aws-sdk-machinelearning 1.38.0 → 1.40.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 173c9df9b4c8fdc616b8df8da7e237ec6178a9ce57f865347d1cf33a8840c3a5
4
- data.tar.gz: 89ebef18b20d4bd52b77b0fecb5084bc4fe3c109207858d59d325198f17b367c
3
+ metadata.gz: 0a6b88c3941b0f8ce69c5ca09fb60fced164aecd629ce9c2e5bef94aad8761c2
4
+ data.tar.gz: 74846d5ff3509da9f6289b1ebfeaa89fc090b7ffa208352f3f6db4e280bb2390
5
5
  SHA512:
6
- metadata.gz: f71a1ab29981b6b141738ffc67c82f1221bcba889c5a459508d8e53852ae352f1a7f5503237052616cbbcbf6168c7846d96f70ff2f2f3c9cd58c2f63e23f849b
7
- data.tar.gz: 83cca30169f3645cf713a2d8d87465053781c1379620412790a3b8c1b8617d3b74b1b473a1fe61a081f529aa80efc0057556d84bcf8f48fe514de1a4654c588a
6
+ metadata.gz: 0ed4057c62b71dae382bd7e924b679876bef5f29c19d29b2020d59fd64dd02b8b2053493910279beafeaef4d1a8468e135b3359eeca25dadc805bbbc394a5aee
7
+ data.tar.gz: 22bf492581f635afb40b7904c14921c22952abd43729121c6ee4ba7b0de870c6ff1f149103c176082441baf8fc8abbd9e3cc06601b93155c56de2694bd22f309
data/CHANGELOG.md CHANGED
@@ -1,6 +1,18 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.40.0 (2023-05-31)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
9
+ 1.39.0 (2023-01-18)
10
+ ------------------
11
+
12
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
13
+
14
+ * Issue - Replace runtime endpoint resolution approach with generated ruby code.
15
+
4
16
  1.38.0 (2022-10-25)
5
17
  ------------------
6
18
 
@@ -258,4 +270,4 @@ Unreleased Changes
258
270
  1.0.0.rc1 (2016-12-05)
259
271
  ------------------
260
272
 
261
- * Feature - Initial preview release of the `aws-sdk-machinelearning` gem.
273
+ * Feature - Initial preview release of the `aws-sdk-machinelearning` gem.
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.38.0
1
+ 1.40.0
@@ -277,6 +277,11 @@ module Aws::MachineLearning
277
277
  # in the future.
278
278
  #
279
279
  #
280
+ # @option options [String] :sdk_ua_app_id
281
+ # A unique and opaque application ID that is appended to the
282
+ # User-Agent header as app/<sdk_ua_app_id>. It should have a
283
+ # maximum length of 50.
284
+ #
280
285
  # @option options [String] :secret_access_key
281
286
  #
282
287
  # @option options [String] :session_token
@@ -527,7 +532,7 @@ module Aws::MachineLearning
527
532
  # A user-supplied name or description of the `DataSource`.
528
533
  #
529
534
  # @option params [required, Types::RDSDataSpec] :rds_data
530
- # The data specification of an Amazon RDS `DataSource`\:
535
+ # The data specification of an Amazon RDS `DataSource`:
531
536
  #
532
537
  # * DatabaseInformation -
533
538
  #
@@ -680,7 +685,7 @@ module Aws::MachineLearning
680
685
  # A user-supplied name or description of the `DataSource`.
681
686
  #
682
687
  # @option params [required, Types::RedshiftDataSpec] :data_spec
683
- # The data specification of an Amazon Redshift `DataSource`\:
688
+ # The data specification of an Amazon Redshift `DataSource`:
684
689
  #
685
690
  # * DatabaseInformation -
686
691
  #
@@ -809,7 +814,7 @@ module Aws::MachineLearning
809
814
  # A user-supplied name or description of the `DataSource`.
810
815
  #
811
816
  # @option params [required, Types::S3DataSpec] :data_spec
812
- # The data specification of a `DataSource`\:
817
+ # The data specification of a `DataSource`:
813
818
  #
814
819
  # * DataLocationS3 - The Amazon S3 location of the observation data.
815
820
  #
@@ -869,7 +874,7 @@ module Aws::MachineLearning
869
874
  # provides a summary so that you know how effective the `MLModel`
870
875
  # functions on the test data. Evaluation generates a relevant
871
876
  # performance metric, such as BinaryAUC, RegressionRMSE or
872
- # MulticlassAvgFScore based on the corresponding `MLModelType`\:
877
+ # MulticlassAvgFScore based on the corresponding `MLModelType`:
873
878
  # `BINARY`, `REGRESSION` or `MULTICLASS`.
874
879
  #
875
880
  # `CreateEvaluation` is an asynchronous operation. In response to
@@ -1296,7 +1301,7 @@ module Aws::MachineLearning
1296
1301
  #
1297
1302
  # @option params [String] :filter_variable
1298
1303
  # Use one of the following variables to filter a list of
1299
- # `BatchPrediction`\:
1304
+ # `BatchPrediction`:
1300
1305
  #
1301
1306
  # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1302
1307
  # creation date.
@@ -1355,7 +1360,7 @@ module Aws::MachineLearning
1355
1360
  # For example, a `Batch Prediction` operation could have the `Name`
1356
1361
  # `2014-09-09-HolidayGiftMailer`. To search for this `BatchPrediction`,
1357
1362
  # select `Name` for the `FilterVariable` and any of the following
1358
- # strings for the `Prefix`\:
1363
+ # strings for the `Prefix`:
1359
1364
  #
1360
1365
  # * 2014-09
1361
1366
  #
@@ -1440,7 +1445,7 @@ module Aws::MachineLearning
1440
1445
  # request.
1441
1446
  #
1442
1447
  # @option params [String] :filter_variable
1443
- # Use one of the following variables to filter a list of `DataSource`\:
1448
+ # Use one of the following variables to filter a list of `DataSource`:
1444
1449
  #
1445
1450
  # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1446
1451
  # dates.
@@ -1493,7 +1498,7 @@ module Aws::MachineLearning
1493
1498
  # For example, a `DataSource` could have the `Name`
1494
1499
  # `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
1495
1500
  # select `Name` for the `FilterVariable` and any of the following
1496
- # strings for the `Prefix`\:
1501
+ # strings for the `Prefix`:
1497
1502
  #
1498
1503
  # * 2014-09
1499
1504
  #
@@ -1648,7 +1653,7 @@ module Aws::MachineLearning
1648
1653
  # For example, an `Evaluation` could have the `Name`
1649
1654
  # `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
1650
1655
  # select `Name` for the `FilterVariable` and any of the following
1651
- # strings for the `Prefix`\:
1656
+ # strings for the `Prefix`:
1652
1657
  #
1653
1658
  # * 2014-09
1654
1659
  #
@@ -1731,7 +1736,7 @@ module Aws::MachineLearning
1731
1736
  # request.
1732
1737
  #
1733
1738
  # @option params [String] :filter_variable
1734
- # Use one of the following variables to filter a list of `MLModel`\:
1739
+ # Use one of the following variables to filter a list of `MLModel`:
1735
1740
  #
1736
1741
  # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1737
1742
  #
@@ -1795,7 +1800,7 @@ module Aws::MachineLearning
1795
1800
  # For example, an `MLModel` could have the `Name`
1796
1801
  # `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
1797
1802
  # `Name` for the `FilterVariable` and any of the following strings for
1798
- # the `Prefix`\:
1803
+ # the `Prefix`:
1799
1804
  #
1800
1805
  # * 2014-09
1801
1806
  #
@@ -2407,7 +2412,7 @@ module Aws::MachineLearning
2407
2412
  params: params,
2408
2413
  config: config)
2409
2414
  context[:gem_name] = 'aws-sdk-machinelearning'
2410
- context[:gem_version] = '1.38.0'
2415
+ context[:gem_version] = '1.40.0'
2411
2416
  Seahorse::Client::Request.new(handlers, context)
2412
2417
  end
2413
2418
 
@@ -9,104 +9,43 @@
9
9
 
10
10
  module Aws::MachineLearning
11
11
  class EndpointProvider
12
- def initialize(rule_set = nil)
13
- @@rule_set ||= begin
14
- endpoint_rules = Aws::Json.load(Base64.decode64(RULES))
15
- Aws::Endpoints::RuleSet.new(
16
- version: endpoint_rules['version'],
17
- service_id: endpoint_rules['serviceId'],
18
- parameters: endpoint_rules['parameters'],
19
- rules: endpoint_rules['rules']
20
- )
12
+ def resolve_endpoint(parameters)
13
+ region = parameters.region
14
+ use_dual_stack = parameters.use_dual_stack
15
+ use_fips = parameters.use_fips
16
+ endpoint = parameters.endpoint
17
+ if (partition_result = Aws::Endpoints::Matchers.aws_partition(region))
18
+ if Aws::Endpoints::Matchers.set?(endpoint) && (url = Aws::Endpoints::Matchers.parse_url(endpoint))
19
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
20
+ raise ArgumentError, "Invalid Configuration: FIPS and custom endpoint are not supported"
21
+ end
22
+ if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
23
+ raise ArgumentError, "Invalid Configuration: Dualstack and custom endpoint are not supported"
24
+ end
25
+ return Aws::Endpoints::Endpoint.new(url: endpoint, headers: {}, properties: {})
26
+ end
27
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true) && Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
28
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS")) && Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
29
+ return Aws::Endpoints::Endpoint.new(url: "https://machinelearning-fips.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
30
+ end
31
+ raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
32
+ end
33
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
34
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
35
+ return Aws::Endpoints::Endpoint.new(url: "https://machinelearning-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
36
+ end
37
+ raise ArgumentError, "FIPS is enabled but this partition does not support FIPS"
38
+ end
39
+ if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
40
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
41
+ return Aws::Endpoints::Endpoint.new(url: "https://machinelearning.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
42
+ end
43
+ raise ArgumentError, "DualStack is enabled but this partition does not support DualStack"
44
+ end
45
+ return Aws::Endpoints::Endpoint.new(url: "https://machinelearning.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
21
46
  end
22
- @provider = Aws::Endpoints::RulesProvider.new(rule_set || @@rule_set)
23
- end
47
+ raise ArgumentError, 'No endpoint could be resolved'
24
48
 
25
- def resolve_endpoint(parameters)
26
- @provider.resolve_endpoint(parameters)
27
49
  end
28
-
29
- # @api private
30
- RULES = <<-JSON
31
- eyJ2ZXJzaW9uIjoiMS4wIiwicGFyYW1ldGVycyI6eyJSZWdpb24iOnsiYnVp
32
- bHRJbiI6IkFXUzo6UmVnaW9uIiwicmVxdWlyZWQiOmZhbHNlLCJkb2N1bWVu
33
- dGF0aW9uIjoiVGhlIEFXUyByZWdpb24gdXNlZCB0byBkaXNwYXRjaCB0aGUg
34
- cmVxdWVzdC4iLCJ0eXBlIjoiU3RyaW5nIn0sIlVzZUR1YWxTdGFjayI6eyJi
35
- dWlsdEluIjoiQVdTOjpVc2VEdWFsU3RhY2siLCJyZXF1aXJlZCI6dHJ1ZSwi
36
- ZGVmYXVsdCI6ZmFsc2UsImRvY3VtZW50YXRpb24iOiJXaGVuIHRydWUsIHVz
37
- ZSB0aGUgZHVhbC1zdGFjayBlbmRwb2ludC4gSWYgdGhlIGNvbmZpZ3VyZWQg
38
- ZW5kcG9pbnQgZG9lcyBub3Qgc3VwcG9ydCBkdWFsLXN0YWNrLCBkaXNwYXRj
39
- aGluZyB0aGUgcmVxdWVzdCBNQVkgcmV0dXJuIGFuIGVycm9yLiIsInR5cGUi
40
- OiJCb29sZWFuIn0sIlVzZUZJUFMiOnsiYnVpbHRJbiI6IkFXUzo6VXNlRklQ
41
- UyIsInJlcXVpcmVkIjp0cnVlLCJkZWZhdWx0IjpmYWxzZSwiZG9jdW1lbnRh
42
- dGlvbiI6IldoZW4gdHJ1ZSwgc2VuZCB0aGlzIHJlcXVlc3QgdG8gdGhlIEZJ
43
- UFMtY29tcGxpYW50IHJlZ2lvbmFsIGVuZHBvaW50LiBJZiB0aGUgY29uZmln
44
- dXJlZCBlbmRwb2ludCBkb2VzIG5vdCBoYXZlIGEgRklQUyBjb21wbGlhbnQg
45
- ZW5kcG9pbnQsIGRpc3BhdGNoaW5nIHRoZSByZXF1ZXN0IHdpbGwgcmV0dXJu
46
- IGFuIGVycm9yLiIsInR5cGUiOiJCb29sZWFuIn0sIkVuZHBvaW50Ijp7ImJ1
47
- aWx0SW4iOiJTREs6OkVuZHBvaW50IiwicmVxdWlyZWQiOmZhbHNlLCJkb2N1
48
- bWVudGF0aW9uIjoiT3ZlcnJpZGUgdGhlIGVuZHBvaW50IHVzZWQgdG8gc2Vu
49
- ZCB0aGlzIHJlcXVlc3QiLCJ0eXBlIjoiU3RyaW5nIn19LCJydWxlcyI6W3si
50
- Y29uZGl0aW9ucyI6W3siZm4iOiJhd3MucGFydGl0aW9uIiwiYXJndiI6W3si
51
- cmVmIjoiUmVnaW9uIn1dLCJhc3NpZ24iOiJQYXJ0aXRpb25SZXN1bHQifV0s
52
- InR5cGUiOiJ0cmVlIiwicnVsZXMiOlt7ImNvbmRpdGlvbnMiOlt7ImZuIjoi
53
- aXNTZXQiLCJhcmd2IjpbeyJyZWYiOiJFbmRwb2ludCJ9XX0seyJmbiI6InBh
54
- cnNlVVJMIiwiYXJndiI6W3sicmVmIjoiRW5kcG9pbnQifV0sImFzc2lnbiI6
55
- InVybCJ9XSwidHlwZSI6InRyZWUiLCJydWxlcyI6W3siY29uZGl0aW9ucyI6
56
- W3siZm4iOiJib29sZWFuRXF1YWxzIiwiYXJndiI6W3sicmVmIjoiVXNlRklQ
57
- UyJ9LHRydWVdfV0sImVycm9yIjoiSW52YWxpZCBDb25maWd1cmF0aW9uOiBG
58
- SVBTIGFuZCBjdXN0b20gZW5kcG9pbnQgYXJlIG5vdCBzdXBwb3J0ZWQiLCJ0
59
- eXBlIjoiZXJyb3IifSx7ImNvbmRpdGlvbnMiOltdLCJ0eXBlIjoidHJlZSIs
60
- InJ1bGVzIjpbeyJjb25kaXRpb25zIjpbeyJmbiI6ImJvb2xlYW5FcXVhbHMi
61
- LCJhcmd2IjpbeyJyZWYiOiJVc2VEdWFsU3RhY2sifSx0cnVlXX1dLCJlcnJv
62
- ciI6IkludmFsaWQgQ29uZmlndXJhdGlvbjogRHVhbHN0YWNrIGFuZCBjdXN0
63
- b20gZW5kcG9pbnQgYXJlIG5vdCBzdXBwb3J0ZWQiLCJ0eXBlIjoiZXJyb3Ii
64
- fSx7ImNvbmRpdGlvbnMiOltdLCJlbmRwb2ludCI6eyJ1cmwiOnsicmVmIjoi
65
- RW5kcG9pbnQifSwicHJvcGVydGllcyI6e30sImhlYWRlcnMiOnt9fSwidHlw
66
- ZSI6ImVuZHBvaW50In1dfV19LHsiY29uZGl0aW9ucyI6W3siZm4iOiJib29s
67
- ZWFuRXF1YWxzIiwiYXJndiI6W3sicmVmIjoiVXNlRklQUyJ9LHRydWVdfSx7
68
- ImZuIjoiYm9vbGVhbkVxdWFscyIsImFyZ3YiOlt7InJlZiI6IlVzZUR1YWxT
69
- dGFjayJ9LHRydWVdfV0sInR5cGUiOiJ0cmVlIiwicnVsZXMiOlt7ImNvbmRp
70
- dGlvbnMiOlt7ImZuIjoiYm9vbGVhbkVxdWFscyIsImFyZ3YiOlt0cnVlLHsi
71
- Zm4iOiJnZXRBdHRyIiwiYXJndiI6W3sicmVmIjoiUGFydGl0aW9uUmVzdWx0
72
- In0sInN1cHBvcnRzRklQUyJdfV19LHsiZm4iOiJib29sZWFuRXF1YWxzIiwi
73
- YXJndiI6W3RydWUseyJmbiI6ImdldEF0dHIiLCJhcmd2IjpbeyJyZWYiOiJQ
74
- YXJ0aXRpb25SZXN1bHQifSwic3VwcG9ydHNEdWFsU3RhY2siXX1dfV0sInR5
75
- cGUiOiJ0cmVlIiwicnVsZXMiOlt7ImNvbmRpdGlvbnMiOltdLCJlbmRwb2lu
76
- dCI6eyJ1cmwiOiJodHRwczovL21hY2hpbmVsZWFybmluZy1maXBzLntSZWdp
77
- b259LntQYXJ0aXRpb25SZXN1bHQjZHVhbFN0YWNrRG5zU3VmZml4fSIsInBy
78
- b3BlcnRpZXMiOnt9LCJoZWFkZXJzIjp7fX0sInR5cGUiOiJlbmRwb2ludCJ9
79
- XX0seyJjb25kaXRpb25zIjpbXSwiZXJyb3IiOiJGSVBTIGFuZCBEdWFsU3Rh
80
- Y2sgYXJlIGVuYWJsZWQsIGJ1dCB0aGlzIHBhcnRpdGlvbiBkb2VzIG5vdCBz
81
- dXBwb3J0IG9uZSBvciBib3RoIiwidHlwZSI6ImVycm9yIn1dfSx7ImNvbmRp
82
- dGlvbnMiOlt7ImZuIjoiYm9vbGVhbkVxdWFscyIsImFyZ3YiOlt7InJlZiI6
83
- IlVzZUZJUFMifSx0cnVlXX1dLCJ0eXBlIjoidHJlZSIsInJ1bGVzIjpbeyJj
84
- b25kaXRpb25zIjpbeyJmbiI6ImJvb2xlYW5FcXVhbHMiLCJhcmd2IjpbdHJ1
85
- ZSx7ImZuIjoiZ2V0QXR0ciIsImFyZ3YiOlt7InJlZiI6IlBhcnRpdGlvblJl
86
- c3VsdCJ9LCJzdXBwb3J0c0ZJUFMiXX1dfV0sInR5cGUiOiJ0cmVlIiwicnVs
87
- ZXMiOlt7ImNvbmRpdGlvbnMiOltdLCJ0eXBlIjoidHJlZSIsInJ1bGVzIjpb
88
- eyJjb25kaXRpb25zIjpbXSwiZW5kcG9pbnQiOnsidXJsIjoiaHR0cHM6Ly9t
89
- YWNoaW5lbGVhcm5pbmctZmlwcy57UmVnaW9ufS57UGFydGl0aW9uUmVzdWx0
90
- I2Ruc1N1ZmZpeH0iLCJwcm9wZXJ0aWVzIjp7fSwiaGVhZGVycyI6e319LCJ0
91
- eXBlIjoiZW5kcG9pbnQifV19XX0seyJjb25kaXRpb25zIjpbXSwiZXJyb3Ii
92
- OiJGSVBTIGlzIGVuYWJsZWQgYnV0IHRoaXMgcGFydGl0aW9uIGRvZXMgbm90
93
- IHN1cHBvcnQgRklQUyIsInR5cGUiOiJlcnJvciJ9XX0seyJjb25kaXRpb25z
94
- IjpbeyJmbiI6ImJvb2xlYW5FcXVhbHMiLCJhcmd2IjpbeyJyZWYiOiJVc2VE
95
- dWFsU3RhY2sifSx0cnVlXX1dLCJ0eXBlIjoidHJlZSIsInJ1bGVzIjpbeyJj
96
- b25kaXRpb25zIjpbeyJmbiI6ImJvb2xlYW5FcXVhbHMiLCJhcmd2IjpbdHJ1
97
- ZSx7ImZuIjoiZ2V0QXR0ciIsImFyZ3YiOlt7InJlZiI6IlBhcnRpdGlvblJl
98
- c3VsdCJ9LCJzdXBwb3J0c0R1YWxTdGFjayJdfV19XSwidHlwZSI6InRyZWUi
99
- LCJydWxlcyI6W3siY29uZGl0aW9ucyI6W10sImVuZHBvaW50Ijp7InVybCI6
100
- Imh0dHBzOi8vbWFjaGluZWxlYXJuaW5nLntSZWdpb259LntQYXJ0aXRpb25S
101
- ZXN1bHQjZHVhbFN0YWNrRG5zU3VmZml4fSIsInByb3BlcnRpZXMiOnt9LCJo
102
- ZWFkZXJzIjp7fX0sInR5cGUiOiJlbmRwb2ludCJ9XX0seyJjb25kaXRpb25z
103
- IjpbXSwiZXJyb3IiOiJEdWFsU3RhY2sgaXMgZW5hYmxlZCBidXQgdGhpcyBw
104
- YXJ0aXRpb24gZG9lcyBub3Qgc3VwcG9ydCBEdWFsU3RhY2siLCJ0eXBlIjoi
105
- ZXJyb3IifV19LHsiY29uZGl0aW9ucyI6W10sImVuZHBvaW50Ijp7InVybCI6
106
- Imh0dHBzOi8vbWFjaGluZWxlYXJuaW5nLntSZWdpb259LntQYXJ0aXRpb25S
107
- ZXN1bHQjZG5zU3VmZml4fSIsInByb3BlcnRpZXMiOnt9LCJoZWFkZXJzIjp7
108
- fX0sInR5cGUiOiJlbmRwb2ludCJ9XX1dfQ==
109
-
110
- JSON
111
50
  end
112
51
  end
@@ -10,20 +10,6 @@
10
10
  module Aws::MachineLearning
11
11
  module Types
12
12
 
13
- # @note When making an API call, you may pass AddTagsInput
14
- # data as a hash:
15
- #
16
- # {
17
- # tags: [ # required
18
- # {
19
- # key: "TagKey",
20
- # value: "TagValue",
21
- # },
22
- # ],
23
- # resource_id: "EntityId", # required
24
- # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
25
- # }
26
- #
27
13
  # @!attribute [rw] tags
28
14
  # The key-value pairs to use to create tags. If you specify a key
29
15
  # without specifying a value, Amazon ML creates a tag with the
@@ -180,17 +166,6 @@ module Aws::MachineLearning
180
166
  include Aws::Structure
181
167
  end
182
168
 
183
- # @note When making an API call, you may pass CreateBatchPredictionInput
184
- # data as a hash:
185
- #
186
- # {
187
- # batch_prediction_id: "EntityId", # required
188
- # batch_prediction_name: "EntityName",
189
- # ml_model_id: "EntityId", # required
190
- # batch_prediction_data_source_id: "EntityId", # required
191
- # output_uri: "S3Url", # required
192
- # }
193
- #
194
169
  # @!attribute [rw] batch_prediction_id
195
170
  # A user-supplied ID that uniquely identifies the `BatchPrediction`.
196
171
  # @return [String]
@@ -254,35 +229,6 @@ module Aws::MachineLearning
254
229
  include Aws::Structure
255
230
  end
256
231
 
257
- # @note When making an API call, you may pass CreateDataSourceFromRDSInput
258
- # data as a hash:
259
- #
260
- # {
261
- # data_source_id: "EntityId", # required
262
- # data_source_name: "EntityName",
263
- # rds_data: { # required
264
- # database_information: { # required
265
- # instance_identifier: "RDSInstanceIdentifier", # required
266
- # database_name: "RDSDatabaseName", # required
267
- # },
268
- # select_sql_query: "RDSSelectSqlQuery", # required
269
- # database_credentials: { # required
270
- # username: "RDSDatabaseUsername", # required
271
- # password: "RDSDatabasePassword", # required
272
- # },
273
- # s3_staging_location: "S3Url", # required
274
- # data_rearrangement: "DataRearrangement",
275
- # data_schema: "DataSchema",
276
- # data_schema_uri: "S3Url",
277
- # resource_role: "EDPResourceRole", # required
278
- # service_role: "EDPServiceRole", # required
279
- # subnet_id: "EDPSubnetId", # required
280
- # security_group_ids: ["EDPSecurityGroupId"], # required
281
- # },
282
- # role_arn: "RoleARN", # required
283
- # compute_statistics: false,
284
- # }
285
- #
286
232
  # @!attribute [rw] data_source_id
287
233
  # A user-supplied ID that uniquely identifies the `DataSource`.
288
234
  # Typically, an Amazon Resource Number (ARN) becomes the ID for a
@@ -294,7 +240,7 @@ module Aws::MachineLearning
294
240
  # @return [String]
295
241
  #
296
242
  # @!attribute [rw] rds_data
297
- # The data specification of an Amazon RDS `DataSource`\:
243
+ # The data specification of an Amazon RDS `DataSource`:
298
244
  #
299
245
  # * DatabaseInformation -
300
246
  #
@@ -392,31 +338,6 @@ module Aws::MachineLearning
392
338
  include Aws::Structure
393
339
  end
394
340
 
395
- # @note When making an API call, you may pass CreateDataSourceFromRedshiftInput
396
- # data as a hash:
397
- #
398
- # {
399
- # data_source_id: "EntityId", # required
400
- # data_source_name: "EntityName",
401
- # data_spec: { # required
402
- # database_information: { # required
403
- # database_name: "RedshiftDatabaseName", # required
404
- # cluster_identifier: "RedshiftClusterIdentifier", # required
405
- # },
406
- # select_sql_query: "RedshiftSelectSqlQuery", # required
407
- # database_credentials: { # required
408
- # username: "RedshiftDatabaseUsername", # required
409
- # password: "RedshiftDatabasePassword", # required
410
- # },
411
- # s3_staging_location: "S3Url", # required
412
- # data_rearrangement: "DataRearrangement",
413
- # data_schema: "DataSchema",
414
- # data_schema_uri: "S3Url",
415
- # },
416
- # role_arn: "RoleARN", # required
417
- # compute_statistics: false,
418
- # }
419
- #
420
341
  # @!attribute [rw] data_source_id
421
342
  # A user-supplied ID that uniquely identifies the `DataSource`.
422
343
  # @return [String]
@@ -426,7 +347,7 @@ module Aws::MachineLearning
426
347
  # @return [String]
427
348
  #
428
349
  # @!attribute [rw] data_spec
429
- # The data specification of an Amazon Redshift `DataSource`\:
350
+ # The data specification of an Amazon Redshift `DataSource`:
430
351
  #
431
352
  # * DatabaseInformation -
432
353
  #
@@ -507,21 +428,6 @@ module Aws::MachineLearning
507
428
  include Aws::Structure
508
429
  end
509
430
 
510
- # @note When making an API call, you may pass CreateDataSourceFromS3Input
511
- # data as a hash:
512
- #
513
- # {
514
- # data_source_id: "EntityId", # required
515
- # data_source_name: "EntityName",
516
- # data_spec: { # required
517
- # data_location_s3: "S3Url", # required
518
- # data_rearrangement: "DataRearrangement",
519
- # data_schema: "DataSchema",
520
- # data_schema_location_s3: "S3Url",
521
- # },
522
- # compute_statistics: false,
523
- # }
524
- #
525
431
  # @!attribute [rw] data_source_id
526
432
  # A user-supplied identifier that uniquely identifies the
527
433
  # `DataSource`.
@@ -532,7 +438,7 @@ module Aws::MachineLearning
532
438
  # @return [String]
533
439
  #
534
440
  # @!attribute [rw] data_spec
535
- # The data specification of a `DataSource`\:
441
+ # The data specification of a `DataSource`:
536
442
  #
537
443
  # * DataLocationS3 - The Amazon S3 location of the observation data.
538
444
  #
@@ -585,16 +491,6 @@ module Aws::MachineLearning
585
491
  include Aws::Structure
586
492
  end
587
493
 
588
- # @note When making an API call, you may pass CreateEvaluationInput
589
- # data as a hash:
590
- #
591
- # {
592
- # evaluation_id: "EntityId", # required
593
- # evaluation_name: "EntityName",
594
- # ml_model_id: "EntityId", # required
595
- # evaluation_data_source_id: "EntityId", # required
596
- # }
597
- #
598
494
  # @!attribute [rw] evaluation_id
599
495
  # A user-supplied ID that uniquely identifies the `Evaluation`.
600
496
  # @return [String]
@@ -643,21 +539,6 @@ module Aws::MachineLearning
643
539
  include Aws::Structure
644
540
  end
645
541
 
646
- # @note When making an API call, you may pass CreateMLModelInput
647
- # data as a hash:
648
- #
649
- # {
650
- # ml_model_id: "EntityId", # required
651
- # ml_model_name: "EntityName",
652
- # ml_model_type: "REGRESSION", # required, accepts REGRESSION, BINARY, MULTICLASS
653
- # parameters: {
654
- # "StringType" => "StringType",
655
- # },
656
- # training_data_source_id: "EntityId", # required
657
- # recipe: "Recipe",
658
- # recipe_uri: "S3Url",
659
- # }
660
- #
661
542
  # @!attribute [rw] ml_model_id
662
543
  # A user-supplied ID that uniquely identifies the `MLModel`.
663
544
  # @return [String]
@@ -779,13 +660,6 @@ module Aws::MachineLearning
779
660
  include Aws::Structure
780
661
  end
781
662
 
782
- # @note When making an API call, you may pass CreateRealtimeEndpointInput
783
- # data as a hash:
784
- #
785
- # {
786
- # ml_model_id: "EntityId", # required
787
- # }
788
- #
789
663
  # @!attribute [rw] ml_model_id
790
664
  # The ID assigned to the `MLModel` during creation.
791
665
  # @return [String]
@@ -949,13 +823,6 @@ module Aws::MachineLearning
949
823
  include Aws::Structure
950
824
  end
951
825
 
952
- # @note When making an API call, you may pass DeleteBatchPredictionInput
953
- # data as a hash:
954
- #
955
- # {
956
- # batch_prediction_id: "EntityId", # required
957
- # }
958
- #
959
826
  # @!attribute [rw] batch_prediction_id
960
827
  # A user-supplied ID that uniquely identifies the `BatchPrediction`.
961
828
  # @return [String]
@@ -984,13 +851,6 @@ module Aws::MachineLearning
984
851
  include Aws::Structure
985
852
  end
986
853
 
987
- # @note When making an API call, you may pass DeleteDataSourceInput
988
- # data as a hash:
989
- #
990
- # {
991
- # data_source_id: "EntityId", # required
992
- # }
993
- #
994
854
  # @!attribute [rw] data_source_id
995
855
  # A user-supplied ID that uniquely identifies the `DataSource`.
996
856
  # @return [String]
@@ -1015,13 +875,6 @@ module Aws::MachineLearning
1015
875
  include Aws::Structure
1016
876
  end
1017
877
 
1018
- # @note When making an API call, you may pass DeleteEvaluationInput
1019
- # data as a hash:
1020
- #
1021
- # {
1022
- # evaluation_id: "EntityId", # required
1023
- # }
1024
- #
1025
878
  # @!attribute [rw] evaluation_id
1026
879
  # A user-supplied ID that uniquely identifies the `Evaluation` to
1027
880
  # delete.
@@ -1053,13 +906,6 @@ module Aws::MachineLearning
1053
906
  include Aws::Structure
1054
907
  end
1055
908
 
1056
- # @note When making an API call, you may pass DeleteMLModelInput
1057
- # data as a hash:
1058
- #
1059
- # {
1060
- # ml_model_id: "EntityId", # required
1061
- # }
1062
- #
1063
909
  # @!attribute [rw] ml_model_id
1064
910
  # A user-supplied ID that uniquely identifies the `MLModel`.
1065
911
  # @return [String]
@@ -1087,13 +933,6 @@ module Aws::MachineLearning
1087
933
  include Aws::Structure
1088
934
  end
1089
935
 
1090
- # @note When making an API call, you may pass DeleteRealtimeEndpointInput
1091
- # data as a hash:
1092
- #
1093
- # {
1094
- # ml_model_id: "EntityId", # required
1095
- # }
1096
- #
1097
936
  # @!attribute [rw] ml_model_id
1098
937
  # The ID assigned to the `MLModel` during creation.
1099
938
  # @return [String]
@@ -1126,15 +965,6 @@ module Aws::MachineLearning
1126
965
  include Aws::Structure
1127
966
  end
1128
967
 
1129
- # @note When making an API call, you may pass DeleteTagsInput
1130
- # data as a hash:
1131
- #
1132
- # {
1133
- # tag_keys: ["TagKey"], # required
1134
- # resource_id: "EntityId", # required
1135
- # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
1136
- # }
1137
- #
1138
968
  # @!attribute [rw] tag_keys
1139
969
  # One or more tags to delete.
1140
970
  # @return [Array<String>]
@@ -1172,26 +1002,9 @@ module Aws::MachineLearning
1172
1002
  include Aws::Structure
1173
1003
  end
1174
1004
 
1175
- # @note When making an API call, you may pass DescribeBatchPredictionsInput
1176
- # data as a hash:
1177
- #
1178
- # {
1179
- # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
1180
- # eq: "ComparatorValue",
1181
- # gt: "ComparatorValue",
1182
- # lt: "ComparatorValue",
1183
- # ge: "ComparatorValue",
1184
- # le: "ComparatorValue",
1185
- # ne: "ComparatorValue",
1186
- # prefix: "ComparatorValue",
1187
- # sort_order: "asc", # accepts asc, dsc
1188
- # next_token: "StringType",
1189
- # limit: 1,
1190
- # }
1191
- #
1192
1005
  # @!attribute [rw] filter_variable
1193
1006
  # Use one of the following variables to filter a list of
1194
- # `BatchPrediction`\:
1007
+ # `BatchPrediction`:
1195
1008
  #
1196
1009
  # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1197
1010
  # creation date.
@@ -1258,7 +1071,7 @@ module Aws::MachineLearning
1258
1071
  # For example, a `Batch Prediction` operation could have the `Name`
1259
1072
  # `2014-09-09-HolidayGiftMailer`. To search for this
1260
1073
  # `BatchPrediction`, select `Name` for the `FilterVariable` and any of
1261
- # the following strings for the `Prefix`\:
1074
+ # the following strings for the `Prefix`:
1262
1075
  #
1263
1076
  # * 2014-09
1264
1077
  #
@@ -1323,26 +1136,8 @@ module Aws::MachineLearning
1323
1136
  include Aws::Structure
1324
1137
  end
1325
1138
 
1326
- # @note When making an API call, you may pass DescribeDataSourcesInput
1327
- # data as a hash:
1328
- #
1329
- # {
1330
- # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, DataLocationS3, IAMUser
1331
- # eq: "ComparatorValue",
1332
- # gt: "ComparatorValue",
1333
- # lt: "ComparatorValue",
1334
- # ge: "ComparatorValue",
1335
- # le: "ComparatorValue",
1336
- # ne: "ComparatorValue",
1337
- # prefix: "ComparatorValue",
1338
- # sort_order: "asc", # accepts asc, dsc
1339
- # next_token: "StringType",
1340
- # limit: 1,
1341
- # }
1342
- #
1343
1139
  # @!attribute [rw] filter_variable
1344
- # Use one of the following variables to filter a list of
1345
- # `DataSource`\:
1140
+ # Use one of the following variables to filter a list of `DataSource`:
1346
1141
  #
1347
1142
  # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1348
1143
  # dates.
@@ -1402,7 +1197,7 @@ module Aws::MachineLearning
1402
1197
  # For example, a `DataSource` could have the `Name`
1403
1198
  # `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
1404
1199
  # select `Name` for the `FilterVariable` and any of the following
1405
- # strings for the `Prefix`\:
1200
+ # strings for the `Prefix`:
1406
1201
  #
1407
1202
  # * 2014-09
1408
1203
  #
@@ -1465,23 +1260,6 @@ module Aws::MachineLearning
1465
1260
  include Aws::Structure
1466
1261
  end
1467
1262
 
1468
- # @note When making an API call, you may pass DescribeEvaluationsInput
1469
- # data as a hash:
1470
- #
1471
- # {
1472
- # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
1473
- # eq: "ComparatorValue",
1474
- # gt: "ComparatorValue",
1475
- # lt: "ComparatorValue",
1476
- # ge: "ComparatorValue",
1477
- # le: "ComparatorValue",
1478
- # ne: "ComparatorValue",
1479
- # prefix: "ComparatorValue",
1480
- # sort_order: "asc", # accepts asc, dsc
1481
- # next_token: "StringType",
1482
- # limit: 1,
1483
- # }
1484
- #
1485
1263
  # @!attribute [rw] filter_variable
1486
1264
  # Use one of the following variable to filter a list of `Evaluation`
1487
1265
  # objects:
@@ -1550,7 +1328,7 @@ module Aws::MachineLearning
1550
1328
  # For example, an `Evaluation` could have the `Name`
1551
1329
  # `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
1552
1330
  # select `Name` for the `FilterVariable` and any of the following
1553
- # strings for the `Prefix`\:
1331
+ # strings for the `Prefix`:
1554
1332
  #
1555
1333
  # * 2014-09
1556
1334
  #
@@ -1613,25 +1391,8 @@ module Aws::MachineLearning
1613
1391
  include Aws::Structure
1614
1392
  end
1615
1393
 
1616
- # @note When making an API call, you may pass DescribeMLModelsInput
1617
- # data as a hash:
1618
- #
1619
- # {
1620
- # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, TrainingDataSourceId, RealtimeEndpointStatus, MLModelType, Algorithm, TrainingDataURI
1621
- # eq: "ComparatorValue",
1622
- # gt: "ComparatorValue",
1623
- # lt: "ComparatorValue",
1624
- # ge: "ComparatorValue",
1625
- # le: "ComparatorValue",
1626
- # ne: "ComparatorValue",
1627
- # prefix: "ComparatorValue",
1628
- # sort_order: "asc", # accepts asc, dsc
1629
- # next_token: "StringType",
1630
- # limit: 1,
1631
- # }
1632
- #
1633
1394
  # @!attribute [rw] filter_variable
1634
- # Use one of the following variables to filter a list of `MLModel`\:
1395
+ # Use one of the following variables to filter a list of `MLModel`:
1635
1396
  #
1636
1397
  # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1637
1398
  #
@@ -1703,7 +1464,7 @@ module Aws::MachineLearning
1703
1464
  # For example, an `MLModel` could have the `Name`
1704
1465
  # `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
1705
1466
  # `Name` for the `FilterVariable` and any of the following strings for
1706
- # the `Prefix`\:
1467
+ # the `Prefix`:
1707
1468
  #
1708
1469
  # * 2014-09
1709
1470
  #
@@ -1768,14 +1529,6 @@ module Aws::MachineLearning
1768
1529
  include Aws::Structure
1769
1530
  end
1770
1531
 
1771
- # @note When making an API call, you may pass DescribeTagsInput
1772
- # data as a hash:
1773
- #
1774
- # {
1775
- # resource_id: "EntityId", # required
1776
- # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
1777
- # }
1778
- #
1779
1532
  # @!attribute [rw] resource_id
1780
1533
  # The ID of the ML object. For example, `exampleModelId`.
1781
1534
  # @return [String]
@@ -1876,7 +1629,7 @@ module Aws::MachineLearning
1876
1629
  # @!attribute [rw] performance_metrics
1877
1630
  # Measurements of how well the `MLModel` performed, using observations
1878
1631
  # referenced by the `DataSource`. One of the following metrics is
1879
- # returned, based on the type of the `MLModel`\:
1632
+ # returned, based on the type of the `MLModel`:
1880
1633
  #
1881
1634
  # * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
1882
1635
  # technique to measure performance.
@@ -1933,13 +1686,6 @@ module Aws::MachineLearning
1933
1686
  include Aws::Structure
1934
1687
  end
1935
1688
 
1936
- # @note When making an API call, you may pass GetBatchPredictionInput
1937
- # data as a hash:
1938
- #
1939
- # {
1940
- # batch_prediction_id: "EntityId", # required
1941
- # }
1942
- #
1943
1689
  # @!attribute [rw] batch_prediction_id
1944
1690
  # An ID assigned to the `BatchPrediction` at creation.
1945
1691
  # @return [String]
@@ -2079,14 +1825,6 @@ module Aws::MachineLearning
2079
1825
  include Aws::Structure
2080
1826
  end
2081
1827
 
2082
- # @note When making an API call, you may pass GetDataSourceInput
2083
- # data as a hash:
2084
- #
2085
- # {
2086
- # data_source_id: "EntityId", # required
2087
- # verbose: false,
2088
- # }
2089
- #
2090
1828
  # @!attribute [rw] data_source_id
2091
1829
  # The ID assigned to the `DataSource` at creation.
2092
1830
  # @return [String]
@@ -2254,13 +1992,6 @@ module Aws::MachineLearning
2254
1992
  include Aws::Structure
2255
1993
  end
2256
1994
 
2257
- # @note When making an API call, you may pass GetEvaluationInput
2258
- # data as a hash:
2259
- #
2260
- # {
2261
- # evaluation_id: "EntityId", # required
2262
- # }
2263
- #
2264
1995
  # @!attribute [rw] evaluation_id
2265
1996
  # The ID of the `Evaluation` to retrieve. The evaluation of each
2266
1997
  # `MLModel` is recorded and cataloged. The ID provides the means to
@@ -2335,7 +2066,7 @@ module Aws::MachineLearning
2335
2066
  # @!attribute [rw] performance_metrics
2336
2067
  # Measurements of how well the `MLModel` performed using observations
2337
2068
  # referenced by the `DataSource`. One of the following metric is
2338
- # returned based on the type of the `MLModel`\:
2069
+ # returned based on the type of the `MLModel`:
2339
2070
  #
2340
2071
  # * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
2341
2072
  # technique to measure performance.
@@ -2405,14 +2136,6 @@ module Aws::MachineLearning
2405
2136
  include Aws::Structure
2406
2137
  end
2407
2138
 
2408
- # @note When making an API call, you may pass GetMLModelInput
2409
- # data as a hash:
2410
- #
2411
- # {
2412
- # ml_model_id: "EntityId", # required
2413
- # verbose: false,
2414
- # }
2415
- #
2416
2139
  # @!attribute [rw] ml_model_id
2417
2140
  # The ID assigned to the `MLModel` at creation.
2418
2141
  # @return [String]
@@ -2895,7 +2618,7 @@ module Aws::MachineLearning
2895
2618
 
2896
2619
  # Measurements of how well the `MLModel` performed on known
2897
2620
  # observations. One of the following metrics is returned, based on the
2898
- # type of the `MLModel`\:
2621
+ # type of the `MLModel`:
2899
2622
  #
2900
2623
  # * BinaryAUC: The binary `MLModel` uses the Area Under the Curve (AUC)
2901
2624
  # technique to measure performance.
@@ -2924,17 +2647,6 @@ module Aws::MachineLearning
2924
2647
  include Aws::Structure
2925
2648
  end
2926
2649
 
2927
- # @note When making an API call, you may pass PredictInput
2928
- # data as a hash:
2929
- #
2930
- # {
2931
- # ml_model_id: "EntityId", # required
2932
- # record: { # required
2933
- # "VariableName" => "VariableValue",
2934
- # },
2935
- # predict_endpoint: "VipURL", # required
2936
- # }
2937
- #
2938
2650
  # @!attribute [rw] ml_model_id
2939
2651
  # A unique identifier of the `MLModel`.
2940
2652
  # @return [String]
@@ -3031,29 +2743,6 @@ module Aws::MachineLearning
3031
2743
  # The data specification of an Amazon Relational Database Service
3032
2744
  # (Amazon RDS) `DataSource`.
3033
2745
  #
3034
- # @note When making an API call, you may pass RDSDataSpec
3035
- # data as a hash:
3036
- #
3037
- # {
3038
- # database_information: { # required
3039
- # instance_identifier: "RDSInstanceIdentifier", # required
3040
- # database_name: "RDSDatabaseName", # required
3041
- # },
3042
- # select_sql_query: "RDSSelectSqlQuery", # required
3043
- # database_credentials: { # required
3044
- # username: "RDSDatabaseUsername", # required
3045
- # password: "RDSDatabasePassword", # required
3046
- # },
3047
- # s3_staging_location: "S3Url", # required
3048
- # data_rearrangement: "DataRearrangement",
3049
- # data_schema: "DataSchema",
3050
- # data_schema_uri: "S3Url",
3051
- # resource_role: "EDPResourceRole", # required
3052
- # service_role: "EDPServiceRole", # required
3053
- # subnet_id: "EDPSubnetId", # required
3054
- # security_group_ids: ["EDPSecurityGroupId"], # required
3055
- # }
3056
- #
3057
2746
  # @!attribute [rw] database_information
3058
2747
  # Describes the `DatabaseName` and `InstanceIdentifier` of an Amazon
3059
2748
  # RDS database.
@@ -3266,14 +2955,6 @@ module Aws::MachineLearning
3266
2955
 
3267
2956
  # The database details of an Amazon RDS database.
3268
2957
  #
3269
- # @note When making an API call, you may pass RDSDatabase
3270
- # data as a hash:
3271
- #
3272
- # {
3273
- # instance_identifier: "RDSInstanceIdentifier", # required
3274
- # database_name: "RDSDatabaseName", # required
3275
- # }
3276
- #
3277
2958
  # @!attribute [rw] instance_identifier
3278
2959
  # The ID of an RDS DB instance.
3279
2960
  # @return [String]
@@ -3292,14 +2973,6 @@ module Aws::MachineLearning
3292
2973
  # The database credentials to connect to a database on an RDS DB
3293
2974
  # instance.
3294
2975
  #
3295
- # @note When making an API call, you may pass RDSDatabaseCredentials
3296
- # data as a hash:
3297
- #
3298
- # {
3299
- # username: "RDSDatabaseUsername", # required
3300
- # password: "RDSDatabasePassword", # required
3301
- # }
3302
- #
3303
2976
  # @!attribute [rw] username
3304
2977
  # The username to be used by Amazon ML to connect to database on an
3305
2978
  # Amazon RDS instance. The username should have sufficient permissions
@@ -3416,25 +3089,6 @@ module Aws::MachineLearning
3416
3089
 
3417
3090
  # Describes the data specification of an Amazon Redshift `DataSource`.
3418
3091
  #
3419
- # @note When making an API call, you may pass RedshiftDataSpec
3420
- # data as a hash:
3421
- #
3422
- # {
3423
- # database_information: { # required
3424
- # database_name: "RedshiftDatabaseName", # required
3425
- # cluster_identifier: "RedshiftClusterIdentifier", # required
3426
- # },
3427
- # select_sql_query: "RedshiftSelectSqlQuery", # required
3428
- # database_credentials: { # required
3429
- # username: "RedshiftDatabaseUsername", # required
3430
- # password: "RedshiftDatabasePassword", # required
3431
- # },
3432
- # s3_staging_location: "S3Url", # required
3433
- # data_rearrangement: "DataRearrangement",
3434
- # data_schema: "DataSchema",
3435
- # data_schema_uri: "S3Url",
3436
- # }
3437
- #
3438
3092
  # @!attribute [rw] database_information
3439
3093
  # Describes the `DatabaseName` and `ClusterIdentifier` for an Amazon
3440
3094
  # Redshift `DataSource`.
@@ -3607,14 +3261,6 @@ module Aws::MachineLearning
3607
3261
  # Describes the database details required to connect to an Amazon
3608
3262
  # Redshift database.
3609
3263
  #
3610
- # @note When making an API call, you may pass RedshiftDatabase
3611
- # data as a hash:
3612
- #
3613
- # {
3614
- # database_name: "RedshiftDatabaseName", # required
3615
- # cluster_identifier: "RedshiftClusterIdentifier", # required
3616
- # }
3617
- #
3618
3264
  # @!attribute [rw] database_name
3619
3265
  # The name of a database hosted on an Amazon Redshift cluster.
3620
3266
  # @return [String]
@@ -3633,14 +3279,6 @@ module Aws::MachineLearning
3633
3279
  # Describes the database credentials for connecting to a database on an
3634
3280
  # Amazon Redshift cluster.
3635
3281
  #
3636
- # @note When making an API call, you may pass RedshiftDatabaseCredentials
3637
- # data as a hash:
3638
- #
3639
- # {
3640
- # username: "RedshiftDatabaseUsername", # required
3641
- # password: "RedshiftDatabasePassword", # required
3642
- # }
3643
- #
3644
3282
  # @!attribute [rw] username
3645
3283
  # A username to be used by Amazon Machine Learning (Amazon ML)to
3646
3284
  # connect to a database on an Amazon Redshift cluster. The username
@@ -3720,16 +3358,6 @@ module Aws::MachineLearning
3720
3358
 
3721
3359
  # Describes the data specification of a `DataSource`.
3722
3360
  #
3723
- # @note When making an API call, you may pass S3DataSpec
3724
- # data as a hash:
3725
- #
3726
- # {
3727
- # data_location_s3: "S3Url", # required
3728
- # data_rearrangement: "DataRearrangement",
3729
- # data_schema: "DataSchema",
3730
- # data_schema_location_s3: "S3Url",
3731
- # }
3732
- #
3733
3361
  # @!attribute [rw] data_location_s3
3734
3362
  # The location of the data file(s) used by a `DataSource`. The URI
3735
3363
  # specifies a data file or an Amazon Simple Storage Service (Amazon
@@ -3887,14 +3515,6 @@ module Aws::MachineLearning
3887
3515
  # A custom key-value pair associated with an ML object, such as an ML
3888
3516
  # model.
3889
3517
  #
3890
- # @note When making an API call, you may pass Tag
3891
- # data as a hash:
3892
- #
3893
- # {
3894
- # key: "TagKey",
3895
- # value: "TagValue",
3896
- # }
3897
- #
3898
3518
  # @!attribute [rw] key
3899
3519
  # A unique identifier for the tag. Valid characters include Unicode
3900
3520
  # letters, digits, white space, \_, ., /, =, +, -, %, and @.
@@ -3922,14 +3542,6 @@ module Aws::MachineLearning
3922
3542
  include Aws::Structure
3923
3543
  end
3924
3544
 
3925
- # @note When making an API call, you may pass UpdateBatchPredictionInput
3926
- # data as a hash:
3927
- #
3928
- # {
3929
- # batch_prediction_id: "EntityId", # required
3930
- # batch_prediction_name: "EntityName", # required
3931
- # }
3932
- #
3933
3545
  # @!attribute [rw] batch_prediction_id
3934
3546
  # The ID assigned to the `BatchPrediction` during creation.
3935
3547
  # @return [String]
@@ -3962,14 +3574,6 @@ module Aws::MachineLearning
3962
3574
  include Aws::Structure
3963
3575
  end
3964
3576
 
3965
- # @note When making an API call, you may pass UpdateDataSourceInput
3966
- # data as a hash:
3967
- #
3968
- # {
3969
- # data_source_id: "EntityId", # required
3970
- # data_source_name: "EntityName", # required
3971
- # }
3972
- #
3973
3577
  # @!attribute [rw] data_source_id
3974
3578
  # The ID assigned to the `DataSource` during creation.
3975
3579
  # @return [String]
@@ -4003,14 +3607,6 @@ module Aws::MachineLearning
4003
3607
  include Aws::Structure
4004
3608
  end
4005
3609
 
4006
- # @note When making an API call, you may pass UpdateEvaluationInput
4007
- # data as a hash:
4008
- #
4009
- # {
4010
- # evaluation_id: "EntityId", # required
4011
- # evaluation_name: "EntityName", # required
4012
- # }
4013
- #
4014
3610
  # @!attribute [rw] evaluation_id
4015
3611
  # The ID assigned to the `Evaluation` during creation.
4016
3612
  # @return [String]
@@ -4043,15 +3639,6 @@ module Aws::MachineLearning
4043
3639
  include Aws::Structure
4044
3640
  end
4045
3641
 
4046
- # @note When making an API call, you may pass UpdateMLModelInput
4047
- # data as a hash:
4048
- #
4049
- # {
4050
- # ml_model_id: "EntityId", # required
4051
- # ml_model_name: "EntityName",
4052
- # score_threshold: 1.0,
4053
- # }
4054
- #
4055
3642
  # @!attribute [rw] ml_model_id
4056
3643
  # The ID assigned to the `MLModel` during creation.
4057
3644
  # @return [String]
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-machinelearning/customizations'
53
53
  # @!group service
54
54
  module Aws::MachineLearning
55
55
 
56
- GEM_VERSION = '1.38.0'
56
+ GEM_VERSION = '1.40.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.38.0
4
+ version: 1.40.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-10-25 00:00:00.000000000 Z
11
+ date: 2023-05-31 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.165.0
22
+ version: 3.174.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.165.0
32
+ version: 3.174.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement