribute [rw] resource_arn
1742
+ # The Amazon Resource Name (ARN) of the resource whose tags you want
1743
+ # to retrieve.
1744
+ # @return [String]
1745
+ #
1746
+ # @!attribute [rw] next_token
1747
+ # If the response to the previous `ListTags` request is truncated,
1748
+ # Amazon SageMaker returns this token. To retrieve the next set of
1749
+ # tags, use it in the subsequent request.
1750
+ # @return [String]
1751
+ #
1752
+ # @!attribute [rw] max_results
1753
+ # Maximum number of tags to return.
1754
+ # @return [Integer]
1755
+ #
1756
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTagsInput AWS API Documentation
1757
+ #
1758
+ class ListTagsInput < Struct.new(
1759
+ :resource_arn,
1760
+ :next_token,
1761
+ :max_results)
1762
+ include Aws::Structure
1763
+ end
1764
+
1765
+ # @!attribute [rw] tags
1766
+ # An array of `Tag` objects, each with a tag key and a value.
1767
+ # @return [Array<Types::Tag>]
1768
+ #
1769
+ # @!attribute [rw] next_token
1770
+ # If response is truncated, Amazon SageMaker includes a token in the
1771
+ # response. You can use this token in your subsequent request to fetch
1772
+ # next set of tokens.
1773
+ # @return [String]
1774
+ #
1775
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTagsOutput AWS API Documentation
1776
+ #
1777
+ class ListTagsOutput < Struct.new(
1778
+ :tags,
1779
+ :next_token)
1780
+ include Aws::Structure
1781
+ end
1782
+
1783
+ # @note When making an API call, you may pass ListTrainingJobsRequest
1784
+ # data as a hash:
1785
+ #
1786
+ # {
1787
+ # next_token: "NextToken",
1788
+ # max_results: 1,
1789
+ # creation_time_after: Time.now,
1790
+ # creation_time_before: Time.now,
1791
+ # last_modified_time_after: Time.now,
1792
+ # last_modified_time_before: Time.now,
1793
+ # name_contains: "NameContains",
1794
+ # status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
1795
+ # sort_by: "Name", # accepts Name, CreationTime, Status
1796
+ # sort_order: "Ascending", # accepts Ascending, Descending
1797
+ # }
1798
+ #
1799
+ # @!attribute [rw] next_token
1800
+ # If the result of the previous `ListTrainingJobs` request was
1801
+ # truncated, the response includes a `NextToken`. To retrieve the next
1802
+ # set of training jobs, use the token in the next request.
1803
+ # @return [String]
1804
+ #
1805
+ # @!attribute [rw] max_results
1806
+ # The maximum number of training jobs to return in the response.
1807
+ # @return [Integer]
1808
+ #
1809
+ # @!attribute [rw] creation_time_after
1810
+ # A filter that only training jobs created after the specified time
1811
+ # (timestamp).
1812
+ # @return [Time]
1813
+ #
1814
+ # @!attribute [rw] creation_time_before
1815
+ # A filter that returns only training jobs created before the
1816
+ # specified time (timestamp).
1817
+ # @return [Time]
1818
+ #
1819
+ # @!attribute [rw] last_modified_time_after
1820
+ # A filter that returns only training jobs modified after the
1821
+ # specified time (timestamp).
1822
+ # @return [Time]
1823
+ #
1824
+ # @!attribute [rw] last_modified_time_before
1825
+ # A filter that returns only training jobs modified before the
1826
+ # specified time (timestamp).
1827
+ # @return [Time]
1828
+ #
1829
+ # @!attribute [rw] name_contains
1830
+ # A string in the training job name. This filter returns only models
1831
+ # whose name contains the specified string.
1832
+ # @return [String]
1833
+ #
1834
+ # @!attribute [rw] status_equals
1835
+ # A filter that retrieves only training jobs with a specific status.
1836
+ # @return [String]
1837
+ #
1838
+ # @!attribute [rw] sort_by
1839
+ # The field to sort results by. The default is `CreationTime`.
1840
+ # @return [String]
1841
+ #
1842
+ # @!attribute [rw] sort_order
1843
+ # The sort order for results. The default is `Ascending`.
1844
+ # @return [String]
1845
+ #
1846
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTrainingJobsRequest AWS API Documentation
1847
+ #
1848
+ class ListTrainingJobsRequest < Struct.new(
1849
+ :next_token,
1850
+ :max_results,
1851
+ :creation_time_after,
1852
+ :creation_time_before,
1853
+ :last_modified_time_after,
1854
+ :last_modified_time_before,
1855
+ :name_contains,
1856
+ :status_equals,
1857
+ :sort_by,
1858
+ :sort_order)
1859
+ include Aws::Structure
1860
+ end
1861
+
1862
+ # @!attribute [rw] training_job_summaries
1863
+ # An array of `TrainingJobSummary` objects, each listing a training
1864
+ # job.
1865
+ # @return [Array<Types::TrainingJobSummary>]
1866
+ #
1867
+ # @!attribute [rw] next_token
1868
+ # If the response is truncated, Amazon SageMaker returns this token.
1869
+ # To retrieve the next set of training jobs, use it in the subsequent
1870
+ # request.
1871
+ # @return [String]
1872
+ #
1873
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTrainingJobsResponse AWS API Documentation
1874
+ #
1875
+ class ListTrainingJobsResponse < Struct.new(
1876
+ :training_job_summaries,
1877
+ :next_token)
1878
+ include Aws::Structure
1879
+ end
1880
+
1881
+ # Provides information about the location that is configured for storing
1882
+ # model artifacts.
1883
+ #
1884
+ # @!attribute [rw] s3_model_artifacts
1885
+ # The path of the S3 object that contains the model artifacts. For
1886
+ # example, `s3://bucket-name/keynameprefix/model.tar.gz`.
1887
+ # @return [String]
1888
+ #
1889
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelArtifacts AWS API Documentation
1890
+ #
1891
+ class ModelArtifacts < Struct.new(
1892
+ :s3_model_artifacts)
1893
+ include Aws::Structure
1894
+ end
1895
+
1896
+ # Provides summary information about a model.
1897
+ #
1898
+ # @!attribute [rw] model_name
1899
+ # The name of the model that you want a summary for.
1900
+ # @return [String]
1901
+ #
1902
+ # @!attribute [rw] model_arn
1903
+ # The Amazon Resource Name (ARN) of the model.
1904
+ # @return [String]
1905
+ #
1906
+ # @!attribute [rw] creation_time
1907
+ # A timestamp that indicates when the model was created.
1908
+ # @return [Time]
1909
+ #
1910
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelSummary AWS API Documentation
1911
+ #
1912
+ class ModelSummary < Struct.new(
1913
+ :model_name,
1914
+ :model_arn,
1915
+ :creation_time)
1916
+ include Aws::Structure
1917
+ end
1918
+
1919
+ # Provides summary information for an Amazon SageMaker notebook
1920
+ # instance.
1921
+ #
1922
+ # @!attribute [rw] notebook_instance_name
1923
+ # The name of the notebook instance that you want a summary for.
1924
+ # @return [String]
1925
+ #
1926
+ # @!attribute [rw] notebook_instance_arn
1927
+ # The Amazon Resource Name (ARN) of the notebook instance.
1928
+ # @return [String]
1929
+ #
1930
+ # @!attribute [rw] notebook_instance_status
1931
+ # The status of the notebook instance.
1932
+ # @return [String]
1933
+ #
1934
+ # @!attribute [rw] url
1935
+ # The URL that you use to connect to the Jupyter instance running in
1936
+ # your notebook instance.
1937
+ # @return [String]
1938
+ #
1939
+ # @!attribute [rw] instance_type
1940
+ # The type of ML compute instance that the notebook instance is
1941
+ # running on.
1942
+ # @return [String]
1943
+ #
1944
+ # @!attribute [rw] creation_time
1945
+ # A timestamp that shows when the notebook instance was created.
1946
+ # @return [Time]
1947
+ #
1948
+ # @!attribute [rw] last_modified_time
1949
+ # A timestamp that shows when the notebook instance was last modified.
1950
+ # @return [Time]
1951
+ #
1952
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/NotebookInstanceSummary AWS API Documentation
1953
+ #
1954
+ class NotebookInstanceSummary < Struct.new(
1955
+ :notebook_instance_name,
1956
+ :notebook_instance_arn,
1957
+ :notebook_instance_status,
1958
+ :url,
1959
+ :instance_type,
1960
+ :creation_time,
1961
+ :last_modified_time)
1962
+ include Aws::Structure
1963
+ end
1964
+
1965
+ # Provides information about how to store model training results (model
1966
+ # artifacts).
1967
+ #
1968
+ # @note When making an API call, you may pass OutputDataConfig
1969
+ # data as a hash:
1970
+ #
1971
+ # {
1972
+ # kms_key_id: "KmsKeyId",
1973
+ # s3_output_path: "S3Uri", # required
1974
+ # }
1975
+ #
1976
+ # @!attribute [rw] kms_key_id
1977
+ # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
1978
+ # uses to encrypt the model artifacts at rest using Amazon S3
1979
+ # server-side encryption.
1980
+ #
1981
+ # <note markdown="1"> If the configuration of the output S3 bucket requires server-side
1982
+ # encryption for objects, and you don't provide the KMS key ID,
1983
+ # Amazon SageMaker uses the default service key. For more information,
1984
+ # see [KMS-Managed Encryption Keys][1] in Amazon Simple Storage
1985
+ # Service developer guide.
1986
+ #
1987
+ # </note>
1988
+ #
1989
+ # <note markdown="1"> The KMS key policy must grant permission to the IAM role you specify
1990
+ # in your `CreateTrainingJob` request. [Using Key Policies in AWS
1991
+ # KMS][2] in the AWS Key Management Service Developer Guide.
1992
+ #
1993
+ # </note>
1994
+ #
1995
+ #
1996
+ #
1997
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
1998
+ # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
1999
+ # @return [String]
2000
+ #
2001
+ # @!attribute [rw] s3_output_path
2002
+ # Identifies the S3 path where you want Amazon SageMaker to store the
2003
+ # model artifacts. For example, `s3://bucket-name/key-name-prefix`.
2004
+ # @return [String]
2005
+ #
2006
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
2007
+ #
2008
+ class OutputDataConfig < Struct.new(
2009
+ :kms_key_id,
2010
+ :s3_output_path)
2011
+ include Aws::Structure
2012
+ end
2013
+
2014
+ # Identifies a model that you want to host and the resources to deploy
2015
+ # for hosting it. If you are deploying multiple models, tell Amazon
2016
+ # SageMaker how to distribute traffic among the models by specifying
2017
+ # variant weights.
2018
+ #
2019
+ # @note When making an API call, you may pass ProductionVariant
2020
+ # data as a hash:
2021
+ #
2022
+ # {
2023
+ # variant_name: "VariantName", # required
2024
+ # model_name: "ModelName", # required
2025
+ # initial_instance_count: 1, # required
2026
+ # instance_type: "ml.c4.2xlarge", # required, accepts ml.c4.2xlarge, ml.c4.8xlarge, ml.c4.xlarge, ml.c5.2xlarge, ml.c5.9xlarge, ml.c5.xlarge, ml.m4.xlarge, ml.p2.xlarge, ml.p3.2xlarge, ml.t2.medium
2027
+ # initial_variant_weight: 1.0,
2028
+ # }
2029
+ #
2030
+ # @!attribute [rw] variant_name
2031
+ # The name of the production variant.
2032
+ # @return [String]
2033
+ #
2034
+ # @!attribute [rw] model_name
2035
+ # The name of the model that you want to host. This is the name that
2036
+ # you specified when creating the model.
2037
+ # @return [String]
2038
+ #
2039
+ # @!attribute [rw] initial_instance_count
2040
+ # Number of instances to launch initially.
2041
+ # @return [Integer]
2042
+ #
2043
+ # @!attribute [rw] instance_type
2044
+ # The ML compute instance type.
2045
+ # @return [String]
2046
+ #
2047
+ # @!attribute [rw] initial_variant_weight
2048
+ # Determines initial traffic distribution among all of the models that
2049
+ # you specify in the endpoint configuration. The traffic to a
2050
+ # production variant is determined by the ratio of the `VariantWeight`
2051
+ # to the sum of all `VariantWeight` values across all
2052
+ # ProductionVariants. If unspecified, it defaults to 1.0.
2053
+ # @return [Float]
2054
+ #
2055
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
2056
+ #
2057
+ class ProductionVariant < Struct.new(
2058
+ :variant_name,
2059
+ :model_name,
2060
+ :initial_instance_count,
2061
+ :instance_type,
2062
+ :initial_variant_weight)
2063
+ include Aws::Structure
2064
+ end
2065
+
2066
+ # Describes weight and capacities for a production variant associated
2067
+ # with an endpoint. If you sent a request to the
2068
+ # `UpdateWeightAndCapacities` API and the endpoint status is `Updating`,
2069
+ # you get different desired and current values.
2070
+ #
2071
+ # @!attribute [rw] variant_name
2072
+ # The name of the variant.
2073
+ # @return [String]
2074
+ #
2075
+ # @!attribute [rw] current_weight
2076
+ # The weight associated with the variant.
2077
+ # @return [Float]
2078
+ #
2079
+ # @!attribute [rw] desired_weight
2080
+ # The requested weight, as specified in the
2081
+ # `UpdateWeightAndCapacities` request.
2082
+ # @return [Float]
2083
+ #
2084
+ # @!attribute [rw] current_instance_count
2085
+ # The number of instances associated with the variant.
2086
+ # @return [Integer]
2087
+ #
2088
+ # @!attribute [rw] desired_instance_count
2089
+ # The number of instances requested in the `UpdateWeightAndCapacities`
2090
+ # request.
2091
+ # @return [Integer]
2092
+ #
2093
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
2094
+ #
2095
+ class ProductionVariantSummary < Struct.new(
2096
+ :variant_name,
2097
+ :current_weight,
2098
+ :desired_weight,
2099
+ :current_instance_count,
2100
+ :desired_instance_count)
2101
+ include Aws::Structure
2102
+ end
2103
+
2104
+ # Describes the resources, including ML compute instances and ML storage
2105
+ # volumes, to use for model training.
2106
+ #
2107
+ # @note When making an API call, you may pass ResourceConfig
2108
+ # data as a hash:
2109
+ #
2110
+ # {
2111
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
2112
+ # instance_count: 1, # required
2113
+ # volume_size_in_gb: 1, # required
2114
+ # }
2115
+ #
2116
+ # @!attribute [rw] instance_type
2117
+ # The ML compute instance type.
2118
+ # @return [String]
2119
+ #
2120
+ # @!attribute [rw] instance_count
2121
+ # The number of ML compute instances to use. For distributed training,
2122
+ # provide a value greater than 1.
2123
+ # @return [Integer]
2124
+ #
2125
+ # @!attribute [rw] volume_size_in_gb
2126
+ # The size of the ML storage volume that you want to provision.
2127
+ #
2128
+ # ML storage volumes store model artifacts and incremental states.
2129
+ # Training algorithms might also use the ML storage volume for scratch
2130
+ # space. If you want to store the training data in the ML storage
2131
+ # volume, choose `File` as the `TrainingInputMode` in the algorithm
2132
+ # specification.
2133
+ #
2134
+ # You must specify sufficient ML storage for your scenario.
2135
+ #
2136
+ # <note markdown="1"> Amazon SageMaker supports only the General Purpose SSD (gp2) ML
2137
+ # storage volume type.
2138
+ #
2139
+ # </note>
2140
+ # @return [Integer]
2141
+ #
2142
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ResourceConfig AWS API Documentation
2143
+ #
2144
+ class ResourceConfig < Struct.new(
2145
+ :instance_type,
2146
+ :instance_count,
2147
+ :volume_size_in_gb)
2148
+ include Aws::Structure
2149
+ end
2150
+
2151
+ # Describes the S3 data source.
2152
+ #
2153
+ # @note When making an API call, you may pass S3DataSource
2154
+ # data as a hash:
2155
+ #
2156
+ # {
2157
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
2158
+ # s3_uri: "S3Uri", # required
2159
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
2160
+ # }
2161
+ #
2162
+ # @!attribute [rw] s3_data_type
2163
+ # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
2164
+ # Amazon SageMaker uses all objects with the specified key name prefix
2165
+ # for model training.
2166
+ #
2167
+ # If you choose `ManifestFile`, `S3Uri` identifies an object that is a
2168
+ # manifest file containing a list of object keys that you want Amazon
2169
+ # SageMaker to use for model training.
2170
+ # @return [String]
2171
+ #
2172
+ # @!attribute [rw] s3_uri
2173
+ # Depending on the value specified for the `S3DataType`, identifies
2174
+ # either a key name prefix or a manifest. For example:
2175
+ #
2176
+ # * A key name prefix might look like this:
2177
+ # `s3://bucketname/exampleprefix`.
2178
+ #
2179
+ # * A manifest might look like this:
2180
+ # `s3://bucketname/example.manifest`
2181
+ #
2182
+ # The manifest is an S3 object which is a JSON file with the
2183
+ # following format:
2184
+ #
2185
+ # `[`
2186
+ #
2187
+ # ` \{"prefix": "s3://customer_bucket/some/prefix/"\},`
2188
+ #
2189
+ # ` "relative/path/to/custdata-1",`
2190
+ #
2191
+ # ` "relative/path/custdata-2",`
2192
+ #
2193
+ # ` ...`
2194
+ #
2195
+ # ` ]`
2196
+ #
2197
+ # The preceding JSON matches the following `s3Uris`\:
2198
+ #
2199
+ # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
2200
+ #
2201
+ # `s3://customer_bucket/some/prefix/relative/path/custdata-1`
2202
+ #
2203
+ # `...`
2204
+ #
2205
+ # The complete set of `s3uris` in this manifest constitutes the
2206
+ # input data for the channel for this datasource. The object that
2207
+ # each `s3uris` points to must readable by the IAM role that Amazon
2208
+ # SageMaker uses to perform tasks on your behalf.
2209
+ # @return [String]
2210
+ #
2211
+ # @!attribute [rw] s3_data_distribution_type
2212
+ # If you want Amazon SageMaker to replicate the entire dataset on each
2213
+ # ML compute instance that is launched for model training, specify
2214
+ # `FullyReplicated`.
2215
+ #
2216
+ # If you want Amazon SageMaker to replicate a subset of data on each
2217
+ # ML compute instance that is launched for model training, specify
2218
+ # `ShardedByS3Key`. If there are *n* ML compute instances launched for
2219
+ # a training job, each instance gets approximately 1/*n* of the number
2220
+ # of S3 objects. In this case, model training on each machine uses
2221
+ # only the subset of training data.
2222
+ #
2223
+ # Don't choose more ML compute instances for training than available
2224
+ # S3 objects. If you do, some nodes won't get any data and you will
2225
+ # pay for nodes that aren't getting any training data. This applies
2226
+ # in both FILE and PIPE modes. Keep this in mind when developing
2227
+ # algorithms.
2228
+ #
2229
+ # In distributed training, where you use multiple ML compute EC2
2230
+ # instances, you might choose `ShardedByS3Key`. If the algorithm
2231
+ # requires copying training data to the ML storage volume (when
2232
+ # `TrainingInputMode` is set to `File`), this copies 1/*n* of the
2233
+ # number of objects.
2234
+ # @return [String]
2235
+ #
2236
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/S3DataSource AWS API Documentation
2237
+ #
2238
+ class S3DataSource < Struct.new(
2239
+ :s3_data_type,
2240
+ :s3_uri,
2241
+ :s3_data_distribution_type)
2242
+ include Aws::Structure
2243
+ end
2244
+
2245
+ # @note When making an API call, you may pass StartNotebookInstanceInput
2246
+ # data as a hash:
2247
+ #
2248
+ # {
2249
+ # notebook_instance_name: "NotebookInstanceName", # required
2250
+ # }
2251
+ #
2252
+ # @!attribute [rw] notebook_instance_name
2253
+ # The name of the notebook instance to start.
2254
+ # @return [String]
2255
+ #
2256
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StartNotebookInstanceInput AWS API Documentation
2257
+ #
2258
+ class StartNotebookInstanceInput < Struct.new(
2259
+ :notebook_instance_name)
2260
+ include Aws::Structure
2261
+ end
2262
+
2263
+ # @note When making an API call, you may pass StopNotebookInstanceInput
2264
+ # data as a hash:
2265
+ #
2266
+ # {
2267
+ # notebook_instance_name: "NotebookInstanceName", # required
2268
+ # }
2269
+ #
2270
+ # @!attribute [rw] notebook_instance_name
2271
+ # The name of the notebook instance to terminate.
2272
+ # @return [String]
2273
+ #
2274
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StopNotebookInstanceInput AWS API Documentation
2275
+ #
2276
+ class StopNotebookInstanceInput < Struct.new(
2277
+ :notebook_instance_name)
2278
+ include Aws::Structure
2279
+ end
2280
+
2281
+ # @note When making an API call, you may pass StopTrainingJobRequest
2282
+ # data as a hash:
2283
+ #
2284
+ # {
2285
+ # training_job_name: "TrainingJobName", # required
2286
+ # }
2287
+ #
2288
+ # @!attribute [rw] training_job_name
2289
+ # The name of the training job to stop.
2290
+ # @return [String]
2291
+ #
2292
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StopTrainingJobRequest AWS API Documentation
2293
+ #
2294
+ class StopTrainingJobRequest < Struct.new(
2295
+ :training_job_name)
2296
+ include Aws::Structure
2297
+ end
2298
+
2299
+ # Specifies how long model training can run. When model training reaches
2300
+ # the limit, Amazon SageMaker ends the training job. Use this API to cap
2301
+ # model training cost.
2302
+ #
2303
+ # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
2304
+ # signal, which delays job termination for120 seconds. Algorithms might
2305
+ # use this 120-second window to save the model artifacts, so the results
2306
+ # of training is not lost.
2307
+ #
2308
+ # Training algorithms provided by Amazon SageMaker automatically saves
2309
+ # the intermediate results of a model training job (it is best effort
2310
+ # case, as model might not be ready to save as some stages, for example
2311
+ # training just started). This intermediate data is a valid model
2312
+ # artifact. You can use it to create a model (`CreateModel`).
2313
+ #
2314
+ # @note When making an API call, you may pass StoppingCondition
2315
+ # data as a hash:
2316
+ #
2317
+ # {
2318
+ # max_runtime_in_seconds: 1,
2319
+ # }
2320
+ #
2321
+ # @!attribute [rw] max_runtime_in_seconds
2322
+ # The maximum length of time, in seconds, that the training job can
2323
+ # run. If model training does not complete during this time, Amazon
2324
+ # SageMaker ends the job. If value is not specified, default value is
2325
+ # 1 day. Maximum value is 5 days.
2326
+ # @return [Integer]
2327
+ #
2328
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
2329
+ #
2330
+ class StoppingCondition < Struct.new(
2331
+ :max_runtime_in_seconds)
2332
+ include Aws::Structure
2333
+ end
2334
+
2335
+ # Describes a tag.
2336
+ #
2337
+ # @note When making an API call, you may pass Tag
2338
+ # data as a hash:
2339
+ #
2340
+ # {
2341
+ # key: "TagKey", # required
2342
+ # value: "TagValue", # required
2343
+ # }
2344
+ #
2345
+ # @!attribute [rw] key
2346
+ # The tag key.
2347
+ # @return [String]
2348
+ #
2349
+ # @!attribute [rw] value
2350
+ # The tag value.
2351
+ # @return [String]
2352
+ #
2353
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Tag AWS API Documentation
2354
+ #
2355
+ class Tag < Struct.new(
2356
+ :key,
2357
+ :value)
2358
+ include Aws::Structure
2359
+ end
2360
+
2361
+ # Provides summary information about a training job.
2362
+ #
2363
+ # @!attribute [rw] training_job_name
2364
+ # The name of the training job that you want a summary for.
2365
+ # @return [String]
2366
+ #
2367
+ # @!attribute [rw] training_job_arn
2368
+ # The Amazon Resource Name (ARN) of the training job.
2369
+ # @return [String]
2370
+ #
2371
+ # @!attribute [rw] creation_time
2372
+ # A timestamp that shows when the training job was created.
2373
+ # @return [Time]
2374
+ #
2375
+ # @!attribute [rw] training_end_time
2376
+ # A timestamp that shows when the training job ended. This field is
2377
+ # set only if the training job has one of the terminal statuses
2378
+ # (`Completed`, `Failed`, or `Stopped`).
2379
+ # @return [Time]
2380
+ #
2381
+ # @!attribute [rw] last_modified_time
2382
+ # Timestamp when the training job was last modified.
2383
+ # @return [Time]
2384
+ #
2385
+ # @!attribute [rw] training_job_status
2386
+ # The status of the training job.
2387
+ # @return [String]
2388
+ #
2389
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobSummary AWS API Documentation
2390
+ #
2391
+ class TrainingJobSummary < Struct.new(
2392
+ :training_job_name,
2393
+ :training_job_arn,
2394
+ :creation_time,
2395
+ :training_end_time,
2396
+ :last_modified_time,
2397
+ :training_job_status)
2398
+ include Aws::Structure
2399
+ end
2400
+
2401
+ # @note When making an API call, you may pass UpdateEndpointInput
2402
+ # data as a hash:
2403
+ #
2404
+ # {
2405
+ # endpoint_name: "EndpointName", # required
2406
+ # endpoint_config_name: "EndpointConfigName", # required
2407
+ # }
2408
+ #
2409
+ # @!attribute [rw] endpoint_name
2410
+ # The name of the endpoint whose configuration you want to update.
2411
+ # @return [String]
2412
+ #
2413
+ # @!attribute [rw] endpoint_config_name
2414
+ # The name of the new endpoint configuration.
2415
+ # @return [String]
2416
+ #
2417
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateEndpointInput AWS API Documentation
2418
+ #
2419
+ class UpdateEndpointInput < Struct.new(
2420
+ :endpoint_name,
2421
+ :endpoint_config_name)
2422
+ include Aws::Structure
2423
+ end
2424
+
2425
+ # @!attribute [rw] endpoint_arn
2426
+ # The Amazon Resource Name (ARN) of the endpoint.
2427
+ # @return [String]
2428
+ #
2429
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateEndpointOutput AWS API Documentation
2430
+ #
2431
+ class UpdateEndpointOutput < Struct.new(
2432
+ :endpoint_arn)
2433
+ include Aws::Structure
2434
+ end
2435
+
2436
+ # @note When making an API call, you may pass UpdateEndpointWeightsAndCapacitiesInput
2437
+ # data as a hash:
2438
+ #
2439
+ # {
2440
+ # endpoint_name: "EndpointName", # required
2441
+ # desired_weights_and_capacities: [ # required
2442
+ # {
2443
+ # variant_name: "VariantName", # required
2444
+ # desired_weight: 1.0,
2445
+ # desired_instance_count: 1,
2446
+ # },
2447
+ # ],
2448
+ # }
2449
+ #
2450
+ # @!attribute [rw] endpoint_name
2451
+ # The name of an existing Amazon SageMaker endpoint.
2452
+ # @return [String]
2453
+ #
2454
+ # @!attribute [rw] desired_weights_and_capacities
2455
+ # An object that provides new capacity and weight values for a
2456
+ # variant.
2457
+ # @return [Array<Types::DesiredWeightAndCapacity>]
2458
+ #
2459
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacitiesInput AWS API Documentation
2460
+ #
2461
+ class UpdateEndpointWeightsAndCapacitiesInput < Struct.new(
2462
+ :endpoint_name,
2463
+ :desired_weights_and_capacities)
2464
+ include Aws::Structure
2465
+ end
2466
+
2467
+ # @!attribute [rw] endpoint_arn
2468
+ # The Amazon Resource Name (ARN) of the updated endpoint.
2469
+ # @return [String]
2470
+ #
2471
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateEndpointWeightsAndCapacitiesOutput AWS API Documentation
2472
+ #
2473
+ class UpdateEndpointWeightsAndCapacitiesOutput < Struct.new(
2474
+ :endpoint_arn)
2475
+ include Aws::Structure
2476
+ end
2477
+
2478
+ # @note When making an API call, you may pass UpdateNotebookInstanceInput
2479
+ # data as a hash:
2480
+ #
2481
+ # {
2482
+ # notebook_instance_name: "NotebookInstanceName", # required
2483
+ # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.m4.xlarge, ml.p2.xlarge
2484
+ # role_arn: "RoleArn",
2485
+ # }
2486
+ #
2487
+ # @!attribute [rw] notebook_instance_name
2488
+ # The name of the notebook instance to update.
2489
+ # @return [String]
2490
+ #
2491
+ # @!attribute [rw] instance_type
2492
+ # The Amazon ML compute instance type.
2493
+ # @return [String]
2494
+ #
2495
+ # @!attribute [rw] role_arn
2496
+ # Amazon Resource Name (ARN) of the IAM role to associate with the
2497
+ # instance.
2498
+ # @return [String]
2499
+ #
2500
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
2501
+ #
2502
+ class UpdateNotebookInstanceInput < Struct.new(
2503
+ :notebook_instance_name,
2504
+ :instance_type,
2505
+ :role_arn)
2506
+ include Aws::Structure
2507
+ end
2508
+
2509
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceOutput AWS API Documentation
2510
+ #
2511
+ class UpdateNotebookInstanceOutput < Aws::EmptyStructure; end
2512
+
2513
+ end
2514
+ end