aws-sdk-machinelearning 1.64.0 → 1.65.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 82570a9ac15febd0efd646fbf4639d7a27ba3ca60d034bb26a87365c07898330
4
- data.tar.gz: 06db6eefe324e67f3c95c58c03de72dfcdf2a53c92fe4f58f05c210437283772
3
+ metadata.gz: 4ef0a5c78ceeba9a71567b4c60225b710d082baface60bfb6a1f2ca0fc656220
4
+ data.tar.gz: 4d846aa2a83adddac42f11c285ea9a714b02962b8acdb61cc5acf28ba2a2e80c
5
5
  SHA512:
6
- metadata.gz: d4a2703a1eb42105b6fdd33cb5e984d6bb81cef682e35fa7bdc1336b32b0d347733ec10a0a76641eb8c84de19e637d9c52988c3095b9789c91c5fd5c96e73d40
7
- data.tar.gz: 236d9743cb0d9c0b08ae5efb0a3c0c0fcfad10ac5517d3a754259e23f82ecf48ff7d92aa76d977bed0524aafe0014f54370af3b6934669ef82c5620138742339
6
+ metadata.gz: 864d63911b001973d9bd74ff428352465693b250746ac3654e061e9a2f6834ca86fac1fd9c2a701b94523a38277f351a1d63bb68b91ea8c0eda6ea930faeb5fa
7
+ data.tar.gz: 272ae7da9a88921881becb19064b15457637ad478037610f1a8cc5b430f15eb196ec621b4f1e1ed0a582966be634ef7134d86bc56579b6ecd5205360be55aba2
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.65.0 (2024-11-06)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
4
9
  1.64.0 (2024-10-18)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.64.0
1
+ 1.65.0
@@ -647,7 +647,7 @@ module Aws::MachineLearning
647
647
  # rearrangement requirements for the `Datasource`.
648
648
  #
649
649
  # Sample - `
650
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
650
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
651
651
  #
652
652
  #
653
653
  #
@@ -786,7 +786,7 @@ module Aws::MachineLearning
786
786
  # rearrangement requirements for the `DataSource`.
787
787
  #
788
788
  # Sample - `
789
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
789
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
790
790
  #
791
791
  # @option params [required, String] :role_arn
792
792
  # A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
@@ -898,7 +898,7 @@ module Aws::MachineLearning
898
898
  # rearrangement requirements for the `Datasource`.
899
899
  #
900
900
  # Sample - `
901
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
901
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
902
902
  #
903
903
  # @option params [Boolean] :compute_statistics
904
904
  # The compute statistics for a `DataSource`. The statistics are
@@ -2488,7 +2488,7 @@ module Aws::MachineLearning
2488
2488
  tracer: tracer
2489
2489
  )
2490
2490
  context[:gem_name] = 'aws-sdk-machinelearning'
2491
- context[:gem_version] = '1.64.0'
2491
+ context[:gem_version] = '1.65.0'
2492
2492
  Seahorse::Client::Request.new(handlers, context)
2493
2493
  end
2494
2494
 
@@ -284,7 +284,7 @@ module Aws::MachineLearning
284
284
  # and rearrangement requirements for the `Datasource`.
285
285
  #
286
286
  # Sample - `
287
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
287
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
288
288
  #
289
289
  #
290
290
  #
@@ -377,7 +377,7 @@ module Aws::MachineLearning
377
377
  # and rearrangement requirements for the `DataSource`.
378
378
  #
379
379
  # Sample - `
380
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
380
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
381
381
  # @return [Types::RedshiftDataSpec]
382
382
  #
383
383
  # @!attribute [rw] role_arn
@@ -451,7 +451,7 @@ module Aws::MachineLearning
451
451
  # and rearrangement requirements for the `Datasource`.
452
452
  #
453
453
  # Sample - `
454
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
454
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
455
455
  # @return [Types::S3DataSpec]
456
456
  #
457
457
  # @!attribute [rw] compute_statistics
@@ -2802,11 +2802,11 @@ module Aws::MachineLearning
2802
2802
  # datasource has 25 percent of the data, and the second one has 75
2803
2803
  # percent of the data.
2804
2804
  #
2805
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
2806
- # "percentEnd":25\}\}`
2805
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
2806
+ # "percentEnd":25}}`
2807
2807
  #
2808
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
2809
- # "percentEnd":25, "complement":"true"\}\}`
2808
+ # Datasource for training: `{"splitting":{"percentBegin":0,
2809
+ # "percentEnd":25, "complement":"true"}}`
2810
2810
  #
2811
2811
  # * <b> <code>strategy</code> </b>
2812
2812
  #
@@ -2821,12 +2821,11 @@ module Aws::MachineLearning
2821
2821
  # The following two `DataRearrangement` lines are examples of
2822
2822
  # sequentially ordered training and evaluation datasources:
2823
2823
  #
2824
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2825
- # "percentEnd":100, "strategy":"sequential"\}\}`
2824
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
2825
+ # "percentEnd":100, "strategy":"sequential"}}`
2826
2826
  #
2827
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
2828
- # "percentEnd":100, "strategy":"sequential",
2829
- # "complement":"true"\}\}`
2827
+ # Datasource for training: `{"splitting":{"percentBegin":70,
2828
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
2830
2829
  #
2831
2830
  # To randomly split the input data into the proportions indicated by
2832
2831
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -2848,14 +2847,14 @@ module Aws::MachineLearning
2848
2847
  # The following two `DataRearrangement` lines are examples of
2849
2848
  # non-sequentially ordered training and evaluation datasources:
2850
2849
  #
2851
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2850
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
2852
2851
  # "percentEnd":100, "strategy":"random",
2853
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
2852
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
2854
2853
  #
2855
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
2854
+ # Datasource for training: `{"splitting":{"percentBegin":70,
2856
2855
  # "percentEnd":100, "strategy":"random",
2857
2856
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
2858
- # "complement":"true"\}\}`
2857
+ # "complement":"true"}}`
2859
2858
  # @return [String]
2860
2859
  #
2861
2860
  # @!attribute [rw] data_schema
@@ -2870,7 +2869,7 @@ module Aws::MachineLearning
2870
2869
  # pairs for their value. Use the following format to define your
2871
2870
  # `DataSchema`.
2872
2871
  #
2873
- # \\\{ "version": "1.0",
2872
+ # \{ "version": "1.0",
2874
2873
  #
2875
2874
  # "recordAnnotationFieldName": "F1",
2876
2875
  #
@@ -2884,17 +2883,17 @@ module Aws::MachineLearning
2884
2883
  #
2885
2884
  # "attributes": \[
2886
2885
  #
2887
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
2888
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
2889
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
2890
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
2891
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
2892
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
2893
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
2894
- # \\}, \\\{ "fieldName": "F8", "fieldType":
2895
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
2886
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
2887
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
2888
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
2889
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
2890
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
2891
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
2892
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
2893
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
2894
+ # } \],
2896
2895
  #
2897
- # "excludedVariableNames": \[ "F6" \] \\}
2896
+ # "excludedVariableNames": \[ "F6" \] }
2898
2897
  # @return [String]
2899
2898
  #
2900
2899
  # @!attribute [rw] data_schema_uri
@@ -3147,11 +3146,11 @@ module Aws::MachineLearning
3147
3146
  # datasource has 25 percent of the data, and the second one has 75
3148
3147
  # percent of the data.
3149
3148
  #
3150
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3151
- # "percentEnd":25\}\}`
3149
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
3150
+ # "percentEnd":25}}`
3152
3151
  #
3153
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
3154
- # "percentEnd":25, "complement":"true"\}\}`
3152
+ # Datasource for training: `{"splitting":{"percentBegin":0,
3153
+ # "percentEnd":25, "complement":"true"}}`
3155
3154
  #
3156
3155
  # * <b> <code>strategy</code> </b>
3157
3156
  #
@@ -3166,12 +3165,11 @@ module Aws::MachineLearning
3166
3165
  # The following two `DataRearrangement` lines are examples of
3167
3166
  # sequentially ordered training and evaluation datasources:
3168
3167
  #
3169
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3170
- # "percentEnd":100, "strategy":"sequential"\}\}`
3168
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3169
+ # "percentEnd":100, "strategy":"sequential"}}`
3171
3170
  #
3172
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3173
- # "percentEnd":100, "strategy":"sequential",
3174
- # "complement":"true"\}\}`
3171
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3172
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
3175
3173
  #
3176
3174
  # To randomly split the input data into the proportions indicated by
3177
3175
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -3193,14 +3191,14 @@ module Aws::MachineLearning
3193
3191
  # The following two `DataRearrangement` lines are examples of
3194
3192
  # non-sequentially ordered training and evaluation datasources:
3195
3193
  #
3196
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3194
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3197
3195
  # "percentEnd":100, "strategy":"random",
3198
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3196
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
3199
3197
  #
3200
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3198
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3201
3199
  # "percentEnd":100, "strategy":"random",
3202
3200
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3203
- # "complement":"true"\}\}`
3201
+ # "complement":"true"}}`
3204
3202
  # @return [String]
3205
3203
  #
3206
3204
  # @!attribute [rw] data_schema
@@ -3215,7 +3213,7 @@ module Aws::MachineLearning
3215
3213
  # pairs for their value. Use the following format to define your
3216
3214
  # `DataSchema`.
3217
3215
  #
3218
- # \\\{ "version": "1.0",
3216
+ # \{ "version": "1.0",
3219
3217
  #
3220
3218
  # "recordAnnotationFieldName": "F1",
3221
3219
  #
@@ -3229,17 +3227,17 @@ module Aws::MachineLearning
3229
3227
  #
3230
3228
  # "attributes": \[
3231
3229
  #
3232
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3233
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3234
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3235
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3236
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3237
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3238
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3239
- # \\}, \\\{ "fieldName": "F8", "fieldType":
3240
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3230
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
3231
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
3232
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
3233
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
3234
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
3235
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
3236
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
3237
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
3238
+ # } \],
3241
3239
  #
3242
- # "excludedVariableNames": \[ "F6" \] \\}
3240
+ # "excludedVariableNames": \[ "F6" \] }
3243
3241
  # @return [String]
3244
3242
  #
3245
3243
  # @!attribute [rw] data_schema_uri
@@ -3402,11 +3400,11 @@ module Aws::MachineLearning
3402
3400
  # datasource has 25 percent of the data, and the second one has 75
3403
3401
  # percent of the data.
3404
3402
  #
3405
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3406
- # "percentEnd":25\}\}`
3403
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
3404
+ # "percentEnd":25}}`
3407
3405
  #
3408
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
3409
- # "percentEnd":25, "complement":"true"\}\}`
3406
+ # Datasource for training: `{"splitting":{"percentBegin":0,
3407
+ # "percentEnd":25, "complement":"true"}}`
3410
3408
  #
3411
3409
  # * <b> <code>strategy</code> </b>
3412
3410
  #
@@ -3421,12 +3419,11 @@ module Aws::MachineLearning
3421
3419
  # The following two `DataRearrangement` lines are examples of
3422
3420
  # sequentially ordered training and evaluation datasources:
3423
3421
  #
3424
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3425
- # "percentEnd":100, "strategy":"sequential"\}\}`
3422
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3423
+ # "percentEnd":100, "strategy":"sequential"}}`
3426
3424
  #
3427
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3428
- # "percentEnd":100, "strategy":"sequential",
3429
- # "complement":"true"\}\}`
3425
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3426
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
3430
3427
  #
3431
3428
  # To randomly split the input data into the proportions indicated by
3432
3429
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -3448,14 +3445,14 @@ module Aws::MachineLearning
3448
3445
  # The following two `DataRearrangement` lines are examples of
3449
3446
  # non-sequentially ordered training and evaluation datasources:
3450
3447
  #
3451
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3448
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3452
3449
  # "percentEnd":100, "strategy":"random",
3453
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3450
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
3454
3451
  #
3455
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3452
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3456
3453
  # "percentEnd":100, "strategy":"random",
3457
3454
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3458
- # "complement":"true"\}\}`
3455
+ # "complement":"true"}}`
3459
3456
  # @return [String]
3460
3457
  #
3461
3458
  # @!attribute [rw] data_schema
@@ -3471,7 +3468,7 @@ module Aws::MachineLearning
3471
3468
  # pairs for their value. Use the following format to define your
3472
3469
  # `DataSchema`.
3473
3470
  #
3474
- # \\\{ "version": "1.0",
3471
+ # \{ "version": "1.0",
3475
3472
  #
3476
3473
  # "recordAnnotationFieldName": "F1",
3477
3474
  #
@@ -3485,17 +3482,17 @@ module Aws::MachineLearning
3485
3482
  #
3486
3483
  # "attributes": \[
3487
3484
  #
3488
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3489
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3490
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3491
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3492
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3493
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3494
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3495
- # \\}, \\\{ "fieldName": "F8", "fieldType":
3496
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3497
- #
3498
- # "excludedVariableNames": \[ "F6" \] \\}
3485
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
3486
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
3487
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
3488
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
3489
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
3490
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
3491
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
3492
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
3493
+ # } \],
3494
+ #
3495
+ # "excludedVariableNames": \[ "F6" \] }
3499
3496
  # @return [String]
3500
3497
  #
3501
3498
  # @!attribute [rw] data_schema_location_s3
@@ -55,7 +55,7 @@ module Aws::MachineLearning
55
55
  autoload :EndpointProvider, 'aws-sdk-machinelearning/endpoint_provider'
56
56
  autoload :Endpoints, 'aws-sdk-machinelearning/endpoints'
57
57
 
58
- GEM_VERSION = '1.64.0'
58
+ GEM_VERSION = '1.65.0'
59
59
 
60
60
  end
61
61
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.64.0
4
+ version: 1.65.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-10-18 00:00:00.000000000 Z
11
+ date: 2024-11-06 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core