aws-sdk-machinelearning 1.64.0 → 1.66.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 82570a9ac15febd0efd646fbf4639d7a27ba3ca60d034bb26a87365c07898330
4
- data.tar.gz: 06db6eefe324e67f3c95c58c03de72dfcdf2a53c92fe4f58f05c210437283772
3
+ metadata.gz: a48259b81e17552d283bbce8a08b049d4f13fd976e43060d61490dc4fee44985
4
+ data.tar.gz: 14688f70dbcbc9818f48636c4a6ff700a8b69db5ef8b9ee444e57268c86fb6e8
5
5
  SHA512:
6
- metadata.gz: d4a2703a1eb42105b6fdd33cb5e984d6bb81cef682e35fa7bdc1336b32b0d347733ec10a0a76641eb8c84de19e637d9c52988c3095b9789c91c5fd5c96e73d40
7
- data.tar.gz: 236d9743cb0d9c0b08ae5efb0a3c0c0fcfad10ac5517d3a754259e23f82ecf48ff7d92aa76d977bed0524aafe0014f54370af3b6934669ef82c5620138742339
6
+ metadata.gz: 6c74ee082d3414b343ae3801551142c26ad6421b0eb65928283c87e3af46aa4062ac31dac9bc6fd10bf8e0ba04870ff8b50e5294921af76864f847e461f9c1b1
7
+ data.tar.gz: ef2c91e383a04fd1a2520b9d5e49fd65600f5923dc8b0e7e6783855615b280b54e5fb491254faf09d47e033e32934d7eafe00fc8b42e9c3e31c750eee7d2a0e7
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.66.0 (2024-11-18)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
9
+ 1.65.0 (2024-11-06)
10
+ ------------------
11
+
12
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
13
+
4
14
  1.64.0 (2024-10-18)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.64.0
1
+ 1.66.0
@@ -611,7 +611,6 @@ module Aws::MachineLearning
611
611
  #
612
612
  # * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
613
613
  # database instance.
614
- #
615
614
  # * DatabaseCredentials - AWS Identity and Access Management (IAM)
616
615
  # credentials that are used to connect to the Amazon RDS database.
617
616
  #
@@ -647,7 +646,7 @@ module Aws::MachineLearning
647
646
  # rearrangement requirements for the `Datasource`.
648
647
  #
649
648
  # Sample - `
650
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
649
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
651
650
  #
652
651
  #
653
652
  #
@@ -764,7 +763,6 @@ module Aws::MachineLearning
764
763
  #
765
764
  # * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
766
765
  # cluster.
767
- #
768
766
  # * DatabaseCredentials - The AWS Identity and Access Management (IAM)
769
767
  # credentials that are used to connect to the Amazon Redshift
770
768
  # database.
@@ -786,7 +784,7 @@ module Aws::MachineLearning
786
784
  # rearrangement requirements for the `DataSource`.
787
785
  #
788
786
  # Sample - `
789
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
787
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
790
788
  #
791
789
  # @option params [required, String] :role_arn
792
790
  # A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
@@ -898,7 +896,7 @@ module Aws::MachineLearning
898
896
  # rearrangement requirements for the `Datasource`.
899
897
  #
900
898
  # Sample - `
901
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
899
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
902
900
  #
903
901
  # @option params [Boolean] :compute_statistics
904
902
  # The compute statistics for a `DataSource`. The statistics are
@@ -2488,7 +2486,7 @@ module Aws::MachineLearning
2488
2486
  tracer: tracer
2489
2487
  )
2490
2488
  context[:gem_name] = 'aws-sdk-machinelearning'
2491
- context[:gem_version] = '1.64.0'
2489
+ context[:gem_version] = '1.66.0'
2492
2490
  Seahorse::Client::Request.new(handlers, context)
2493
2491
  end
2494
2492
 
@@ -248,7 +248,6 @@ module Aws::MachineLearning
248
248
  #
249
249
  # * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
250
250
  # database instance.
251
- #
252
251
  # * DatabaseCredentials - AWS Identity and Access Management (IAM)
253
252
  # credentials that are used to connect to the Amazon RDS database.
254
253
  #
@@ -284,7 +283,7 @@ module Aws::MachineLearning
284
283
  # and rearrangement requirements for the `Datasource`.
285
284
  #
286
285
  # Sample - `
287
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
286
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
288
287
  #
289
288
  #
290
289
  #
@@ -355,7 +354,6 @@ module Aws::MachineLearning
355
354
  #
356
355
  # * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
357
356
  # cluster.
358
- #
359
357
  # * DatabaseCredentials - The AWS Identity and Access Management (IAM)
360
358
  # credentials that are used to connect to the Amazon Redshift
361
359
  # database.
@@ -377,7 +375,7 @@ module Aws::MachineLearning
377
375
  # and rearrangement requirements for the `DataSource`.
378
376
  #
379
377
  # Sample - `
380
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
378
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
381
379
  # @return [Types::RedshiftDataSpec]
382
380
  #
383
381
  # @!attribute [rw] role_arn
@@ -451,7 +449,7 @@ module Aws::MachineLearning
451
449
  # and rearrangement requirements for the `Datasource`.
452
450
  #
453
451
  # Sample - `
454
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
452
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
455
453
  # @return [Types::S3DataSpec]
456
454
  #
457
455
  # @!attribute [rw] compute_statistics
@@ -2802,11 +2800,11 @@ module Aws::MachineLearning
2802
2800
  # datasource has 25 percent of the data, and the second one has 75
2803
2801
  # percent of the data.
2804
2802
  #
2805
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
2806
- # "percentEnd":25\}\}`
2803
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
2804
+ # "percentEnd":25}}`
2807
2805
  #
2808
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
2809
- # "percentEnd":25, "complement":"true"\}\}`
2806
+ # Datasource for training: `{"splitting":{"percentBegin":0,
2807
+ # "percentEnd":25, "complement":"true"}}`
2810
2808
  #
2811
2809
  # * <b> <code>strategy</code> </b>
2812
2810
  #
@@ -2821,12 +2819,11 @@ module Aws::MachineLearning
2821
2819
  # The following two `DataRearrangement` lines are examples of
2822
2820
  # sequentially ordered training and evaluation datasources:
2823
2821
  #
2824
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2825
- # "percentEnd":100, "strategy":"sequential"\}\}`
2822
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
2823
+ # "percentEnd":100, "strategy":"sequential"}}`
2826
2824
  #
2827
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
2828
- # "percentEnd":100, "strategy":"sequential",
2829
- # "complement":"true"\}\}`
2825
+ # Datasource for training: `{"splitting":{"percentBegin":70,
2826
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
2830
2827
  #
2831
2828
  # To randomly split the input data into the proportions indicated by
2832
2829
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -2848,14 +2845,14 @@ module Aws::MachineLearning
2848
2845
  # The following two `DataRearrangement` lines are examples of
2849
2846
  # non-sequentially ordered training and evaluation datasources:
2850
2847
  #
2851
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2848
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
2852
2849
  # "percentEnd":100, "strategy":"random",
2853
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
2850
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
2854
2851
  #
2855
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
2852
+ # Datasource for training: `{"splitting":{"percentBegin":70,
2856
2853
  # "percentEnd":100, "strategy":"random",
2857
2854
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
2858
- # "complement":"true"\}\}`
2855
+ # "complement":"true"}}`
2859
2856
  # @return [String]
2860
2857
  #
2861
2858
  # @!attribute [rw] data_schema
@@ -2870,7 +2867,7 @@ module Aws::MachineLearning
2870
2867
  # pairs for their value. Use the following format to define your
2871
2868
  # `DataSchema`.
2872
2869
  #
2873
- # \\\{ "version": "1.0",
2870
+ # \{ "version": "1.0",
2874
2871
  #
2875
2872
  # "recordAnnotationFieldName": "F1",
2876
2873
  #
@@ -2884,17 +2881,17 @@ module Aws::MachineLearning
2884
2881
  #
2885
2882
  # "attributes": \[
2886
2883
  #
2887
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
2888
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
2889
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
2890
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
2891
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
2892
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
2893
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
2894
- # \\}, \\\{ "fieldName": "F8", "fieldType":
2895
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
2884
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
2885
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
2886
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
2887
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
2888
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
2889
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
2890
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
2891
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
2892
+ # } \],
2896
2893
  #
2897
- # "excludedVariableNames": \[ "F6" \] \\}
2894
+ # "excludedVariableNames": \[ "F6" \] }
2898
2895
  # @return [String]
2899
2896
  #
2900
2897
  # @!attribute [rw] data_schema_uri
@@ -3147,11 +3144,11 @@ module Aws::MachineLearning
3147
3144
  # datasource has 25 percent of the data, and the second one has 75
3148
3145
  # percent of the data.
3149
3146
  #
3150
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3151
- # "percentEnd":25\}\}`
3147
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
3148
+ # "percentEnd":25}}`
3152
3149
  #
3153
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
3154
- # "percentEnd":25, "complement":"true"\}\}`
3150
+ # Datasource for training: `{"splitting":{"percentBegin":0,
3151
+ # "percentEnd":25, "complement":"true"}}`
3155
3152
  #
3156
3153
  # * <b> <code>strategy</code> </b>
3157
3154
  #
@@ -3166,12 +3163,11 @@ module Aws::MachineLearning
3166
3163
  # The following two `DataRearrangement` lines are examples of
3167
3164
  # sequentially ordered training and evaluation datasources:
3168
3165
  #
3169
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3170
- # "percentEnd":100, "strategy":"sequential"\}\}`
3166
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3167
+ # "percentEnd":100, "strategy":"sequential"}}`
3171
3168
  #
3172
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3173
- # "percentEnd":100, "strategy":"sequential",
3174
- # "complement":"true"\}\}`
3169
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3170
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
3175
3171
  #
3176
3172
  # To randomly split the input data into the proportions indicated by
3177
3173
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -3193,14 +3189,14 @@ module Aws::MachineLearning
3193
3189
  # The following two `DataRearrangement` lines are examples of
3194
3190
  # non-sequentially ordered training and evaluation datasources:
3195
3191
  #
3196
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3192
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3197
3193
  # "percentEnd":100, "strategy":"random",
3198
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3194
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
3199
3195
  #
3200
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3196
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3201
3197
  # "percentEnd":100, "strategy":"random",
3202
3198
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3203
- # "complement":"true"\}\}`
3199
+ # "complement":"true"}}`
3204
3200
  # @return [String]
3205
3201
  #
3206
3202
  # @!attribute [rw] data_schema
@@ -3215,7 +3211,7 @@ module Aws::MachineLearning
3215
3211
  # pairs for their value. Use the following format to define your
3216
3212
  # `DataSchema`.
3217
3213
  #
3218
- # \\\{ "version": "1.0",
3214
+ # \{ "version": "1.0",
3219
3215
  #
3220
3216
  # "recordAnnotationFieldName": "F1",
3221
3217
  #
@@ -3229,17 +3225,17 @@ module Aws::MachineLearning
3229
3225
  #
3230
3226
  # "attributes": \[
3231
3227
  #
3232
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3233
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3234
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3235
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3236
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3237
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3238
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3239
- # \\}, \\\{ "fieldName": "F8", "fieldType":
3240
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3228
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
3229
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
3230
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
3231
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
3232
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
3233
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
3234
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
3235
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
3236
+ # } \],
3241
3237
  #
3242
- # "excludedVariableNames": \[ "F6" \] \\}
3238
+ # "excludedVariableNames": \[ "F6" \] }
3243
3239
  # @return [String]
3244
3240
  #
3245
3241
  # @!attribute [rw] data_schema_uri
@@ -3402,11 +3398,11 @@ module Aws::MachineLearning
3402
3398
  # datasource has 25 percent of the data, and the second one has 75
3403
3399
  # percent of the data.
3404
3400
  #
3405
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3406
- # "percentEnd":25\}\}`
3401
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
3402
+ # "percentEnd":25}}`
3407
3403
  #
3408
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
3409
- # "percentEnd":25, "complement":"true"\}\}`
3404
+ # Datasource for training: `{"splitting":{"percentBegin":0,
3405
+ # "percentEnd":25, "complement":"true"}}`
3410
3406
  #
3411
3407
  # * <b> <code>strategy</code> </b>
3412
3408
  #
@@ -3421,12 +3417,11 @@ module Aws::MachineLearning
3421
3417
  # The following two `DataRearrangement` lines are examples of
3422
3418
  # sequentially ordered training and evaluation datasources:
3423
3419
  #
3424
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3425
- # "percentEnd":100, "strategy":"sequential"\}\}`
3420
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3421
+ # "percentEnd":100, "strategy":"sequential"}}`
3426
3422
  #
3427
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3428
- # "percentEnd":100, "strategy":"sequential",
3429
- # "complement":"true"\}\}`
3423
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3424
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
3430
3425
  #
3431
3426
  # To randomly split the input data into the proportions indicated by
3432
3427
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -3448,14 +3443,14 @@ module Aws::MachineLearning
3448
3443
  # The following two `DataRearrangement` lines are examples of
3449
3444
  # non-sequentially ordered training and evaluation datasources:
3450
3445
  #
3451
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3446
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3452
3447
  # "percentEnd":100, "strategy":"random",
3453
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3448
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
3454
3449
  #
3455
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3450
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3456
3451
  # "percentEnd":100, "strategy":"random",
3457
3452
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3458
- # "complement":"true"\}\}`
3453
+ # "complement":"true"}}`
3459
3454
  # @return [String]
3460
3455
  #
3461
3456
  # @!attribute [rw] data_schema
@@ -3471,7 +3466,7 @@ module Aws::MachineLearning
3471
3466
  # pairs for their value. Use the following format to define your
3472
3467
  # `DataSchema`.
3473
3468
  #
3474
- # \\\{ "version": "1.0",
3469
+ # \{ "version": "1.0",
3475
3470
  #
3476
3471
  # "recordAnnotationFieldName": "F1",
3477
3472
  #
@@ -3485,17 +3480,17 @@ module Aws::MachineLearning
3485
3480
  #
3486
3481
  # "attributes": \[
3487
3482
  #
3488
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3489
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3490
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3491
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3492
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3493
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3494
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3495
- # \\}, \\\{ "fieldName": "F8", "fieldType":
3496
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3497
- #
3498
- # "excludedVariableNames": \[ "F6" \] \\}
3483
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
3484
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
3485
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
3486
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
3487
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
3488
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
3489
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
3490
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
3491
+ # } \],
3492
+ #
3493
+ # "excludedVariableNames": \[ "F6" \] }
3499
3494
  # @return [String]
3500
3495
  #
3501
3496
  # @!attribute [rw] data_schema_location_s3
@@ -55,7 +55,7 @@ module Aws::MachineLearning
55
55
  autoload :EndpointProvider, 'aws-sdk-machinelearning/endpoint_provider'
56
56
  autoload :Endpoints, 'aws-sdk-machinelearning/endpoints'
57
57
 
58
- GEM_VERSION = '1.64.0'
58
+ GEM_VERSION = '1.66.0'
59
59
 
60
60
  end
61
61
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.64.0
4
+ version: 1.66.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-10-18 00:00:00.000000000 Z
11
+ date: 2024-11-18 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core