aws-sdk-machinelearning 1.64.0 → 1.65.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-machinelearning/client.rb +4 -4
- data/lib/aws-sdk-machinelearning/types.rb +73 -76
- data/lib/aws-sdk-machinelearning.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 4ef0a5c78ceeba9a71567b4c60225b710d082baface60bfb6a1f2ca0fc656220
|
4
|
+
data.tar.gz: 4d846aa2a83adddac42f11c285ea9a714b02962b8acdb61cc5acf28ba2a2e80c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 864d63911b001973d9bd74ff428352465693b250746ac3654e061e9a2f6834ca86fac1fd9c2a701b94523a38277f351a1d63bb68b91ea8c0eda6ea930faeb5fa
|
7
|
+
data.tar.gz: 272ae7da9a88921881becb19064b15457637ad478037610f1a8cc5b430f15eb196ec621b4f1e1ed0a582966be634ef7134d86bc56579b6ecd5205360be55aba2
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.65.0
|
@@ -647,7 +647,7 @@ module Aws::MachineLearning
|
|
647
647
|
# rearrangement requirements for the `Datasource`.
|
648
648
|
#
|
649
649
|
# Sample - `
|
650
|
-
# "
|
650
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
651
651
|
#
|
652
652
|
#
|
653
653
|
#
|
@@ -786,7 +786,7 @@ module Aws::MachineLearning
|
|
786
786
|
# rearrangement requirements for the `DataSource`.
|
787
787
|
#
|
788
788
|
# Sample - `
|
789
|
-
# "
|
789
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
790
790
|
#
|
791
791
|
# @option params [required, String] :role_arn
|
792
792
|
# A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
|
@@ -898,7 +898,7 @@ module Aws::MachineLearning
|
|
898
898
|
# rearrangement requirements for the `Datasource`.
|
899
899
|
#
|
900
900
|
# Sample - `
|
901
|
-
# "
|
901
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
902
902
|
#
|
903
903
|
# @option params [Boolean] :compute_statistics
|
904
904
|
# The compute statistics for a `DataSource`. The statistics are
|
@@ -2488,7 +2488,7 @@ module Aws::MachineLearning
|
|
2488
2488
|
tracer: tracer
|
2489
2489
|
)
|
2490
2490
|
context[:gem_name] = 'aws-sdk-machinelearning'
|
2491
|
-
context[:gem_version] = '1.
|
2491
|
+
context[:gem_version] = '1.65.0'
|
2492
2492
|
Seahorse::Client::Request.new(handlers, context)
|
2493
2493
|
end
|
2494
2494
|
|
@@ -284,7 +284,7 @@ module Aws::MachineLearning
|
|
284
284
|
# and rearrangement requirements for the `Datasource`.
|
285
285
|
#
|
286
286
|
# Sample - `
|
287
|
-
# "
|
287
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
288
288
|
#
|
289
289
|
#
|
290
290
|
#
|
@@ -377,7 +377,7 @@ module Aws::MachineLearning
|
|
377
377
|
# and rearrangement requirements for the `DataSource`.
|
378
378
|
#
|
379
379
|
# Sample - `
|
380
|
-
# "
|
380
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
381
381
|
# @return [Types::RedshiftDataSpec]
|
382
382
|
#
|
383
383
|
# @!attribute [rw] role_arn
|
@@ -451,7 +451,7 @@ module Aws::MachineLearning
|
|
451
451
|
# and rearrangement requirements for the `Datasource`.
|
452
452
|
#
|
453
453
|
# Sample - `
|
454
|
-
# "
|
454
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
455
455
|
# @return [Types::S3DataSpec]
|
456
456
|
#
|
457
457
|
# @!attribute [rw] compute_statistics
|
@@ -2802,11 +2802,11 @@ module Aws::MachineLearning
|
|
2802
2802
|
# datasource has 25 percent of the data, and the second one has 75
|
2803
2803
|
# percent of the data.
|
2804
2804
|
#
|
2805
|
-
# Datasource for evaluation:
|
2806
|
-
# "percentEnd":25
|
2805
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":0,
|
2806
|
+
# "percentEnd":25}}`
|
2807
2807
|
#
|
2808
|
-
# Datasource for training:
|
2809
|
-
# "percentEnd":25, "complement":"true"
|
2808
|
+
# Datasource for training: `{"splitting":{"percentBegin":0,
|
2809
|
+
# "percentEnd":25, "complement":"true"}}`
|
2810
2810
|
#
|
2811
2811
|
# * <b> <code>strategy</code> </b>
|
2812
2812
|
#
|
@@ -2821,12 +2821,11 @@ module Aws::MachineLearning
|
|
2821
2821
|
# The following two `DataRearrangement` lines are examples of
|
2822
2822
|
# sequentially ordered training and evaluation datasources:
|
2823
2823
|
#
|
2824
|
-
# Datasource for evaluation:
|
2825
|
-
# "percentEnd":100, "strategy":"sequential"
|
2824
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
2825
|
+
# "percentEnd":100, "strategy":"sequential"}}`
|
2826
2826
|
#
|
2827
|
-
# Datasource for training:
|
2828
|
-
# "percentEnd":100, "strategy":"sequential",
|
2829
|
-
# "complement":"true"\}\}`
|
2827
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
2828
|
+
# "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
|
2830
2829
|
#
|
2831
2830
|
# To randomly split the input data into the proportions indicated by
|
2832
2831
|
# the percentBegin and percentEnd parameters, set the `strategy`
|
@@ -2848,14 +2847,14 @@ module Aws::MachineLearning
|
|
2848
2847
|
# The following two `DataRearrangement` lines are examples of
|
2849
2848
|
# non-sequentially ordered training and evaluation datasources:
|
2850
2849
|
#
|
2851
|
-
# Datasource for evaluation:
|
2850
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
2852
2851
|
# "percentEnd":100, "strategy":"random",
|
2853
|
-
# "randomSeed"="s3://my_s3_path/bucket/file.csv"
|
2852
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
|
2854
2853
|
#
|
2855
|
-
# Datasource for training:
|
2854
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
2856
2855
|
# "percentEnd":100, "strategy":"random",
|
2857
2856
|
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
2858
|
-
# "complement":"true"
|
2857
|
+
# "complement":"true"}}`
|
2859
2858
|
# @return [String]
|
2860
2859
|
#
|
2861
2860
|
# @!attribute [rw] data_schema
|
@@ -2870,7 +2869,7 @@ module Aws::MachineLearning
|
|
2870
2869
|
# pairs for their value. Use the following format to define your
|
2871
2870
|
# `DataSchema`.
|
2872
2871
|
#
|
2873
|
-
#
|
2872
|
+
# \{ "version": "1.0",
|
2874
2873
|
#
|
2875
2874
|
# "recordAnnotationFieldName": "F1",
|
2876
2875
|
#
|
@@ -2884,17 +2883,17 @@ module Aws::MachineLearning
|
|
2884
2883
|
#
|
2885
2884
|
# "attributes": \[
|
2886
2885
|
#
|
2887
|
-
#
|
2888
|
-
# "fieldName": "F2", "fieldType": "NUMERIC"
|
2889
|
-
# "fieldName": "F3", "fieldType": "CATEGORICAL"
|
2890
|
-
# "fieldName": "F4", "fieldType": "NUMERIC"
|
2891
|
-
# "fieldName": "F5", "fieldType": "CATEGORICAL"
|
2892
|
-
# "fieldName": "F6", "fieldType": "TEXT"
|
2893
|
-
# "
|
2894
|
-
#
|
2895
|
-
#
|
2886
|
+
# \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
|
2887
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" }, \{
|
2888
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
|
2889
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" }, \{
|
2890
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
|
2891
|
+
# "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
|
2892
|
+
# "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
|
2893
|
+
# "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
|
2894
|
+
# } \],
|
2896
2895
|
#
|
2897
|
-
# "excludedVariableNames": \[ "F6" \]
|
2896
|
+
# "excludedVariableNames": \[ "F6" \] }
|
2898
2897
|
# @return [String]
|
2899
2898
|
#
|
2900
2899
|
# @!attribute [rw] data_schema_uri
|
@@ -3147,11 +3146,11 @@ module Aws::MachineLearning
|
|
3147
3146
|
# datasource has 25 percent of the data, and the second one has 75
|
3148
3147
|
# percent of the data.
|
3149
3148
|
#
|
3150
|
-
# Datasource for evaluation:
|
3151
|
-
# "percentEnd":25
|
3149
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":0,
|
3150
|
+
# "percentEnd":25}}`
|
3152
3151
|
#
|
3153
|
-
# Datasource for training:
|
3154
|
-
# "percentEnd":25, "complement":"true"
|
3152
|
+
# Datasource for training: `{"splitting":{"percentBegin":0,
|
3153
|
+
# "percentEnd":25, "complement":"true"}}`
|
3155
3154
|
#
|
3156
3155
|
# * <b> <code>strategy</code> </b>
|
3157
3156
|
#
|
@@ -3166,12 +3165,11 @@ module Aws::MachineLearning
|
|
3166
3165
|
# The following two `DataRearrangement` lines are examples of
|
3167
3166
|
# sequentially ordered training and evaluation datasources:
|
3168
3167
|
#
|
3169
|
-
# Datasource for evaluation:
|
3170
|
-
# "percentEnd":100, "strategy":"sequential"
|
3168
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
3169
|
+
# "percentEnd":100, "strategy":"sequential"}}`
|
3171
3170
|
#
|
3172
|
-
# Datasource for training:
|
3173
|
-
# "percentEnd":100, "strategy":"sequential",
|
3174
|
-
# "complement":"true"\}\}`
|
3171
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
3172
|
+
# "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
|
3175
3173
|
#
|
3176
3174
|
# To randomly split the input data into the proportions indicated by
|
3177
3175
|
# the percentBegin and percentEnd parameters, set the `strategy`
|
@@ -3193,14 +3191,14 @@ module Aws::MachineLearning
|
|
3193
3191
|
# The following two `DataRearrangement` lines are examples of
|
3194
3192
|
# non-sequentially ordered training and evaluation datasources:
|
3195
3193
|
#
|
3196
|
-
# Datasource for evaluation:
|
3194
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
3197
3195
|
# "percentEnd":100, "strategy":"random",
|
3198
|
-
# "randomSeed"="s3://my_s3_path/bucket/file.csv"
|
3196
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
|
3199
3197
|
#
|
3200
|
-
# Datasource for training:
|
3198
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
3201
3199
|
# "percentEnd":100, "strategy":"random",
|
3202
3200
|
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
3203
|
-
# "complement":"true"
|
3201
|
+
# "complement":"true"}}`
|
3204
3202
|
# @return [String]
|
3205
3203
|
#
|
3206
3204
|
# @!attribute [rw] data_schema
|
@@ -3215,7 +3213,7 @@ module Aws::MachineLearning
|
|
3215
3213
|
# pairs for their value. Use the following format to define your
|
3216
3214
|
# `DataSchema`.
|
3217
3215
|
#
|
3218
|
-
#
|
3216
|
+
# \{ "version": "1.0",
|
3219
3217
|
#
|
3220
3218
|
# "recordAnnotationFieldName": "F1",
|
3221
3219
|
#
|
@@ -3229,17 +3227,17 @@ module Aws::MachineLearning
|
|
3229
3227
|
#
|
3230
3228
|
# "attributes": \[
|
3231
3229
|
#
|
3232
|
-
#
|
3233
|
-
# "fieldName": "F2", "fieldType": "NUMERIC"
|
3234
|
-
# "fieldName": "F3", "fieldType": "CATEGORICAL"
|
3235
|
-
# "fieldName": "F4", "fieldType": "NUMERIC"
|
3236
|
-
# "fieldName": "F5", "fieldType": "CATEGORICAL"
|
3237
|
-
# "fieldName": "F6", "fieldType": "TEXT"
|
3238
|
-
# "
|
3239
|
-
#
|
3240
|
-
#
|
3230
|
+
# \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
|
3231
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" }, \{
|
3232
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
|
3233
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" }, \{
|
3234
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
|
3235
|
+
# "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
|
3236
|
+
# "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
|
3237
|
+
# "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
|
3238
|
+
# } \],
|
3241
3239
|
#
|
3242
|
-
# "excludedVariableNames": \[ "F6" \]
|
3240
|
+
# "excludedVariableNames": \[ "F6" \] }
|
3243
3241
|
# @return [String]
|
3244
3242
|
#
|
3245
3243
|
# @!attribute [rw] data_schema_uri
|
@@ -3402,11 +3400,11 @@ module Aws::MachineLearning
|
|
3402
3400
|
# datasource has 25 percent of the data, and the second one has 75
|
3403
3401
|
# percent of the data.
|
3404
3402
|
#
|
3405
|
-
# Datasource for evaluation:
|
3406
|
-
# "percentEnd":25
|
3403
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":0,
|
3404
|
+
# "percentEnd":25}}`
|
3407
3405
|
#
|
3408
|
-
# Datasource for training:
|
3409
|
-
# "percentEnd":25, "complement":"true"
|
3406
|
+
# Datasource for training: `{"splitting":{"percentBegin":0,
|
3407
|
+
# "percentEnd":25, "complement":"true"}}`
|
3410
3408
|
#
|
3411
3409
|
# * <b> <code>strategy</code> </b>
|
3412
3410
|
#
|
@@ -3421,12 +3419,11 @@ module Aws::MachineLearning
|
|
3421
3419
|
# The following two `DataRearrangement` lines are examples of
|
3422
3420
|
# sequentially ordered training and evaluation datasources:
|
3423
3421
|
#
|
3424
|
-
# Datasource for evaluation:
|
3425
|
-
# "percentEnd":100, "strategy":"sequential"
|
3422
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
3423
|
+
# "percentEnd":100, "strategy":"sequential"}}`
|
3426
3424
|
#
|
3427
|
-
# Datasource for training:
|
3428
|
-
# "percentEnd":100, "strategy":"sequential",
|
3429
|
-
# "complement":"true"\}\}`
|
3425
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
3426
|
+
# "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
|
3430
3427
|
#
|
3431
3428
|
# To randomly split the input data into the proportions indicated by
|
3432
3429
|
# the percentBegin and percentEnd parameters, set the `strategy`
|
@@ -3448,14 +3445,14 @@ module Aws::MachineLearning
|
|
3448
3445
|
# The following two `DataRearrangement` lines are examples of
|
3449
3446
|
# non-sequentially ordered training and evaluation datasources:
|
3450
3447
|
#
|
3451
|
-
# Datasource for evaluation:
|
3448
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
3452
3449
|
# "percentEnd":100, "strategy":"random",
|
3453
|
-
# "randomSeed"="s3://my_s3_path/bucket/file.csv"
|
3450
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
|
3454
3451
|
#
|
3455
|
-
# Datasource for training:
|
3452
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
3456
3453
|
# "percentEnd":100, "strategy":"random",
|
3457
3454
|
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
3458
|
-
# "complement":"true"
|
3455
|
+
# "complement":"true"}}`
|
3459
3456
|
# @return [String]
|
3460
3457
|
#
|
3461
3458
|
# @!attribute [rw] data_schema
|
@@ -3471,7 +3468,7 @@ module Aws::MachineLearning
|
|
3471
3468
|
# pairs for their value. Use the following format to define your
|
3472
3469
|
# `DataSchema`.
|
3473
3470
|
#
|
3474
|
-
#
|
3471
|
+
# \{ "version": "1.0",
|
3475
3472
|
#
|
3476
3473
|
# "recordAnnotationFieldName": "F1",
|
3477
3474
|
#
|
@@ -3485,17 +3482,17 @@ module Aws::MachineLearning
|
|
3485
3482
|
#
|
3486
3483
|
# "attributes": \[
|
3487
3484
|
#
|
3488
|
-
#
|
3489
|
-
# "fieldName": "F2", "fieldType": "NUMERIC"
|
3490
|
-
# "fieldName": "F3", "fieldType": "CATEGORICAL"
|
3491
|
-
# "fieldName": "F4", "fieldType": "NUMERIC"
|
3492
|
-
# "fieldName": "F5", "fieldType": "CATEGORICAL"
|
3493
|
-
# "fieldName": "F6", "fieldType": "TEXT"
|
3494
|
-
# "
|
3495
|
-
#
|
3496
|
-
#
|
3497
|
-
#
|
3498
|
-
# "excludedVariableNames": \[ "F6" \]
|
3485
|
+
# \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
|
3486
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" }, \{
|
3487
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
|
3488
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" }, \{
|
3489
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
|
3490
|
+
# "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
|
3491
|
+
# "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
|
3492
|
+
# "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
|
3493
|
+
# } \],
|
3494
|
+
#
|
3495
|
+
# "excludedVariableNames": \[ "F6" \] }
|
3499
3496
|
# @return [String]
|
3500
3497
|
#
|
3501
3498
|
# @!attribute [rw] data_schema_location_s3
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-machinelearning
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.65.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-11-06 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|