aws-sdk-machinelearning 1.64.0 → 1.65.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 82570a9ac15febd0efd646fbf4639d7a27ba3ca60d034bb26a87365c07898330
4
- data.tar.gz: 06db6eefe324e67f3c95c58c03de72dfcdf2a53c92fe4f58f05c210437283772
3
+ metadata.gz: 4ef0a5c78ceeba9a71567b4c60225b710d082baface60bfb6a1f2ca0fc656220
4
+ data.tar.gz: 4d846aa2a83adddac42f11c285ea9a714b02962b8acdb61cc5acf28ba2a2e80c
5
5
  SHA512:
6
- metadata.gz: d4a2703a1eb42105b6fdd33cb5e984d6bb81cef682e35fa7bdc1336b32b0d347733ec10a0a76641eb8c84de19e637d9c52988c3095b9789c91c5fd5c96e73d40
7
- data.tar.gz: 236d9743cb0d9c0b08ae5efb0a3c0c0fcfad10ac5517d3a754259e23f82ecf48ff7d92aa76d977bed0524aafe0014f54370af3b6934669ef82c5620138742339
6
+ metadata.gz: 864d63911b001973d9bd74ff428352465693b250746ac3654e061e9a2f6834ca86fac1fd9c2a701b94523a38277f351a1d63bb68b91ea8c0eda6ea930faeb5fa
7
+ data.tar.gz: 272ae7da9a88921881becb19064b15457637ad478037610f1a8cc5b430f15eb196ec621b4f1e1ed0a582966be634ef7134d86bc56579b6ecd5205360be55aba2
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.65.0 (2024-11-06)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
4
9
  1.64.0 (2024-10-18)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.64.0
1
+ 1.65.0
@@ -647,7 +647,7 @@ module Aws::MachineLearning
647
647
  # rearrangement requirements for the `Datasource`.
648
648
  #
649
649
  # Sample - `
650
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
650
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
651
651
  #
652
652
  #
653
653
  #
@@ -786,7 +786,7 @@ module Aws::MachineLearning
786
786
  # rearrangement requirements for the `DataSource`.
787
787
  #
788
788
  # Sample - `
789
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
789
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
790
790
  #
791
791
  # @option params [required, String] :role_arn
792
792
  # A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
@@ -898,7 +898,7 @@ module Aws::MachineLearning
898
898
  # rearrangement requirements for the `Datasource`.
899
899
  #
900
900
  # Sample - `
901
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
901
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
902
902
  #
903
903
  # @option params [Boolean] :compute_statistics
904
904
  # The compute statistics for a `DataSource`. The statistics are
@@ -2488,7 +2488,7 @@ module Aws::MachineLearning
2488
2488
  tracer: tracer
2489
2489
  )
2490
2490
  context[:gem_name] = 'aws-sdk-machinelearning'
2491
- context[:gem_version] = '1.64.0'
2491
+ context[:gem_version] = '1.65.0'
2492
2492
  Seahorse::Client::Request.new(handlers, context)
2493
2493
  end
2494
2494
 
@@ -284,7 +284,7 @@ module Aws::MachineLearning
284
284
  # and rearrangement requirements for the `Datasource`.
285
285
  #
286
286
  # Sample - `
287
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
287
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
288
288
  #
289
289
  #
290
290
  #
@@ -377,7 +377,7 @@ module Aws::MachineLearning
377
377
  # and rearrangement requirements for the `DataSource`.
378
378
  #
379
379
  # Sample - `
380
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
380
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
381
381
  # @return [Types::RedshiftDataSpec]
382
382
  #
383
383
  # @!attribute [rw] role_arn
@@ -451,7 +451,7 @@ module Aws::MachineLearning
451
451
  # and rearrangement requirements for the `Datasource`.
452
452
  #
453
453
  # Sample - `
454
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
454
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
455
455
  # @return [Types::S3DataSpec]
456
456
  #
457
457
  # @!attribute [rw] compute_statistics
@@ -2802,11 +2802,11 @@ module Aws::MachineLearning
2802
2802
  # datasource has 25 percent of the data, and the second one has 75
2803
2803
  # percent of the data.
2804
2804
  #
2805
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
2806
- # "percentEnd":25\}\}`
2805
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
2806
+ # "percentEnd":25}}`
2807
2807
  #
2808
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
2809
- # "percentEnd":25, "complement":"true"\}\}`
2808
+ # Datasource for training: `{"splitting":{"percentBegin":0,
2809
+ # "percentEnd":25, "complement":"true"}}`
2810
2810
  #
2811
2811
  # * <b> <code>strategy</code> </b>
2812
2812
  #
@@ -2821,12 +2821,11 @@ module Aws::MachineLearning
2821
2821
  # The following two `DataRearrangement` lines are examples of
2822
2822
  # sequentially ordered training and evaluation datasources:
2823
2823
  #
2824
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2825
- # "percentEnd":100, "strategy":"sequential"\}\}`
2824
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
2825
+ # "percentEnd":100, "strategy":"sequential"}}`
2826
2826
  #
2827
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
2828
- # "percentEnd":100, "strategy":"sequential",
2829
- # "complement":"true"\}\}`
2827
+ # Datasource for training: `{"splitting":{"percentBegin":70,
2828
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
2830
2829
  #
2831
2830
  # To randomly split the input data into the proportions indicated by
2832
2831
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -2848,14 +2847,14 @@ module Aws::MachineLearning
2848
2847
  # The following two `DataRearrangement` lines are examples of
2849
2848
  # non-sequentially ordered training and evaluation datasources:
2850
2849
  #
2851
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2850
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
2852
2851
  # "percentEnd":100, "strategy":"random",
2853
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
2852
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
2854
2853
  #
2855
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
2854
+ # Datasource for training: `{"splitting":{"percentBegin":70,
2856
2855
  # "percentEnd":100, "strategy":"random",
2857
2856
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
2858
- # "complement":"true"\}\}`
2857
+ # "complement":"true"}}`
2859
2858
  # @return [String]
2860
2859
  #
2861
2860
  # @!attribute [rw] data_schema
@@ -2870,7 +2869,7 @@ module Aws::MachineLearning
2870
2869
  # pairs for their value. Use the following format to define your
2871
2870
  # `DataSchema`.
2872
2871
  #
2873
- # \\\{ "version": "1.0",
2872
+ # \{ "version": "1.0",
2874
2873
  #
2875
2874
  # "recordAnnotationFieldName": "F1",
2876
2875
  #
@@ -2884,17 +2883,17 @@ module Aws::MachineLearning
2884
2883
  #
2885
2884
  # "attributes": \[
2886
2885
  #
2887
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
2888
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
2889
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
2890
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
2891
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
2892
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
2893
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
2894
- # \\}, \\\{ "fieldName": "F8", "fieldType":
2895
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
2886
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
2887
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
2888
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
2889
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
2890
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
2891
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
2892
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
2893
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
2894
+ # } \],
2896
2895
  #
2897
- # "excludedVariableNames": \[ "F6" \] \\}
2896
+ # "excludedVariableNames": \[ "F6" \] }
2898
2897
  # @return [String]
2899
2898
  #
2900
2899
  # @!attribute [rw] data_schema_uri
@@ -3147,11 +3146,11 @@ module Aws::MachineLearning
3147
3146
  # datasource has 25 percent of the data, and the second one has 75
3148
3147
  # percent of the data.
3149
3148
  #
3150
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3151
- # "percentEnd":25\}\}`
3149
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
3150
+ # "percentEnd":25}}`
3152
3151
  #
3153
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
3154
- # "percentEnd":25, "complement":"true"\}\}`
3152
+ # Datasource for training: `{"splitting":{"percentBegin":0,
3153
+ # "percentEnd":25, "complement":"true"}}`
3155
3154
  #
3156
3155
  # * <b> <code>strategy</code> </b>
3157
3156
  #
@@ -3166,12 +3165,11 @@ module Aws::MachineLearning
3166
3165
  # The following two `DataRearrangement` lines are examples of
3167
3166
  # sequentially ordered training and evaluation datasources:
3168
3167
  #
3169
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3170
- # "percentEnd":100, "strategy":"sequential"\}\}`
3168
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3169
+ # "percentEnd":100, "strategy":"sequential"}}`
3171
3170
  #
3172
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3173
- # "percentEnd":100, "strategy":"sequential",
3174
- # "complement":"true"\}\}`
3171
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3172
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
3175
3173
  #
3176
3174
  # To randomly split the input data into the proportions indicated by
3177
3175
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -3193,14 +3191,14 @@ module Aws::MachineLearning
3193
3191
  # The following two `DataRearrangement` lines are examples of
3194
3192
  # non-sequentially ordered training and evaluation datasources:
3195
3193
  #
3196
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3194
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3197
3195
  # "percentEnd":100, "strategy":"random",
3198
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3196
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
3199
3197
  #
3200
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3198
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3201
3199
  # "percentEnd":100, "strategy":"random",
3202
3200
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3203
- # "complement":"true"\}\}`
3201
+ # "complement":"true"}}`
3204
3202
  # @return [String]
3205
3203
  #
3206
3204
  # @!attribute [rw] data_schema
@@ -3215,7 +3213,7 @@ module Aws::MachineLearning
3215
3213
  # pairs for their value. Use the following format to define your
3216
3214
  # `DataSchema`.
3217
3215
  #
3218
- # \\\{ "version": "1.0",
3216
+ # \{ "version": "1.0",
3219
3217
  #
3220
3218
  # "recordAnnotationFieldName": "F1",
3221
3219
  #
@@ -3229,17 +3227,17 @@ module Aws::MachineLearning
3229
3227
  #
3230
3228
  # "attributes": \[
3231
3229
  #
3232
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3233
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3234
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3235
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3236
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3237
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3238
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3239
- # \\}, \\\{ "fieldName": "F8", "fieldType":
3240
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3230
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
3231
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
3232
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
3233
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
3234
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
3235
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
3236
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
3237
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
3238
+ # } \],
3241
3239
  #
3242
- # "excludedVariableNames": \[ "F6" \] \\}
3240
+ # "excludedVariableNames": \[ "F6" \] }
3243
3241
  # @return [String]
3244
3242
  #
3245
3243
  # @!attribute [rw] data_schema_uri
@@ -3402,11 +3400,11 @@ module Aws::MachineLearning
3402
3400
  # datasource has 25 percent of the data, and the second one has 75
3403
3401
  # percent of the data.
3404
3402
  #
3405
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3406
- # "percentEnd":25\}\}`
3403
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
3404
+ # "percentEnd":25}}`
3407
3405
  #
3408
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
3409
- # "percentEnd":25, "complement":"true"\}\}`
3406
+ # Datasource for training: `{"splitting":{"percentBegin":0,
3407
+ # "percentEnd":25, "complement":"true"}}`
3410
3408
  #
3411
3409
  # * <b> <code>strategy</code> </b>
3412
3410
  #
@@ -3421,12 +3419,11 @@ module Aws::MachineLearning
3421
3419
  # The following two `DataRearrangement` lines are examples of
3422
3420
  # sequentially ordered training and evaluation datasources:
3423
3421
  #
3424
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3425
- # "percentEnd":100, "strategy":"sequential"\}\}`
3422
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3423
+ # "percentEnd":100, "strategy":"sequential"}}`
3426
3424
  #
3427
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3428
- # "percentEnd":100, "strategy":"sequential",
3429
- # "complement":"true"\}\}`
3425
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3426
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
3430
3427
  #
3431
3428
  # To randomly split the input data into the proportions indicated by
3432
3429
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -3448,14 +3445,14 @@ module Aws::MachineLearning
3448
3445
  # The following two `DataRearrangement` lines are examples of
3449
3446
  # non-sequentially ordered training and evaluation datasources:
3450
3447
  #
3451
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3448
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3452
3449
  # "percentEnd":100, "strategy":"random",
3453
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3450
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
3454
3451
  #
3455
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3452
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3456
3453
  # "percentEnd":100, "strategy":"random",
3457
3454
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3458
- # "complement":"true"\}\}`
3455
+ # "complement":"true"}}`
3459
3456
  # @return [String]
3460
3457
  #
3461
3458
  # @!attribute [rw] data_schema
@@ -3471,7 +3468,7 @@ module Aws::MachineLearning
3471
3468
  # pairs for their value. Use the following format to define your
3472
3469
  # `DataSchema`.
3473
3470
  #
3474
- # \\\{ "version": "1.0",
3471
+ # \{ "version": "1.0",
3475
3472
  #
3476
3473
  # "recordAnnotationFieldName": "F1",
3477
3474
  #
@@ -3485,17 +3482,17 @@ module Aws::MachineLearning
3485
3482
  #
3486
3483
  # "attributes": \[
3487
3484
  #
3488
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3489
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3490
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3491
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3492
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3493
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3494
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3495
- # \\}, \\\{ "fieldName": "F8", "fieldType":
3496
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3497
- #
3498
- # "excludedVariableNames": \[ "F6" \] \\}
3485
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
3486
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
3487
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
3488
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
3489
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
3490
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
3491
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
3492
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
3493
+ # } \],
3494
+ #
3495
+ # "excludedVariableNames": \[ "F6" \] }
3499
3496
  # @return [String]
3500
3497
  #
3501
3498
  # @!attribute [rw] data_schema_location_s3
@@ -55,7 +55,7 @@ module Aws::MachineLearning
55
55
  autoload :EndpointProvider, 'aws-sdk-machinelearning/endpoint_provider'
56
56
  autoload :Endpoints, 'aws-sdk-machinelearning/endpoints'
57
57
 
58
- GEM_VERSION = '1.64.0'
58
+ GEM_VERSION = '1.65.0'
59
59
 
60
60
  end
61
61
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.64.0
4
+ version: 1.65.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-10-18 00:00:00.000000000 Z
11
+ date: 2024-11-06 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core