aws-sdk-machinelearning 1.37.0 → 1.39.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10,20 +10,6 @@
10
10
  module Aws::MachineLearning
11
11
  module Types
12
12
 
13
- # @note When making an API call, you may pass AddTagsInput
14
- # data as a hash:
15
- #
16
- # {
17
- # tags: [ # required
18
- # {
19
- # key: "TagKey",
20
- # value: "TagValue",
21
- # },
22
- # ],
23
- # resource_id: "EntityId", # required
24
- # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
25
- # }
26
- #
27
13
  # @!attribute [rw] tags
28
14
  # The key-value pairs to use to create tags. If you specify a key
29
15
  # without specifying a value, Amazon ML creates a tag with the
@@ -180,17 +166,6 @@ module Aws::MachineLearning
180
166
  include Aws::Structure
181
167
  end
182
168
 
183
- # @note When making an API call, you may pass CreateBatchPredictionInput
184
- # data as a hash:
185
- #
186
- # {
187
- # batch_prediction_id: "EntityId", # required
188
- # batch_prediction_name: "EntityName",
189
- # ml_model_id: "EntityId", # required
190
- # batch_prediction_data_source_id: "EntityId", # required
191
- # output_uri: "S3Url", # required
192
- # }
193
- #
194
169
  # @!attribute [rw] batch_prediction_id
195
170
  # A user-supplied ID that uniquely identifies the `BatchPrediction`.
196
171
  # @return [String]
@@ -254,35 +229,6 @@ module Aws::MachineLearning
254
229
  include Aws::Structure
255
230
  end
256
231
 
257
- # @note When making an API call, you may pass CreateDataSourceFromRDSInput
258
- # data as a hash:
259
- #
260
- # {
261
- # data_source_id: "EntityId", # required
262
- # data_source_name: "EntityName",
263
- # rds_data: { # required
264
- # database_information: { # required
265
- # instance_identifier: "RDSInstanceIdentifier", # required
266
- # database_name: "RDSDatabaseName", # required
267
- # },
268
- # select_sql_query: "RDSSelectSqlQuery", # required
269
- # database_credentials: { # required
270
- # username: "RDSDatabaseUsername", # required
271
- # password: "RDSDatabasePassword", # required
272
- # },
273
- # s3_staging_location: "S3Url", # required
274
- # data_rearrangement: "DataRearrangement",
275
- # data_schema: "DataSchema",
276
- # data_schema_uri: "S3Url",
277
- # resource_role: "EDPResourceRole", # required
278
- # service_role: "EDPServiceRole", # required
279
- # subnet_id: "EDPSubnetId", # required
280
- # security_group_ids: ["EDPSecurityGroupId"], # required
281
- # },
282
- # role_arn: "RoleARN", # required
283
- # compute_statistics: false,
284
- # }
285
- #
286
232
  # @!attribute [rw] data_source_id
287
233
  # A user-supplied ID that uniquely identifies the `DataSource`.
288
234
  # Typically, an Amazon Resource Number (ARN) becomes the ID for a
@@ -392,31 +338,6 @@ module Aws::MachineLearning
392
338
  include Aws::Structure
393
339
  end
394
340
 
395
- # @note When making an API call, you may pass CreateDataSourceFromRedshiftInput
396
- # data as a hash:
397
- #
398
- # {
399
- # data_source_id: "EntityId", # required
400
- # data_source_name: "EntityName",
401
- # data_spec: { # required
402
- # database_information: { # required
403
- # database_name: "RedshiftDatabaseName", # required
404
- # cluster_identifier: "RedshiftClusterIdentifier", # required
405
- # },
406
- # select_sql_query: "RedshiftSelectSqlQuery", # required
407
- # database_credentials: { # required
408
- # username: "RedshiftDatabaseUsername", # required
409
- # password: "RedshiftDatabasePassword", # required
410
- # },
411
- # s3_staging_location: "S3Url", # required
412
- # data_rearrangement: "DataRearrangement",
413
- # data_schema: "DataSchema",
414
- # data_schema_uri: "S3Url",
415
- # },
416
- # role_arn: "RoleARN", # required
417
- # compute_statistics: false,
418
- # }
419
- #
420
341
  # @!attribute [rw] data_source_id
421
342
  # A user-supplied ID that uniquely identifies the `DataSource`.
422
343
  # @return [String]
@@ -507,21 +428,6 @@ module Aws::MachineLearning
507
428
  include Aws::Structure
508
429
  end
509
430
 
510
- # @note When making an API call, you may pass CreateDataSourceFromS3Input
511
- # data as a hash:
512
- #
513
- # {
514
- # data_source_id: "EntityId", # required
515
- # data_source_name: "EntityName",
516
- # data_spec: { # required
517
- # data_location_s3: "S3Url", # required
518
- # data_rearrangement: "DataRearrangement",
519
- # data_schema: "DataSchema",
520
- # data_schema_location_s3: "S3Url",
521
- # },
522
- # compute_statistics: false,
523
- # }
524
- #
525
431
  # @!attribute [rw] data_source_id
526
432
  # A user-supplied identifier that uniquely identifies the
527
433
  # `DataSource`.
@@ -585,16 +491,6 @@ module Aws::MachineLearning
585
491
  include Aws::Structure
586
492
  end
587
493
 
588
- # @note When making an API call, you may pass CreateEvaluationInput
589
- # data as a hash:
590
- #
591
- # {
592
- # evaluation_id: "EntityId", # required
593
- # evaluation_name: "EntityName",
594
- # ml_model_id: "EntityId", # required
595
- # evaluation_data_source_id: "EntityId", # required
596
- # }
597
- #
598
494
  # @!attribute [rw] evaluation_id
599
495
  # A user-supplied ID that uniquely identifies the `Evaluation`.
600
496
  # @return [String]
@@ -643,21 +539,6 @@ module Aws::MachineLearning
643
539
  include Aws::Structure
644
540
  end
645
541
 
646
- # @note When making an API call, you may pass CreateMLModelInput
647
- # data as a hash:
648
- #
649
- # {
650
- # ml_model_id: "EntityId", # required
651
- # ml_model_name: "EntityName",
652
- # ml_model_type: "REGRESSION", # required, accepts REGRESSION, BINARY, MULTICLASS
653
- # parameters: {
654
- # "StringType" => "StringType",
655
- # },
656
- # training_data_source_id: "EntityId", # required
657
- # recipe: "Recipe",
658
- # recipe_uri: "S3Url",
659
- # }
660
- #
661
542
  # @!attribute [rw] ml_model_id
662
543
  # A user-supplied ID that uniquely identifies the `MLModel`.
663
544
  # @return [String]
@@ -779,13 +660,6 @@ module Aws::MachineLearning
779
660
  include Aws::Structure
780
661
  end
781
662
 
782
- # @note When making an API call, you may pass CreateRealtimeEndpointInput
783
- # data as a hash:
784
- #
785
- # {
786
- # ml_model_id: "EntityId", # required
787
- # }
788
- #
789
663
  # @!attribute [rw] ml_model_id
790
664
  # The ID assigned to the `MLModel` during creation.
791
665
  # @return [String]
@@ -949,13 +823,6 @@ module Aws::MachineLearning
949
823
  include Aws::Structure
950
824
  end
951
825
 
952
- # @note When making an API call, you may pass DeleteBatchPredictionInput
953
- # data as a hash:
954
- #
955
- # {
956
- # batch_prediction_id: "EntityId", # required
957
- # }
958
- #
959
826
  # @!attribute [rw] batch_prediction_id
960
827
  # A user-supplied ID that uniquely identifies the `BatchPrediction`.
961
828
  # @return [String]
@@ -984,13 +851,6 @@ module Aws::MachineLearning
984
851
  include Aws::Structure
985
852
  end
986
853
 
987
- # @note When making an API call, you may pass DeleteDataSourceInput
988
- # data as a hash:
989
- #
990
- # {
991
- # data_source_id: "EntityId", # required
992
- # }
993
- #
994
854
  # @!attribute [rw] data_source_id
995
855
  # A user-supplied ID that uniquely identifies the `DataSource`.
996
856
  # @return [String]
@@ -1015,13 +875,6 @@ module Aws::MachineLearning
1015
875
  include Aws::Structure
1016
876
  end
1017
877
 
1018
- # @note When making an API call, you may pass DeleteEvaluationInput
1019
- # data as a hash:
1020
- #
1021
- # {
1022
- # evaluation_id: "EntityId", # required
1023
- # }
1024
- #
1025
878
  # @!attribute [rw] evaluation_id
1026
879
  # A user-supplied ID that uniquely identifies the `Evaluation` to
1027
880
  # delete.
@@ -1053,13 +906,6 @@ module Aws::MachineLearning
1053
906
  include Aws::Structure
1054
907
  end
1055
908
 
1056
- # @note When making an API call, you may pass DeleteMLModelInput
1057
- # data as a hash:
1058
- #
1059
- # {
1060
- # ml_model_id: "EntityId", # required
1061
- # }
1062
- #
1063
909
  # @!attribute [rw] ml_model_id
1064
910
  # A user-supplied ID that uniquely identifies the `MLModel`.
1065
911
  # @return [String]
@@ -1087,13 +933,6 @@ module Aws::MachineLearning
1087
933
  include Aws::Structure
1088
934
  end
1089
935
 
1090
- # @note When making an API call, you may pass DeleteRealtimeEndpointInput
1091
- # data as a hash:
1092
- #
1093
- # {
1094
- # ml_model_id: "EntityId", # required
1095
- # }
1096
- #
1097
936
  # @!attribute [rw] ml_model_id
1098
937
  # The ID assigned to the `MLModel` during creation.
1099
938
  # @return [String]
@@ -1126,15 +965,6 @@ module Aws::MachineLearning
1126
965
  include Aws::Structure
1127
966
  end
1128
967
 
1129
- # @note When making an API call, you may pass DeleteTagsInput
1130
- # data as a hash:
1131
- #
1132
- # {
1133
- # tag_keys: ["TagKey"], # required
1134
- # resource_id: "EntityId", # required
1135
- # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
1136
- # }
1137
- #
1138
968
  # @!attribute [rw] tag_keys
1139
969
  # One or more tags to delete.
1140
970
  # @return [Array<String>]
@@ -1172,23 +1002,6 @@ module Aws::MachineLearning
1172
1002
  include Aws::Structure
1173
1003
  end
1174
1004
 
1175
- # @note When making an API call, you may pass DescribeBatchPredictionsInput
1176
- # data as a hash:
1177
- #
1178
- # {
1179
- # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
1180
- # eq: "ComparatorValue",
1181
- # gt: "ComparatorValue",
1182
- # lt: "ComparatorValue",
1183
- # ge: "ComparatorValue",
1184
- # le: "ComparatorValue",
1185
- # ne: "ComparatorValue",
1186
- # prefix: "ComparatorValue",
1187
- # sort_order: "asc", # accepts asc, dsc
1188
- # next_token: "StringType",
1189
- # limit: 1,
1190
- # }
1191
- #
1192
1005
  # @!attribute [rw] filter_variable
1193
1006
  # Use one of the following variables to filter a list of
1194
1007
  # `BatchPrediction`\:
@@ -1323,23 +1136,6 @@ module Aws::MachineLearning
1323
1136
  include Aws::Structure
1324
1137
  end
1325
1138
 
1326
- # @note When making an API call, you may pass DescribeDataSourcesInput
1327
- # data as a hash:
1328
- #
1329
- # {
1330
- # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, DataLocationS3, IAMUser
1331
- # eq: "ComparatorValue",
1332
- # gt: "ComparatorValue",
1333
- # lt: "ComparatorValue",
1334
- # ge: "ComparatorValue",
1335
- # le: "ComparatorValue",
1336
- # ne: "ComparatorValue",
1337
- # prefix: "ComparatorValue",
1338
- # sort_order: "asc", # accepts asc, dsc
1339
- # next_token: "StringType",
1340
- # limit: 1,
1341
- # }
1342
- #
1343
1139
  # @!attribute [rw] filter_variable
1344
1140
  # Use one of the following variables to filter a list of
1345
1141
  # `DataSource`\:
@@ -1465,23 +1261,6 @@ module Aws::MachineLearning
1465
1261
  include Aws::Structure
1466
1262
  end
1467
1263
 
1468
- # @note When making an API call, you may pass DescribeEvaluationsInput
1469
- # data as a hash:
1470
- #
1471
- # {
1472
- # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
1473
- # eq: "ComparatorValue",
1474
- # gt: "ComparatorValue",
1475
- # lt: "ComparatorValue",
1476
- # ge: "ComparatorValue",
1477
- # le: "ComparatorValue",
1478
- # ne: "ComparatorValue",
1479
- # prefix: "ComparatorValue",
1480
- # sort_order: "asc", # accepts asc, dsc
1481
- # next_token: "StringType",
1482
- # limit: 1,
1483
- # }
1484
- #
1485
1264
  # @!attribute [rw] filter_variable
1486
1265
  # Use one of the following variable to filter a list of `Evaluation`
1487
1266
  # objects:
@@ -1613,23 +1392,6 @@ module Aws::MachineLearning
1613
1392
  include Aws::Structure
1614
1393
  end
1615
1394
 
1616
- # @note When making an API call, you may pass DescribeMLModelsInput
1617
- # data as a hash:
1618
- #
1619
- # {
1620
- # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, TrainingDataSourceId, RealtimeEndpointStatus, MLModelType, Algorithm, TrainingDataURI
1621
- # eq: "ComparatorValue",
1622
- # gt: "ComparatorValue",
1623
- # lt: "ComparatorValue",
1624
- # ge: "ComparatorValue",
1625
- # le: "ComparatorValue",
1626
- # ne: "ComparatorValue",
1627
- # prefix: "ComparatorValue",
1628
- # sort_order: "asc", # accepts asc, dsc
1629
- # next_token: "StringType",
1630
- # limit: 1,
1631
- # }
1632
- #
1633
1395
  # @!attribute [rw] filter_variable
1634
1396
  # Use one of the following variables to filter a list of `MLModel`\:
1635
1397
  #
@@ -1768,14 +1530,6 @@ module Aws::MachineLearning
1768
1530
  include Aws::Structure
1769
1531
  end
1770
1532
 
1771
- # @note When making an API call, you may pass DescribeTagsInput
1772
- # data as a hash:
1773
- #
1774
- # {
1775
- # resource_id: "EntityId", # required
1776
- # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
1777
- # }
1778
- #
1779
1533
  # @!attribute [rw] resource_id
1780
1534
  # The ID of the ML object. For example, `exampleModelId`.
1781
1535
  # @return [String]
@@ -1933,13 +1687,6 @@ module Aws::MachineLearning
1933
1687
  include Aws::Structure
1934
1688
  end
1935
1689
 
1936
- # @note When making an API call, you may pass GetBatchPredictionInput
1937
- # data as a hash:
1938
- #
1939
- # {
1940
- # batch_prediction_id: "EntityId", # required
1941
- # }
1942
- #
1943
1690
  # @!attribute [rw] batch_prediction_id
1944
1691
  # An ID assigned to the `BatchPrediction` at creation.
1945
1692
  # @return [String]
@@ -2079,14 +1826,6 @@ module Aws::MachineLearning
2079
1826
  include Aws::Structure
2080
1827
  end
2081
1828
 
2082
- # @note When making an API call, you may pass GetDataSourceInput
2083
- # data as a hash:
2084
- #
2085
- # {
2086
- # data_source_id: "EntityId", # required
2087
- # verbose: false,
2088
- # }
2089
- #
2090
1829
  # @!attribute [rw] data_source_id
2091
1830
  # The ID assigned to the `DataSource` at creation.
2092
1831
  # @return [String]
@@ -2254,13 +1993,6 @@ module Aws::MachineLearning
2254
1993
  include Aws::Structure
2255
1994
  end
2256
1995
 
2257
- # @note When making an API call, you may pass GetEvaluationInput
2258
- # data as a hash:
2259
- #
2260
- # {
2261
- # evaluation_id: "EntityId", # required
2262
- # }
2263
- #
2264
1996
  # @!attribute [rw] evaluation_id
2265
1997
  # The ID of the `Evaluation` to retrieve. The evaluation of each
2266
1998
  # `MLModel` is recorded and cataloged. The ID provides the means to
@@ -2405,14 +2137,6 @@ module Aws::MachineLearning
2405
2137
  include Aws::Structure
2406
2138
  end
2407
2139
 
2408
- # @note When making an API call, you may pass GetMLModelInput
2409
- # data as a hash:
2410
- #
2411
- # {
2412
- # ml_model_id: "EntityId", # required
2413
- # verbose: false,
2414
- # }
2415
- #
2416
2140
  # @!attribute [rw] ml_model_id
2417
2141
  # The ID assigned to the `MLModel` at creation.
2418
2142
  # @return [String]
@@ -2924,17 +2648,6 @@ module Aws::MachineLearning
2924
2648
  include Aws::Structure
2925
2649
  end
2926
2650
 
2927
- # @note When making an API call, you may pass PredictInput
2928
- # data as a hash:
2929
- #
2930
- # {
2931
- # ml_model_id: "EntityId", # required
2932
- # record: { # required
2933
- # "VariableName" => "VariableValue",
2934
- # },
2935
- # predict_endpoint: "VipURL", # required
2936
- # }
2937
- #
2938
2651
  # @!attribute [rw] ml_model_id
2939
2652
  # A unique identifier of the `MLModel`.
2940
2653
  # @return [String]
@@ -3031,29 +2744,6 @@ module Aws::MachineLearning
3031
2744
  # The data specification of an Amazon Relational Database Service
3032
2745
  # (Amazon RDS) `DataSource`.
3033
2746
  #
3034
- # @note When making an API call, you may pass RDSDataSpec
3035
- # data as a hash:
3036
- #
3037
- # {
3038
- # database_information: { # required
3039
- # instance_identifier: "RDSInstanceIdentifier", # required
3040
- # database_name: "RDSDatabaseName", # required
3041
- # },
3042
- # select_sql_query: "RDSSelectSqlQuery", # required
3043
- # database_credentials: { # required
3044
- # username: "RDSDatabaseUsername", # required
3045
- # password: "RDSDatabasePassword", # required
3046
- # },
3047
- # s3_staging_location: "S3Url", # required
3048
- # data_rearrangement: "DataRearrangement",
3049
- # data_schema: "DataSchema",
3050
- # data_schema_uri: "S3Url",
3051
- # resource_role: "EDPResourceRole", # required
3052
- # service_role: "EDPServiceRole", # required
3053
- # subnet_id: "EDPSubnetId", # required
3054
- # security_group_ids: ["EDPSecurityGroupId"], # required
3055
- # }
3056
- #
3057
2747
  # @!attribute [rw] database_information
3058
2748
  # Describes the `DatabaseName` and `InstanceIdentifier` of an Amazon
3059
2749
  # RDS database.
@@ -3266,14 +2956,6 @@ module Aws::MachineLearning
3266
2956
 
3267
2957
  # The database details of an Amazon RDS database.
3268
2958
  #
3269
- # @note When making an API call, you may pass RDSDatabase
3270
- # data as a hash:
3271
- #
3272
- # {
3273
- # instance_identifier: "RDSInstanceIdentifier", # required
3274
- # database_name: "RDSDatabaseName", # required
3275
- # }
3276
- #
3277
2959
  # @!attribute [rw] instance_identifier
3278
2960
  # The ID of an RDS DB instance.
3279
2961
  # @return [String]
@@ -3292,14 +2974,6 @@ module Aws::MachineLearning
3292
2974
  # The database credentials to connect to a database on an RDS DB
3293
2975
  # instance.
3294
2976
  #
3295
- # @note When making an API call, you may pass RDSDatabaseCredentials
3296
- # data as a hash:
3297
- #
3298
- # {
3299
- # username: "RDSDatabaseUsername", # required
3300
- # password: "RDSDatabasePassword", # required
3301
- # }
3302
- #
3303
2977
  # @!attribute [rw] username
3304
2978
  # The username to be used by Amazon ML to connect to database on an
3305
2979
  # Amazon RDS instance. The username should have sufficient permissions
@@ -3416,25 +3090,6 @@ module Aws::MachineLearning
3416
3090
 
3417
3091
  # Describes the data specification of an Amazon Redshift `DataSource`.
3418
3092
  #
3419
- # @note When making an API call, you may pass RedshiftDataSpec
3420
- # data as a hash:
3421
- #
3422
- # {
3423
- # database_information: { # required
3424
- # database_name: "RedshiftDatabaseName", # required
3425
- # cluster_identifier: "RedshiftClusterIdentifier", # required
3426
- # },
3427
- # select_sql_query: "RedshiftSelectSqlQuery", # required
3428
- # database_credentials: { # required
3429
- # username: "RedshiftDatabaseUsername", # required
3430
- # password: "RedshiftDatabasePassword", # required
3431
- # },
3432
- # s3_staging_location: "S3Url", # required
3433
- # data_rearrangement: "DataRearrangement",
3434
- # data_schema: "DataSchema",
3435
- # data_schema_uri: "S3Url",
3436
- # }
3437
- #
3438
3093
  # @!attribute [rw] database_information
3439
3094
  # Describes the `DatabaseName` and `ClusterIdentifier` for an Amazon
3440
3095
  # Redshift `DataSource`.
@@ -3607,14 +3262,6 @@ module Aws::MachineLearning
3607
3262
  # Describes the database details required to connect to an Amazon
3608
3263
  # Redshift database.
3609
3264
  #
3610
- # @note When making an API call, you may pass RedshiftDatabase
3611
- # data as a hash:
3612
- #
3613
- # {
3614
- # database_name: "RedshiftDatabaseName", # required
3615
- # cluster_identifier: "RedshiftClusterIdentifier", # required
3616
- # }
3617
- #
3618
3265
  # @!attribute [rw] database_name
3619
3266
  # The name of a database hosted on an Amazon Redshift cluster.
3620
3267
  # @return [String]
@@ -3633,14 +3280,6 @@ module Aws::MachineLearning
3633
3280
  # Describes the database credentials for connecting to a database on an
3634
3281
  # Amazon Redshift cluster.
3635
3282
  #
3636
- # @note When making an API call, you may pass RedshiftDatabaseCredentials
3637
- # data as a hash:
3638
- #
3639
- # {
3640
- # username: "RedshiftDatabaseUsername", # required
3641
- # password: "RedshiftDatabasePassword", # required
3642
- # }
3643
- #
3644
3283
  # @!attribute [rw] username
3645
3284
  # A username to be used by Amazon Machine Learning (Amazon ML)to
3646
3285
  # connect to a database on an Amazon Redshift cluster. The username
@@ -3720,16 +3359,6 @@ module Aws::MachineLearning
3720
3359
 
3721
3360
  # Describes the data specification of a `DataSource`.
3722
3361
  #
3723
- # @note When making an API call, you may pass S3DataSpec
3724
- # data as a hash:
3725
- #
3726
- # {
3727
- # data_location_s3: "S3Url", # required
3728
- # data_rearrangement: "DataRearrangement",
3729
- # data_schema: "DataSchema",
3730
- # data_schema_location_s3: "S3Url",
3731
- # }
3732
- #
3733
3362
  # @!attribute [rw] data_location_s3
3734
3363
  # The location of the data file(s) used by a `DataSource`. The URI
3735
3364
  # specifies a data file or an Amazon Simple Storage Service (Amazon
@@ -3887,14 +3516,6 @@ module Aws::MachineLearning
3887
3516
  # A custom key-value pair associated with an ML object, such as an ML
3888
3517
  # model.
3889
3518
  #
3890
- # @note When making an API call, you may pass Tag
3891
- # data as a hash:
3892
- #
3893
- # {
3894
- # key: "TagKey",
3895
- # value: "TagValue",
3896
- # }
3897
- #
3898
3519
  # @!attribute [rw] key
3899
3520
  # A unique identifier for the tag. Valid characters include Unicode
3900
3521
  # letters, digits, white space, \_, ., /, =, +, -, %, and @.
@@ -3922,14 +3543,6 @@ module Aws::MachineLearning
3922
3543
  include Aws::Structure
3923
3544
  end
3924
3545
 
3925
- # @note When making an API call, you may pass UpdateBatchPredictionInput
3926
- # data as a hash:
3927
- #
3928
- # {
3929
- # batch_prediction_id: "EntityId", # required
3930
- # batch_prediction_name: "EntityName", # required
3931
- # }
3932
- #
3933
3546
  # @!attribute [rw] batch_prediction_id
3934
3547
  # The ID assigned to the `BatchPrediction` during creation.
3935
3548
  # @return [String]
@@ -3962,14 +3575,6 @@ module Aws::MachineLearning
3962
3575
  include Aws::Structure
3963
3576
  end
3964
3577
 
3965
- # @note When making an API call, you may pass UpdateDataSourceInput
3966
- # data as a hash:
3967
- #
3968
- # {
3969
- # data_source_id: "EntityId", # required
3970
- # data_source_name: "EntityName", # required
3971
- # }
3972
- #
3973
3578
  # @!attribute [rw] data_source_id
3974
3579
  # The ID assigned to the `DataSource` during creation.
3975
3580
  # @return [String]
@@ -4003,14 +3608,6 @@ module Aws::MachineLearning
4003
3608
  include Aws::Structure
4004
3609
  end
4005
3610
 
4006
- # @note When making an API call, you may pass UpdateEvaluationInput
4007
- # data as a hash:
4008
- #
4009
- # {
4010
- # evaluation_id: "EntityId", # required
4011
- # evaluation_name: "EntityName", # required
4012
- # }
4013
- #
4014
3611
  # @!attribute [rw] evaluation_id
4015
3612
  # The ID assigned to the `Evaluation` during creation.
4016
3613
  # @return [String]
@@ -4043,15 +3640,6 @@ module Aws::MachineLearning
4043
3640
  include Aws::Structure
4044
3641
  end
4045
3642
 
4046
- # @note When making an API call, you may pass UpdateMLModelInput
4047
- # data as a hash:
4048
- #
4049
- # {
4050
- # ml_model_id: "EntityId", # required
4051
- # ml_model_name: "EntityName",
4052
- # score_threshold: 1.0,
4053
- # }
4054
- #
4055
3643
  # @!attribute [rw] ml_model_id
4056
3644
  # The ID assigned to the `MLModel` during creation.
4057
3645
  # @return [String]
@@ -13,10 +13,14 @@ require 'aws-sigv4'
13
13
 
14
14
  require_relative 'aws-sdk-machinelearning/types'
15
15
  require_relative 'aws-sdk-machinelearning/client_api'
16
+ require_relative 'aws-sdk-machinelearning/plugins/endpoints.rb'
16
17
  require_relative 'aws-sdk-machinelearning/client'
17
18
  require_relative 'aws-sdk-machinelearning/errors'
18
19
  require_relative 'aws-sdk-machinelearning/waiters'
19
20
  require_relative 'aws-sdk-machinelearning/resource'
21
+ require_relative 'aws-sdk-machinelearning/endpoint_parameters'
22
+ require_relative 'aws-sdk-machinelearning/endpoint_provider'
23
+ require_relative 'aws-sdk-machinelearning/endpoints'
20
24
  require_relative 'aws-sdk-machinelearning/customizations'
21
25
 
22
26
  # This module provides support for Amazon Machine Learning. This module is available in the
@@ -49,6 +53,6 @@ require_relative 'aws-sdk-machinelearning/customizations'
49
53
  # @!group service
50
54
  module Aws::MachineLearning
51
55
 
52
- GEM_VERSION = '1.37.0'
56
+ GEM_VERSION = '1.39.0'
53
57
 
54
58
  end