aws-sdk-machinelearning 1.63.0 → 1.65.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 036f0b4ea7877e1108025f848a831dcc1506befe765aa82d787e4d1594cd0c07
4
- data.tar.gz: 9041133f7505705b55e4e2cf92256276154a4249ee42dc6f4724ca9179f2e49d
3
+ metadata.gz: 4ef0a5c78ceeba9a71567b4c60225b710d082baface60bfb6a1f2ca0fc656220
4
+ data.tar.gz: 4d846aa2a83adddac42f11c285ea9a714b02962b8acdb61cc5acf28ba2a2e80c
5
5
  SHA512:
6
- metadata.gz: d3f6564bf5040db60d9b55815f2be503a2801aa470f1e567f48f84501c77d3b0993cf6b3b1eee7a46f3dbbe619f1f33cfc83005629c5034880d5e91dcf47a856
7
- data.tar.gz: 5b28043b9597e32639c466adb9233a53c14386a2690dd85a0e6186c3c5de5697689371a0a47f4dea234f17d4b7eff8033d0a150dd2ba03ba394e5d9592cb118c
6
+ metadata.gz: 864d63911b001973d9bd74ff428352465693b250746ac3654e061e9a2f6834ca86fac1fd9c2a701b94523a38277f351a1d63bb68b91ea8c0eda6ea930faeb5fa
7
+ data.tar.gz: 272ae7da9a88921881becb19064b15457637ad478037610f1a8cc5b430f15eb196ec621b4f1e1ed0a582966be634ef7134d86bc56579b6ecd5205360be55aba2
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.65.0 (2024-11-06)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
9
+ 1.64.0 (2024-10-18)
10
+ ------------------
11
+
12
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
13
+
4
14
  1.63.0 (2024-09-24)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.63.0
1
+ 1.65.0
@@ -647,7 +647,7 @@ module Aws::MachineLearning
647
647
  # rearrangement requirements for the `Datasource`.
648
648
  #
649
649
  # Sample - `
650
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
650
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
651
651
  #
652
652
  #
653
653
  #
@@ -786,7 +786,7 @@ module Aws::MachineLearning
786
786
  # rearrangement requirements for the `DataSource`.
787
787
  #
788
788
  # Sample - `
789
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
789
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
790
790
  #
791
791
  # @option params [required, String] :role_arn
792
792
  # A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
@@ -898,7 +898,7 @@ module Aws::MachineLearning
898
898
  # rearrangement requirements for the `Datasource`.
899
899
  #
900
900
  # Sample - `
901
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
901
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
902
902
  #
903
903
  # @option params [Boolean] :compute_statistics
904
904
  # The compute statistics for a `DataSource`. The statistics are
@@ -2488,7 +2488,7 @@ module Aws::MachineLearning
2488
2488
  tracer: tracer
2489
2489
  )
2490
2490
  context[:gem_name] = 'aws-sdk-machinelearning'
2491
- context[:gem_version] = '1.63.0'
2491
+ context[:gem_version] = '1.65.0'
2492
2492
  Seahorse::Client::Request.new(handlers, context)
2493
2493
  end
2494
2494
 
@@ -52,15 +52,18 @@ module Aws::MachineLearning
52
52
  self[:region] = options[:region]
53
53
  self[:use_dual_stack] = options[:use_dual_stack]
54
54
  self[:use_dual_stack] = false if self[:use_dual_stack].nil?
55
- if self[:use_dual_stack].nil?
56
- raise ArgumentError, "Missing required EndpointParameter: :use_dual_stack"
57
- end
58
55
  self[:use_fips] = options[:use_fips]
59
56
  self[:use_fips] = false if self[:use_fips].nil?
60
- if self[:use_fips].nil?
61
- raise ArgumentError, "Missing required EndpointParameter: :use_fips"
62
- end
63
57
  self[:endpoint] = options[:endpoint]
64
58
  end
59
+
60
+ def self.create(config, options={})
61
+ new({
62
+ region: config.region,
63
+ use_dual_stack: config.use_dualstack_endpoint,
64
+ use_fips: config.use_fips_endpoint,
65
+ endpoint: (config.endpoint.to_s unless config.regional_endpoint),
66
+ }.merge(options))
67
+ end
65
68
  end
66
69
  end
@@ -12,313 +12,9 @@ module Aws::MachineLearning
12
12
  # @api private
13
13
  module Endpoints
14
14
 
15
- class AddTags
16
- def self.build(context)
17
- Aws::MachineLearning::EndpointParameters.new(
18
- region: context.config.region,
19
- use_dual_stack: context.config.use_dualstack_endpoint,
20
- use_fips: context.config.use_fips_endpoint,
21
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
22
- )
23
- end
24
- end
25
-
26
- class CreateBatchPrediction
27
- def self.build(context)
28
- Aws::MachineLearning::EndpointParameters.new(
29
- region: context.config.region,
30
- use_dual_stack: context.config.use_dualstack_endpoint,
31
- use_fips: context.config.use_fips_endpoint,
32
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
33
- )
34
- end
35
- end
36
-
37
- class CreateDataSourceFromRDS
38
- def self.build(context)
39
- Aws::MachineLearning::EndpointParameters.new(
40
- region: context.config.region,
41
- use_dual_stack: context.config.use_dualstack_endpoint,
42
- use_fips: context.config.use_fips_endpoint,
43
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
44
- )
45
- end
46
- end
47
-
48
- class CreateDataSourceFromRedshift
49
- def self.build(context)
50
- Aws::MachineLearning::EndpointParameters.new(
51
- region: context.config.region,
52
- use_dual_stack: context.config.use_dualstack_endpoint,
53
- use_fips: context.config.use_fips_endpoint,
54
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
55
- )
56
- end
57
- end
58
-
59
- class CreateDataSourceFromS3
60
- def self.build(context)
61
- Aws::MachineLearning::EndpointParameters.new(
62
- region: context.config.region,
63
- use_dual_stack: context.config.use_dualstack_endpoint,
64
- use_fips: context.config.use_fips_endpoint,
65
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
66
- )
67
- end
68
- end
69
-
70
- class CreateEvaluation
71
- def self.build(context)
72
- Aws::MachineLearning::EndpointParameters.new(
73
- region: context.config.region,
74
- use_dual_stack: context.config.use_dualstack_endpoint,
75
- use_fips: context.config.use_fips_endpoint,
76
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
77
- )
78
- end
79
- end
80
-
81
- class CreateMLModel
82
- def self.build(context)
83
- Aws::MachineLearning::EndpointParameters.new(
84
- region: context.config.region,
85
- use_dual_stack: context.config.use_dualstack_endpoint,
86
- use_fips: context.config.use_fips_endpoint,
87
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
88
- )
89
- end
90
- end
91
-
92
- class CreateRealtimeEndpoint
93
- def self.build(context)
94
- Aws::MachineLearning::EndpointParameters.new(
95
- region: context.config.region,
96
- use_dual_stack: context.config.use_dualstack_endpoint,
97
- use_fips: context.config.use_fips_endpoint,
98
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
99
- )
100
- end
101
- end
102
-
103
- class DeleteBatchPrediction
104
- def self.build(context)
105
- Aws::MachineLearning::EndpointParameters.new(
106
- region: context.config.region,
107
- use_dual_stack: context.config.use_dualstack_endpoint,
108
- use_fips: context.config.use_fips_endpoint,
109
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
110
- )
111
- end
112
- end
113
-
114
- class DeleteDataSource
115
- def self.build(context)
116
- Aws::MachineLearning::EndpointParameters.new(
117
- region: context.config.region,
118
- use_dual_stack: context.config.use_dualstack_endpoint,
119
- use_fips: context.config.use_fips_endpoint,
120
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
121
- )
122
- end
123
- end
124
-
125
- class DeleteEvaluation
126
- def self.build(context)
127
- Aws::MachineLearning::EndpointParameters.new(
128
- region: context.config.region,
129
- use_dual_stack: context.config.use_dualstack_endpoint,
130
- use_fips: context.config.use_fips_endpoint,
131
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
132
- )
133
- end
134
- end
135
-
136
- class DeleteMLModel
137
- def self.build(context)
138
- Aws::MachineLearning::EndpointParameters.new(
139
- region: context.config.region,
140
- use_dual_stack: context.config.use_dualstack_endpoint,
141
- use_fips: context.config.use_fips_endpoint,
142
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
143
- )
144
- end
145
- end
146
-
147
- class DeleteRealtimeEndpoint
148
- def self.build(context)
149
- Aws::MachineLearning::EndpointParameters.new(
150
- region: context.config.region,
151
- use_dual_stack: context.config.use_dualstack_endpoint,
152
- use_fips: context.config.use_fips_endpoint,
153
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
154
- )
155
- end
156
- end
157
-
158
- class DeleteTags
159
- def self.build(context)
160
- Aws::MachineLearning::EndpointParameters.new(
161
- region: context.config.region,
162
- use_dual_stack: context.config.use_dualstack_endpoint,
163
- use_fips: context.config.use_fips_endpoint,
164
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
165
- )
166
- end
167
- end
168
15
 
169
- class DescribeBatchPredictions
170
- def self.build(context)
171
- Aws::MachineLearning::EndpointParameters.new(
172
- region: context.config.region,
173
- use_dual_stack: context.config.use_dualstack_endpoint,
174
- use_fips: context.config.use_fips_endpoint,
175
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
176
- )
177
- end
16
+ def self.parameters_for_operation(context)
17
+ Aws::MachineLearning::EndpointParameters.create(context.config)
178
18
  end
179
-
180
- class DescribeDataSources
181
- def self.build(context)
182
- Aws::MachineLearning::EndpointParameters.new(
183
- region: context.config.region,
184
- use_dual_stack: context.config.use_dualstack_endpoint,
185
- use_fips: context.config.use_fips_endpoint,
186
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
187
- )
188
- end
189
- end
190
-
191
- class DescribeEvaluations
192
- def self.build(context)
193
- Aws::MachineLearning::EndpointParameters.new(
194
- region: context.config.region,
195
- use_dual_stack: context.config.use_dualstack_endpoint,
196
- use_fips: context.config.use_fips_endpoint,
197
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
198
- )
199
- end
200
- end
201
-
202
- class DescribeMLModels
203
- def self.build(context)
204
- Aws::MachineLearning::EndpointParameters.new(
205
- region: context.config.region,
206
- use_dual_stack: context.config.use_dualstack_endpoint,
207
- use_fips: context.config.use_fips_endpoint,
208
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
209
- )
210
- end
211
- end
212
-
213
- class DescribeTags
214
- def self.build(context)
215
- Aws::MachineLearning::EndpointParameters.new(
216
- region: context.config.region,
217
- use_dual_stack: context.config.use_dualstack_endpoint,
218
- use_fips: context.config.use_fips_endpoint,
219
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
220
- )
221
- end
222
- end
223
-
224
- class GetBatchPrediction
225
- def self.build(context)
226
- Aws::MachineLearning::EndpointParameters.new(
227
- region: context.config.region,
228
- use_dual_stack: context.config.use_dualstack_endpoint,
229
- use_fips: context.config.use_fips_endpoint,
230
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
231
- )
232
- end
233
- end
234
-
235
- class GetDataSource
236
- def self.build(context)
237
- Aws::MachineLearning::EndpointParameters.new(
238
- region: context.config.region,
239
- use_dual_stack: context.config.use_dualstack_endpoint,
240
- use_fips: context.config.use_fips_endpoint,
241
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
242
- )
243
- end
244
- end
245
-
246
- class GetEvaluation
247
- def self.build(context)
248
- Aws::MachineLearning::EndpointParameters.new(
249
- region: context.config.region,
250
- use_dual_stack: context.config.use_dualstack_endpoint,
251
- use_fips: context.config.use_fips_endpoint,
252
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
253
- )
254
- end
255
- end
256
-
257
- class GetMLModel
258
- def self.build(context)
259
- Aws::MachineLearning::EndpointParameters.new(
260
- region: context.config.region,
261
- use_dual_stack: context.config.use_dualstack_endpoint,
262
- use_fips: context.config.use_fips_endpoint,
263
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
264
- )
265
- end
266
- end
267
-
268
- class Predict
269
- def self.build(context)
270
- Aws::MachineLearning::EndpointParameters.new(
271
- region: context.config.region,
272
- use_dual_stack: context.config.use_dualstack_endpoint,
273
- use_fips: context.config.use_fips_endpoint,
274
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
275
- )
276
- end
277
- end
278
-
279
- class UpdateBatchPrediction
280
- def self.build(context)
281
- Aws::MachineLearning::EndpointParameters.new(
282
- region: context.config.region,
283
- use_dual_stack: context.config.use_dualstack_endpoint,
284
- use_fips: context.config.use_fips_endpoint,
285
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
286
- )
287
- end
288
- end
289
-
290
- class UpdateDataSource
291
- def self.build(context)
292
- Aws::MachineLearning::EndpointParameters.new(
293
- region: context.config.region,
294
- use_dual_stack: context.config.use_dualstack_endpoint,
295
- use_fips: context.config.use_fips_endpoint,
296
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
297
- )
298
- end
299
- end
300
-
301
- class UpdateEvaluation
302
- def self.build(context)
303
- Aws::MachineLearning::EndpointParameters.new(
304
- region: context.config.region,
305
- use_dual_stack: context.config.use_dualstack_endpoint,
306
- use_fips: context.config.use_fips_endpoint,
307
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
308
- )
309
- end
310
- end
311
-
312
- class UpdateMLModel
313
- def self.build(context)
314
- Aws::MachineLearning::EndpointParameters.new(
315
- region: context.config.region,
316
- use_dual_stack: context.config.use_dualstack_endpoint,
317
- use_fips: context.config.use_fips_endpoint,
318
- endpoint: context.config.regional_endpoint ? nil : context.config.endpoint.to_s,
319
- )
320
- end
321
- end
322
-
323
19
  end
324
20
  end
@@ -27,7 +27,7 @@ The endpoint provider used to resolve endpoints. Any object that responds to
27
27
  class Handler < Seahorse::Client::Handler
28
28
  def call(context)
29
29
  unless context[:discovered_endpoint]
30
- params = parameters_for_operation(context)
30
+ params = Aws::MachineLearning::Endpoints.parameters_for_operation(context)
31
31
  endpoint = context.config.endpoint_provider.resolve_endpoint(params)
32
32
 
33
33
  context.http_request.endpoint = endpoint.url
@@ -67,67 +67,6 @@ The endpoint provider used to resolve endpoints. Any object that responds to
67
67
  context.http_request.headers[key] = value
68
68
  end
69
69
  end
70
-
71
- def parameters_for_operation(context)
72
- case context.operation_name
73
- when :add_tags
74
- Aws::MachineLearning::Endpoints::AddTags.build(context)
75
- when :create_batch_prediction
76
- Aws::MachineLearning::Endpoints::CreateBatchPrediction.build(context)
77
- when :create_data_source_from_rds
78
- Aws::MachineLearning::Endpoints::CreateDataSourceFromRDS.build(context)
79
- when :create_data_source_from_redshift
80
- Aws::MachineLearning::Endpoints::CreateDataSourceFromRedshift.build(context)
81
- when :create_data_source_from_s3
82
- Aws::MachineLearning::Endpoints::CreateDataSourceFromS3.build(context)
83
- when :create_evaluation
84
- Aws::MachineLearning::Endpoints::CreateEvaluation.build(context)
85
- when :create_ml_model
86
- Aws::MachineLearning::Endpoints::CreateMLModel.build(context)
87
- when :create_realtime_endpoint
88
- Aws::MachineLearning::Endpoints::CreateRealtimeEndpoint.build(context)
89
- when :delete_batch_prediction
90
- Aws::MachineLearning::Endpoints::DeleteBatchPrediction.build(context)
91
- when :delete_data_source
92
- Aws::MachineLearning::Endpoints::DeleteDataSource.build(context)
93
- when :delete_evaluation
94
- Aws::MachineLearning::Endpoints::DeleteEvaluation.build(context)
95
- when :delete_ml_model
96
- Aws::MachineLearning::Endpoints::DeleteMLModel.build(context)
97
- when :delete_realtime_endpoint
98
- Aws::MachineLearning::Endpoints::DeleteRealtimeEndpoint.build(context)
99
- when :delete_tags
100
- Aws::MachineLearning::Endpoints::DeleteTags.build(context)
101
- when :describe_batch_predictions
102
- Aws::MachineLearning::Endpoints::DescribeBatchPredictions.build(context)
103
- when :describe_data_sources
104
- Aws::MachineLearning::Endpoints::DescribeDataSources.build(context)
105
- when :describe_evaluations
106
- Aws::MachineLearning::Endpoints::DescribeEvaluations.build(context)
107
- when :describe_ml_models
108
- Aws::MachineLearning::Endpoints::DescribeMLModels.build(context)
109
- when :describe_tags
110
- Aws::MachineLearning::Endpoints::DescribeTags.build(context)
111
- when :get_batch_prediction
112
- Aws::MachineLearning::Endpoints::GetBatchPrediction.build(context)
113
- when :get_data_source
114
- Aws::MachineLearning::Endpoints::GetDataSource.build(context)
115
- when :get_evaluation
116
- Aws::MachineLearning::Endpoints::GetEvaluation.build(context)
117
- when :get_ml_model
118
- Aws::MachineLearning::Endpoints::GetMLModel.build(context)
119
- when :predict
120
- Aws::MachineLearning::Endpoints::Predict.build(context)
121
- when :update_batch_prediction
122
- Aws::MachineLearning::Endpoints::UpdateBatchPrediction.build(context)
123
- when :update_data_source
124
- Aws::MachineLearning::Endpoints::UpdateDataSource.build(context)
125
- when :update_evaluation
126
- Aws::MachineLearning::Endpoints::UpdateEvaluation.build(context)
127
- when :update_ml_model
128
- Aws::MachineLearning::Endpoints::UpdateMLModel.build(context)
129
- end
130
- end
131
70
  end
132
71
 
133
72
  def add_handlers(handlers, _config)
@@ -284,7 +284,7 @@ module Aws::MachineLearning
284
284
  # and rearrangement requirements for the `Datasource`.
285
285
  #
286
286
  # Sample - `
287
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
287
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
288
288
  #
289
289
  #
290
290
  #
@@ -377,7 +377,7 @@ module Aws::MachineLearning
377
377
  # and rearrangement requirements for the `DataSource`.
378
378
  #
379
379
  # Sample - `
380
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
380
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
381
381
  # @return [Types::RedshiftDataSpec]
382
382
  #
383
383
  # @!attribute [rw] role_arn
@@ -451,7 +451,7 @@ module Aws::MachineLearning
451
451
  # and rearrangement requirements for the `Datasource`.
452
452
  #
453
453
  # Sample - `
454
- # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
454
+ # "{"splitting":{"percentBegin":10,"percentEnd":60}}"`
455
455
  # @return [Types::S3DataSpec]
456
456
  #
457
457
  # @!attribute [rw] compute_statistics
@@ -2802,11 +2802,11 @@ module Aws::MachineLearning
2802
2802
  # datasource has 25 percent of the data, and the second one has 75
2803
2803
  # percent of the data.
2804
2804
  #
2805
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
2806
- # "percentEnd":25\}\}`
2805
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
2806
+ # "percentEnd":25}}`
2807
2807
  #
2808
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
2809
- # "percentEnd":25, "complement":"true"\}\}`
2808
+ # Datasource for training: `{"splitting":{"percentBegin":0,
2809
+ # "percentEnd":25, "complement":"true"}}`
2810
2810
  #
2811
2811
  # * <b> <code>strategy</code> </b>
2812
2812
  #
@@ -2821,12 +2821,11 @@ module Aws::MachineLearning
2821
2821
  # The following two `DataRearrangement` lines are examples of
2822
2822
  # sequentially ordered training and evaluation datasources:
2823
2823
  #
2824
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2825
- # "percentEnd":100, "strategy":"sequential"\}\}`
2824
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
2825
+ # "percentEnd":100, "strategy":"sequential"}}`
2826
2826
  #
2827
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
2828
- # "percentEnd":100, "strategy":"sequential",
2829
- # "complement":"true"\}\}`
2827
+ # Datasource for training: `{"splitting":{"percentBegin":70,
2828
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
2830
2829
  #
2831
2830
  # To randomly split the input data into the proportions indicated by
2832
2831
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -2848,14 +2847,14 @@ module Aws::MachineLearning
2848
2847
  # The following two `DataRearrangement` lines are examples of
2849
2848
  # non-sequentially ordered training and evaluation datasources:
2850
2849
  #
2851
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2850
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
2852
2851
  # "percentEnd":100, "strategy":"random",
2853
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
2852
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
2854
2853
  #
2855
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
2854
+ # Datasource for training: `{"splitting":{"percentBegin":70,
2856
2855
  # "percentEnd":100, "strategy":"random",
2857
2856
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
2858
- # "complement":"true"\}\}`
2857
+ # "complement":"true"}}`
2859
2858
  # @return [String]
2860
2859
  #
2861
2860
  # @!attribute [rw] data_schema
@@ -2870,7 +2869,7 @@ module Aws::MachineLearning
2870
2869
  # pairs for their value. Use the following format to define your
2871
2870
  # `DataSchema`.
2872
2871
  #
2873
- # \\\{ "version": "1.0",
2872
+ # \{ "version": "1.0",
2874
2873
  #
2875
2874
  # "recordAnnotationFieldName": "F1",
2876
2875
  #
@@ -2884,17 +2883,17 @@ module Aws::MachineLearning
2884
2883
  #
2885
2884
  # "attributes": \[
2886
2885
  #
2887
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
2888
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
2889
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
2890
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
2891
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
2892
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
2893
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
2894
- # \\}, \\\{ "fieldName": "F8", "fieldType":
2895
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
2886
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
2887
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
2888
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
2889
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
2890
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
2891
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
2892
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
2893
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
2894
+ # } \],
2896
2895
  #
2897
- # "excludedVariableNames": \[ "F6" \] \\}
2896
+ # "excludedVariableNames": \[ "F6" \] }
2898
2897
  # @return [String]
2899
2898
  #
2900
2899
  # @!attribute [rw] data_schema_uri
@@ -3147,11 +3146,11 @@ module Aws::MachineLearning
3147
3146
  # datasource has 25 percent of the data, and the second one has 75
3148
3147
  # percent of the data.
3149
3148
  #
3150
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3151
- # "percentEnd":25\}\}`
3149
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
3150
+ # "percentEnd":25}}`
3152
3151
  #
3153
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
3154
- # "percentEnd":25, "complement":"true"\}\}`
3152
+ # Datasource for training: `{"splitting":{"percentBegin":0,
3153
+ # "percentEnd":25, "complement":"true"}}`
3155
3154
  #
3156
3155
  # * <b> <code>strategy</code> </b>
3157
3156
  #
@@ -3166,12 +3165,11 @@ module Aws::MachineLearning
3166
3165
  # The following two `DataRearrangement` lines are examples of
3167
3166
  # sequentially ordered training and evaluation datasources:
3168
3167
  #
3169
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3170
- # "percentEnd":100, "strategy":"sequential"\}\}`
3168
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3169
+ # "percentEnd":100, "strategy":"sequential"}}`
3171
3170
  #
3172
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3173
- # "percentEnd":100, "strategy":"sequential",
3174
- # "complement":"true"\}\}`
3171
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3172
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
3175
3173
  #
3176
3174
  # To randomly split the input data into the proportions indicated by
3177
3175
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -3193,14 +3191,14 @@ module Aws::MachineLearning
3193
3191
  # The following two `DataRearrangement` lines are examples of
3194
3192
  # non-sequentially ordered training and evaluation datasources:
3195
3193
  #
3196
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3194
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3197
3195
  # "percentEnd":100, "strategy":"random",
3198
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3196
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
3199
3197
  #
3200
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3198
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3201
3199
  # "percentEnd":100, "strategy":"random",
3202
3200
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3203
- # "complement":"true"\}\}`
3201
+ # "complement":"true"}}`
3204
3202
  # @return [String]
3205
3203
  #
3206
3204
  # @!attribute [rw] data_schema
@@ -3215,7 +3213,7 @@ module Aws::MachineLearning
3215
3213
  # pairs for their value. Use the following format to define your
3216
3214
  # `DataSchema`.
3217
3215
  #
3218
- # \\\{ "version": "1.0",
3216
+ # \{ "version": "1.0",
3219
3217
  #
3220
3218
  # "recordAnnotationFieldName": "F1",
3221
3219
  #
@@ -3229,17 +3227,17 @@ module Aws::MachineLearning
3229
3227
  #
3230
3228
  # "attributes": \[
3231
3229
  #
3232
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3233
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3234
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3235
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3236
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3237
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3238
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3239
- # \\}, \\\{ "fieldName": "F8", "fieldType":
3240
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3230
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
3231
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
3232
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
3233
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
3234
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
3235
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
3236
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
3237
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
3238
+ # } \],
3241
3239
  #
3242
- # "excludedVariableNames": \[ "F6" \] \\}
3240
+ # "excludedVariableNames": \[ "F6" \] }
3243
3241
  # @return [String]
3244
3242
  #
3245
3243
  # @!attribute [rw] data_schema_uri
@@ -3402,11 +3400,11 @@ module Aws::MachineLearning
3402
3400
  # datasource has 25 percent of the data, and the second one has 75
3403
3401
  # percent of the data.
3404
3402
  #
3405
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3406
- # "percentEnd":25\}\}`
3403
+ # Datasource for evaluation: `{"splitting":{"percentBegin":0,
3404
+ # "percentEnd":25}}`
3407
3405
  #
3408
- # Datasource for training: `\{"splitting":\{"percentBegin":0,
3409
- # "percentEnd":25, "complement":"true"\}\}`
3406
+ # Datasource for training: `{"splitting":{"percentBegin":0,
3407
+ # "percentEnd":25, "complement":"true"}}`
3410
3408
  #
3411
3409
  # * <b> <code>strategy</code> </b>
3412
3410
  #
@@ -3421,12 +3419,11 @@ module Aws::MachineLearning
3421
3419
  # The following two `DataRearrangement` lines are examples of
3422
3420
  # sequentially ordered training and evaluation datasources:
3423
3421
  #
3424
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3425
- # "percentEnd":100, "strategy":"sequential"\}\}`
3422
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3423
+ # "percentEnd":100, "strategy":"sequential"}}`
3426
3424
  #
3427
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3428
- # "percentEnd":100, "strategy":"sequential",
3429
- # "complement":"true"\}\}`
3425
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3426
+ # "percentEnd":100, "strategy":"sequential", "complement":"true"}}`
3430
3427
  #
3431
3428
  # To randomly split the input data into the proportions indicated by
3432
3429
  # the percentBegin and percentEnd parameters, set the `strategy`
@@ -3448,14 +3445,14 @@ module Aws::MachineLearning
3448
3445
  # The following two `DataRearrangement` lines are examples of
3449
3446
  # non-sequentially ordered training and evaluation datasources:
3450
3447
  #
3451
- # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3448
+ # Datasource for evaluation: `{"splitting":{"percentBegin":70,
3452
3449
  # "percentEnd":100, "strategy":"random",
3453
- # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3450
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"}}`
3454
3451
  #
3455
- # Datasource for training: `\{"splitting":\{"percentBegin":70,
3452
+ # Datasource for training: `{"splitting":{"percentBegin":70,
3456
3453
  # "percentEnd":100, "strategy":"random",
3457
3454
  # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3458
- # "complement":"true"\}\}`
3455
+ # "complement":"true"}}`
3459
3456
  # @return [String]
3460
3457
  #
3461
3458
  # @!attribute [rw] data_schema
@@ -3471,7 +3468,7 @@ module Aws::MachineLearning
3471
3468
  # pairs for their value. Use the following format to define your
3472
3469
  # `DataSchema`.
3473
3470
  #
3474
- # \\\{ "version": "1.0",
3471
+ # \{ "version": "1.0",
3475
3472
  #
3476
3473
  # "recordAnnotationFieldName": "F1",
3477
3474
  #
@@ -3485,17 +3482,17 @@ module Aws::MachineLearning
3485
3482
  #
3486
3483
  # "attributes": \[
3487
3484
  #
3488
- # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3489
- # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3490
- # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3491
- # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3492
- # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3493
- # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3494
- # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3495
- # \\}, \\\{ "fieldName": "F8", "fieldType":
3496
- # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3497
- #
3498
- # "excludedVariableNames": \[ "F6" \] \\}
3485
+ # \{ "fieldName": "F1", "fieldType": "TEXT" }, \{
3486
+ # "fieldName": "F2", "fieldType": "NUMERIC" }, \{
3487
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" }, \{
3488
+ # "fieldName": "F4", "fieldType": "NUMERIC" }, \{
3489
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" }, \{
3490
+ # "fieldName": "F6", "fieldType": "TEXT" }, \{ "fieldName":
3491
+ # "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE" }, \{
3492
+ # "fieldName": "F8", "fieldType": "WEIGHTED\_STRING\_SEQUENCE"
3493
+ # } \],
3494
+ #
3495
+ # "excludedVariableNames": \[ "F6" \] }
3499
3496
  # @return [String]
3500
3497
  #
3501
3498
  # @!attribute [rw] data_schema_location_s3
@@ -55,7 +55,7 @@ module Aws::MachineLearning
55
55
  autoload :EndpointProvider, 'aws-sdk-machinelearning/endpoint_provider'
56
56
  autoload :Endpoints, 'aws-sdk-machinelearning/endpoints'
57
57
 
58
- GEM_VERSION = '1.63.0'
58
+ GEM_VERSION = '1.65.0'
59
59
 
60
60
  end
61
61
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.63.0
4
+ version: 1.65.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-09-24 00:00:00.000000000 Z
11
+ date: 2024-11-06 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.207.0
22
+ version: 3.210.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.207.0
32
+ version: 3.210.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement