aws-sdk-machinelearning 1.64.0 → 1.66.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-machinelearning/client.rb +4 -6
- data/lib/aws-sdk-machinelearning/types.rb +73 -78
- data/lib/aws-sdk-machinelearning.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: a48259b81e17552d283bbce8a08b049d4f13fd976e43060d61490dc4fee44985
|
4
|
+
data.tar.gz: 14688f70dbcbc9818f48636c4a6ff700a8b69db5ef8b9ee444e57268c86fb6e8
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6c74ee082d3414b343ae3801551142c26ad6421b0eb65928283c87e3af46aa4062ac31dac9bc6fd10bf8e0ba04870ff8b50e5294921af76864f847e461f9c1b1
|
7
|
+
data.tar.gz: ef2c91e383a04fd1a2520b9d5e49fd65600f5923dc8b0e7e6783855615b280b54e5fb491254faf09d47e033e32934d7eafe00fc8b42e9c3e31c750eee7d2a0e7
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.66.0 (2024-11-18)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
|
8
|
+
|
9
|
+
1.65.0 (2024-11-06)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
|
13
|
+
|
4
14
|
1.64.0 (2024-10-18)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.66.0
|
@@ -611,7 +611,6 @@ module Aws::MachineLearning
|
|
611
611
|
#
|
612
612
|
# * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
|
613
613
|
# database instance.
|
614
|
-
#
|
615
614
|
# * DatabaseCredentials - AWS Identity and Access Management (IAM)
|
616
615
|
# credentials that are used to connect to the Amazon RDS database.
|
617
616
|
#
|
@@ -647,7 +646,7 @@ module Aws::MachineLearning
|
|
647
646
|
# rearrangement requirements for the `Datasource`.
|
648
647
|
#
|
649
648
|
# Sample - `
|
650
|
-
# "
|
649
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
651
650
|
#
|
652
651
|
#
|
653
652
|
#
|
@@ -764,7 +763,6 @@ module Aws::MachineLearning
|
|
764
763
|
#
|
765
764
|
# * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
|
766
765
|
# cluster.
|
767
|
-
#
|
768
766
|
# * DatabaseCredentials - The AWS Identity and Access Management (IAM)
|
769
767
|
# credentials that are used to connect to the Amazon Redshift
|
770
768
|
# database.
|
@@ -786,7 +784,7 @@ module Aws::MachineLearning
|
|
786
784
|
# rearrangement requirements for the `DataSource`.
|
787
785
|
#
|
788
786
|
# Sample - `
|
789
|
-
# "
|
787
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
790
788
|
#
|
791
789
|
# @option params [required, String] :role_arn
|
792
790
|
# A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
|
@@ -898,7 +896,7 @@ module Aws::MachineLearning
|
|
898
896
|
# rearrangement requirements for the `Datasource`.
|
899
897
|
#
|
900
898
|
# Sample - `
|
901
|
-
# "
|
899
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
902
900
|
#
|
903
901
|
# @option params [Boolean] :compute_statistics
|
904
902
|
# The compute statistics for a `DataSource`. The statistics are
|
@@ -2488,7 +2486,7 @@ module Aws::MachineLearning
|
|
2488
2486
|
tracer: tracer
|
2489
2487
|
)
|
2490
2488
|
context[:gem_name] = 'aws-sdk-machinelearning'
|
2491
|
-
context[:gem_version] = '1.
|
2489
|
+
context[:gem_version] = '1.66.0'
|
2492
2490
|
Seahorse::Client::Request.new(handlers, context)
|
2493
2491
|
end
|
2494
2492
|
|
@@ -248,7 +248,6 @@ module Aws::MachineLearning
|
|
248
248
|
#
|
249
249
|
# * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
|
250
250
|
# database instance.
|
251
|
-
#
|
252
251
|
# * DatabaseCredentials - AWS Identity and Access Management (IAM)
|
253
252
|
# credentials that are used to connect to the Amazon RDS database.
|
254
253
|
#
|
@@ -284,7 +283,7 @@ module Aws::MachineLearning
|
|
284
283
|
# and rearrangement requirements for the `Datasource`.
|
285
284
|
#
|
286
285
|
# Sample - `
|
287
|
-
# "
|
286
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
288
287
|
#
|
289
288
|
#
|
290
289
|
#
|
@@ -355,7 +354,6 @@ module Aws::MachineLearning
|
|
355
354
|
#
|
356
355
|
# * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
|
357
356
|
# cluster.
|
358
|
-
#
|
359
357
|
# * DatabaseCredentials - The AWS Identity and Access Management (IAM)
|
360
358
|
# credentials that are used to connect to the Amazon Redshift
|
361
359
|
# database.
|
@@ -377,7 +375,7 @@ module Aws::MachineLearning
|
|
377
375
|
# and rearrangement requirements for the `DataSource`.
|
378
376
|
#
|
379
377
|
# Sample - `
|
380
|
-
# "
|
378
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
381
379
|
# @return [Types::RedshiftDataSpec]
|
382
380
|
#
|
383
381
|
# @!attribute [rw] role_arn
|
@@ -451,7 +449,7 @@ module Aws::MachineLearning
|
|
451
449
|
# and rearrangement requirements for the `Datasource`.
|
452
450
|
#
|
453
451
|
# Sample - `
|
454
|
-
# "
|
452
|
+
# "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
|
455
453
|
# @return [Types::S3DataSpec]
|
456
454
|
#
|
457
455
|
# @!attribute [rw] compute_statistics
|
@@ -2802,11 +2800,11 @@ module Aws::MachineLearning
|
|
2802
2800
|
# datasource has 25 percent of the data, and the second one has 75
|
2803
2801
|
# percent of the data.
|
2804
2802
|
#
|
2805
|
-
# Datasource for evaluation:
|
2806
|
-
# "percentEnd":25
|
2803
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":0,
|
2804
|
+
# "percentEnd":25}}`
|
2807
2805
|
#
|
2808
|
-
# Datasource for training:
|
2809
|
-
# "percentEnd":25, "complement":"true"
|
2806
|
+
# Datasource for training: `{"splitting":{"percentBegin":0,
|
2807
|
+
# "percentEnd":25, "complement":"true"}}`
|
2810
2808
|
#
|
2811
2809
|
# * <b> <code>strategy</code> </b>
|
2812
2810
|
#
|
@@ -2821,12 +2819,11 @@ module Aws::MachineLearning
|
|
2821
2819
|
# The following two `DataRearrangement` lines are examples of
|
2822
2820
|
# sequentially ordered training and evaluation datasources:
|
2823
2821
|
#
|
2824
|
-
# Datasource for evaluation:
|
2825
|
-
# "percentEnd":100, "strategy":"sequential"
|
2822
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
2823
|
+
# "percentEnd":100, "strategy":"sequential"}}`
|
2826
2824
|
#
|
2827
|
-
# Datasource for training:
|
2828
|
-
# "percentEnd":100, "strategy":"sequential",
|
2829
|
-
# "complement":"true"\}\}`
|
2825
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
2826
|
+
# "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
|
2830
2827
|
#
|
2831
2828
|
# To randomly split the input data into the proportions indicated by
|
2832
2829
|
# the percentBegin and percentEnd parameters, set the `strategy`
|
@@ -2848,14 +2845,14 @@ module Aws::MachineLearning
|
|
2848
2845
|
# The following two `DataRearrangement` lines are examples of
|
2849
2846
|
# non-sequentially ordered training and evaluation datasources:
|
2850
2847
|
#
|
2851
|
-
# Datasource for evaluation:
|
2848
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
2852
2849
|
# "percentEnd":100, "strategy":"random",
|
2853
|
-
# "randomSeed"="s3://my_s3_path/bucket/file.csv"
|
2850
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
|
2854
2851
|
#
|
2855
|
-
# Datasource for training:
|
2852
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
2856
2853
|
# "percentEnd":100, "strategy":"random",
|
2857
2854
|
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
2858
|
-
# "complement":"true"
|
2855
|
+
# "complement":"true"}}`
|
2859
2856
|
# @return [String]
|
2860
2857
|
#
|
2861
2858
|
# @!attribute [rw] data_schema
|
@@ -2870,7 +2867,7 @@ module Aws::MachineLearning
|
|
2870
2867
|
# pairs for their value. Use the following format to define your
|
2871
2868
|
# `DataSchema`.
|
2872
2869
|
#
|
2873
|
-
#
|
2870
|
+
# \{ "version": "1.0",
|
2874
2871
|
#
|
2875
2872
|
# "recordAnnotationFieldName": "F1",
|
2876
2873
|
#
|
@@ -2884,17 +2881,17 @@ module Aws::MachineLearning
|
|
2884
2881
|
#
|
2885
2882
|
# "attributes": \[
|
2886
2883
|
#
|
2887
|
-
#
|
2888
|
-
# "fieldName": "F2", "fieldType": "NUMERIC"
|
2889
|
-
# "fieldName": "F3", "fieldType": "CATEGORICAL"
|
2890
|
-
# "fieldName": "F4", "fieldType": "NUMERIC"
|
2891
|
-
# "fieldName": "F5", "fieldType": "CATEGORICAL"
|
2892
|
-
# "fieldName": "F6", "fieldType": "TEXT"
|
2893
|
-
# "
|
2894
|
-
#
|
2895
|
-
#
|
2884
|
+
# \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
|
2885
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" }, \{
|
2886
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
|
2887
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" }, \{
|
2888
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
|
2889
|
+
# "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
|
2890
|
+
# "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
|
2891
|
+
# "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
|
2892
|
+
# } \],
|
2896
2893
|
#
|
2897
|
-
# "excludedVariableNames": \[ "F6" \]
|
2894
|
+
# "excludedVariableNames": \[ "F6" \] }
|
2898
2895
|
# @return [String]
|
2899
2896
|
#
|
2900
2897
|
# @!attribute [rw] data_schema_uri
|
@@ -3147,11 +3144,11 @@ module Aws::MachineLearning
|
|
3147
3144
|
# datasource has 25 percent of the data, and the second one has 75
|
3148
3145
|
# percent of the data.
|
3149
3146
|
#
|
3150
|
-
# Datasource for evaluation:
|
3151
|
-
# "percentEnd":25
|
3147
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":0,
|
3148
|
+
# "percentEnd":25}}`
|
3152
3149
|
#
|
3153
|
-
# Datasource for training:
|
3154
|
-
# "percentEnd":25, "complement":"true"
|
3150
|
+
# Datasource for training: `{"splitting":{"percentBegin":0,
|
3151
|
+
# "percentEnd":25, "complement":"true"}}`
|
3155
3152
|
#
|
3156
3153
|
# * <b> <code>strategy</code> </b>
|
3157
3154
|
#
|
@@ -3166,12 +3163,11 @@ module Aws::MachineLearning
|
|
3166
3163
|
# The following two `DataRearrangement` lines are examples of
|
3167
3164
|
# sequentially ordered training and evaluation datasources:
|
3168
3165
|
#
|
3169
|
-
# Datasource for evaluation:
|
3170
|
-
# "percentEnd":100, "strategy":"sequential"
|
3166
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
3167
|
+
# "percentEnd":100, "strategy":"sequential"}}`
|
3171
3168
|
#
|
3172
|
-
# Datasource for training:
|
3173
|
-
# "percentEnd":100, "strategy":"sequential",
|
3174
|
-
# "complement":"true"\}\}`
|
3169
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
3170
|
+
# "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
|
3175
3171
|
#
|
3176
3172
|
# To randomly split the input data into the proportions indicated by
|
3177
3173
|
# the percentBegin and percentEnd parameters, set the `strategy`
|
@@ -3193,14 +3189,14 @@ module Aws::MachineLearning
|
|
3193
3189
|
# The following two `DataRearrangement` lines are examples of
|
3194
3190
|
# non-sequentially ordered training and evaluation datasources:
|
3195
3191
|
#
|
3196
|
-
# Datasource for evaluation:
|
3192
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
3197
3193
|
# "percentEnd":100, "strategy":"random",
|
3198
|
-
# "randomSeed"="s3://my_s3_path/bucket/file.csv"
|
3194
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
|
3199
3195
|
#
|
3200
|
-
# Datasource for training:
|
3196
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
3201
3197
|
# "percentEnd":100, "strategy":"random",
|
3202
3198
|
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
3203
|
-
# "complement":"true"
|
3199
|
+
# "complement":"true"}}`
|
3204
3200
|
# @return [String]
|
3205
3201
|
#
|
3206
3202
|
# @!attribute [rw] data_schema
|
@@ -3215,7 +3211,7 @@ module Aws::MachineLearning
|
|
3215
3211
|
# pairs for their value. Use the following format to define your
|
3216
3212
|
# `DataSchema`.
|
3217
3213
|
#
|
3218
|
-
#
|
3214
|
+
# \{ "version": "1.0",
|
3219
3215
|
#
|
3220
3216
|
# "recordAnnotationFieldName": "F1",
|
3221
3217
|
#
|
@@ -3229,17 +3225,17 @@ module Aws::MachineLearning
|
|
3229
3225
|
#
|
3230
3226
|
# "attributes": \[
|
3231
3227
|
#
|
3232
|
-
#
|
3233
|
-
# "fieldName": "F2", "fieldType": "NUMERIC"
|
3234
|
-
# "fieldName": "F3", "fieldType": "CATEGORICAL"
|
3235
|
-
# "fieldName": "F4", "fieldType": "NUMERIC"
|
3236
|
-
# "fieldName": "F5", "fieldType": "CATEGORICAL"
|
3237
|
-
# "fieldName": "F6", "fieldType": "TEXT"
|
3238
|
-
# "
|
3239
|
-
#
|
3240
|
-
#
|
3228
|
+
# \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
|
3229
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" }, \{
|
3230
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
|
3231
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" }, \{
|
3232
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
|
3233
|
+
# "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
|
3234
|
+
# "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
|
3235
|
+
# "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
|
3236
|
+
# } \],
|
3241
3237
|
#
|
3242
|
-
# "excludedVariableNames": \[ "F6" \]
|
3238
|
+
# "excludedVariableNames": \[ "F6" \] }
|
3243
3239
|
# @return [String]
|
3244
3240
|
#
|
3245
3241
|
# @!attribute [rw] data_schema_uri
|
@@ -3402,11 +3398,11 @@ module Aws::MachineLearning
|
|
3402
3398
|
# datasource has 25 percent of the data, and the second one has 75
|
3403
3399
|
# percent of the data.
|
3404
3400
|
#
|
3405
|
-
# Datasource for evaluation:
|
3406
|
-
# "percentEnd":25
|
3401
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":0,
|
3402
|
+
# "percentEnd":25}}`
|
3407
3403
|
#
|
3408
|
-
# Datasource for training:
|
3409
|
-
# "percentEnd":25, "complement":"true"
|
3404
|
+
# Datasource for training: `{"splitting":{"percentBegin":0,
|
3405
|
+
# "percentEnd":25, "complement":"true"}}`
|
3410
3406
|
#
|
3411
3407
|
# * <b> <code>strategy</code> </b>
|
3412
3408
|
#
|
@@ -3421,12 +3417,11 @@ module Aws::MachineLearning
|
|
3421
3417
|
# The following two `DataRearrangement` lines are examples of
|
3422
3418
|
# sequentially ordered training and evaluation datasources:
|
3423
3419
|
#
|
3424
|
-
# Datasource for evaluation:
|
3425
|
-
# "percentEnd":100, "strategy":"sequential"
|
3420
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
3421
|
+
# "percentEnd":100, "strategy":"sequential"}}`
|
3426
3422
|
#
|
3427
|
-
# Datasource for training:
|
3428
|
-
# "percentEnd":100, "strategy":"sequential",
|
3429
|
-
# "complement":"true"\}\}`
|
3423
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
3424
|
+
# "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
|
3430
3425
|
#
|
3431
3426
|
# To randomly split the input data into the proportions indicated by
|
3432
3427
|
# the percentBegin and percentEnd parameters, set the `strategy`
|
@@ -3448,14 +3443,14 @@ module Aws::MachineLearning
|
|
3448
3443
|
# The following two `DataRearrangement` lines are examples of
|
3449
3444
|
# non-sequentially ordered training and evaluation datasources:
|
3450
3445
|
#
|
3451
|
-
# Datasource for evaluation:
|
3446
|
+
# Datasource for evaluation: `{"splitting":{"percentBegin":70,
|
3452
3447
|
# "percentEnd":100, "strategy":"random",
|
3453
|
-
# "randomSeed"="s3://my_s3_path/bucket/file.csv"
|
3448
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
|
3454
3449
|
#
|
3455
|
-
# Datasource for training:
|
3450
|
+
# Datasource for training: `{"splitting":{"percentBegin":70,
|
3456
3451
|
# "percentEnd":100, "strategy":"random",
|
3457
3452
|
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
3458
|
-
# "complement":"true"
|
3453
|
+
# "complement":"true"}}`
|
3459
3454
|
# @return [String]
|
3460
3455
|
#
|
3461
3456
|
# @!attribute [rw] data_schema
|
@@ -3471,7 +3466,7 @@ module Aws::MachineLearning
|
|
3471
3466
|
# pairs for their value. Use the following format to define your
|
3472
3467
|
# `DataSchema`.
|
3473
3468
|
#
|
3474
|
-
#
|
3469
|
+
# \{ "version": "1.0",
|
3475
3470
|
#
|
3476
3471
|
# "recordAnnotationFieldName": "F1",
|
3477
3472
|
#
|
@@ -3485,17 +3480,17 @@ module Aws::MachineLearning
|
|
3485
3480
|
#
|
3486
3481
|
# "attributes": \[
|
3487
3482
|
#
|
3488
|
-
#
|
3489
|
-
# "fieldName": "F2", "fieldType": "NUMERIC"
|
3490
|
-
# "fieldName": "F3", "fieldType": "CATEGORICAL"
|
3491
|
-
# "fieldName": "F4", "fieldType": "NUMERIC"
|
3492
|
-
# "fieldName": "F5", "fieldType": "CATEGORICAL"
|
3493
|
-
# "fieldName": "F6", "fieldType": "TEXT"
|
3494
|
-
# "
|
3495
|
-
#
|
3496
|
-
#
|
3497
|
-
#
|
3498
|
-
# "excludedVariableNames": \[ "F6" \]
|
3483
|
+
# \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
|
3484
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" }, \{
|
3485
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
|
3486
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" }, \{
|
3487
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
|
3488
|
+
# "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
|
3489
|
+
# "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
|
3490
|
+
# "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
|
3491
|
+
# } \],
|
3492
|
+
#
|
3493
|
+
# "excludedVariableNames": \[ "F6" \] }
|
3499
3494
|
# @return [String]
|
3500
3495
|
#
|
3501
3496
|
# @!attribute [rw] data_schema_location_s3
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-machinelearning
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.66.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-11-18 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|