aws-sdk-rekognition 1.10.0 → 1.11.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 2d3fa98f7cf90ae98ab69e6a5ff00cd0f761fa77
4
- data.tar.gz: 56ab01ad98223353ce59a4d9aff1a9a2be4f495f
3
+ metadata.gz: d6dfe87f1bcc7424a61682b5f56ea02b0cba2fb8
4
+ data.tar.gz: dc3fc7bf664cbf8966646907869131d2f93eb018
5
5
  SHA512:
6
- metadata.gz: 36053a204711eb24d5f0197ebead895c1d55a1f6e3bcd6ac2b758837fcb5683934a9af26c9880ddf5b49ca4f7f506d61abd455efa55d28186df567419fdf7ebd
7
- data.tar.gz: c53dcd5b2a2e70d02977007b159155bb653eaca964c239b48c6f76fc1b6179700401aee098ead40258ef9050042d2c25432b5d8cf58813d690db502974710220
6
+ metadata.gz: 1875e75835c3aed614d5b4f625352a3a7555bb3104ccc0aefa2fcf41e577db06b1ff5e73220a08be988d37df35dbb7dc3bd5c671e222836dfbe644a1468ea25f
7
+ data.tar.gz: 53e3821805a71d2801596badb958b76c890622b917abfc1e884f37eee4f552f53f5662896c5848a1ab6edffd2921b586010c3a318dcacd5bba0041cb0afa04d4
@@ -42,6 +42,6 @@ require_relative 'aws-sdk-rekognition/customizations'
42
42
  # @service
43
43
  module Aws::Rekognition
44
44
 
45
- GEM_VERSION = '1.10.0'
45
+ GEM_VERSION = '1.11.0'
46
46
 
47
47
  end
@@ -196,10 +196,9 @@ module Aws::Rekognition
196
196
  # </note>
197
197
  #
198
198
  # You pass the input and target images either as base64-encoded image
199
- # bytes or as a references to images in an Amazon S3 bucket. If you use
200
- # the Amazon CLI to call Amazon Rekognition operations, passing image
201
- # bytes is not supported. The image must be either a PNG or JPEG
202
- # formatted file.
199
+ # bytes or as references to images in an Amazon S3 bucket. If you use
200
+ # the AWS CLI to call Amazon Rekognition operations, passing image bytes
201
+ # isn't supported. The image must be formatted as a PNG or JPEG file.
203
202
  #
204
203
  # In response, the operation returns an array of face matches ordered by
205
204
  # similarity score in descending order. For each face match, the
@@ -727,19 +726,19 @@ module Aws::Rekognition
727
726
  # Detects faces within an image that is provided as input.
728
727
  #
729
728
  # `DetectFaces` detects the 100 largest faces in the image. For each
730
- # face detected, the operation returns face details including a bounding
731
- # box of the face, a confidence value (that the bounding box contains a
732
- # face), and a fixed set of attributes such as facial landmarks (for
733
- # example, coordinates of eye and mouth), gender, presence of beard,
734
- # sunglasses, etc.
729
+ # face detected, the operation returns face details. These details
730
+ # include a bounding box of the face, a confidence value (that the
731
+ # bounding box contains a face), and a fixed set of attributes such as
732
+ # facial landmarks (for example, coordinates of eye and mouth), gender,
733
+ # presence of beard, sunglasses, and so on.
735
734
  #
736
735
  # The face-detection algorithm is most effective on frontal faces. For
737
- # non-frontal or obscured faces, the algorithm may not detect the faces
738
- # or might detect faces with lower confidence.
736
+ # non-frontal or obscured faces, the algorithm might not detect the
737
+ # faces or might detect faces with lower confidence.
739
738
  #
740
739
  # You pass the input image either as base64-encoded image bytes or as a
741
- # reference to an image in an Amazon S3 bucket. If you use the Amazon
742
- # CLI to call Amazon Rekognition operations, passing image bytes is not
740
+ # reference to an image in an Amazon S3 bucket. If you use the AWS CLI
741
+ # to call Amazon Rekognition operations, passing image bytes is not
743
742
  # supported. The image must be either a PNG or JPEG formatted file.
744
743
  #
745
744
  # <note markdown="1"> This is a stateless API operation. That is, the operation does not
@@ -760,9 +759,9 @@ module Aws::Rekognition
760
759
  # default list of attributes or all attributes. If you don't specify a
761
760
  # value for `Attributes` or if you specify `["DEFAULT"]`, the API
762
761
  # returns the following subset of facial attributes: `BoundingBox`,
763
- # `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide
764
- # `["ALL"]`, all facial attributes are returned but the operation will
765
- # take longer to complete.
762
+ # `Confidence`, `Pose`, `Quality`, and `Landmarks`. If you provide
763
+ # `["ALL"]`, all facial attributes are returned, but the operation takes
764
+ # longer to complete.
766
765
  #
767
766
  # If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical
768
767
  # AND operator to determine which attributes to return (in this case,
@@ -916,15 +915,15 @@ module Aws::Rekognition
916
915
  # </note>
917
916
  #
918
917
  # You pass the input image as base64-encoded image bytes or as a
919
- # reference to an image in an Amazon S3 bucket. If you use the Amazon
920
- # CLI to call Amazon Rekognition operations, passing image bytes is not
918
+ # reference to an image in an Amazon S3 bucket. If you use the AWS CLI
919
+ # to call Amazon Rekognition operations, passing image bytes is not
921
920
  # supported. The image must be either a PNG or JPEG formatted file.
922
921
  #
923
922
  # For each object, scene, and concept the API returns one or more
924
923
  # labels. Each label provides the object name, and the level of
925
924
  # confidence that the image contains the object. For example, suppose
926
925
  # the input image has a lighthouse, the sea, and a rock. The response
927
- # will include all three labels, one for each object.
926
+ # includes all three labels, one for each object.
928
927
  #
929
928
  # `\{Name: lighthouse, Confidence: 98.4629\}`
930
929
  #
@@ -1059,8 +1058,8 @@ module Aws::Rekognition
1059
1058
  # in the Amazon Rekognition Developer Guide.
1060
1059
  #
1061
1060
  # You pass the input image either as base64-encoded image bytes or as a
1062
- # reference to an image in an Amazon S3 bucket. If you use the Amazon
1063
- # CLI to call Amazon Rekognition operations, passing image bytes is not
1061
+ # reference to an image in an Amazon S3 bucket. If you use the AWS CLI
1062
+ # to call Amazon Rekognition operations, passing image bytes is not
1064
1063
  # supported. The image must be either a PNG or JPEG formatted file.
1065
1064
  #
1066
1065
  # @option params [required, Types::Image] :image
@@ -1191,9 +1190,9 @@ module Aws::Rekognition
1191
1190
  end
1192
1191
 
1193
1192
  # Gets the name and additional information about a celebrity based on
1194
- # his or her Rekognition ID. The additional information is returned as
1195
- # an array of URLs. If there is no additional information about the
1196
- # celebrity, this list is empty.
1193
+ # his or her Amazon Rekognition ID. The additional information is
1194
+ # returned as an array of URLs. If there is no additional information
1195
+ # about the celebrity, this list is empty.
1197
1196
  #
1198
1197
  # For more information, see Recognizing Celebrities in an Image in the
1199
1198
  # Amazon Rekognition Developer Guide.
@@ -1971,21 +1970,24 @@ module Aws::Rekognition
1971
1970
  # Detects faces in the input image and adds them to the specified
1972
1971
  # collection.
1973
1972
  #
1974
- # Amazon Rekognition does not save the actual faces detected. Instead,
1975
- # the underlying detection algorithm first detects the faces in the
1976
- # input image, and for each face extracts facial features into a feature
1977
- # vector, and stores it in the back-end database. Amazon Rekognition
1978
- # uses feature vectors when performing face match and search operations
1979
- # using the and operations.
1973
+ # Amazon Rekognition doesn't save the actual faces that are detected.
1974
+ # Instead, the underlying detection algorithm first detects the faces in
1975
+ # the input image. For each face, the algorithm extracts facial features
1976
+ # into a feature vector, and stores it in the backend database. Amazon
1977
+ # Rekognition uses feature vectors when it performs face match and
1978
+ # search operations using the and operations.
1979
+ #
1980
+ # For more information, see Adding Faces to a Collection in the Amazon
1981
+ # Rekognition Developer Guide.
1980
1982
  #
1981
1983
  # To get the number of faces in a collection, call .
1982
1984
  #
1983
- # If you are using version 1.0 of the face detection model, `IndexFaces`
1985
+ # If you're using version 1.0 of the face detection model, `IndexFaces`
1984
1986
  # indexes the 15 largest faces in the input image. Later versions of the
1985
1987
  # face detection model index the 100 largest faces in the input image.
1986
- # To determine which version of the model you are using, call and supply
1987
- # the collection ID. You also get the model version from the value of
1988
- # `FaceModelVersion` in the response from `IndexFaces`.
1988
+ # To determine which version of the model you're using, call and supply
1989
+ # the collection ID. You can also get the model version from the value
1990
+ # of `FaceModelVersion` in the response from `IndexFaces`.
1989
1991
  #
1990
1992
  # For more information, see Model Versioning in the Amazon Rekognition
1991
1993
  # Developer Guide.
@@ -1999,58 +2001,65 @@ module Aws::Rekognition
1999
2001
  #
2000
2002
  # You can specify the maximum number of faces to index with the
2001
2003
  # `MaxFaces` input parameter. This is useful when you want to index the
2002
- # largest faces in an image, and you don't want to index other faces
2003
- # detected in the image.
2004
+ # largest faces in an image and don't want to index smaller faces, such
2005
+ # as those belonging to people standing in the background.
2004
2006
  #
2005
2007
  # The `QualityFilter` input parameter allows you to filter out detected
2006
2008
  # faces that don’t meet the required quality bar chosen by Amazon
2007
2009
  # Rekognition. The quality bar is based on a variety of common use
2008
- # cases.
2009
- #
2010
- # In response, the operation returns an array of metadata for all
2011
- # detected faces, `FaceRecords`. This includes:
2010
+ # cases. By default, `IndexFaces` filters detected faces. You can also
2011
+ # explicitly filter detected faces by specifying `AUTO` for the value of
2012
+ # `QualityFilter`. If you do not want to filter detected faces, specify
2013
+ # `NONE`.
2012
2014
  #
2013
- # * The bounding box, `BoundingBox`, of the detected face.
2014
- #
2015
- # * A confidence value, `Confidence`, indicating the confidence that the
2016
- # bounding box contains a face.
2017
- #
2018
- # * A face ID, `faceId`, assigned by the service for each face that is
2019
- # detected and stored.
2015
+ # <note markdown="1"> To use quality filtering, you need a collection associated with
2016
+ # version 3 of the face model. To get the version of the face model
2017
+ # associated with a collection, call .
2020
2018
  #
2021
- # * An image ID, `ImageId`, assigned by the service for the input image.
2022
- #
2023
- # If you request all facial attributes (using the `detectionAttributes`
2024
- # parameter), Amazon Rekognition returns detailed facial attributes such
2025
- # as facial landmarks (for example, location of eye and mouth) and other
2026
- # facial attributes such gender. If you provide the same image, specify
2027
- # the same collection, and use the same external ID in the `IndexFaces`
2028
- # operation, Amazon Rekognition doesn't save duplicate face metadata.
2019
+ # </note>
2029
2020
  #
2030
2021
  # Information about faces detected in an image, but not indexed, is
2031
- # returned in an array of objects, `UnindexedFaces`. Faces are not
2022
+ # returned in an array of objects, `UnindexedFaces`. Faces aren't
2032
2023
  # indexed for reasons such as:
2033
2024
  #
2025
+ # * The number of faces detected exceeds the value of the `MaxFaces`
2026
+ # request parameter.
2027
+ #
2028
+ # * The face is too small compared to the image dimensions.
2029
+ #
2034
2030
  # * The face is too blurry.
2035
2031
  #
2036
2032
  # * The image is too dark.
2037
2033
  #
2038
2034
  # * The face has an extreme pose.
2039
2035
  #
2040
- # * The face is too small.
2036
+ # In response, the `IndexFaces` operation returns an array of metadata
2037
+ # for all detected faces, `FaceRecords`. This includes:
2041
2038
  #
2042
- # * The number of faces detected exceeds the value of the `MaxFaces`
2043
- # request parameter.
2039
+ # * The bounding box, `BoundingBox`, of the detected face.
2044
2040
  #
2041
+ # * A confidence value, `Confidence`, which indicates the confidence
2042
+ # that the bounding box contains a face.
2045
2043
  #
2044
+ # * A face ID, `faceId`, assigned by the service for each face that's
2045
+ # detected and stored.
2046
2046
  #
2047
- # For more information, see Adding Faces to a Collection in the Amazon
2048
- # Rekognition Developer Guide.
2047
+ # * An image ID, `ImageId`, assigned by the service for the input image.
2049
2048
  #
2050
- # The input image is passed either as base64-encoded image bytes or as a
2051
- # reference to an image in an Amazon S3 bucket. If you use the Amazon
2052
- # CLI to call Amazon Rekognition operations, passing image bytes is not
2053
- # supported. The image must be either a PNG or JPEG formatted file.
2049
+ # If you request all facial attributes (by using the
2050
+ # `detectionAttributes` parameter), Amazon Rekognition returns detailed
2051
+ # facial attributes, such as facial landmarks (for example, location of
2052
+ # eye and mouth) and other facial attributes like gender. If you provide
2053
+ # the same image, specify the same collection, and use the same external
2054
+ # ID in the `IndexFaces` operation, Amazon Rekognition doesn't save
2055
+ # duplicate face metadata.
2056
+ #
2057
+ #
2058
+ #
2059
+ # The input image is passed either as base64-encoded image bytes, or as
2060
+ # a reference to an image in an Amazon S3 bucket. If you use the AWS CLI
2061
+ # to call Amazon Rekognition operations, passing image bytes isn't
2062
+ # supported. The image must be formatted as a PNG or JPEG file.
2054
2063
  #
2055
2064
  # This operation requires permissions to perform the
2056
2065
  # `rekognition:IndexFaces` action.
@@ -2062,19 +2071,19 @@ module Aws::Rekognition
2062
2071
  # @option params [required, Types::Image] :image
2063
2072
  # The input image as base64-encoded bytes or an S3 object. If you use
2064
2073
  # the AWS CLI to call Amazon Rekognition operations, passing
2065
- # base64-encoded image bytes is not supported.
2074
+ # base64-encoded image bytes isn't supported.
2066
2075
  #
2067
2076
  # @option params [String] :external_image_id
2068
- # ID you want to assign to all the faces detected in the image.
2077
+ # The ID you want to assign to all the faces detected in the image.
2069
2078
  #
2070
2079
  # @option params [Array<String>] :detection_attributes
2071
2080
  # An array of facial attributes that you want to be returned. This can
2072
2081
  # be the default list of attributes or all attributes. If you don't
2073
2082
  # specify a value for `Attributes` or if you specify `["DEFAULT"]`, the
2074
2083
  # API returns the following subset of facial attributes: `BoundingBox`,
2075
- # `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide
2076
- # `["ALL"]`, all facial attributes are returned but the operation will
2077
- # take longer to complete.
2084
+ # `Confidence`, `Pose`, `Quality`, and `Landmarks`. If you provide
2085
+ # `["ALL"]`, all facial attributes are returned, but the operation takes
2086
+ # longer to complete.
2078
2087
  #
2079
2088
  # If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical
2080
2089
  # AND operator to determine which attributes to return (in this case,
@@ -2082,30 +2091,36 @@ module Aws::Rekognition
2082
2091
  #
2083
2092
  # @option params [Integer] :max_faces
2084
2093
  # The maximum number of faces to index. The value of `MaxFaces` must be
2085
- # greater than or equal to 1. `IndexFaces` returns no more that 100
2094
+ # greater than or equal to 1. `IndexFaces` returns no more than 100
2086
2095
  # detected faces in an image, even if you specify a larger value for
2087
2096
  # `MaxFaces`.
2088
2097
  #
2089
2098
  # If `IndexFaces` detects more faces than the value of `MaxFaces`, the
2090
2099
  # faces with the lowest quality are filtered out first. If there are
2091
2100
  # still more faces than the value of `MaxFaces`, the faces with the
2092
- # smallest bounding boxes are filtered out (up to the number needed to
2093
- # satisfy the value of `MaxFaces`). Information about the unindexed
2094
- # faces is available in the `UnindexedFaces` array.
2101
+ # smallest bounding boxes are filtered out (up to the number that's
2102
+ # needed to satisfy the value of `MaxFaces`). Information about the
2103
+ # unindexed faces is available in the `UnindexedFaces` array.
2104
+ #
2105
+ # The faces that are returned by `IndexFaces` are sorted by the largest
2106
+ # face bounding box size to the smallest size, in descending order.
2095
2107
  #
2096
- # The faces returned by `IndexFaces` are sorted, in descending order, by
2097
- # the largest face bounding box size, to the smallest.
2108
+ # `MaxFaces` can be used with a collection associated with any version
2109
+ # of the face model.
2098
2110
  #
2099
2111
  # @option params [String] :quality_filter
2100
- # Specifies how much filtering is done to identify faces detected with
2101
- # low quality. Filtered faces are not indexed. If you specify `AUTO`,
2102
- # filtering prioritizes the identification of faces that don’t meet the
2103
- # required quality bar chosen by Amazon Rekognition. The quality bar is
2104
- # based on a variety of common use cases. Low quality detections can
2105
- # arise for a number of reasons. For example, an object misidentified as
2106
- # a face, a face that is too blurry, or a face with a pose that is too
2107
- # extreme to use. If you specify `NONE`, no filtering is performed. The
2108
- # default value is NONE.
2112
+ # A filter that specifies how much filtering is done to identify faces
2113
+ # that are detected with low quality. Filtered faces aren't indexed. If
2114
+ # you specify `AUTO`, filtering prioritizes the identification of faces
2115
+ # that don’t meet the required quality bar chosen by Amazon Rekognition.
2116
+ # The quality bar is based on a variety of common use cases. Low-quality
2117
+ # detections can occur for a number of reasons. Some examples are an
2118
+ # object that's misidentified as a face, a face that's too blurry, or
2119
+ # a face with a pose that's too extreme to use. If you specify `NONE`,
2120
+ # no filtering is performed. The default value is AUTO.
2121
+ #
2122
+ # To use quality filtering, the collection you are using must be
2123
+ # associated with version 3 of the face model.
2109
2124
  #
2110
2125
  # @return [Types::IndexFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2111
2126
  #
@@ -2664,25 +2679,25 @@ module Aws::Rekognition
2664
2679
  # `RecognizeCelebrities` returns the 100 largest faces in the image. It
2665
2680
  # lists recognized celebrities in the `CelebrityFaces` array and
2666
2681
  # unrecognized faces in the `UnrecognizedFaces` array.
2667
- # `RecognizeCelebrities` doesn't return celebrities whose faces are not
2668
- # amongst the largest 100 faces in the image.
2682
+ # `RecognizeCelebrities` doesn't return celebrities whose faces aren't
2683
+ # among the largest 100 faces in the image.
2669
2684
  #
2670
- # For each celebrity recognized, the `RecognizeCelebrities` returns a
2685
+ # For each celebrity recognized, `RecognizeCelebrities` returns a
2671
2686
  # `Celebrity` object. The `Celebrity` object contains the celebrity
2672
2687
  # name, ID, URL links to additional information, match confidence, and a
2673
2688
  # `ComparedFace` object that you can use to locate the celebrity's face
2674
2689
  # on the image.
2675
2690
  #
2676
- # Rekognition does not retain information about which images a celebrity
2677
- # has been recognized in. Your application must store this information
2678
- # and use the `Celebrity` ID property as a unique identifier for the
2679
- # celebrity. If you don't store the celebrity name or additional
2680
- # information URLs returned by `RecognizeCelebrities`, you will need the
2681
- # ID to identify the celebrity in a call to the operation.
2691
+ # Amazon Rekognition doesn't retain information about which images a
2692
+ # celebrity has been recognized in. Your application must store this
2693
+ # information and use the `Celebrity` ID property as a unique identifier
2694
+ # for the celebrity. If you don't store the celebrity name or
2695
+ # additional information URLs returned by `RecognizeCelebrities`, you
2696
+ # will need the ID to identify the celebrity in a call to the operation.
2682
2697
  #
2683
- # You pass the imput image either as base64-encoded image bytes or as a
2684
- # reference to an image in an Amazon S3 bucket. If you use the Amazon
2685
- # CLI to call Amazon Rekognition operations, passing image bytes is not
2698
+ # You pass the input image either as base64-encoded image bytes or as a
2699
+ # reference to an image in an Amazon S3 bucket. If you use the AWS CLI
2700
+ # to call Amazon Rekognition operations, passing image bytes is not
2686
2701
  # supported. The image must be either a PNG or JPEG formatted file.
2687
2702
  #
2688
2703
  # For an example, see Recognizing Celebrities in an Image in the Amazon
@@ -2914,8 +2929,8 @@ module Aws::Rekognition
2914
2929
  # </note>
2915
2930
  #
2916
2931
  # You pass the input image either as base64-encoded image bytes or as a
2917
- # reference to an image in an Amazon S3 bucket. If you use the Amazon
2918
- # CLI to call Amazon Rekognition operations, passing image bytes is not
2932
+ # reference to an image in an Amazon S3 bucket. If you use the AWS CLI
2933
+ # to call Amazon Rekognition operations, passing image bytes is not
2919
2934
  # supported. The image must be either a PNG or JPEG formatted file.
2920
2935
  #
2921
2936
  # The response returns an array of faces that match, ordered by
@@ -3549,7 +3564,7 @@ module Aws::Rekognition
3549
3564
  params: params,
3550
3565
  config: config)
3551
3566
  context[:gem_name] = 'aws-sdk-rekognition'
3552
- context[:gem_version] = '1.10.0'
3567
+ context[:gem_version] = '1.11.0'
3553
3568
  Seahorse::Client::Request.new(handlers, context)
3554
3569
  end
3555
3570
 
@@ -10,10 +10,10 @@ module Aws::Rekognition
10
10
 
11
11
  # Structure containing the estimated age range, in years, for a face.
12
12
  #
13
- # Rekognition estimates an age-range for faces detected in the input
14
- # image. Estimated age ranges can overlap; a face of a 5 year old may
15
- # have an estimated range of 4-6 whilst the face of a 6 year old may
16
- # have an estimated range of 4-8.
13
+ # Amazon Rekognition estimates an age range for faces detected in the
14
+ # input image. Estimated age ranges can overlap. A face of a 5-year-old
15
+ # might have an estimated range of 4-6, while the face of a 6-year-old
16
+ # might have an estimated range of 4-8.
17
17
  #
18
18
  # @!attribute [rw] low
19
19
  # The lowest estimated age.
@@ -119,7 +119,7 @@ module Aws::Rekognition
119
119
  # @return [Types::ComparedFace]
120
120
  #
121
121
  # @!attribute [rw] match_confidence
122
- # The confidence, in percentage, that Rekognition has that the
122
+ # The confidence, in percentage, that Amazon Rekognition has that the
123
123
  # recognized face is the celebrity.
124
124
  # @return [Float]
125
125
  #
@@ -189,7 +189,7 @@ module Aws::Rekognition
189
189
  end
190
190
 
191
191
  # Provides information about a face in a target image that matches the
192
- # source image face analysed by `CompareFaces`. The `Face` property
192
+ # source image face analyzed by `CompareFaces`. The `Face` property
193
193
  # contains the bounding box of the face in the target image. The
194
194
  # `Similarity` property is the confidence that the source image face
195
195
  # matches the face in the bounding box.
@@ -283,10 +283,10 @@ module Aws::Rekognition
283
283
  # <note markdown="1"> If the source image is in .jpeg format, it might contain
284
284
  # exchangeable image (Exif) metadata that includes the image's
285
285
  # orientation. If the Exif metadata for the source image populates the
286
- # orientation field, the value of `OrientationCorrection` is null and
287
- # the `SourceImageFace` bounding box coordinates represent the
288
- # location of the face after Exif metadata is used to correct the
289
- # orientation. Images in .png format don't contain Exif metadata.
286
+ # orientation field, the value of `OrientationCorrection` is null. The
287
+ # `SourceImageFace` bounding box coordinates represent the location of
288
+ # the face after Exif metadata is used to correct the orientation.
289
+ # Images in .png format don't contain Exif metadata.
290
290
  #
291
291
  # </note>
292
292
  # @return [String]
@@ -301,7 +301,7 @@ module Aws::Rekognition
301
301
  # <note markdown="1"> If the target image is in .jpg format, it might contain Exif
302
302
  # metadata that includes the orientation of the image. If the Exif
303
303
  # metadata for the target image populates the orientation field, the
304
- # value of `OrientationCorrection` is null and the bounding box
304
+ # value of `OrientationCorrection` is null. The bounding box
305
305
  # coordinates in `FaceMatches` and `UnmatchedFaces` represent the
306
306
  # location of the face after Exif metadata is used to correct the
307
307
  # orientation. Images in .png format don't contain Exif metadata.
@@ -318,7 +318,7 @@ module Aws::Rekognition
318
318
  include Aws::Structure
319
319
  end
320
320
 
321
- # Provides face metadata for target image faces that are analysed by
321
+ # Provides face metadata for target image faces that are analyzed by
322
322
  # `CompareFaces` and `RecognizeCelebrities`.
323
323
  #
324
324
  # @!attribute [rw] bounding_box
@@ -717,9 +717,9 @@ module Aws::Rekognition
717
717
  # the default list of attributes or all attributes. If you don't
718
718
  # specify a value for `Attributes` or if you specify `["DEFAULT"]`,
719
719
  # the API returns the following subset of facial attributes:
720
- # `BoundingBox`, `Confidence`, `Pose`, `Quality` and `Landmarks`. If
721
- # you provide `["ALL"]`, all facial attributes are returned but the
722
- # operation will take longer to complete.
720
+ # `BoundingBox`, `Confidence`, `Pose`, `Quality`, and `Landmarks`. If
721
+ # you provide `["ALL"]`, all facial attributes are returned, but the
722
+ # operation takes longer to complete.
723
723
  #
724
724
  # If you provide both, `["ALL", "DEFAULT"]`, the service uses a
725
725
  # logical AND operator to determine which attributes to return (in
@@ -746,7 +746,7 @@ module Aws::Rekognition
746
746
  # <note markdown="1"> If the input image is in .jpeg format, it might contain exchangeable
747
747
  # image (Exif) metadata that includes the image's orientation. If so,
748
748
  # and the Exif metadata for the input image populates the orientation
749
- # field, the value of `OrientationCorrection` is null and the
749
+ # field, the value of `OrientationCorrection` is null. The
750
750
  # `FaceDetails` bounding box coordinates represent face locations
751
751
  # after Exif metadata is used to correct the image orientation. Images
752
752
  # in .png format don't contain Exif metadata.
@@ -1146,8 +1146,8 @@ module Aws::Rekognition
1146
1146
  include Aws::Structure
1147
1147
  end
1148
1148
 
1149
- # Object containing both the face metadata (stored in the back-end
1150
- # database) and facial attributes that are detected but aren't stored
1149
+ # Object containing both the face metadata (stored in the backend
1150
+ # database), and facial attributes that are detected but aren't stored
1151
1151
  # in the database.
1152
1152
  #
1153
1153
  # @!attribute [rw] face
@@ -1736,27 +1736,27 @@ module Aws::Rekognition
1736
1736
 
1737
1737
  # Provides the input image either as bytes or an S3 object.
1738
1738
  #
1739
- # You pass image bytes to a Rekognition API operation by using the
1740
- # `Bytes` property. For example, you would use the `Bytes` property to
1741
- # pass an image loaded from a local file system. Image bytes passed by
1742
- # using the `Bytes` property must be base64-encoded. Your code may not
1743
- # need to encode image bytes if you are using an AWS SDK to call
1744
- # Rekognition API operations.
1739
+ # You pass image bytes to an Amazon Rekognition API operation by using
1740
+ # the `Bytes` property. For example, you would use the `Bytes` property
1741
+ # to pass an image loaded from a local file system. Image bytes passed
1742
+ # by using the `Bytes` property must be base64-encoded. Your code may
1743
+ # not need to encode image bytes if you are using an AWS SDK to call
1744
+ # Amazon Rekognition API operations.
1745
1745
  #
1746
1746
  # For more information, see Analyzing an Image Loaded from a Local File
1747
1747
  # System in the Amazon Rekognition Developer Guide.
1748
1748
  #
1749
- # You pass images stored in an S3 bucket to a Rekognition API operation
1750
- # by using the `S3Object` property. Images stored in an S3 bucket do not
1751
- # need to be base64-encoded.
1749
+ # You pass images stored in an S3 bucket to an Amazon Rekognition API
1750
+ # operation by using the `S3Object` property. Images stored in an S3
1751
+ # bucket do not need to be base64-encoded.
1752
1752
  #
1753
1753
  # The region for the S3 bucket containing the S3 object must match the
1754
1754
  # region you use for Amazon Rekognition operations.
1755
1755
  #
1756
- # If you use the Amazon CLI to call Amazon Rekognition operations,
1757
- # passing image bytes using the Bytes property is not supported. You
1758
- # must first upload the image to an Amazon S3 bucket and then call the
1759
- # operation using the S3Object property.
1756
+ # If you use the AWS CLI to call Amazon Rekognition operations, passing
1757
+ # image bytes using the Bytes property is not supported. You must first
1758
+ # upload the image to an Amazon S3 bucket and then call the operation
1759
+ # using the S3Object property.
1760
1760
  #
1761
1761
  # For Amazon Rekognition to process an S3 object, the user must have
1762
1762
  # permission to access the S3 object. For more information, see Resource
@@ -1835,11 +1835,11 @@ module Aws::Rekognition
1835
1835
  # @!attribute [rw] image
1836
1836
  # The input image as base64-encoded bytes or an S3 object. If you use
1837
1837
  # the AWS CLI to call Amazon Rekognition operations, passing
1838
- # base64-encoded image bytes is not supported.
1838
+ # base64-encoded image bytes isn't supported.
1839
1839
  # @return [Types::Image]
1840
1840
  #
1841
1841
  # @!attribute [rw] external_image_id
1842
- # ID you want to assign to all the faces detected in the image.
1842
+ # The ID you want to assign to all the faces detected in the image.
1843
1843
  # @return [String]
1844
1844
  #
1845
1845
  # @!attribute [rw] detection_attributes
@@ -1847,9 +1847,9 @@ module Aws::Rekognition
1847
1847
  # be the default list of attributes or all attributes. If you don't
1848
1848
  # specify a value for `Attributes` or if you specify `["DEFAULT"]`,
1849
1849
  # the API returns the following subset of facial attributes:
1850
- # `BoundingBox`, `Confidence`, `Pose`, `Quality` and `Landmarks`. If
1851
- # you provide `["ALL"]`, all facial attributes are returned but the
1852
- # operation will take longer to complete.
1850
+ # `BoundingBox`, `Confidence`, `Pose`, `Quality`, and `Landmarks`. If
1851
+ # you provide `["ALL"]`, all facial attributes are returned, but the
1852
+ # operation takes longer to complete.
1853
1853
  #
1854
1854
  # If you provide both, `["ALL", "DEFAULT"]`, the service uses a
1855
1855
  # logical AND operator to determine which attributes to return (in
@@ -1858,31 +1858,39 @@ module Aws::Rekognition
1858
1858
  #
1859
1859
  # @!attribute [rw] max_faces
1860
1860
  # The maximum number of faces to index. The value of `MaxFaces` must
1861
- # be greater than or equal to 1. `IndexFaces` returns no more that 100
1861
+ # be greater than or equal to 1. `IndexFaces` returns no more than 100
1862
1862
  # detected faces in an image, even if you specify a larger value for
1863
1863
  # `MaxFaces`.
1864
1864
  #
1865
1865
  # If `IndexFaces` detects more faces than the value of `MaxFaces`, the
1866
1866
  # faces with the lowest quality are filtered out first. If there are
1867
1867
  # still more faces than the value of `MaxFaces`, the faces with the
1868
- # smallest bounding boxes are filtered out (up to the number needed to
1869
- # satisfy the value of `MaxFaces`). Information about the unindexed
1870
- # faces is available in the `UnindexedFaces` array.
1868
+ # smallest bounding boxes are filtered out (up to the number that's
1869
+ # needed to satisfy the value of `MaxFaces`). Information about the
1870
+ # unindexed faces is available in the `UnindexedFaces` array.
1871
1871
  #
1872
- # The faces returned by `IndexFaces` are sorted, in descending order,
1873
- # by the largest face bounding box size, to the smallest.
1872
+ # The faces that are returned by `IndexFaces` are sorted by the
1873
+ # largest face bounding box size to the smallest size, in descending
1874
+ # order.
1875
+ #
1876
+ # `MaxFaces` can be used with a collection associated with any version
1877
+ # of the face model.
1874
1878
  # @return [Integer]
1875
1879
  #
1876
1880
  # @!attribute [rw] quality_filter
1877
- # Specifies how much filtering is done to identify faces detected with
1878
- # low quality. Filtered faces are not indexed. If you specify `AUTO`,
1879
- # filtering prioritizes the identification of faces that don’t meet
1880
- # the required quality bar chosen by Amazon Rekognition. The quality
1881
- # bar is based on a variety of common use cases. Low quality
1882
- # detections can arise for a number of reasons. For example, an object
1883
- # misidentified as a face, a face that is too blurry, or a face with a
1884
- # pose that is too extreme to use. If you specify `NONE`, no filtering
1885
- # is performed. The default value is NONE.
1881
+ # A filter that specifies how much filtering is done to identify faces
1882
+ # that are detected with low quality. Filtered faces aren't indexed.
1883
+ # If you specify `AUTO`, filtering prioritizes the identification of
1884
+ # faces that don’t meet the required quality bar chosen by Amazon
1885
+ # Rekognition. The quality bar is based on a variety of common use
1886
+ # cases. Low-quality detections can occur for a number of reasons.
1887
+ # Some examples are an object that's misidentified as a face, a face
1888
+ # that's too blurry, or a face with a pose that's too extreme to
1889
+ # use. If you specify `NONE`, no filtering is performed. The default
1890
+ # value is AUTO.
1891
+ #
1892
+ # To use quality filtering, the collection you are using must be
1893
+ # associated with version 3 of the face model.
1886
1894
  # @return [String]
1887
1895
  #
1888
1896
  class IndexFacesRequest < Struct.new(
@@ -1910,24 +1918,25 @@ module Aws::Rekognition
1910
1918
  #
1911
1919
  # <note markdown="1"> If the input image is in jpeg format, it might contain exchangeable
1912
1920
  # image (Exif) metadata. If so, and the Exif metadata populates the
1913
- # orientation field, the value of `OrientationCorrection` is null and
1914
- # the bounding box coordinates in `FaceRecords` represent face
1915
- # locations after Exif metadata is used to correct the image
1916
- # orientation. Images in .png format don't contain Exif metadata.
1921
+ # orientation field, the value of `OrientationCorrection` is null. The
1922
+ # bounding box coordinates in `FaceRecords` represent face locations
1923
+ # after Exif metadata is used to correct the image orientation. Images
1924
+ # in .png format don't contain Exif metadata.
1917
1925
  #
1918
1926
  # </note>
1919
1927
  # @return [String]
1920
1928
  #
1921
1929
  # @!attribute [rw] face_model_version
1922
- # Version number of the face detection model associated with the input
1923
- # collection (`CollectionId`).
1930
+ # The version number of the face detection model that's associated
1931
+ # with the input collection (`CollectionId`).
1924
1932
  # @return [String]
1925
1933
  #
1926
1934
  # @!attribute [rw] unindexed_faces
1927
- # An array of faces that detected in the image but not indexed either
1928
- # because the quality filter deemed them to be of low-quality or the
1929
- # `MaxFaces` request parameter filtered them out. To use the quality
1930
- # filter, you specify the `QualityFilter` request parameter.
1935
+ # An array of faces that were detected in the image but weren't
1936
+ # indexed. They weren't indexed because the quality filter identified
1937
+ # them as low quality, or the `MaxFaces` request parameter filtered
1938
+ # them out. To use the quality filter, you specify the `QualityFilter`
1939
+ # request parameter.
1931
1940
  # @return [Array<Types::UnindexedFace>]
1932
1941
  #
1933
1942
  class IndexFacesResponse < Struct.new(
@@ -2018,20 +2027,20 @@ module Aws::Rekognition
2018
2027
  # Indicates the location of the landmark on the face.
2019
2028
  #
2020
2029
  # @!attribute [rw] type
2021
- # Type of the landmark.
2030
+ # Type of landmark.
2022
2031
  # @return [String]
2023
2032
  #
2024
2033
  # @!attribute [rw] x
2025
- # x-coordinate from the top left of the landmark expressed as the
2026
- # ratio of the width of the image. For example, if the images is
2027
- # 700x200 and the x-coordinate of the landmark is at 350 pixels, this
2034
+ # The x-coordinate from the top left of the landmark expressed as the
2035
+ # ratio of the width of the image. For example, if the image is 700 x
2036
+ # 200 and the x-coordinate of the landmark is at 350 pixels, this
2028
2037
  # value is 0.5.
2029
2038
  # @return [Float]
2030
2039
  #
2031
2040
  # @!attribute [rw] y
2032
- # y-coordinate from the top left of the landmark expressed as the
2033
- # ratio of the height of the image. For example, if the images is
2034
- # 700x200 and the y-coordinate of the landmark is at 100 pixels, this
2041
+ # The y-coordinate from the top left of the landmark expressed as the
2042
+ # ratio of the height of the image. For example, if the image is 700 x
2043
+ # 200 and the y-coordinate of the landmark is at 100 pixels, this
2035
2044
  # value is 0.5.
2036
2045
  # @return [Float]
2037
2046
  #
@@ -2202,7 +2211,7 @@ module Aws::Rekognition
2202
2211
  # @return [String]
2203
2212
  #
2204
2213
  # @!attribute [rw] parent_name
2205
- # The name for the parent label. Labels at the top-level of the
2214
+ # The name for the parent label. Labels at the top level of the
2206
2215
  # hierarchy have the parent label `""`.
2207
2216
  # @return [String]
2208
2217
  #
@@ -2322,11 +2331,11 @@ module Aws::Rekognition
2322
2331
  include Aws::Structure
2323
2332
  end
2324
2333
 
2325
- # Information about a person whose face matches a face(s) in a Amazon
2334
+ # Information about a person whose face matches a face(s) in an Amazon
2326
2335
  # Rekognition collection. Includes information about the faces in the
2327
2336
  # Amazon Rekognition collection (), information about the person
2328
- # (PersonDetail) and the timestamp for when the person was detected in a
2329
- # video. An array of `PersonMatch` objects is returned by .
2337
+ # (PersonDetail), and the time stamp for when the person was detected in
2338
+ # a video. An array of `PersonMatch` objects is returned by .
2330
2339
  #
2331
2340
  # @!attribute [rw] timestamp
2332
2341
  # The time, in milliseconds from the beginning of the video, that the
@@ -2438,7 +2447,7 @@ module Aws::Rekognition
2438
2447
  # <note markdown="1"> If the input image is in .jpeg format, it might contain exchangeable
2439
2448
  # image (Exif) metadata that includes the image's orientation. If so,
2440
2449
  # and the Exif metadata for the input image populates the orientation
2441
- # field, the value of `OrientationCorrection` is null and the
2450
+ # field, the value of `OrientationCorrection` is null. The
2442
2451
  # `CelebrityFaces` and `UnrecognizedFaces` bounding box coordinates
2443
2452
  # represent face locations after Exif metadata is used to correct the
2444
2453
  # image orientation. Images in .png format don't contain Exif
@@ -2460,8 +2469,8 @@ module Aws::Rekognition
2460
2469
  # region you use for Amazon Rekognition operations.
2461
2470
  #
2462
2471
  # For Amazon Rekognition to process an S3 object, the user must have
2463
- # permission to access the S3 object. For more information, see Resource
2464
- # Based Policies in the Amazon Rekognition Developer Guide.
2472
+ # permission to access the S3 object. For more information, see
2473
+ # Resource-Based Policies in the Amazon Rekognition Developer Guide.
2465
2474
  #
2466
2475
  # @note When making an API call, you may pass S3Object
2467
2476
  # data as a hash:
@@ -3243,11 +3252,11 @@ module Aws::Rekognition
3243
3252
  include Aws::Structure
3244
3253
  end
3245
3254
 
3246
- # A face detected by but not indexed. Use the `Reasons` response
3247
- # attribute to determine why a face is not indexed.
3255
+ # A face that detected, but didn't index. Use the `Reasons` response
3256
+ # attribute to determine why a face wasn't indexed.
3248
3257
  #
3249
3258
  # @!attribute [rw] reasons
3250
- # An array of reasons specifying why a face was not indexed.
3259
+ # An array of reasons that specify why a face wasn't indexed.
3251
3260
  #
3252
3261
  # * EXTREME\_POSE - The face is at a pose that can't be detected. For
3253
3262
  # example, the head is turned too far away from the camera.
@@ -3267,8 +3276,8 @@ module Aws::Rekognition
3267
3276
  # @return [Array<String>]
3268
3277
  #
3269
3278
  # @!attribute [rw] face_detail
3270
- # Structure containing attributes of a face that was detected, but not
3271
- # indexed, by `IndexFaces`.
3279
+ # The structure that contains attributes of a face that
3280
+ # `IndexFaces`detected, but didn't index.
3272
3281
  # @return [Types::FaceDetail]
3273
3282
  #
3274
3283
  class UnindexedFace < Struct.new(
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-rekognition
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.10.0
4
+ version: 1.11.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2018-09-18 00:00:00.000000000 Z
11
+ date: 2018-10-01 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core