aws-sdk-rekognition 1.1.0 → 1.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 2523eb562390e9e0d7933d2b0263c67504b30f05
4
- data.tar.gz: 641ee3cf40966d546ebec72593c0a5b5dcd537fd
3
+ metadata.gz: 4e16847728f1adb8be09b3151d0a620331732c47
4
+ data.tar.gz: bb0e05b6d4bd8b62fb4cc77db6c024a10463b811
5
5
  SHA512:
6
- metadata.gz: 4b65d4b05f093c6b2b6642059f2ef4ad4f1194a1287b7b67735b88d630afc457311baf4d442366cbd891d3221a72b6bcf9c7d798d5b55518942e13849576e01f
7
- data.tar.gz: 11b5e6a3c6e1bda43c180489baa0347fb1a8a277ef5ca49209c0d1d08837b0faf01db51373fcdec2d1ed1dd385872152c846c3541f5ae69533485ef3160090d1
6
+ metadata.gz: eef30fdd8159d4bb67ec25c5bbe63e88e1bdb14dd5acfcabd9512613017cff75b52912868a3ba5e6e68c3ad592f5a322c3b5c32523bdc671a47a542f2eb9287e
7
+ data.tar.gz: cb2ca91dd467ae9f4560deba526e01ba4ca547cc8bc87966208689841db4ed75266501932e1746b88a3c61ef84ca65bc9ce9c5bf32381c39fee97f33e572bd7a
@@ -42,6 +42,6 @@ require_relative 'aws-sdk-rekognition/customizations'
42
42
  # @service
43
43
  module Aws::Rekognition
44
44
 
45
- GEM_VERSION = '1.1.0'
45
+ GEM_VERSION = '1.2.0'
46
46
 
47
47
  end
@@ -202,7 +202,7 @@ module Aws::Rekognition
202
202
  #
203
203
  # </note>
204
204
  #
205
- # For an example, see get-started-exercise-compare-faces.
205
+ # For an example, see faces-compare-images.
206
206
  #
207
207
  # This operation requires permissions to perform the
208
208
  # `rekognition:CompareFaces` action.
@@ -359,8 +359,6 @@ module Aws::Rekognition
359
359
  #
360
360
  # </note>
361
361
  #
362
- # For an example, see example1.
363
- #
364
362
  # This operation requires permissions to perform the
365
363
  # `rekognition:CreateCollection` action.
366
364
  #
@@ -407,8 +405,88 @@ module Aws::Rekognition
407
405
  req.send_request(options)
408
406
  end
409
407
 
408
+ # Creates an Amazon Rekognition stream processor that you can use to
409
+ # detect and recognize faces in a streaming video.
410
+ #
411
+ # Rekognition Video is a consumer of live video from Amazon Kinesis
412
+ # Video Streams. Rekognition Video sends analysis results to Amazon
413
+ # Kinesis Data Streams.
414
+ #
415
+ # You provide as input a Kinesis video stream (`Input`) and a Kinesis
416
+ # data stream (`Output`) stream. You also specify the face recognition
417
+ # criteria in `Settings`. For example, the collection containing faces
418
+ # that you want to recognize. Use `Name` to assign an identifier for the
419
+ # stream processor. You use `Name` to manage the stream processor. For
420
+ # example, you can start processing the source video by calling with the
421
+ # `Name` field.
422
+ #
423
+ # After you have finished analyzing a streaming video, use to stop
424
+ # processing. You can delete the stream processor by calling .
425
+ #
426
+ # @option params [required, Types::StreamProcessorInput] :input
427
+ # Kinesis video stream stream that provides the source streaming video.
428
+ # If you are using the AWS CLI, the parameter name is
429
+ # `StreamProcessorInput`.
430
+ #
431
+ # @option params [required, Types::StreamProcessorOutput] :output
432
+ # Kinesis data stream stream to which Rekognition Video puts the
433
+ # analysis results. If you are using the AWS CLI, the parameter name is
434
+ # `StreamProcessorOutput`.
435
+ #
436
+ # @option params [required, String] :name
437
+ # An identifier you assign to the stream processor. You can use `Name`
438
+ # to manage the stream processor. For example, you can get the current
439
+ # status of the stream processor by calling . `Name` is idempotent.
440
+ #
441
+ # @option params [required, Types::StreamProcessorSettings] :settings
442
+ # Face recognition input parameters to be used by the stream processor.
443
+ # Includes the collection to use for face recognition and the face
444
+ # attributes to detect.
445
+ #
446
+ # @option params [required, String] :role_arn
447
+ # ARN of the IAM role that allows access to the stream processor.
448
+ #
449
+ # @return [Types::CreateStreamProcessorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
450
+ #
451
+ # * {Types::CreateStreamProcessorResponse#stream_processor_arn #stream_processor_arn} => String
452
+ #
453
+ # @example Request syntax with placeholder values
454
+ #
455
+ # resp = client.create_stream_processor({
456
+ # input: { # required
457
+ # kinesis_video_stream: {
458
+ # arn: "KinesisVideoArn",
459
+ # },
460
+ # },
461
+ # output: { # required
462
+ # kinesis_data_stream: {
463
+ # arn: "KinesisDataArn",
464
+ # },
465
+ # },
466
+ # name: "StreamProcessorName", # required
467
+ # settings: { # required
468
+ # face_search: {
469
+ # collection_id: "CollectionId",
470
+ # face_match_threshold: 1.0,
471
+ # },
472
+ # },
473
+ # role_arn: "RoleArn", # required
474
+ # })
475
+ #
476
+ # @example Response structure
477
+ #
478
+ # resp.stream_processor_arn #=> String
479
+ #
480
+ # @overload create_stream_processor(params = {})
481
+ # @param [Hash] params ({})
482
+ def create_stream_processor(params = {}, options = {})
483
+ req = build_request(:create_stream_processor, params)
484
+ req.send_request(options)
485
+ end
486
+
410
487
  # Deletes the specified collection. Note that this operation removes all
411
- # faces in the collection. For an example, see example1.
488
+ # faces in the collection. For an example, see
489
+ # delete-collection-procedure.
412
490
  #
413
491
  # This operation requires permissions to perform the
414
492
  # `rekognition:DeleteCollection` action.
@@ -505,6 +583,77 @@ module Aws::Rekognition
505
583
  req.send_request(options)
506
584
  end
507
585
 
586
+ # Deletes the stream processor identified by `Name`. You assign the
587
+ # value for `Name` when you create the stream processor with . You might
588
+ # not be able to use the same name for a stream processor for a few
589
+ # seconds after calling `DeleteStreamProcessor`.
590
+ #
591
+ # @option params [required, String] :name
592
+ # The name of the stream processor you want to delete.
593
+ #
594
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
595
+ #
596
+ # @example Request syntax with placeholder values
597
+ #
598
+ # resp = client.delete_stream_processor({
599
+ # name: "StreamProcessorName", # required
600
+ # })
601
+ #
602
+ # @overload delete_stream_processor(params = {})
603
+ # @param [Hash] params ({})
604
+ def delete_stream_processor(params = {}, options = {})
605
+ req = build_request(:delete_stream_processor, params)
606
+ req.send_request(options)
607
+ end
608
+
609
+ # Provides information about a stream processor created by . You can get
610
+ # information about the input and output streams, the input parameters
611
+ # for the face recognition being performed, and the current status of
612
+ # the stream processor.
613
+ #
614
+ # @option params [required, String] :name
615
+ # Name of the stream processor for which you want information.
616
+ #
617
+ # @return [Types::DescribeStreamProcessorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
618
+ #
619
+ # * {Types::DescribeStreamProcessorResponse#name #name} => String
620
+ # * {Types::DescribeStreamProcessorResponse#stream_processor_arn #stream_processor_arn} => String
621
+ # * {Types::DescribeStreamProcessorResponse#status #status} => String
622
+ # * {Types::DescribeStreamProcessorResponse#status_message #status_message} => String
623
+ # * {Types::DescribeStreamProcessorResponse#creation_timestamp #creation_timestamp} => Time
624
+ # * {Types::DescribeStreamProcessorResponse#last_update_timestamp #last_update_timestamp} => Time
625
+ # * {Types::DescribeStreamProcessorResponse#input #input} => Types::StreamProcessorInput
626
+ # * {Types::DescribeStreamProcessorResponse#output #output} => Types::StreamProcessorOutput
627
+ # * {Types::DescribeStreamProcessorResponse#role_arn #role_arn} => String
628
+ # * {Types::DescribeStreamProcessorResponse#settings #settings} => Types::StreamProcessorSettings
629
+ #
630
+ # @example Request syntax with placeholder values
631
+ #
632
+ # resp = client.describe_stream_processor({
633
+ # name: "StreamProcessorName", # required
634
+ # })
635
+ #
636
+ # @example Response structure
637
+ #
638
+ # resp.name #=> String
639
+ # resp.stream_processor_arn #=> String
640
+ # resp.status #=> String, one of "STOPPED", "STARTING", "RUNNING", "FAILED", "STOPPING"
641
+ # resp.status_message #=> String
642
+ # resp.creation_timestamp #=> Time
643
+ # resp.last_update_timestamp #=> Time
644
+ # resp.input.kinesis_video_stream.arn #=> String
645
+ # resp.output.kinesis_data_stream.arn #=> String
646
+ # resp.role_arn #=> String
647
+ # resp.settings.face_search.collection_id #=> String
648
+ # resp.settings.face_search.face_match_threshold #=> Float
649
+ #
650
+ # @overload describe_stream_processor(params = {})
651
+ # @param [Hash] params ({})
652
+ def describe_stream_processor(params = {}, options = {})
653
+ req = build_request(:describe_stream_processor, params)
654
+ req.send_request(options)
655
+ end
656
+
508
657
  # Detects faces within an image that is provided as input.
509
658
  #
510
659
  # `DetectFaces` detects the 100 largest faces in the image. For each
@@ -528,7 +677,7 @@ module Aws::Rekognition
528
677
  #
529
678
  # </note>
530
679
  #
531
- # For an example, see get-started-exercise-detect-faces.
680
+ # For an example, see procedure-detecting-faces-in-images.
532
681
  #
533
682
  # This operation requires permissions to perform the
534
683
  # `rekognition:DetectFaces` action.
@@ -683,11 +832,16 @@ module Aws::Rekognition
683
832
  req.send_request(options)
684
833
  end
685
834
 
686
- # Detects instances of real-world labels within an image (JPEG or PNG)
835
+ # Detects instances of real-world entities within an image (JPEG or PNG)
687
836
  # provided as input. This includes objects like flower, tree, and table;
688
837
  # events like wedding, graduation, and birthday party; and concepts like
689
- # landscape, evening, and nature. For an example, see
690
- # get-started-exercise-detect-labels.
838
+ # landscape, evening, and nature. For an example, see images-s3.
839
+ #
840
+ # <note markdown="1"> `DetectLabels` does not support the detection of activities. However,
841
+ # activity detection is supported for label detection in videos. For
842
+ # more information, see .
843
+ #
844
+ # </note>
691
845
  #
692
846
  # You pass the input image as base64-encoded image bytes or as a
693
847
  # reference to an image in an Amazon S3 bucket. If you use the Amazon
@@ -828,7 +982,7 @@ module Aws::Rekognition
828
982
  #
829
983
  # To filter images, use the labels returned by `DetectModerationLabels`
830
984
  # to determine which types of content are appropriate. For information
831
- # about moderation labels, see image-moderation.
985
+ # about moderation labels, see moderation.
832
986
  #
833
987
  # You pass the input image either as base64-encoded image bytes or as a
834
988
  # reference to an image in an Amazon S3 bucket. If you use the Amazon
@@ -965,7 +1119,7 @@ module Aws::Rekognition
965
1119
  # his or her Rekognition ID. The additional information is returned as
966
1120
  # an array of URLs. If there is no additional information about the
967
1121
  # celebrity, this list is empty. For more information, see
968
- # celebrity-recognition.
1122
+ # get-celebrity-info-procedure.
969
1123
  #
970
1124
  # This operation requires permissions to perform the
971
1125
  # `rekognition:GetCelebrityInfo` action.
@@ -998,6 +1152,697 @@ module Aws::Rekognition
998
1152
  req.send_request(options)
999
1153
  end
1000
1154
 
1155
+ # Gets the celebrity recognition results for a Rekognition Video
1156
+ # analysis started by .
1157
+ #
1158
+ # Celebrity recognition in a video is an asynchronous operation.
1159
+ # Analysis is started by a call to which returns a job identifier
1160
+ # (`JobId`). When the celebrity recognition operation finishes,
1161
+ # Rekognition Video publishes a completion status to the Amazon Simple
1162
+ # Notification Service topic registered in the initial call to
1163
+ # `StartCelebrityRecognition`. To get the results of the celebrity
1164
+ # recognition analysis, first check that the status value published to
1165
+ # the Amazon SNS topic is `SUCCEEDED`. If so, call
1166
+ # `GetCelebrityDetection` and pass the job identifier (`JobId`) from the
1167
+ # initial call to `StartCelebrityDetection`. For more information, see
1168
+ # video.
1169
+ #
1170
+ # `GetCelebrityRecognition` returns detected celebrities and the time(s)
1171
+ # they are detected in an array (`Celebrities`) of objects. Each
1172
+ # `CelebrityRecognition` contains information about the celebrity in a
1173
+ # object and the time, `Timestamp`, the celebrity was detected.
1174
+ #
1175
+ # By default, the `Celebrities` array is sorted by time (milliseconds
1176
+ # from the start of the video). You can also sort the array by celebrity
1177
+ # by specifying the value `ID` in the `SortBy` input parameter.
1178
+ #
1179
+ # The `CelebrityDetail` object includes the celebrity identifer and
1180
+ # additional information urls. If you don't store the additional
1181
+ # information urls, you can get them later by calling with the celebrity
1182
+ # identifer.
1183
+ #
1184
+ # No information is returned for faces not recognized as celebrities.
1185
+ #
1186
+ # Use MaxResults parameter to limit the number of labels returned. If
1187
+ # there are more results than specified in `MaxResults`, the value of
1188
+ # `NextToken` in the operation response contains a pagination token for
1189
+ # getting the next set of results. To get the next page of results, call
1190
+ # `GetCelebrityDetection` and populate the `NextToken` request parameter
1191
+ # with the token value returned from the previous call to
1192
+ # `GetCelebrityRecognition`.
1193
+ #
1194
+ # @option params [required, String] :job_id
1195
+ # Job identifier for the required celebrity recognition analysis. You
1196
+ # can get the job identifer from a call to `StartCelebrityRecognition`.
1197
+ #
1198
+ # @option params [Integer] :max_results
1199
+ # Maximum number of celebrities you want Rekognition Video to return in
1200
+ # the response. The default is 1000.
1201
+ #
1202
+ # @option params [String] :next_token
1203
+ # If the previous response was incomplete (because there is more
1204
+ # recognized celebrities to retrieve), Rekognition Video returns a
1205
+ # pagination token in the response. You can use this pagination token to
1206
+ # retrieve the next set of celebrities.
1207
+ #
1208
+ # @option params [String] :sort_by
1209
+ # Sort to use for celebrities returned in `Celebrities` field. Specify
1210
+ # `ID` to sort by the celebrity identifier, specify `TIMESTAMP` to sort
1211
+ # by the time the celebrity was recognized.
1212
+ #
1213
+ # @return [Types::GetCelebrityRecognitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1214
+ #
1215
+ # * {Types::GetCelebrityRecognitionResponse#job_status #job_status} => String
1216
+ # * {Types::GetCelebrityRecognitionResponse#status_message #status_message} => String
1217
+ # * {Types::GetCelebrityRecognitionResponse#video_metadata #video_metadata} => Types::VideoMetadata
1218
+ # * {Types::GetCelebrityRecognitionResponse#next_token #next_token} => String
1219
+ # * {Types::GetCelebrityRecognitionResponse#celebrities #celebrities} => Array&lt;Types::CelebrityRecognition&gt;
1220
+ #
1221
+ # @example Request syntax with placeholder values
1222
+ #
1223
+ # resp = client.get_celebrity_recognition({
1224
+ # job_id: "JobId", # required
1225
+ # max_results: 1,
1226
+ # next_token: "PaginationToken",
1227
+ # sort_by: "ID", # accepts ID, TIMESTAMP
1228
+ # })
1229
+ #
1230
+ # @example Response structure
1231
+ #
1232
+ # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
1233
+ # resp.status_message #=> String
1234
+ # resp.video_metadata.codec #=> String
1235
+ # resp.video_metadata.duration_millis #=> Integer
1236
+ # resp.video_metadata.format #=> String
1237
+ # resp.video_metadata.frame_rate #=> Float
1238
+ # resp.video_metadata.frame_height #=> Integer
1239
+ # resp.video_metadata.frame_width #=> Integer
1240
+ # resp.next_token #=> String
1241
+ # resp.celebrities #=> Array
1242
+ # resp.celebrities[0].timestamp #=> Integer
1243
+ # resp.celebrities[0].celebrity.urls #=> Array
1244
+ # resp.celebrities[0].celebrity.urls[0] #=> String
1245
+ # resp.celebrities[0].celebrity.name #=> String
1246
+ # resp.celebrities[0].celebrity.id #=> String
1247
+ # resp.celebrities[0].celebrity.confidence #=> Float
1248
+ # resp.celebrities[0].celebrity.bounding_box.width #=> Float
1249
+ # resp.celebrities[0].celebrity.bounding_box.height #=> Float
1250
+ # resp.celebrities[0].celebrity.bounding_box.left #=> Float
1251
+ # resp.celebrities[0].celebrity.bounding_box.top #=> Float
1252
+ # resp.celebrities[0].celebrity.face.bounding_box.width #=> Float
1253
+ # resp.celebrities[0].celebrity.face.bounding_box.height #=> Float
1254
+ # resp.celebrities[0].celebrity.face.bounding_box.left #=> Float
1255
+ # resp.celebrities[0].celebrity.face.bounding_box.top #=> Float
1256
+ # resp.celebrities[0].celebrity.face.age_range.low #=> Integer
1257
+ # resp.celebrities[0].celebrity.face.age_range.high #=> Integer
1258
+ # resp.celebrities[0].celebrity.face.smile.value #=> Boolean
1259
+ # resp.celebrities[0].celebrity.face.smile.confidence #=> Float
1260
+ # resp.celebrities[0].celebrity.face.eyeglasses.value #=> Boolean
1261
+ # resp.celebrities[0].celebrity.face.eyeglasses.confidence #=> Float
1262
+ # resp.celebrities[0].celebrity.face.sunglasses.value #=> Boolean
1263
+ # resp.celebrities[0].celebrity.face.sunglasses.confidence #=> Float
1264
+ # resp.celebrities[0].celebrity.face.gender.value #=> String, one of "Male", "Female"
1265
+ # resp.celebrities[0].celebrity.face.gender.confidence #=> Float
1266
+ # resp.celebrities[0].celebrity.face.beard.value #=> Boolean
1267
+ # resp.celebrities[0].celebrity.face.beard.confidence #=> Float
1268
+ # resp.celebrities[0].celebrity.face.mustache.value #=> Boolean
1269
+ # resp.celebrities[0].celebrity.face.mustache.confidence #=> Float
1270
+ # resp.celebrities[0].celebrity.face.eyes_open.value #=> Boolean
1271
+ # resp.celebrities[0].celebrity.face.eyes_open.confidence #=> Float
1272
+ # resp.celebrities[0].celebrity.face.mouth_open.value #=> Boolean
1273
+ # resp.celebrities[0].celebrity.face.mouth_open.confidence #=> Float
1274
+ # resp.celebrities[0].celebrity.face.emotions #=> Array
1275
+ # resp.celebrities[0].celebrity.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
1276
+ # resp.celebrities[0].celebrity.face.emotions[0].confidence #=> Float
1277
+ # resp.celebrities[0].celebrity.face.landmarks #=> Array
1278
+ # resp.celebrities[0].celebrity.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
1279
+ # resp.celebrities[0].celebrity.face.landmarks[0].x #=> Float
1280
+ # resp.celebrities[0].celebrity.face.landmarks[0].y #=> Float
1281
+ # resp.celebrities[0].celebrity.face.pose.roll #=> Float
1282
+ # resp.celebrities[0].celebrity.face.pose.yaw #=> Float
1283
+ # resp.celebrities[0].celebrity.face.pose.pitch #=> Float
1284
+ # resp.celebrities[0].celebrity.face.quality.brightness #=> Float
1285
+ # resp.celebrities[0].celebrity.face.quality.sharpness #=> Float
1286
+ # resp.celebrities[0].celebrity.face.confidence #=> Float
1287
+ #
1288
+ # @overload get_celebrity_recognition(params = {})
1289
+ # @param [Hash] params ({})
1290
+ def get_celebrity_recognition(params = {}, options = {})
1291
+ req = build_request(:get_celebrity_recognition, params)
1292
+ req.send_request(options)
1293
+ end
1294
+
1295
+ # Gets the content moderation analysis results for a Rekognition Video
1296
+ # analysis started by .
1297
+ #
1298
+ # Content moderation analysis of a video is an asynchronous operation.
1299
+ # You start analysis by calling . which returns a job identifier
1300
+ # (`JobId`). When analysis finishes, Rekognition Video publishes a
1301
+ # completion status to the Amazon Simple Notification Service topic
1302
+ # registered in the initial call to `StartContentModeration`. To get the
1303
+ # results of the content moderation analysis, first check that the
1304
+ # status value published to the Amazon SNS topic is `SUCCEEDED`. If so,
1305
+ # call `GetCelebrityDetection` and pass the job identifier (`JobId`)
1306
+ # from the initial call to `StartCelebrityDetection`. For more
1307
+ # information, see video.
1308
+ #
1309
+ # `GetContentModeration` returns detected content moderation labels, and
1310
+ # the time they are detected, in an array, `ModerationLabels`, of
1311
+ # objects.
1312
+ #
1313
+ # By default, the moderated labels are returned sorted by time, in
1314
+ # milliseconds from the start of the video. You can also sort them by
1315
+ # moderated label by specifying `NAME` for the `SortBy` input parameter.
1316
+ #
1317
+ # Since video analysis can return a large number of results, use the
1318
+ # `MaxResults` parameter to limit the number of labels returned in a
1319
+ # single call to `GetContentModeration`. If there are more results than
1320
+ # specified in `MaxResults`, the value of `NextToken` in the operation
1321
+ # response contains a pagination token for getting the next set of
1322
+ # results. To get the next page of results, call `GetContentModeration`
1323
+ # and populate the `NextToken` request parameter with the value of
1324
+ # `NextToken` returned from the previous call to `GetContentModeration`.
1325
+ #
1326
+ # For more information, see moderation.
1327
+ #
1328
+ # @option params [required, String] :job_id
1329
+ # The identifier for the content moderation job. Use `JobId` to identify
1330
+ # the job in a subsequent call to `GetContentModeration`.
1331
+ #
1332
+ # @option params [Integer] :max_results
1333
+ # Maximum number of content moderation labels to return. The default is
1334
+ # 1000.
1335
+ #
1336
+ # @option params [String] :next_token
1337
+ # If the previous response was incomplete (because there is more data to
1338
+ # retrieve), Amazon Rekognition returns a pagination token in the
1339
+ # response. You can use this pagination token to retrieve the next set
1340
+ # of content moderation labels.
1341
+ #
1342
+ # @option params [String] :sort_by
1343
+ # Sort to use for elements in the `ModerationLabelDetections` array. Use
1344
+ # `TIMESTAMP` to sort array elements by the time labels are detected.
1345
+ # Use `NAME` to alphabetically group elements for a label together.
1346
+ # Within each label group, the array element are sorted by detection
1347
+ # confidence. The default sort is by `TIMESTAMP`.
1348
+ #
1349
+ # @return [Types::GetContentModerationResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1350
+ #
1351
+ # * {Types::GetContentModerationResponse#job_status #job_status} => String
1352
+ # * {Types::GetContentModerationResponse#status_message #status_message} => String
1353
+ # * {Types::GetContentModerationResponse#video_metadata #video_metadata} => Types::VideoMetadata
1354
+ # * {Types::GetContentModerationResponse#moderation_labels #moderation_labels} => Array&lt;Types::ContentModerationDetection&gt;
1355
+ # * {Types::GetContentModerationResponse#next_token #next_token} => String
1356
+ #
1357
+ # @example Request syntax with placeholder values
1358
+ #
1359
+ # resp = client.get_content_moderation({
1360
+ # job_id: "JobId", # required
1361
+ # max_results: 1,
1362
+ # next_token: "PaginationToken",
1363
+ # sort_by: "NAME", # accepts NAME, TIMESTAMP
1364
+ # })
1365
+ #
1366
+ # @example Response structure
1367
+ #
1368
+ # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
1369
+ # resp.status_message #=> String
1370
+ # resp.video_metadata.codec #=> String
1371
+ # resp.video_metadata.duration_millis #=> Integer
1372
+ # resp.video_metadata.format #=> String
1373
+ # resp.video_metadata.frame_rate #=> Float
1374
+ # resp.video_metadata.frame_height #=> Integer
1375
+ # resp.video_metadata.frame_width #=> Integer
1376
+ # resp.moderation_labels #=> Array
1377
+ # resp.moderation_labels[0].timestamp #=> Integer
1378
+ # resp.moderation_labels[0].moderation_label.confidence #=> Float
1379
+ # resp.moderation_labels[0].moderation_label.name #=> String
1380
+ # resp.moderation_labels[0].moderation_label.parent_name #=> String
1381
+ # resp.next_token #=> String
1382
+ #
1383
+ # @overload get_content_moderation(params = {})
1384
+ # @param [Hash] params ({})
1385
+ def get_content_moderation(params = {}, options = {})
1386
+ req = build_request(:get_content_moderation, params)
1387
+ req.send_request(options)
1388
+ end
1389
+
1390
+ # Gets face detection results for a Rekognition Video analysis started
1391
+ # by .
1392
+ #
1393
+ # Face detection with Rekognition Video is an asynchronous operation.
1394
+ # You start face detection by calling which returns a job identifier
1395
+ # (`JobId`). When the face detection operation finishes, Rekognition
1396
+ # Video publishes a completion status to the Amazon Simple Notification
1397
+ # Service topic registered in the initial call to `StartFaceDetection`.
1398
+ # To get the results of the face detection operation, first check that
1399
+ # the status value published to the Amazon SNS topic is `SUCCEEDED`. If
1400
+ # so, call and pass the job identifier (`JobId`) from the initial call
1401
+ # to `StartFaceDetection`.
1402
+ #
1403
+ # `GetFaceDetection` returns an array of detected faces (`Faces`) sorted
1404
+ # by the time the faces were detected.
1405
+ #
1406
+ # Use MaxResults parameter to limit the number of labels returned. If
1407
+ # there are more results than specified in `MaxResults`, the value of
1408
+ # `NextToken` in the operation response contains a pagination token for
1409
+ # getting the next set of results. To get the next page of results, call
1410
+ # `GetFaceDetection` and populate the `NextToken` request parameter with
1411
+ # the token value returned from the previous call to `GetFaceDetection`.
1412
+ #
1413
+ # @option params [required, String] :job_id
1414
+ # Unique identifier for the face detection job. The `JobId` is returned
1415
+ # from `StartFaceDetection`.
1416
+ #
1417
+ # @option params [Integer] :max_results
1418
+ # Maximum number of detected faces to return. The default is 1000.
1419
+ #
1420
+ # @option params [String] :next_token
1421
+ # If the previous response was incomplete (because there are more faces
1422
+ # to retrieve), Rekognition Video returns a pagination token in the
1423
+ # response. You can use this pagination token to retrieve the next set
1424
+ # of faces.
1425
+ #
1426
+ # @return [Types::GetFaceDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1427
+ #
1428
+ # * {Types::GetFaceDetectionResponse#job_status #job_status} => String
1429
+ # * {Types::GetFaceDetectionResponse#status_message #status_message} => String
1430
+ # * {Types::GetFaceDetectionResponse#video_metadata #video_metadata} => Types::VideoMetadata
1431
+ # * {Types::GetFaceDetectionResponse#next_token #next_token} => String
1432
+ # * {Types::GetFaceDetectionResponse#faces #faces} => Array&lt;Types::FaceDetection&gt;
1433
+ #
1434
+ # @example Request syntax with placeholder values
1435
+ #
1436
+ # resp = client.get_face_detection({
1437
+ # job_id: "JobId", # required
1438
+ # max_results: 1,
1439
+ # next_token: "PaginationToken",
1440
+ # })
1441
+ #
1442
+ # @example Response structure
1443
+ #
1444
+ # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
1445
+ # resp.status_message #=> String
1446
+ # resp.video_metadata.codec #=> String
1447
+ # resp.video_metadata.duration_millis #=> Integer
1448
+ # resp.video_metadata.format #=> String
1449
+ # resp.video_metadata.frame_rate #=> Float
1450
+ # resp.video_metadata.frame_height #=> Integer
1451
+ # resp.video_metadata.frame_width #=> Integer
1452
+ # resp.next_token #=> String
1453
+ # resp.faces #=> Array
1454
+ # resp.faces[0].timestamp #=> Integer
1455
+ # resp.faces[0].face.bounding_box.width #=> Float
1456
+ # resp.faces[0].face.bounding_box.height #=> Float
1457
+ # resp.faces[0].face.bounding_box.left #=> Float
1458
+ # resp.faces[0].face.bounding_box.top #=> Float
1459
+ # resp.faces[0].face.age_range.low #=> Integer
1460
+ # resp.faces[0].face.age_range.high #=> Integer
1461
+ # resp.faces[0].face.smile.value #=> Boolean
1462
+ # resp.faces[0].face.smile.confidence #=> Float
1463
+ # resp.faces[0].face.eyeglasses.value #=> Boolean
1464
+ # resp.faces[0].face.eyeglasses.confidence #=> Float
1465
+ # resp.faces[0].face.sunglasses.value #=> Boolean
1466
+ # resp.faces[0].face.sunglasses.confidence #=> Float
1467
+ # resp.faces[0].face.gender.value #=> String, one of "Male", "Female"
1468
+ # resp.faces[0].face.gender.confidence #=> Float
1469
+ # resp.faces[0].face.beard.value #=> Boolean
1470
+ # resp.faces[0].face.beard.confidence #=> Float
1471
+ # resp.faces[0].face.mustache.value #=> Boolean
1472
+ # resp.faces[0].face.mustache.confidence #=> Float
1473
+ # resp.faces[0].face.eyes_open.value #=> Boolean
1474
+ # resp.faces[0].face.eyes_open.confidence #=> Float
1475
+ # resp.faces[0].face.mouth_open.value #=> Boolean
1476
+ # resp.faces[0].face.mouth_open.confidence #=> Float
1477
+ # resp.faces[0].face.emotions #=> Array
1478
+ # resp.faces[0].face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
1479
+ # resp.faces[0].face.emotions[0].confidence #=> Float
1480
+ # resp.faces[0].face.landmarks #=> Array
1481
+ # resp.faces[0].face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
1482
+ # resp.faces[0].face.landmarks[0].x #=> Float
1483
+ # resp.faces[0].face.landmarks[0].y #=> Float
1484
+ # resp.faces[0].face.pose.roll #=> Float
1485
+ # resp.faces[0].face.pose.yaw #=> Float
1486
+ # resp.faces[0].face.pose.pitch #=> Float
1487
+ # resp.faces[0].face.quality.brightness #=> Float
1488
+ # resp.faces[0].face.quality.sharpness #=> Float
1489
+ # resp.faces[0].face.confidence #=> Float
1490
+ #
1491
+ # @overload get_face_detection(params = {})
1492
+ # @param [Hash] params ({})
1493
+ def get_face_detection(params = {}, options = {})
1494
+ req = build_request(:get_face_detection, params)
1495
+ req.send_request(options)
1496
+ end
1497
+
1498
+ # Gets the face search results for Rekognition Video face search started
1499
+ # by . The search returns faces in a collection that match the faces of
1500
+ # persons detected in a video. It also includes the time(s) that faces
1501
+ # are matched in the video.
1502
+ #
1503
+ # Face search in a video is an asynchronous operation. You start face
1504
+ # search by calling to which returns a job identifier (`JobId`). When
1505
+ # the search operation finishes, Rekognition Video publishes a
1506
+ # completion status to the Amazon Simple Notification Service topic
1507
+ # registered in the initial call to `StartFaceSearch`. To get the search
1508
+ # results, first check that the status value published to the Amazon SNS
1509
+ # topic is `SUCCEEDED`. If so, call `GetFaceSearch` and pass the job
1510
+ # identifier (`JobId`) from the initial call to `StartFaceSearch`. For
1511
+ # more information, see collections.
1512
+ #
1513
+ # The search results are retured in an array, `Persons`, of objects.
1514
+ # Each`PersonMatch` element contains details about the matching faces in
1515
+ # the input collection, person information for the matched person, and
1516
+ # the time the person was matched in the video.
1517
+ #
1518
+ # By default, the `Persons` array is sorted by the time, in milliseconds
1519
+ # from the start of the video, persons are matched. You can also sort by
1520
+ # persons by specifying `INDEX` for the `SORTBY` input parameter.
1521
+ #
1522
+ # @option params [required, String] :job_id
1523
+ # The job identifer for the search request. You get the job identifier
1524
+ # from an initial call to `StartFaceSearch`.
1525
+ #
1526
+ # @option params [Integer] :max_results
1527
+ # Maximum number of search results you want Rekognition Video to return
1528
+ # in the response. The default is 1000.
1529
+ #
1530
+ # @option params [String] :next_token
1531
+ # If the previous response was incomplete (because there is more search
1532
+ # results to retrieve), Rekognition Video returns a pagination token in
1533
+ # the response. You can use this pagination token to retrieve the next
1534
+ # set of search results.
1535
+ #
1536
+ # @option params [String] :sort_by
1537
+ # Sort to use for grouping faces in the response. Use `TIMESTAMP` to
1538
+ # group faces by the time that they are recognized. Use `INDEX` to sort
1539
+ # by recognized faces.
1540
+ #
1541
+ # @return [Types::GetFaceSearchResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1542
+ #
1543
+ # * {Types::GetFaceSearchResponse#job_status #job_status} => String
1544
+ # * {Types::GetFaceSearchResponse#status_message #status_message} => String
1545
+ # * {Types::GetFaceSearchResponse#next_token #next_token} => String
1546
+ # * {Types::GetFaceSearchResponse#video_metadata #video_metadata} => Types::VideoMetadata
1547
+ # * {Types::GetFaceSearchResponse#persons #persons} => Array&lt;Types::PersonMatch&gt;
1548
+ #
1549
+ # @example Request syntax with placeholder values
1550
+ #
1551
+ # resp = client.get_face_search({
1552
+ # job_id: "JobId", # required
1553
+ # max_results: 1,
1554
+ # next_token: "PaginationToken",
1555
+ # sort_by: "INDEX", # accepts INDEX, TIMESTAMP
1556
+ # })
1557
+ #
1558
+ # @example Response structure
1559
+ #
1560
+ # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
1561
+ # resp.status_message #=> String
1562
+ # resp.next_token #=> String
1563
+ # resp.video_metadata.codec #=> String
1564
+ # resp.video_metadata.duration_millis #=> Integer
1565
+ # resp.video_metadata.format #=> String
1566
+ # resp.video_metadata.frame_rate #=> Float
1567
+ # resp.video_metadata.frame_height #=> Integer
1568
+ # resp.video_metadata.frame_width #=> Integer
1569
+ # resp.persons #=> Array
1570
+ # resp.persons[0].timestamp #=> Integer
1571
+ # resp.persons[0].person.index #=> Integer
1572
+ # resp.persons[0].person.bounding_box.width #=> Float
1573
+ # resp.persons[0].person.bounding_box.height #=> Float
1574
+ # resp.persons[0].person.bounding_box.left #=> Float
1575
+ # resp.persons[0].person.bounding_box.top #=> Float
1576
+ # resp.persons[0].person.face.bounding_box.width #=> Float
1577
+ # resp.persons[0].person.face.bounding_box.height #=> Float
1578
+ # resp.persons[0].person.face.bounding_box.left #=> Float
1579
+ # resp.persons[0].person.face.bounding_box.top #=> Float
1580
+ # resp.persons[0].person.face.age_range.low #=> Integer
1581
+ # resp.persons[0].person.face.age_range.high #=> Integer
1582
+ # resp.persons[0].person.face.smile.value #=> Boolean
1583
+ # resp.persons[0].person.face.smile.confidence #=> Float
1584
+ # resp.persons[0].person.face.eyeglasses.value #=> Boolean
1585
+ # resp.persons[0].person.face.eyeglasses.confidence #=> Float
1586
+ # resp.persons[0].person.face.sunglasses.value #=> Boolean
1587
+ # resp.persons[0].person.face.sunglasses.confidence #=> Float
1588
+ # resp.persons[0].person.face.gender.value #=> String, one of "Male", "Female"
1589
+ # resp.persons[0].person.face.gender.confidence #=> Float
1590
+ # resp.persons[0].person.face.beard.value #=> Boolean
1591
+ # resp.persons[0].person.face.beard.confidence #=> Float
1592
+ # resp.persons[0].person.face.mustache.value #=> Boolean
1593
+ # resp.persons[0].person.face.mustache.confidence #=> Float
1594
+ # resp.persons[0].person.face.eyes_open.value #=> Boolean
1595
+ # resp.persons[0].person.face.eyes_open.confidence #=> Float
1596
+ # resp.persons[0].person.face.mouth_open.value #=> Boolean
1597
+ # resp.persons[0].person.face.mouth_open.confidence #=> Float
1598
+ # resp.persons[0].person.face.emotions #=> Array
1599
+ # resp.persons[0].person.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
1600
+ # resp.persons[0].person.face.emotions[0].confidence #=> Float
1601
+ # resp.persons[0].person.face.landmarks #=> Array
1602
+ # resp.persons[0].person.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
1603
+ # resp.persons[0].person.face.landmarks[0].x #=> Float
1604
+ # resp.persons[0].person.face.landmarks[0].y #=> Float
1605
+ # resp.persons[0].person.face.pose.roll #=> Float
1606
+ # resp.persons[0].person.face.pose.yaw #=> Float
1607
+ # resp.persons[0].person.face.pose.pitch #=> Float
1608
+ # resp.persons[0].person.face.quality.brightness #=> Float
1609
+ # resp.persons[0].person.face.quality.sharpness #=> Float
1610
+ # resp.persons[0].person.face.confidence #=> Float
1611
+ # resp.persons[0].face_matches #=> Array
1612
+ # resp.persons[0].face_matches[0].similarity #=> Float
1613
+ # resp.persons[0].face_matches[0].face.face_id #=> String
1614
+ # resp.persons[0].face_matches[0].face.bounding_box.width #=> Float
1615
+ # resp.persons[0].face_matches[0].face.bounding_box.height #=> Float
1616
+ # resp.persons[0].face_matches[0].face.bounding_box.left #=> Float
1617
+ # resp.persons[0].face_matches[0].face.bounding_box.top #=> Float
1618
+ # resp.persons[0].face_matches[0].face.image_id #=> String
1619
+ # resp.persons[0].face_matches[0].face.external_image_id #=> String
1620
+ # resp.persons[0].face_matches[0].face.confidence #=> Float
1621
+ #
1622
+ # @overload get_face_search(params = {})
1623
+ # @param [Hash] params ({})
1624
+ def get_face_search(params = {}, options = {})
1625
+ req = build_request(:get_face_search, params)
1626
+ req.send_request(options)
1627
+ end
1628
+
1629
+ # Gets the label detection results of a Rekognition Video analysis
1630
+ # started by .
1631
+ #
1632
+ # The label detection operation is started by a call to which returns a
1633
+ # job identifier (`JobId`). When the label detection operation finishes,
1634
+ # Amazon Rekognition publishes a completion status to the Amazon Simple
1635
+ # Notification Service topic registered in the initial call to
1636
+ # `StartlabelDetection`. To get the results of the label detection
1637
+ # operation, first check that the status value published to the Amazon
1638
+ # SNS topic is `SUCCEEDED`. If so, call and pass the job identifier
1639
+ # (`JobId`) from the initial call to `StartLabelDetection`.
1640
+ #
1641
+ # `GetLabelDetection` returns an array of detected labels (`Labels`)
1642
+ # sorted by the time the labels were detected. You can also sort by the
1643
+ # label name by specifying `NAME` for the `SortBy` input parameter.
1644
+ #
1645
+ # The labels returned include the label name, the percentage confidence
1646
+ # in the accuracy of the detected label, and the time the label was
1647
+ # detected in the video.
1648
+ #
1649
+ # Use MaxResults parameter to limit the number of labels returned. If
1650
+ # there are more results than specified in `MaxResults`, the value of
1651
+ # `NextToken` in the operation response contains a pagination token for
1652
+ # getting the next set of results. To get the next page of results, call
1653
+ # `GetlabelDetection` and populate the `NextToken` request parameter
1654
+ # with the token value returned from the previous call to
1655
+ # `GetLabelDetection`.
1656
+ #
1657
+ # @option params [required, String] :job_id
1658
+ # Job identifier for the label detection operation for which you want
1659
+ # results returned. You get the job identifer from an initial call to
1660
+ # `StartlabelDetection`.
1661
+ #
1662
+ # @option params [Integer] :max_results
1663
+ # Maximum number of labels you want Amazon Rekognition to return in the
1664
+ # response. The default is 1000.
1665
+ #
1666
+ # @option params [String] :next_token
1667
+ # If the previous response was incomplete (because there are more labels
1668
+ # to retrieve), Rekognition Video returns a pagination token in the
1669
+ # response. You can use this pagination token to retrieve the next set
1670
+ # of labels.
1671
+ #
1672
+ # @option params [String] :sort_by
1673
+ # Sort to use for elements in the `Labels` array. Use `TIMESTAMP` to
1674
+ # sort array elements by the time labels are detected. Use `NAME` to
1675
+ # alphabetically group elements for a label together. Within each label
1676
+ # group, the array element are sorted by detection confidence. The
1677
+ # default sort is by `TIMESTAMP`.
1678
+ #
1679
+ # @return [Types::GetLabelDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1680
+ #
1681
+ # * {Types::GetLabelDetectionResponse#job_status #job_status} => String
1682
+ # * {Types::GetLabelDetectionResponse#status_message #status_message} => String
1683
+ # * {Types::GetLabelDetectionResponse#video_metadata #video_metadata} => Types::VideoMetadata
1684
+ # * {Types::GetLabelDetectionResponse#next_token #next_token} => String
1685
+ # * {Types::GetLabelDetectionResponse#labels #labels} => Array&lt;Types::LabelDetection&gt;
1686
+ #
1687
+ # @example Request syntax with placeholder values
1688
+ #
1689
+ # resp = client.get_label_detection({
1690
+ # job_id: "JobId", # required
1691
+ # max_results: 1,
1692
+ # next_token: "PaginationToken",
1693
+ # sort_by: "NAME", # accepts NAME, TIMESTAMP
1694
+ # })
1695
+ #
1696
+ # @example Response structure
1697
+ #
1698
+ # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
1699
+ # resp.status_message #=> String
1700
+ # resp.video_metadata.codec #=> String
1701
+ # resp.video_metadata.duration_millis #=> Integer
1702
+ # resp.video_metadata.format #=> String
1703
+ # resp.video_metadata.frame_rate #=> Float
1704
+ # resp.video_metadata.frame_height #=> Integer
1705
+ # resp.video_metadata.frame_width #=> Integer
1706
+ # resp.next_token #=> String
1707
+ # resp.labels #=> Array
1708
+ # resp.labels[0].timestamp #=> Integer
1709
+ # resp.labels[0].label.name #=> String
1710
+ # resp.labels[0].label.confidence #=> Float
1711
+ #
1712
+ # @overload get_label_detection(params = {})
1713
+ # @param [Hash] params ({})
1714
+ def get_label_detection(params = {}, options = {})
1715
+ req = build_request(:get_label_detection, params)
1716
+ req.send_request(options)
1717
+ end
1718
+
1719
+ # Gets the person tracking results of a Rekognition Video analysis
1720
+ # started by .
1721
+ #
1722
+ # The person detection operation is started by a call to
1723
+ # `StartPersonTracking` which returns a job identifier (`JobId`). When
1724
+ # the person detection operation finishes, Rekognition Video publishes a
1725
+ # completion status to the Amazon Simple Notification Service topic
1726
+ # registered in the initial call to `StartPersonTracking`.
1727
+ #
1728
+ # To get the results of the person tracking operation, first check that
1729
+ # the status value published to the Amazon SNS topic is `SUCCEEDED`. If
1730
+ # so, call and pass the job identifier (`JobId`) from the initial call
1731
+ # to `StartPersonTracking`.
1732
+ #
1733
+ # `GetPersonTracking` returns an array, `Persons`, of tracked persons
1734
+ # and the time(s) they were tracked in the video.
1735
+ #
1736
+ # By default, the array is sorted by the time(s) a person is tracked in
1737
+ # the video. You can sort by tracked persons by specifying `INDEX` for
1738
+ # the `SortBy` input parameter.
1739
+ #
1740
+ # Use the `MaxResults` parameter to limit the number of items returned.
1741
+ # If there are more results than specified in `MaxResults`, the value of
1742
+ # `NextToken` in the operation response contains a pagination token for
1743
+ # getting the next set of results. To get the next page of results, call
1744
+ # `GetPersonTracking` and populate the `NextToken` request parameter
1745
+ # with the token value returned from the previous call to
1746
+ # `GetPersonTracking`.
1747
+ #
1748
+ # @option params [required, String] :job_id
1749
+ # The identifier for a job that tracks persons in a video. You get the
1750
+ # `JobId` from a call to `StartPersonTracking`.
1751
+ #
1752
+ # @option params [Integer] :max_results
1753
+ # Maximum number of tracked persons to return. The default is 1000.
1754
+ #
1755
+ # @option params [String] :next_token
1756
+ # If the previous response was incomplete (because there are more
1757
+ # persons to retrieve), Rekognition Video returns a pagination token in
1758
+ # the response. You can use this pagination token to retrieve the next
1759
+ # set of persons.
1760
+ #
1761
+ # @option params [String] :sort_by
1762
+ # Sort to use for elements in the `Persons` array. Use `TIMESTAMP` to
1763
+ # sort array elements by the time persons are detected. Use `INDEX` to
1764
+ # sort by the tracked persons. If you sort by `INDEX`, the array
1765
+ # elements for each person are sorted by detection confidence. The
1766
+ # default sort is by `TIMESTAMP`.
1767
+ #
1768
+ # @return [Types::GetPersonTrackingResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1769
+ #
1770
+ # * {Types::GetPersonTrackingResponse#job_status #job_status} => String
1771
+ # * {Types::GetPersonTrackingResponse#status_message #status_message} => String
1772
+ # * {Types::GetPersonTrackingResponse#video_metadata #video_metadata} => Types::VideoMetadata
1773
+ # * {Types::GetPersonTrackingResponse#next_token #next_token} => String
1774
+ # * {Types::GetPersonTrackingResponse#persons #persons} => Array&lt;Types::PersonDetection&gt;
1775
+ #
1776
+ # @example Request syntax with placeholder values
1777
+ #
1778
+ # resp = client.get_person_tracking({
1779
+ # job_id: "JobId", # required
1780
+ # max_results: 1,
1781
+ # next_token: "PaginationToken",
1782
+ # sort_by: "INDEX", # accepts INDEX, TIMESTAMP
1783
+ # })
1784
+ #
1785
+ # @example Response structure
1786
+ #
1787
+ # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED"
1788
+ # resp.status_message #=> String
1789
+ # resp.video_metadata.codec #=> String
1790
+ # resp.video_metadata.duration_millis #=> Integer
1791
+ # resp.video_metadata.format #=> String
1792
+ # resp.video_metadata.frame_rate #=> Float
1793
+ # resp.video_metadata.frame_height #=> Integer
1794
+ # resp.video_metadata.frame_width #=> Integer
1795
+ # resp.next_token #=> String
1796
+ # resp.persons #=> Array
1797
+ # resp.persons[0].timestamp #=> Integer
1798
+ # resp.persons[0].person.index #=> Integer
1799
+ # resp.persons[0].person.bounding_box.width #=> Float
1800
+ # resp.persons[0].person.bounding_box.height #=> Float
1801
+ # resp.persons[0].person.bounding_box.left #=> Float
1802
+ # resp.persons[0].person.bounding_box.top #=> Float
1803
+ # resp.persons[0].person.face.bounding_box.width #=> Float
1804
+ # resp.persons[0].person.face.bounding_box.height #=> Float
1805
+ # resp.persons[0].person.face.bounding_box.left #=> Float
1806
+ # resp.persons[0].person.face.bounding_box.top #=> Float
1807
+ # resp.persons[0].person.face.age_range.low #=> Integer
1808
+ # resp.persons[0].person.face.age_range.high #=> Integer
1809
+ # resp.persons[0].person.face.smile.value #=> Boolean
1810
+ # resp.persons[0].person.face.smile.confidence #=> Float
1811
+ # resp.persons[0].person.face.eyeglasses.value #=> Boolean
1812
+ # resp.persons[0].person.face.eyeglasses.confidence #=> Float
1813
+ # resp.persons[0].person.face.sunglasses.value #=> Boolean
1814
+ # resp.persons[0].person.face.sunglasses.confidence #=> Float
1815
+ # resp.persons[0].person.face.gender.value #=> String, one of "Male", "Female"
1816
+ # resp.persons[0].person.face.gender.confidence #=> Float
1817
+ # resp.persons[0].person.face.beard.value #=> Boolean
1818
+ # resp.persons[0].person.face.beard.confidence #=> Float
1819
+ # resp.persons[0].person.face.mustache.value #=> Boolean
1820
+ # resp.persons[0].person.face.mustache.confidence #=> Float
1821
+ # resp.persons[0].person.face.eyes_open.value #=> Boolean
1822
+ # resp.persons[0].person.face.eyes_open.confidence #=> Float
1823
+ # resp.persons[0].person.face.mouth_open.value #=> Boolean
1824
+ # resp.persons[0].person.face.mouth_open.confidence #=> Float
1825
+ # resp.persons[0].person.face.emotions #=> Array
1826
+ # resp.persons[0].person.face.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
1827
+ # resp.persons[0].person.face.emotions[0].confidence #=> Float
1828
+ # resp.persons[0].person.face.landmarks #=> Array
1829
+ # resp.persons[0].person.face.landmarks[0].type #=> String, one of "eyeLeft", "eyeRight", "nose", "mouthLeft", "mouthRight", "leftEyeBrowLeft", "leftEyeBrowRight", "leftEyeBrowUp", "rightEyeBrowLeft", "rightEyeBrowRight", "rightEyeBrowUp", "leftEyeLeft", "leftEyeRight", "leftEyeUp", "leftEyeDown", "rightEyeLeft", "rightEyeRight", "rightEyeUp", "rightEyeDown", "noseLeft", "noseRight", "mouthUp", "mouthDown", "leftPupil", "rightPupil"
1830
+ # resp.persons[0].person.face.landmarks[0].x #=> Float
1831
+ # resp.persons[0].person.face.landmarks[0].y #=> Float
1832
+ # resp.persons[0].person.face.pose.roll #=> Float
1833
+ # resp.persons[0].person.face.pose.yaw #=> Float
1834
+ # resp.persons[0].person.face.pose.pitch #=> Float
1835
+ # resp.persons[0].person.face.quality.brightness #=> Float
1836
+ # resp.persons[0].person.face.quality.sharpness #=> Float
1837
+ # resp.persons[0].person.face.confidence #=> Float
1838
+ #
1839
+ # @overload get_person_tracking(params = {})
1840
+ # @param [Hash] params ({})
1841
+ def get_person_tracking(params = {}, options = {})
1842
+ req = build_request(:get_person_tracking, params)
1843
+ req.send_request(options)
1844
+ end
1845
+
1001
1846
  # Detects faces in the input image and adds them to the specified
1002
1847
  # collection.
1003
1848
  #
@@ -1039,8 +1884,6 @@ module Aws::Rekognition
1039
1884
  # CLI to call Amazon Rekognition operations, passing image bytes is not
1040
1885
  # supported. The image must be either a PNG or JPEG formatted file.
1041
1886
  #
1042
- # For an example, see example2.
1043
- #
1044
1887
  # This operation requires permissions to perform the
1045
1888
  # `rekognition:IndexFaces` action.
1046
1889
  #
@@ -1292,7 +2135,7 @@ module Aws::Rekognition
1292
2135
  # truncated, the response also provides a `NextToken` that you can use
1293
2136
  # in the subsequent request to fetch the next set of collection IDs.
1294
2137
  #
1295
- # For an example, see example1.
2138
+ # For an example, see list-collection-procedure.
1296
2139
  #
1297
2140
  # This operation requires permissions to perform the
1298
2141
  # `rekognition:ListCollections` action.
@@ -1349,7 +2192,7 @@ module Aws::Rekognition
1349
2192
  # Returns metadata for faces in the specified collection. This metadata
1350
2193
  # includes information such as the bounding box coordinates, the
1351
2194
  # confidence (that the bounding box contains a face), and face ID. For
1352
- # an example, see example3.
2195
+ # an example, see list-faces-in-collection-procedure.
1353
2196
  #
1354
2197
  # This operation requires permissions to perform the
1355
2198
  # `rekognition:ListFaces` action.
@@ -1538,8 +2381,46 @@ module Aws::Rekognition
1538
2381
  req.send_request(options)
1539
2382
  end
1540
2383
 
2384
+ # Gets a list of stream processors that you have created with .
2385
+ #
2386
+ # @option params [String] :next_token
2387
+ # If the previous response was incomplete (because there are more stream
2388
+ # processors to retrieve), Rekognition Video returns a pagination token
2389
+ # in the response. You can use this pagination token to retrieve the
2390
+ # next set of stream processors.
2391
+ #
2392
+ # @option params [Integer] :max_results
2393
+ # Maximum number of stream processors you want Rekognition Video to
2394
+ # return in the response. The default is 1000.
2395
+ #
2396
+ # @return [Types::ListStreamProcessorsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2397
+ #
2398
+ # * {Types::ListStreamProcessorsResponse#next_token #next_token} => String
2399
+ # * {Types::ListStreamProcessorsResponse#stream_processors #stream_processors} => Array&lt;Types::StreamProcessor&gt;
2400
+ #
2401
+ # @example Request syntax with placeholder values
2402
+ #
2403
+ # resp = client.list_stream_processors({
2404
+ # next_token: "PaginationToken",
2405
+ # max_results: 1,
2406
+ # })
2407
+ #
2408
+ # @example Response structure
2409
+ #
2410
+ # resp.next_token #=> String
2411
+ # resp.stream_processors #=> Array
2412
+ # resp.stream_processors[0].name #=> String
2413
+ # resp.stream_processors[0].status #=> String, one of "STOPPED", "STARTING", "RUNNING", "FAILED", "STOPPING"
2414
+ #
2415
+ # @overload list_stream_processors(params = {})
2416
+ # @param [Hash] params ({})
2417
+ def list_stream_processors(params = {}, options = {})
2418
+ req = build_request(:list_stream_processors, params)
2419
+ req.send_request(options)
2420
+ end
2421
+
1541
2422
  # Returns an array of celebrities recognized in the input image. For
1542
- # more information, see celebrity-recognition.
2423
+ # more information, see celebrities.
1543
2424
  #
1544
2425
  # `RecognizeCelebrities` returns the 100 largest faces in the image. It
1545
2426
  # lists recognized celebrities in the `CelebrityFaces` array and
@@ -1565,7 +2446,7 @@ module Aws::Rekognition
1565
2446
  # CLI to call Amazon Rekognition operations, passing image bytes is not
1566
2447
  # supported. The image must be either a PNG or JPEG formatted file.
1567
2448
  #
1568
- # For an example, see recognize-celebrities-tutorial.
2449
+ # For an example, see celebrities-procedure-image.
1569
2450
  #
1570
2451
  # This operation requires permissions to perform the
1571
2452
  # `rekognition:RecognizeCelebrities` operation.
@@ -1658,7 +2539,7 @@ module Aws::Rekognition
1658
2539
  # `confidence` value for each face match, indicating the confidence that
1659
2540
  # the specific face matches the input face.
1660
2541
  #
1661
- # For an example, see example3.
2542
+ # For an example, see search-face-with-id-procedure.
1662
2543
  #
1663
2544
  # This operation requires permissions to perform the
1664
2545
  # `rekognition:SearchFaces` action.
@@ -1805,7 +2686,7 @@ module Aws::Rekognition
1805
2686
  # bounding box contains a face) of the face that Amazon Rekognition used
1806
2687
  # for the input image.
1807
2688
  #
1808
- # For an example, see example3.
2689
+ # For an example, see search-face-with-image-procedure.
1809
2690
  #
1810
2691
  # This operation requires permissions to perform the
1811
2692
  # `rekognition:SearchFacesByImage` action.
@@ -1920,6 +2801,489 @@ module Aws::Rekognition
1920
2801
  req.send_request(options)
1921
2802
  end
1922
2803
 
2804
+ # Starts asynchronous recognition of celebrities in a stored video.
2805
+ #
2806
+ # Rekognition Video can detect celebrities in a video must be stored in
2807
+ # an Amazon S3 bucket. Use Video to specify the bucket name and the
2808
+ # filename of the video. `StartCelebrityRecognition` returns a job
2809
+ # identifier (`JobId`) which you use to get the results of the analysis.
2810
+ # When celebrity recognition analysis is finished, Rekognition Video
2811
+ # publishes a completion status to the Amazon Simple Notification
2812
+ # Service topic that you specify in `NotificationChannel`. To get the
2813
+ # results of the celebrity recognition analysis, first check that the
2814
+ # status value published to the Amazon SNS topic is `SUCCEEDED`. If so,
2815
+ # call and pass the job identifier (`JobId`) from the initial call to
2816
+ # `StartCelebrityRecognition`. For more information, see celebrities.
2817
+ #
2818
+ # @option params [required, Types::Video] :video
2819
+ # The video in which you want to recognize celebrities. The video must
2820
+ # be stored in an Amazon S3 bucket.
2821
+ #
2822
+ # @option params [String] :client_request_token
2823
+ # Idempotent token used to identify the start request. If you use the
2824
+ # same token with multiple `StartCelebrityRecognition` requests, the
2825
+ # same `JobId` is returned. Use `ClientRequestToken` to prevent the same
2826
+ # job from being accidently started more than once.
2827
+ #
2828
+ # @option params [Types::NotificationChannel] :notification_channel
2829
+ # The Amazon SNS topic ARN that you want Rekognition Video to publish
2830
+ # the completion status of the celebrity recognition analysis to.
2831
+ #
2832
+ # @option params [String] :job_tag
2833
+ # Unique identifier you specify to identify the job in the completion
2834
+ # status published to the Amazon Simple Notification Service topic.
2835
+ #
2836
+ # @return [Types::StartCelebrityRecognitionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2837
+ #
2838
+ # * {Types::StartCelebrityRecognitionResponse#job_id #job_id} => String
2839
+ #
2840
+ # @example Request syntax with placeholder values
2841
+ #
2842
+ # resp = client.start_celebrity_recognition({
2843
+ # video: { # required
2844
+ # s3_object: {
2845
+ # bucket: "S3Bucket",
2846
+ # name: "S3ObjectName",
2847
+ # version: "S3ObjectVersion",
2848
+ # },
2849
+ # },
2850
+ # client_request_token: "ClientRequestToken",
2851
+ # notification_channel: {
2852
+ # sns_topic_arn: "SNSTopicArn", # required
2853
+ # role_arn: "RoleArn", # required
2854
+ # },
2855
+ # job_tag: "JobTag",
2856
+ # })
2857
+ #
2858
+ # @example Response structure
2859
+ #
2860
+ # resp.job_id #=> String
2861
+ #
2862
+ # @overload start_celebrity_recognition(params = {})
2863
+ # @param [Hash] params ({})
2864
+ def start_celebrity_recognition(params = {}, options = {})
2865
+ req = build_request(:start_celebrity_recognition, params)
2866
+ req.send_request(options)
2867
+ end
2868
+
2869
+ # Starts asynchronous detection of explicit or suggestive adult content
2870
+ # in a stored video.
2871
+ #
2872
+ # Rekognition Video can moderate content in a video stored in an Amazon
2873
+ # S3 bucket. Use Video to specify the bucket name and the filename of
2874
+ # the video. `StartContentModeration` returns a job identifier (`JobId`)
2875
+ # which you use to get the results of the analysis. When content
2876
+ # moderation analysis is finished, Rekognition Video publishes a
2877
+ # completion status to the Amazon Simple Notification Service topic that
2878
+ # you specify in `NotificationChannel`.
2879
+ #
2880
+ # To get the results of the content moderation analysis, first check
2881
+ # that the status value published to the Amazon SNS topic is
2882
+ # `SUCCEEDED`. If so, call and pass the job identifier (`JobId`) from
2883
+ # the initial call to `StartContentModeration`. For more information,
2884
+ # see moderation.
2885
+ #
2886
+ # @option params [required, Types::Video] :video
2887
+ # The video in which you want to moderate content. The video must be
2888
+ # stored in an Amazon S3 bucket.
2889
+ #
2890
+ # @option params [Float] :min_confidence
2891
+ # Specifies the minimum confidence that Amazon Rekognition must have in
2892
+ # order to return a moderated content label. Confidence represents how
2893
+ # certain Amazon Rekognition is that the moderated content is correctly
2894
+ # identified. 0 is the lowest confidence. 100 is the highest confidence.
2895
+ # Amazon Rekognition doesn't return any moderated content labels with a
2896
+ # confidence level lower than this specified value.
2897
+ #
2898
+ # @option params [String] :client_request_token
2899
+ # Idempotent token used to identify the start request. If you use the
2900
+ # same token with multiple `StartContentModeration` requests, the same
2901
+ # `JobId` is returned. Use `ClientRequestToken` to prevent the same job
2902
+ # from being accidently started more than once.
2903
+ #
2904
+ # @option params [Types::NotificationChannel] :notification_channel
2905
+ # The Amazon SNS topic ARN that you want Rekognition Video to publish
2906
+ # the completion status of the content moderation analysis to.
2907
+ #
2908
+ # @option params [String] :job_tag
2909
+ # Unique identifier you specify to identify the job in the completion
2910
+ # status published to the Amazon Simple Notification Service topic.
2911
+ #
2912
+ # @return [Types::StartContentModerationResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2913
+ #
2914
+ # * {Types::StartContentModerationResponse#job_id #job_id} => String
2915
+ #
2916
+ # @example Request syntax with placeholder values
2917
+ #
2918
+ # resp = client.start_content_moderation({
2919
+ # video: { # required
2920
+ # s3_object: {
2921
+ # bucket: "S3Bucket",
2922
+ # name: "S3ObjectName",
2923
+ # version: "S3ObjectVersion",
2924
+ # },
2925
+ # },
2926
+ # min_confidence: 1.0,
2927
+ # client_request_token: "ClientRequestToken",
2928
+ # notification_channel: {
2929
+ # sns_topic_arn: "SNSTopicArn", # required
2930
+ # role_arn: "RoleArn", # required
2931
+ # },
2932
+ # job_tag: "JobTag",
2933
+ # })
2934
+ #
2935
+ # @example Response structure
2936
+ #
2937
+ # resp.job_id #=> String
2938
+ #
2939
+ # @overload start_content_moderation(params = {})
2940
+ # @param [Hash] params ({})
2941
+ def start_content_moderation(params = {}, options = {})
2942
+ req = build_request(:start_content_moderation, params)
2943
+ req.send_request(options)
2944
+ end
2945
+
2946
+ # Starts asynchronous detection of faces in a stored video.
2947
+ #
2948
+ # Rekognition Video can detect faces in a video stored in an Amazon S3
2949
+ # bucket. Use Video to specify the bucket name and the filename of the
2950
+ # video. `StartFaceDetection` returns a job identifier (`JobId`) that
2951
+ # you use to get the results of the operation. When face detection is
2952
+ # finished, Rekognition Video publishes a completion status to the
2953
+ # Amazon Simple Notification Service topic that you specify in
2954
+ # `NotificationChannel`. To get the results of the label detection
2955
+ # operation, first check that the status value published to the Amazon
2956
+ # SNS topic is `SUCCEEDED`. If so, call and pass the job identifier
2957
+ # (`JobId`) from the initial call to `StartFaceDetection`. For more
2958
+ # information, see faces-video.
2959
+ #
2960
+ # @option params [required, Types::Video] :video
2961
+ # The video in which you want to detect faces. The video must be stored
2962
+ # in an Amazon S3 bucket.
2963
+ #
2964
+ # @option params [String] :client_request_token
2965
+ # Idempotent token used to identify the start request. If you use the
2966
+ # same token with multiple `StartFaceDetection` requests, the same
2967
+ # `JobId` is returned. Use `ClientRequestToken` to prevent the same job
2968
+ # from being accidently started more than once.
2969
+ #
2970
+ # @option params [Types::NotificationChannel] :notification_channel
2971
+ # The ARN of the Amazon SNS topic to which you want Rekognition Video to
2972
+ # publish the completion status of the face detection operation.
2973
+ #
2974
+ # @option params [String] :face_attributes
2975
+ # The face attributes you want returned.
2976
+ #
2977
+ # `DEFAULT` - The following subset of facial attributes are returned:
2978
+ # BoundingBox, Confidence, Pose, Quality and Landmarks.
2979
+ #
2980
+ # `ALL` - All facial attributes are returned.
2981
+ #
2982
+ # @option params [String] :job_tag
2983
+ # Unique identifier you specify to identify the job in the completion
2984
+ # status published to the Amazon Simple Notification Service topic.
2985
+ #
2986
+ # @return [Types::StartFaceDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2987
+ #
2988
+ # * {Types::StartFaceDetectionResponse#job_id #job_id} => String
2989
+ #
2990
+ # @example Request syntax with placeholder values
2991
+ #
2992
+ # resp = client.start_face_detection({
2993
+ # video: { # required
2994
+ # s3_object: {
2995
+ # bucket: "S3Bucket",
2996
+ # name: "S3ObjectName",
2997
+ # version: "S3ObjectVersion",
2998
+ # },
2999
+ # },
3000
+ # client_request_token: "ClientRequestToken",
3001
+ # notification_channel: {
3002
+ # sns_topic_arn: "SNSTopicArn", # required
3003
+ # role_arn: "RoleArn", # required
3004
+ # },
3005
+ # face_attributes: "DEFAULT", # accepts DEFAULT, ALL
3006
+ # job_tag: "JobTag",
3007
+ # })
3008
+ #
3009
+ # @example Response structure
3010
+ #
3011
+ # resp.job_id #=> String
3012
+ #
3013
+ # @overload start_face_detection(params = {})
3014
+ # @param [Hash] params ({})
3015
+ def start_face_detection(params = {}, options = {})
3016
+ req = build_request(:start_face_detection, params)
3017
+ req.send_request(options)
3018
+ end
3019
+
3020
+ # Starts the asynchronous search for faces in a collection that match
3021
+ # the faces of persons detected in a stored video.
3022
+ #
3023
+ # The video must be stored in an Amazon S3 bucket. Use Video to specify
3024
+ # the bucket name and the filename of the video. `StartFaceSearch`
3025
+ # returns a job identifier (`JobId`) which you use to get the search
3026
+ # results once the search has completed. When searching is finished,
3027
+ # Rekognition Video publishes a completion status to the Amazon Simple
3028
+ # Notification Service topic that you specify in `NotificationChannel`.
3029
+ # To get the search results, first check that the status value published
3030
+ # to the Amazon SNS topic is `SUCCEEDED`. If so, call and pass the job
3031
+ # identifier (`JobId`) from the initial call to `StartFaceSearch`. For
3032
+ # more information, see collections-search-person.
3033
+ #
3034
+ # @option params [required, Types::Video] :video
3035
+ # The video you want to search. The video must be stored in an Amazon S3
3036
+ # bucket.
3037
+ #
3038
+ # @option params [String] :client_request_token
3039
+ # Idempotent token used to identify the start request. If you use the
3040
+ # same token with multiple `StartFaceSearch` requests, the same `JobId`
3041
+ # is returned. Use `ClientRequestToken` to prevent the same job from
3042
+ # being accidently started more than once.
3043
+ #
3044
+ # @option params [Float] :face_match_threshold
3045
+ # The minimum confidence in the person match to return. For example,
3046
+ # don't return any matches where confidence in matches is less than
3047
+ # 70%.
3048
+ #
3049
+ # @option params [required, String] :collection_id
3050
+ # ID of the collection that contains the faces you want to search for.
3051
+ #
3052
+ # @option params [Types::NotificationChannel] :notification_channel
3053
+ # The ARN of the Amazon SNS topic to which you want Rekognition Video to
3054
+ # publish the completion status of the search.
3055
+ #
3056
+ # @option params [String] :job_tag
3057
+ # Unique identifier you specify to identify the job in the completion
3058
+ # status published to the Amazon Simple Notification Service topic.
3059
+ #
3060
+ # @return [Types::StartFaceSearchResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3061
+ #
3062
+ # * {Types::StartFaceSearchResponse#job_id #job_id} => String
3063
+ #
3064
+ # @example Request syntax with placeholder values
3065
+ #
3066
+ # resp = client.start_face_search({
3067
+ # video: { # required
3068
+ # s3_object: {
3069
+ # bucket: "S3Bucket",
3070
+ # name: "S3ObjectName",
3071
+ # version: "S3ObjectVersion",
3072
+ # },
3073
+ # },
3074
+ # client_request_token: "ClientRequestToken",
3075
+ # face_match_threshold: 1.0,
3076
+ # collection_id: "CollectionId", # required
3077
+ # notification_channel: {
3078
+ # sns_topic_arn: "SNSTopicArn", # required
3079
+ # role_arn: "RoleArn", # required
3080
+ # },
3081
+ # job_tag: "JobTag",
3082
+ # })
3083
+ #
3084
+ # @example Response structure
3085
+ #
3086
+ # resp.job_id #=> String
3087
+ #
3088
+ # @overload start_face_search(params = {})
3089
+ # @param [Hash] params ({})
3090
+ def start_face_search(params = {}, options = {})
3091
+ req = build_request(:start_face_search, params)
3092
+ req.send_request(options)
3093
+ end
3094
+
3095
+ # Starts asynchronous detection of labels in a stored video.
3096
+ #
3097
+ # Rekognition Video can detect labels in a video. Labels are instances
3098
+ # of real-world entities. This includes objects like flower, tree, and
3099
+ # table; events like wedding, graduation, and birthday party; concepts
3100
+ # like landscape, evening, and nature; and activities like a person
3101
+ # getting out of a car or a person skiing.
3102
+ #
3103
+ # The video must be stored in an Amazon S3 bucket. Use Video to specify
3104
+ # the bucket name and the filename of the video. `StartLabelDetection`
3105
+ # returns a job identifier (`JobId`) which you use to get the results of
3106
+ # the operation. When label detection is finished, Rekognition Video
3107
+ # publishes a completion status to the Amazon Simple Notification
3108
+ # Service topic that you specify in `NotificationChannel`.
3109
+ #
3110
+ # To get the results of the label detection operation, first check that
3111
+ # the status value published to the Amazon SNS topic is `SUCCEEDED`. If
3112
+ # so, call and pass the job identifier (`JobId`) from the initial call
3113
+ # to `StartLabelDetection`.
3114
+ #
3115
+ # @option params [required, Types::Video] :video
3116
+ # The video in which you want to detect labels. The video must be stored
3117
+ # in an Amazon S3 bucket.
3118
+ #
3119
+ # @option params [String] :client_request_token
3120
+ # Idempotent token used to identify the start request. If you use the
3121
+ # same token with multiple `StartLabelDetection` requests, the same
3122
+ # `JobId` is returned. Use `ClientRequestToken` to prevent the same job
3123
+ # from being accidently started more than once.
3124
+ #
3125
+ # @option params [Float] :min_confidence
3126
+ # Specifies the minimum confidence that Rekognition Video must have in
3127
+ # order to return a detected label. Confidence represents how certain
3128
+ # Amazon Rekognition is that a label is correctly identified.0 is the
3129
+ # lowest confidence. 100 is the highest confidence. Rekognition Video
3130
+ # doesn't return any labels with a confidence level lower than this
3131
+ # specified value.
3132
+ #
3133
+ # If you don't specify `MinConfidence`, the operation returns labels
3134
+ # with confidence values greater than or equal to 50 percent.
3135
+ #
3136
+ # @option params [Types::NotificationChannel] :notification_channel
3137
+ # The Amazon SNS topic ARN you want Rekognition Video to publish the
3138
+ # completion status of the label detection operation to.
3139
+ #
3140
+ # @option params [String] :job_tag
3141
+ # Unique identifier you specify to identify the job in the completion
3142
+ # status published to the Amazon Simple Notification Service topic.
3143
+ #
3144
+ # @return [Types::StartLabelDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3145
+ #
3146
+ # * {Types::StartLabelDetectionResponse#job_id #job_id} => String
3147
+ #
3148
+ # @example Request syntax with placeholder values
3149
+ #
3150
+ # resp = client.start_label_detection({
3151
+ # video: { # required
3152
+ # s3_object: {
3153
+ # bucket: "S3Bucket",
3154
+ # name: "S3ObjectName",
3155
+ # version: "S3ObjectVersion",
3156
+ # },
3157
+ # },
3158
+ # client_request_token: "ClientRequestToken",
3159
+ # min_confidence: 1.0,
3160
+ # notification_channel: {
3161
+ # sns_topic_arn: "SNSTopicArn", # required
3162
+ # role_arn: "RoleArn", # required
3163
+ # },
3164
+ # job_tag: "JobTag",
3165
+ # })
3166
+ #
3167
+ # @example Response structure
3168
+ #
3169
+ # resp.job_id #=> String
3170
+ #
3171
+ # @overload start_label_detection(params = {})
3172
+ # @param [Hash] params ({})
3173
+ def start_label_detection(params = {}, options = {})
3174
+ req = build_request(:start_label_detection, params)
3175
+ req.send_request(options)
3176
+ end
3177
+
3178
+ # Starts the asynchronous tracking of persons in a stored video.
3179
+ #
3180
+ # Rekognition Video can track persons in a video stored in an Amazon S3
3181
+ # bucket. Use Video to specify the bucket name and the filename of the
3182
+ # video. `StartPersonTracking` returns a job identifier (`JobId`) which
3183
+ # you use to get the results of the operation. When label detection is
3184
+ # finished, Amazon Rekognition publishes a completion status to the
3185
+ # Amazon Simple Notification Service topic that you specify in
3186
+ # `NotificationChannel`.
3187
+ #
3188
+ # To get the results of the person detection operation, first check that
3189
+ # the status value published to the Amazon SNS topic is `SUCCEEDED`. If
3190
+ # so, call and pass the job identifier (`JobId`) from the initial call
3191
+ # to `StartPersonTracking`.
3192
+ #
3193
+ # @option params [required, Types::Video] :video
3194
+ # The video in which you want to detect people. The video must be stored
3195
+ # in an Amazon S3 bucket.
3196
+ #
3197
+ # @option params [String] :client_request_token
3198
+ # Idempotent token used to identify the start request. If you use the
3199
+ # same token with multiple `StartPersonTracking` requests, the same
3200
+ # `JobId` is returned. Use `ClientRequestToken` to prevent the same job
3201
+ # from being accidently started more than once.
3202
+ #
3203
+ # @option params [Types::NotificationChannel] :notification_channel
3204
+ # The Amazon SNS topic ARN you want Rekognition Video to publish the
3205
+ # completion status of the people detection operation to.
3206
+ #
3207
+ # @option params [String] :job_tag
3208
+ # Unique identifier you specify to identify the job in the completion
3209
+ # status published to the Amazon Simple Notification Service topic.
3210
+ #
3211
+ # @return [Types::StartPersonTrackingResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3212
+ #
3213
+ # * {Types::StartPersonTrackingResponse#job_id #job_id} => String
3214
+ #
3215
+ # @example Request syntax with placeholder values
3216
+ #
3217
+ # resp = client.start_person_tracking({
3218
+ # video: { # required
3219
+ # s3_object: {
3220
+ # bucket: "S3Bucket",
3221
+ # name: "S3ObjectName",
3222
+ # version: "S3ObjectVersion",
3223
+ # },
3224
+ # },
3225
+ # client_request_token: "ClientRequestToken",
3226
+ # notification_channel: {
3227
+ # sns_topic_arn: "SNSTopicArn", # required
3228
+ # role_arn: "RoleArn", # required
3229
+ # },
3230
+ # job_tag: "JobTag",
3231
+ # })
3232
+ #
3233
+ # @example Response structure
3234
+ #
3235
+ # resp.job_id #=> String
3236
+ #
3237
+ # @overload start_person_tracking(params = {})
3238
+ # @param [Hash] params ({})
3239
+ def start_person_tracking(params = {}, options = {})
3240
+ req = build_request(:start_person_tracking, params)
3241
+ req.send_request(options)
3242
+ end
3243
+
3244
+ # Starts processing a stream processor. You create a stream processor by
3245
+ # calling . To tell `StartStreamProcessor` which stream processor to
3246
+ # start, use the value of the `Name` field specified in the call to
3247
+ # `CreateStreamProcessor`.
3248
+ #
3249
+ # @option params [required, String] :name
3250
+ # The name of the stream processor to start processing.
3251
+ #
3252
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
3253
+ #
3254
+ # @example Request syntax with placeholder values
3255
+ #
3256
+ # resp = client.start_stream_processor({
3257
+ # name: "StreamProcessorName", # required
3258
+ # })
3259
+ #
3260
+ # @overload start_stream_processor(params = {})
3261
+ # @param [Hash] params ({})
3262
+ def start_stream_processor(params = {}, options = {})
3263
+ req = build_request(:start_stream_processor, params)
3264
+ req.send_request(options)
3265
+ end
3266
+
3267
+ # Stops a running stream processor that was created by .
3268
+ #
3269
+ # @option params [required, String] :name
3270
+ # The name of a stream processor created by .
3271
+ #
3272
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
3273
+ #
3274
+ # @example Request syntax with placeholder values
3275
+ #
3276
+ # resp = client.stop_stream_processor({
3277
+ # name: "StreamProcessorName", # required
3278
+ # })
3279
+ #
3280
+ # @overload stop_stream_processor(params = {})
3281
+ # @param [Hash] params ({})
3282
+ def stop_stream_processor(params = {}, options = {})
3283
+ req = build_request(:stop_stream_processor, params)
3284
+ req.send_request(options)
3285
+ end
3286
+
1923
3287
  # @!endgroup
1924
3288
 
1925
3289
  # @param params ({})
@@ -1933,7 +3297,7 @@ module Aws::Rekognition
1933
3297
  params: params,
1934
3298
  config: config)
1935
3299
  context[:gem_name] = 'aws-sdk-rekognition'
1936
- context[:gem_version] = '1.1.0'
3300
+ context[:gem_version] = '1.2.0'
1937
3301
  Seahorse::Client::Request.new(handlers, context)
1938
3302
  end
1939
3303