aws-sdk-machinelearning 1.27.0 → 1.31.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +20 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-machinelearning/client.rb +59 -29
- data/lib/aws-sdk-machinelearning/client_api.rb +1 -0
- data/lib/aws-sdk-machinelearning/customizations.rb +1 -1
- data/lib/aws-sdk-machinelearning/types.rb +129 -77
- data/lib/aws-sdk-machinelearning.rb +1 -1
- metadata +8 -9
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 80a09c1549132a884be41d9a095842418729e3f0ef02857bdd108ecaa73b5b4c
|
4
|
+
data.tar.gz: f9e2a0fac783a60e47e3371ed83095ad68be10e58fe105e0efa0e1fab854cad2
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 23be41df54fceb3cac233d4c936def360f541c2829dfcf9cc48b87243bda5e9c98d7ef10eba96a2f959b9c81ec0508fb64356d061154a3657bab061f9c966af6
|
7
|
+
data.tar.gz: 92b3bda88ff0726025de8ee2b5f057207c25ba4a705f0882991cf89b86771c1f4508d8fbb3e2d5d77e27141c625fe55b60b2191204a71bf2c073a6be8e89f1a7
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,26 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.31.0 (2021-09-01)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
|
8
|
+
|
9
|
+
1.30.0 (2021-07-30)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
|
13
|
+
|
14
|
+
1.29.0 (2021-07-28)
|
15
|
+
------------------
|
16
|
+
|
17
|
+
* Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
|
18
|
+
|
19
|
+
1.28.0 (2021-03-31)
|
20
|
+
------------------
|
21
|
+
|
22
|
+
* Feature - Minor documentation updates and link updates.
|
23
|
+
|
4
24
|
1.27.0 (2021-03-10)
|
5
25
|
------------------
|
6
26
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.31.0
|
@@ -429,7 +429,7 @@ module Aws::MachineLearning
|
|
429
429
|
#
|
430
430
|
#
|
431
431
|
#
|
432
|
-
# [1]:
|
432
|
+
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
|
433
433
|
#
|
434
434
|
# @return [Types::CreateBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
435
435
|
#
|
@@ -488,8 +488,10 @@ module Aws::MachineLearning
|
|
488
488
|
# @option params [required, Types::RDSDataSpec] :rds_data
|
489
489
|
# The data specification of an Amazon RDS `DataSource`\:
|
490
490
|
#
|
491
|
-
# * DatabaseInformation -
|
492
|
-
#
|
491
|
+
# * DatabaseInformation -
|
492
|
+
#
|
493
|
+
# * `DatabaseName` - The name of the Amazon RDS database.
|
494
|
+
#
|
493
495
|
# * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
|
494
496
|
# database instance.
|
495
497
|
#
|
@@ -527,13 +529,12 @@ module Aws::MachineLearning
|
|
527
529
|
# * DataRearrangement - A JSON string that represents the splitting and
|
528
530
|
# rearrangement requirements for the `Datasource`.
|
529
531
|
#
|
530
|
-
#
|
531
532
|
# Sample - `
|
532
533
|
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
|
533
534
|
#
|
534
535
|
#
|
535
536
|
#
|
536
|
-
# [1]:
|
537
|
+
# [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
537
538
|
#
|
538
539
|
# @option params [required, String] :role_arn
|
539
540
|
# The role that Amazon ML assumes on behalf of the user to create and
|
@@ -544,8 +545,9 @@ module Aws::MachineLearning
|
|
544
545
|
# The compute statistics for a `DataSource`. The statistics are
|
545
546
|
# generated from the observation data referenced by a `DataSource`.
|
546
547
|
# Amazon ML uses the statistics internally during `MLModel` training.
|
547
|
-
# This parameter must be set to `true` if the
|
548
|
-
# used for
|
548
|
+
# This parameter must be set to `true` if the `DataSource needs to be
|
549
|
+
# used for MLModel training. </p>
|
550
|
+
# `
|
549
551
|
#
|
550
552
|
# @return [Types::CreateDataSourceFromRDSOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
551
553
|
#
|
@@ -623,15 +625,13 @@ module Aws::MachineLearning
|
|
623
625
|
# with another variable or will it be split apart into word
|
624
626
|
# combinations? The recipe provides answers to these questions.
|
625
627
|
#
|
626
|
-
#
|
628
|
+
# You can't change an existing datasource, but you can copy and modify
|
627
629
|
# the settings from an existing Amazon Redshift datasource to create a
|
628
630
|
# new datasource. To do so, call `GetDataSource` for an existing
|
629
631
|
# datasource and copy the values to a `CreateDataSource` call. Change
|
630
632
|
# the settings that you want to change and make sure that all required
|
631
633
|
# fields have the appropriate values.
|
632
634
|
#
|
633
|
-
# <?oxy\_insert\_end>
|
634
|
-
#
|
635
635
|
# @option params [required, String] :data_source_id
|
636
636
|
# A user-supplied ID that uniquely identifies the `DataSource`.
|
637
637
|
#
|
@@ -641,8 +641,10 @@ module Aws::MachineLearning
|
|
641
641
|
# @option params [required, Types::RedshiftDataSpec] :data_spec
|
642
642
|
# The data specification of an Amazon Redshift `DataSource`\:
|
643
643
|
#
|
644
|
-
# * DatabaseInformation -
|
645
|
-
#
|
644
|
+
# * DatabaseInformation -
|
645
|
+
#
|
646
|
+
# * `DatabaseName` - The name of the Amazon Redshift database.
|
647
|
+
#
|
646
648
|
# * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
|
647
649
|
# cluster.
|
648
650
|
#
|
@@ -785,8 +787,9 @@ module Aws::MachineLearning
|
|
785
787
|
# The compute statistics for a `DataSource`. The statistics are
|
786
788
|
# generated from the observation data referenced by a `DataSource`.
|
787
789
|
# Amazon ML uses the statistics internally during `MLModel` training.
|
788
|
-
# This parameter must be set to `true` if the
|
789
|
-
# used for
|
790
|
+
# This parameter must be set to `true` if the `DataSource needs to be
|
791
|
+
# used for MLModel training.</p>
|
792
|
+
# `
|
790
793
|
#
|
791
794
|
# @return [Types::CreateDataSourceFromS3Output] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
792
795
|
#
|
@@ -910,7 +913,9 @@ module Aws::MachineLearning
|
|
910
913
|
#
|
911
914
|
# * Choose `REGRESSION` if the `MLModel` will be used to predict a
|
912
915
|
# numeric value.
|
916
|
+
#
|
913
917
|
# * Choose `BINARY` if the `MLModel` result has two possible values.
|
918
|
+
#
|
914
919
|
# * Choose `MULTICLASS` if the `MLModel` result has a limited number of
|
915
920
|
# values.
|
916
921
|
#
|
@@ -919,7 +924,7 @@ module Aws::MachineLearning
|
|
919
924
|
#
|
920
925
|
#
|
921
926
|
#
|
922
|
-
# [1]:
|
927
|
+
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
|
923
928
|
#
|
924
929
|
# @option params [Hash<String,String>] :parameters
|
925
930
|
# A list of the training parameters in the `MLModel`. The list is
|
@@ -941,9 +946,8 @@ module Aws::MachineLearning
|
|
941
946
|
# * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
|
942
947
|
# Shuffling the data improves a model's ability to find the optimal
|
943
948
|
# solution for a variety of data types. The valid values are `auto`
|
944
|
-
# and `none`. The default value is `none`. We
|
945
|
-
#
|
946
|
-
# recommend that you shuffle your data.<?oxy\_insert\_end>
|
949
|
+
# and `none`. The default value is `none`. We strongly recommend that
|
950
|
+
# you shuffle your data.
|
947
951
|
#
|
948
952
|
# * `sgd.l1RegularizationAmount` - The coefficient regularization L1
|
949
953
|
# norm. It controls overfitting the data by penalizing large
|
@@ -1115,9 +1119,8 @@ module Aws::MachineLearning
|
|
1115
1119
|
# `GetEvaluation` operation to verify that the status of the
|
1116
1120
|
# `Evaluation` changed to `DELETED`.
|
1117
1121
|
#
|
1118
|
-
#
|
1119
|
-
#
|
1120
|
-
# </caution>
|
1122
|
+
# **Caution:** The results of the `DeleteEvaluation` operation are
|
1123
|
+
# irreversible.
|
1121
1124
|
#
|
1122
1125
|
# @option params [required, String] :evaluation_id
|
1123
1126
|
# A user-supplied ID that uniquely identifies the `Evaluation` to
|
@@ -1256,15 +1259,21 @@ module Aws::MachineLearning
|
|
1256
1259
|
#
|
1257
1260
|
# * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
|
1258
1261
|
# creation date.
|
1262
|
+
#
|
1259
1263
|
# * `Status` - Sets the search criteria to the `BatchPrediction` status.
|
1264
|
+
#
|
1260
1265
|
# * `Name` - Sets the search criteria to the contents of the
|
1261
|
-
# `BatchPrediction
|
1266
|
+
# `BatchPrediction` <b> </b> `Name`.
|
1267
|
+
#
|
1262
1268
|
# * `IAMUser` - Sets the search criteria to the user account that
|
1263
1269
|
# invoked the `BatchPrediction` creation.
|
1270
|
+
#
|
1264
1271
|
# * `MLModelId` - Sets the search criteria to the `MLModel` used in the
|
1265
1272
|
# `BatchPrediction`.
|
1273
|
+
#
|
1266
1274
|
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
|
1267
1275
|
# in the `BatchPrediction`.
|
1276
|
+
#
|
1268
1277
|
# * `DataURI` - Sets the search criteria to the data file(s) used in the
|
1269
1278
|
# `BatchPrediction`. The URL can identify either a file or an Amazon
|
1270
1279
|
# Simple Storage Solution (Amazon S3) bucket or directory.
|
@@ -1318,6 +1327,7 @@ module Aws::MachineLearning
|
|
1318
1327
|
# list of `MLModel`s.
|
1319
1328
|
#
|
1320
1329
|
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1330
|
+
#
|
1321
1331
|
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1322
1332
|
#
|
1323
1333
|
# Results are sorted by `FilterVariable`.
|
@@ -1393,12 +1403,16 @@ module Aws::MachineLearning
|
|
1393
1403
|
#
|
1394
1404
|
# * `CreatedAt` - Sets the search criteria to `DataSource` creation
|
1395
1405
|
# dates.
|
1406
|
+
#
|
1396
1407
|
# * `Status` - Sets the search criteria to `DataSource` statuses.
|
1408
|
+
#
|
1397
1409
|
# * `Name` - Sets the search criteria to the contents of `DataSource`
|
1398
|
-
#
|
1410
|
+
# `Name`.
|
1411
|
+
#
|
1399
1412
|
# * `DataUri` - Sets the search criteria to the URI of data files used
|
1400
1413
|
# to create the `DataSource`. The URI can identify either a file or an
|
1401
1414
|
# Amazon Simple Storage Service (Amazon S3) bucket or directory.
|
1415
|
+
#
|
1402
1416
|
# * `IAMUser` - Sets the search criteria to the user account that
|
1403
1417
|
# invoked the `DataSource` creation.
|
1404
1418
|
#
|
@@ -1451,6 +1465,7 @@ module Aws::MachineLearning
|
|
1451
1465
|
# list of `DataSource`.
|
1452
1466
|
#
|
1453
1467
|
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1468
|
+
#
|
1454
1469
|
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1455
1470
|
#
|
1456
1471
|
# Results are sorted by `FilterVariable`.
|
@@ -1537,15 +1552,21 @@ module Aws::MachineLearning
|
|
1537
1552
|
#
|
1538
1553
|
# * `CreatedAt` - Sets the search criteria to the `Evaluation` creation
|
1539
1554
|
# date.
|
1555
|
+
#
|
1540
1556
|
# * `Status` - Sets the search criteria to the `Evaluation` status.
|
1557
|
+
#
|
1541
1558
|
# * `Name` - Sets the search criteria to the contents of `Evaluation`
|
1542
1559
|
# <b> </b> `Name`.
|
1560
|
+
#
|
1543
1561
|
# * `IAMUser` - Sets the search criteria to the user account that
|
1544
1562
|
# invoked an `Evaluation`.
|
1563
|
+
#
|
1545
1564
|
# * `MLModelId` - Sets the search criteria to the `MLModel` that was
|
1546
1565
|
# evaluated.
|
1566
|
+
#
|
1547
1567
|
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
|
1548
1568
|
# in `Evaluation`.
|
1569
|
+
#
|
1549
1570
|
# * `DataUri` - Sets the search criteria to the data file(s) used in
|
1550
1571
|
# `Evaluation`. The URL can identify either a file or an Amazon Simple
|
1551
1572
|
# Storage Solution (Amazon S3) bucket or directory.
|
@@ -1599,6 +1620,7 @@ module Aws::MachineLearning
|
|
1599
1620
|
# list of `Evaluation`.
|
1600
1621
|
#
|
1601
1622
|
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1623
|
+
#
|
1602
1624
|
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1603
1625
|
#
|
1604
1626
|
# Results are sorted by `FilterVariable`.
|
@@ -1671,19 +1693,27 @@ module Aws::MachineLearning
|
|
1671
1693
|
# Use one of the following variables to filter a list of `MLModel`\:
|
1672
1694
|
#
|
1673
1695
|
# * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
|
1696
|
+
#
|
1674
1697
|
# * `Status` - Sets the search criteria to `MLModel` status.
|
1675
|
-
#
|
1698
|
+
#
|
1699
|
+
# * `Name` - Sets the search criteria to the contents of `MLModel` <b>
|
1676
1700
|
# </b> `Name`.
|
1701
|
+
#
|
1677
1702
|
# * `IAMUser` - Sets the search criteria to the user account that
|
1678
1703
|
# invoked the `MLModel` creation.
|
1704
|
+
#
|
1679
1705
|
# * `TrainingDataSourceId` - Sets the search criteria to the
|
1680
1706
|
# `DataSource` used to train one or more `MLModel`.
|
1707
|
+
#
|
1681
1708
|
# * `RealtimeEndpointStatus` - Sets the search criteria to the `MLModel`
|
1682
1709
|
# real-time endpoint status.
|
1710
|
+
#
|
1683
1711
|
# * `MLModelType` - Sets the search criteria to `MLModel` type: binary,
|
1684
1712
|
# regression, or multi-class.
|
1713
|
+
#
|
1685
1714
|
# * `Algorithm` - Sets the search criteria to the algorithm that the
|
1686
1715
|
# `MLModel` uses.
|
1716
|
+
#
|
1687
1717
|
# * `TrainingDataURI` - Sets the search criteria to the data file(s)
|
1688
1718
|
# used in training a `MLModel`. The URL can identify either a file or
|
1689
1719
|
# an Amazon Simple Storage Service (Amazon S3) bucket or directory.
|
@@ -1737,6 +1767,7 @@ module Aws::MachineLearning
|
|
1737
1767
|
# list of `MLModel`.
|
1738
1768
|
#
|
1739
1769
|
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1770
|
+
#
|
1740
1771
|
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1741
1772
|
#
|
1742
1773
|
# Results are sorted by `FilterVariable`.
|
@@ -2135,10 +2166,9 @@ module Aws::MachineLearning
|
|
2135
2166
|
# Generates a prediction for the observation using the specified `ML
|
2136
2167
|
# Model`.
|
2137
2168
|
#
|
2138
|
-
#
|
2139
|
-
# parameter is populated depends on the type of model
|
2140
|
-
#
|
2141
|
-
# </note>
|
2169
|
+
# **Note:** Not all response parameters will be populated. Whether a
|
2170
|
+
# response parameter is populated depends on the type of model
|
2171
|
+
# requested.
|
2142
2172
|
#
|
2143
2173
|
# @option params [required, String] :ml_model_id
|
2144
2174
|
# A unique identifier of the `MLModel`.
|
@@ -2336,7 +2366,7 @@ module Aws::MachineLearning
|
|
2336
2366
|
params: params,
|
2337
2367
|
config: config)
|
2338
2368
|
context[:gem_name] = 'aws-sdk-machinelearning'
|
2339
|
-
context[:gem_version] = '1.
|
2369
|
+
context[:gem_version] = '1.31.0'
|
2340
2370
|
Seahorse::Client::Request.new(handlers, context)
|
2341
2371
|
end
|
2342
2372
|
|
@@ -712,6 +712,7 @@ module Aws::MachineLearning
|
|
712
712
|
"jsonVersion" => "1.1",
|
713
713
|
"protocol" => "json",
|
714
714
|
"serviceFullName" => "Amazon Machine Learning",
|
715
|
+
"serviceId" => "Machine Learning",
|
715
716
|
"signatureVersion" => "v4",
|
716
717
|
"targetPrefix" => "AmazonML_20141212",
|
717
718
|
"uid" => "machinelearning-2014-12-12",
|
@@ -2,7 +2,7 @@
|
|
2
2
|
# WARNING ABOUT GENERATED CODE
|
3
3
|
#
|
4
4
|
# This file is generated. See the contributing for info on making contributions:
|
5
|
-
# https://github.com/aws/aws-sdk-ruby/blob/
|
5
|
+
# https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
|
6
6
|
#
|
7
7
|
# WARNING ABOUT GENERATED CODE
|
8
8
|
|
@@ -115,10 +115,14 @@ module Aws::MachineLearning
|
|
115
115
|
#
|
116
116
|
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
117
117
|
# request to generate predictions for a batch of observations.
|
118
|
+
#
|
118
119
|
# * `INPROGRESS` - The process is underway.
|
120
|
+
#
|
119
121
|
# * `FAILED` - The request to perform a batch prediction did not run
|
120
122
|
# to completion. It is not usable.
|
123
|
+
#
|
121
124
|
# * `COMPLETED` - The batch prediction process completed successfully.
|
125
|
+
#
|
122
126
|
# * `DELETED` - The `BatchPrediction` is marked as deleted. It is not
|
123
127
|
# usable.
|
124
128
|
# @return [String]
|
@@ -218,7 +222,7 @@ module Aws::MachineLearning
|
|
218
222
|
#
|
219
223
|
#
|
220
224
|
#
|
221
|
-
# [1]:
|
225
|
+
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
|
222
226
|
# @return [String]
|
223
227
|
#
|
224
228
|
class CreateBatchPredictionInput < Struct.new(
|
@@ -292,8 +296,10 @@ module Aws::MachineLearning
|
|
292
296
|
# @!attribute [rw] rds_data
|
293
297
|
# The data specification of an Amazon RDS `DataSource`\:
|
294
298
|
#
|
295
|
-
# * DatabaseInformation -
|
296
|
-
#
|
299
|
+
# * DatabaseInformation -
|
300
|
+
#
|
301
|
+
# * `DatabaseName` - The name of the Amazon RDS database.
|
302
|
+
#
|
297
303
|
# * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
|
298
304
|
# database instance.
|
299
305
|
#
|
@@ -331,13 +337,12 @@ module Aws::MachineLearning
|
|
331
337
|
# * DataRearrangement - A JSON string that represents the splitting
|
332
338
|
# and rearrangement requirements for the `Datasource`.
|
333
339
|
#
|
334
|
-
#
|
335
340
|
# Sample - `
|
336
341
|
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
|
337
342
|
#
|
338
343
|
#
|
339
344
|
#
|
340
|
-
# [1]:
|
345
|
+
# [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
341
346
|
# @return [Types::RDSDataSpec]
|
342
347
|
#
|
343
348
|
# @!attribute [rw] role_arn
|
@@ -350,8 +355,9 @@ module Aws::MachineLearning
|
|
350
355
|
# The compute statistics for a `DataSource`. The statistics are
|
351
356
|
# generated from the observation data referenced by a `DataSource`.
|
352
357
|
# Amazon ML uses the statistics internally during `MLModel` training.
|
353
|
-
# This parameter must be set to `true` if the
|
354
|
-
#
|
358
|
+
# This parameter must be set to `true` if the `DataSource needs to be
|
359
|
+
# used for MLModel training. </p>
|
360
|
+
# `
|
355
361
|
# @return [Boolean]
|
356
362
|
#
|
357
363
|
class CreateDataSourceFromRDSInput < Struct.new(
|
@@ -422,8 +428,10 @@ module Aws::MachineLearning
|
|
422
428
|
# @!attribute [rw] data_spec
|
423
429
|
# The data specification of an Amazon Redshift `DataSource`\:
|
424
430
|
#
|
425
|
-
# * DatabaseInformation -
|
426
|
-
#
|
431
|
+
# * DatabaseInformation -
|
432
|
+
#
|
433
|
+
# * `DatabaseName` - The name of the Amazon Redshift database.
|
434
|
+
#
|
427
435
|
# * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
|
428
436
|
# cluster.
|
429
437
|
#
|
@@ -544,8 +552,9 @@ module Aws::MachineLearning
|
|
544
552
|
# The compute statistics for a `DataSource`. The statistics are
|
545
553
|
# generated from the observation data referenced by a `DataSource`.
|
546
554
|
# Amazon ML uses the statistics internally during `MLModel` training.
|
547
|
-
# This parameter must be set to `true` if the
|
548
|
-
#
|
555
|
+
# This parameter must be set to `true` if the `DataSource needs to be
|
556
|
+
# used for MLModel training.</p>
|
557
|
+
# `
|
549
558
|
# @return [Boolean]
|
550
559
|
#
|
551
560
|
class CreateDataSourceFromS3Input < Struct.new(
|
@@ -663,7 +672,9 @@ module Aws::MachineLearning
|
|
663
672
|
#
|
664
673
|
# * Choose `REGRESSION` if the `MLModel` will be used to predict a
|
665
674
|
# numeric value.
|
675
|
+
#
|
666
676
|
# * Choose `BINARY` if the `MLModel` result has two possible values.
|
677
|
+
#
|
667
678
|
# * Choose `MULTICLASS` if the `MLModel` result has a limited number
|
668
679
|
# of values.
|
669
680
|
#
|
@@ -672,7 +683,7 @@ module Aws::MachineLearning
|
|
672
683
|
#
|
673
684
|
#
|
674
685
|
#
|
675
|
-
# [1]:
|
686
|
+
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
|
676
687
|
# @return [String]
|
677
688
|
#
|
678
689
|
# @!attribute [rw] parameters
|
@@ -696,9 +707,8 @@ module Aws::MachineLearning
|
|
696
707
|
# * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
|
697
708
|
# Shuffling the data improves a model's ability to find the optimal
|
698
709
|
# solution for a variety of data types. The valid values are `auto`
|
699
|
-
# and `none`. The default value is `none`. We
|
700
|
-
#
|
701
|
-
# recommend that you shuffle your data.<?oxy\_insert\_end>
|
710
|
+
# and `none`. The default value is `none`. We strongly recommend
|
711
|
+
# that you shuffle your data.
|
702
712
|
#
|
703
713
|
# * `sgd.l1RegularizationAmount` - The coefficient regularization L1
|
704
714
|
# norm. It controls overfitting the data by penalizing large
|
@@ -791,11 +801,9 @@ module Aws::MachineLearning
|
|
791
801
|
# The result contains the `MLModelId` and the endpoint information for
|
792
802
|
# the `MLModel`.
|
793
803
|
#
|
794
|
-
#
|
795
|
-
# the location to send online prediction requests for the
|
796
|
-
# `MLModel`.
|
797
|
-
#
|
798
|
-
# </note>
|
804
|
+
# **Note:** The endpoint information includes the URI of the `MLModel`;
|
805
|
+
# that is, the location to send online prediction requests for the
|
806
|
+
# specified `MLModel`.
|
799
807
|
#
|
800
808
|
# @!attribute [rw] ml_model_id
|
801
809
|
# A user-supplied ID that uniquely identifies the `MLModel`. This
|
@@ -868,10 +876,14 @@ module Aws::MachineLearning
|
|
868
876
|
#
|
869
877
|
# * PENDING - Amazon Machine Learning (Amazon ML) submitted a request
|
870
878
|
# to create a `DataSource`.
|
879
|
+
#
|
871
880
|
# * INPROGRESS - The creation process is underway.
|
881
|
+
#
|
872
882
|
# * FAILED - The request to create a `DataSource` did not run to
|
873
883
|
# completion. It is not usable.
|
884
|
+
#
|
874
885
|
# * COMPLETED - The creation process completed successfully.
|
886
|
+
#
|
875
887
|
# * DELETED - The `DataSource` is marked as deleted. It is not usable.
|
876
888
|
# @return [String]
|
877
889
|
#
|
@@ -894,7 +906,7 @@ module Aws::MachineLearning
|
|
894
906
|
#
|
895
907
|
#
|
896
908
|
#
|
897
|
-
# [1]:
|
909
|
+
# [1]: https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
|
898
910
|
# @return [String]
|
899
911
|
#
|
900
912
|
# @!attribute [rw] compute_statistics
|
@@ -1183,16 +1195,22 @@ module Aws::MachineLearning
|
|
1183
1195
|
#
|
1184
1196
|
# * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
|
1185
1197
|
# creation date.
|
1198
|
+
#
|
1186
1199
|
# * `Status` - Sets the search criteria to the `BatchPrediction`
|
1187
1200
|
# status.
|
1201
|
+
#
|
1188
1202
|
# * `Name` - Sets the search criteria to the contents of the
|
1189
|
-
# `BatchPrediction
|
1203
|
+
# `BatchPrediction` <b> </b> `Name`.
|
1204
|
+
#
|
1190
1205
|
# * `IAMUser` - Sets the search criteria to the user account that
|
1191
1206
|
# invoked the `BatchPrediction` creation.
|
1207
|
+
#
|
1192
1208
|
# * `MLModelId` - Sets the search criteria to the `MLModel` used in
|
1193
1209
|
# the `BatchPrediction`.
|
1210
|
+
#
|
1194
1211
|
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
|
1195
1212
|
# in the `BatchPrediction`.
|
1213
|
+
#
|
1196
1214
|
# * `DataURI` - Sets the search criteria to the data file(s) used in
|
1197
1215
|
# the `BatchPrediction`. The URL can identify either a file or an
|
1198
1216
|
# Amazon Simple Storage Solution (Amazon S3) bucket or directory.
|
@@ -1254,6 +1272,7 @@ module Aws::MachineLearning
|
|
1254
1272
|
# list of `MLModel`s.
|
1255
1273
|
#
|
1256
1274
|
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1275
|
+
#
|
1257
1276
|
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1258
1277
|
#
|
1259
1278
|
# Results are sorted by `FilterVariable`.
|
@@ -1327,12 +1346,16 @@ module Aws::MachineLearning
|
|
1327
1346
|
#
|
1328
1347
|
# * `CreatedAt` - Sets the search criteria to `DataSource` creation
|
1329
1348
|
# dates.
|
1349
|
+
#
|
1330
1350
|
# * `Status` - Sets the search criteria to `DataSource` statuses.
|
1351
|
+
#
|
1331
1352
|
# * `Name` - Sets the search criteria to the contents of `DataSource`
|
1332
|
-
#
|
1353
|
+
# `Name`.
|
1354
|
+
#
|
1333
1355
|
# * `DataUri` - Sets the search criteria to the URI of data files used
|
1334
1356
|
# to create the `DataSource`. The URI can identify either a file or
|
1335
1357
|
# an Amazon Simple Storage Service (Amazon S3) bucket or directory.
|
1358
|
+
#
|
1336
1359
|
# * `IAMUser` - Sets the search criteria to the user account that
|
1337
1360
|
# invoked the `DataSource` creation.
|
1338
1361
|
# @return [String]
|
@@ -1393,6 +1416,7 @@ module Aws::MachineLearning
|
|
1393
1416
|
# list of `DataSource`.
|
1394
1417
|
#
|
1395
1418
|
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1419
|
+
#
|
1396
1420
|
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1397
1421
|
#
|
1398
1422
|
# Results are sorted by `FilterVariable`.
|
@@ -1464,15 +1488,21 @@ module Aws::MachineLearning
|
|
1464
1488
|
#
|
1465
1489
|
# * `CreatedAt` - Sets the search criteria to the `Evaluation`
|
1466
1490
|
# creation date.
|
1491
|
+
#
|
1467
1492
|
# * `Status` - Sets the search criteria to the `Evaluation` status.
|
1493
|
+
#
|
1468
1494
|
# * `Name` - Sets the search criteria to the contents of `Evaluation`
|
1469
1495
|
# <b> </b> `Name`.
|
1496
|
+
#
|
1470
1497
|
# * `IAMUser` - Sets the search criteria to the user account that
|
1471
1498
|
# invoked an `Evaluation`.
|
1499
|
+
#
|
1472
1500
|
# * `MLModelId` - Sets the search criteria to the `MLModel` that was
|
1473
1501
|
# evaluated.
|
1502
|
+
#
|
1474
1503
|
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
|
1475
1504
|
# in `Evaluation`.
|
1505
|
+
#
|
1476
1506
|
# * `DataUri` - Sets the search criteria to the data file(s) used in
|
1477
1507
|
# `Evaluation`. The URL can identify either a file or an Amazon
|
1478
1508
|
# Simple Storage Solution (Amazon S3) bucket or directory.
|
@@ -1534,6 +1564,7 @@ module Aws::MachineLearning
|
|
1534
1564
|
# list of `Evaluation`.
|
1535
1565
|
#
|
1536
1566
|
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1567
|
+
#
|
1537
1568
|
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1538
1569
|
#
|
1539
1570
|
# Results are sorted by `FilterVariable`.
|
@@ -1603,19 +1634,27 @@ module Aws::MachineLearning
|
|
1603
1634
|
# Use one of the following variables to filter a list of `MLModel`\:
|
1604
1635
|
#
|
1605
1636
|
# * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
|
1637
|
+
#
|
1606
1638
|
# * `Status` - Sets the search criteria to `MLModel` status.
|
1607
|
-
#
|
1639
|
+
#
|
1640
|
+
# * `Name` - Sets the search criteria to the contents of `MLModel` <b>
|
1608
1641
|
# </b> `Name`.
|
1642
|
+
#
|
1609
1643
|
# * `IAMUser` - Sets the search criteria to the user account that
|
1610
1644
|
# invoked the `MLModel` creation.
|
1645
|
+
#
|
1611
1646
|
# * `TrainingDataSourceId` - Sets the search criteria to the
|
1612
1647
|
# `DataSource` used to train one or more `MLModel`.
|
1648
|
+
#
|
1613
1649
|
# * `RealtimeEndpointStatus` - Sets the search criteria to the
|
1614
1650
|
# `MLModel` real-time endpoint status.
|
1651
|
+
#
|
1615
1652
|
# * `MLModelType` - Sets the search criteria to `MLModel` type:
|
1616
1653
|
# binary, regression, or multi-class.
|
1654
|
+
#
|
1617
1655
|
# * `Algorithm` - Sets the search criteria to the algorithm that the
|
1618
1656
|
# `MLModel` uses.
|
1657
|
+
#
|
1619
1658
|
# * `TrainingDataURI` - Sets the search criteria to the data file(s)
|
1620
1659
|
# used in training a `MLModel`. The URL can identify either a file
|
1621
1660
|
# or an Amazon Simple Storage Service (Amazon S3) bucket or
|
@@ -1678,6 +1717,7 @@ module Aws::MachineLearning
|
|
1678
1717
|
# list of `MLModel`.
|
1679
1718
|
#
|
1680
1719
|
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1720
|
+
#
|
1681
1721
|
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1682
1722
|
#
|
1683
1723
|
# Results are sorted by `FilterVariable`.
|
@@ -1821,10 +1861,14 @@ module Aws::MachineLearning
|
|
1821
1861
|
#
|
1822
1862
|
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
1823
1863
|
# request to evaluate an `MLModel`.
|
1864
|
+
#
|
1824
1865
|
# * `INPROGRESS` - The evaluation is underway.
|
1866
|
+
#
|
1825
1867
|
# * `FAILED` - The request to evaluate an `MLModel` did not run to
|
1826
1868
|
# completion. It is not usable.
|
1869
|
+
#
|
1827
1870
|
# * `COMPLETED` - The evaluation process completed successfully.
|
1871
|
+
#
|
1828
1872
|
# * `DELETED` - The `Evaluation` is marked as deleted. It is not
|
1829
1873
|
# usable.
|
1830
1874
|
# @return [String]
|
@@ -1850,7 +1894,7 @@ module Aws::MachineLearning
|
|
1850
1894
|
#
|
1851
1895
|
#
|
1852
1896
|
#
|
1853
|
-
# [1]:
|
1897
|
+
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
|
1854
1898
|
# @return [Types::PerformanceMetrics]
|
1855
1899
|
#
|
1856
1900
|
# @!attribute [rw] message
|
@@ -1956,10 +2000,14 @@ module Aws::MachineLearning
|
|
1956
2000
|
#
|
1957
2001
|
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
1958
2002
|
# request to generate batch predictions.
|
2003
|
+
#
|
1959
2004
|
# * `INPROGRESS` - The batch predictions are in progress.
|
2005
|
+
#
|
1960
2006
|
# * `FAILED` - The request to perform a batch prediction did not run
|
1961
2007
|
# to completion. It is not usable.
|
2008
|
+
#
|
1962
2009
|
# * `COMPLETED` - The batch prediction process completed successfully.
|
2010
|
+
#
|
1963
2011
|
# * `DELETED` - The `BatchPrediction` is marked as deleted. It is not
|
1964
2012
|
# usable.
|
1965
2013
|
# @return [String]
|
@@ -2111,10 +2159,14 @@ module Aws::MachineLearning
|
|
2111
2159
|
#
|
2112
2160
|
# * `PENDING` - Amazon ML submitted a request to create a
|
2113
2161
|
# `DataSource`.
|
2162
|
+
#
|
2114
2163
|
# * `INPROGRESS` - The creation process is underway.
|
2164
|
+
#
|
2115
2165
|
# * `FAILED` - The request to create a `DataSource` did not run to
|
2116
2166
|
# completion. It is not usable.
|
2167
|
+
#
|
2117
2168
|
# * `COMPLETED` - The creation process completed successfully.
|
2169
|
+
#
|
2118
2170
|
# * `DELETED` - The `DataSource` is marked as deleted. It is not
|
2119
2171
|
# usable.
|
2120
2172
|
# @return [String]
|
@@ -2143,7 +2195,7 @@ module Aws::MachineLearning
|
|
2143
2195
|
#
|
2144
2196
|
#
|
2145
2197
|
#
|
2146
|
-
# [1]:
|
2198
|
+
# [1]: https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
|
2147
2199
|
# @return [String]
|
2148
2200
|
#
|
2149
2201
|
# @!attribute [rw] compute_statistics
|
@@ -2174,9 +2226,7 @@ module Aws::MachineLearning
|
|
2174
2226
|
# @!attribute [rw] data_source_schema
|
2175
2227
|
# The schema used by all of the data files of this `DataSource`.
|
2176
2228
|
#
|
2177
|
-
#
|
2178
|
-
#
|
2179
|
-
# </note>
|
2229
|
+
# **Note:** This parameter is provided as part of the verbose format.
|
2180
2230
|
# @return [String]
|
2181
2231
|
#
|
2182
2232
|
class GetDataSourceOutput < Struct.new(
|
@@ -2270,10 +2320,14 @@ module Aws::MachineLearning
|
|
2270
2320
|
#
|
2271
2321
|
# * `PENDING` - Amazon Machine Language (Amazon ML) submitted a
|
2272
2322
|
# request to evaluate an `MLModel`.
|
2323
|
+
#
|
2273
2324
|
# * `INPROGRESS` - The evaluation is underway.
|
2325
|
+
#
|
2274
2326
|
# * `FAILED` - The request to evaluate an `MLModel` did not run to
|
2275
2327
|
# completion. It is not usable.
|
2328
|
+
#
|
2276
2329
|
# * `COMPLETED` - The evaluation process completed successfully.
|
2330
|
+
#
|
2277
2331
|
# * `DELETED` - The `Evaluation` is marked as deleted. It is not
|
2278
2332
|
# usable.
|
2279
2333
|
# @return [String]
|
@@ -2299,7 +2353,7 @@ module Aws::MachineLearning
|
|
2299
2353
|
#
|
2300
2354
|
#
|
2301
2355
|
#
|
2302
|
-
# [1]:
|
2356
|
+
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
|
2303
2357
|
# @return [Types::PerformanceMetrics]
|
2304
2358
|
#
|
2305
2359
|
# @!attribute [rw] log_uri
|
@@ -2382,9 +2436,7 @@ module Aws::MachineLearning
|
|
2382
2436
|
# detailed information about a `MLModel`.
|
2383
2437
|
#
|
2384
2438
|
# @!attribute [rw] ml_model_id
|
2385
|
-
# The MLModel ID
|
2386
|
-
# timestamp="20160328T151251-0700">,<?oxy\_insert\_end> which is
|
2387
|
-
# same as the `MLModelId` in the request.
|
2439
|
+
# The MLModel ID, which is same as the `MLModelId` in the request.
|
2388
2440
|
# @return [String]
|
2389
2441
|
#
|
2390
2442
|
# @!attribute [rw] training_data_source_id
|
@@ -2417,10 +2469,14 @@ module Aws::MachineLearning
|
|
2417
2469
|
#
|
2418
2470
|
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
2419
2471
|
# request to describe a `MLModel`.
|
2472
|
+
#
|
2420
2473
|
# * `INPROGRESS` - The request is processing.
|
2474
|
+
#
|
2421
2475
|
# * `FAILED` - The request did not run to completion. The ML model
|
2422
2476
|
# isn't usable.
|
2477
|
+
#
|
2423
2478
|
# * `COMPLETED` - The request completed successfully.
|
2479
|
+
#
|
2424
2480
|
# * `DELETED` - The `MLModel` is marked as deleted. It isn't usable.
|
2425
2481
|
# @return [String]
|
2426
2482
|
#
|
@@ -2488,18 +2544,18 @@ module Aws::MachineLearning
|
|
2488
2544
|
#
|
2489
2545
|
# * REGRESSION -- Produces a numeric result. For example, "What price
|
2490
2546
|
# should a house be listed at?"
|
2547
|
+
#
|
2491
2548
|
# * BINARY -- Produces one of two possible results. For example, "Is
|
2492
2549
|
# this an e-commerce website?"
|
2550
|
+
#
|
2493
2551
|
# * MULTICLASS -- Produces one of several possible results. For
|
2494
2552
|
# example, "Is this a HIGH, LOW or MEDIUM risk trade?"
|
2495
2553
|
# @return [String]
|
2496
2554
|
#
|
2497
2555
|
# @!attribute [rw] score_threshold
|
2498
|
-
# The scoring threshold is used in binary classification
|
2499
|
-
#
|
2500
|
-
#
|
2501
|
-
# marks the boundary between a positive prediction and a negative
|
2502
|
-
# prediction.
|
2556
|
+
# The scoring threshold is used in binary classification `MLModel`
|
2557
|
+
# models. It marks the boundary between a positive prediction and a
|
2558
|
+
# negative prediction.
|
2503
2559
|
#
|
2504
2560
|
# Output values greater than or equal to the threshold receive a
|
2505
2561
|
# positive result from the MLModel, such as `true`. Output values less
|
@@ -2547,18 +2603,14 @@ module Aws::MachineLearning
|
|
2547
2603
|
# training, and manipulations to perform on the observation data
|
2548
2604
|
# during training.
|
2549
2605
|
#
|
2550
|
-
#
|
2551
|
-
#
|
2552
|
-
# </note>
|
2606
|
+
# **Note:** This parameter is provided as part of the verbose format.
|
2553
2607
|
# @return [String]
|
2554
2608
|
#
|
2555
2609
|
# @!attribute [rw] schema
|
2556
2610
|
# The schema used by all of the data files referenced by the
|
2557
2611
|
# `DataSource`.
|
2558
2612
|
#
|
2559
|
-
#
|
2560
|
-
#
|
2561
|
-
# </note>
|
2613
|
+
# **Note:** This parameter is provided as part of the verbose format.
|
2562
2614
|
# @return [String]
|
2563
2615
|
#
|
2564
2616
|
class GetMLModelOutput < Struct.new(
|
@@ -2700,10 +2752,14 @@ module Aws::MachineLearning
|
|
2700
2752
|
#
|
2701
2753
|
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
2702
2754
|
# request to create an `MLModel`.
|
2755
|
+
#
|
2703
2756
|
# * `INPROGRESS` - The creation process is underway.
|
2757
|
+
#
|
2704
2758
|
# * `FAILED` - The request to create an `MLModel` didn't run to
|
2705
2759
|
# completion. The model isn't usable.
|
2760
|
+
#
|
2706
2761
|
# * `COMPLETED` - The creation process completed successfully.
|
2762
|
+
#
|
2707
2763
|
# * `DELETED` - The `MLModel` is marked as deleted. It isn't usable.
|
2708
2764
|
# @return [String]
|
2709
2765
|
#
|
@@ -2770,6 +2826,8 @@ module Aws::MachineLearning
|
|
2770
2826
|
#
|
2771
2827
|
# * `SGD` -- Stochastic gradient descent. The goal of `SGD` is to
|
2772
2828
|
# minimize the gradient of the loss function.
|
2829
|
+
#
|
2830
|
+
# ^
|
2773
2831
|
# @return [String]
|
2774
2832
|
#
|
2775
2833
|
# @!attribute [rw] ml_model_type
|
@@ -2778,14 +2836,12 @@ module Aws::MachineLearning
|
|
2778
2836
|
#
|
2779
2837
|
# * `REGRESSION` - Produces a numeric result. For example, "What
|
2780
2838
|
# price should a house be listed at?"
|
2839
|
+
#
|
2781
2840
|
# * `BINARY` - Produces one of two possible results. For example, "Is
|
2782
2841
|
# this a child-friendly web site?".
|
2842
|
+
#
|
2783
2843
|
# * `MULTICLASS` - Produces one of several possible results. For
|
2784
|
-
# example, "Is this a HIGH-, LOW-, or MEDIUM
|
2785
|
-
# author="annbech" timestamp="20160328T175050-0700" content="
|
2786
|
-
# "><?oxy\_insert\_start author="annbech"
|
2787
|
-
# timestamp="20160328T175050-0700">-<?oxy\_insert\_end>risk
|
2788
|
-
# trade?".
|
2844
|
+
# example, "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
|
2789
2845
|
# @return [String]
|
2790
2846
|
#
|
2791
2847
|
# @!attribute [rw] score_threshold
|
@@ -2857,7 +2913,7 @@ module Aws::MachineLearning
|
|
2857
2913
|
#
|
2858
2914
|
#
|
2859
2915
|
#
|
2860
|
-
# [1]:
|
2916
|
+
# [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
|
2861
2917
|
#
|
2862
2918
|
# @!attribute [rw] properties
|
2863
2919
|
# @return [Hash<String,String>]
|
@@ -3028,21 +3084,21 @@ module Aws::MachineLearning
|
|
3028
3084
|
# There are multiple parameters that control what data is used to
|
3029
3085
|
# create a datasource:
|
3030
3086
|
#
|
3031
|
-
# *
|
3087
|
+
# * <b> <code>percentBegin</code> </b>
|
3032
3088
|
#
|
3033
3089
|
# Use `percentBegin` to indicate the beginning of the range of the
|
3034
3090
|
# data used to create the Datasource. If you do not include
|
3035
3091
|
# `percentBegin` and `percentEnd`, Amazon ML includes all of the
|
3036
3092
|
# data when creating the datasource.
|
3037
3093
|
#
|
3038
|
-
# *
|
3094
|
+
# * <b> <code>percentEnd</code> </b>
|
3039
3095
|
#
|
3040
3096
|
# Use `percentEnd` to indicate the end of the range of the data used
|
3041
3097
|
# to create the Datasource. If you do not include `percentBegin` and
|
3042
3098
|
# `percentEnd`, Amazon ML includes all of the data when creating the
|
3043
3099
|
# datasource.
|
3044
3100
|
#
|
3045
|
-
# *
|
3101
|
+
# * <b> <code>complement</code> </b>
|
3046
3102
|
#
|
3047
3103
|
# The `complement` parameter instructs Amazon ML to use the data
|
3048
3104
|
# that is not included in the range of `percentBegin` to
|
@@ -3063,7 +3119,7 @@ module Aws::MachineLearning
|
|
3063
3119
|
# Datasource for training: `\{"splitting":\{"percentBegin":0,
|
3064
3120
|
# "percentEnd":25, "complement":"true"\}\}`
|
3065
3121
|
#
|
3066
|
-
# *
|
3122
|
+
# * <b> <code>strategy</code> </b>
|
3067
3123
|
#
|
3068
3124
|
# To change how Amazon ML splits the data for a datasource, use the
|
3069
3125
|
# `strategy` parameter.
|
@@ -3150,8 +3206,6 @@ module Aws::MachineLearning
|
|
3150
3206
|
# "WEIGHTED\_STRING\_SEQUENCE" \\} \],
|
3151
3207
|
#
|
3152
3208
|
# "excludedVariableNames": \[ "F6" \] \\}
|
3153
|
-
#
|
3154
|
-
# <?oxy\_insert\_end>
|
3155
3209
|
# @return [String]
|
3156
3210
|
#
|
3157
3211
|
# @!attribute [rw] data_schema_uri
|
@@ -3166,7 +3220,7 @@ module Aws::MachineLearning
|
|
3166
3220
|
#
|
3167
3221
|
#
|
3168
3222
|
#
|
3169
|
-
# [1]:
|
3223
|
+
# [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
3170
3224
|
# @return [String]
|
3171
3225
|
#
|
3172
3226
|
# @!attribute [rw] service_role
|
@@ -3177,7 +3231,7 @@ module Aws::MachineLearning
|
|
3177
3231
|
#
|
3178
3232
|
#
|
3179
3233
|
#
|
3180
|
-
# [1]:
|
3234
|
+
# [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
3181
3235
|
# @return [String]
|
3182
3236
|
#
|
3183
3237
|
# @!attribute [rw] subnet_id
|
@@ -3289,7 +3343,7 @@ module Aws::MachineLearning
|
|
3289
3343
|
#
|
3290
3344
|
#
|
3291
3345
|
#
|
3292
|
-
# [1]:
|
3346
|
+
# [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
3293
3347
|
# @return [String]
|
3294
3348
|
#
|
3295
3349
|
# @!attribute [rw] service_role
|
@@ -3300,7 +3354,7 @@ module Aws::MachineLearning
|
|
3300
3354
|
#
|
3301
3355
|
#
|
3302
3356
|
#
|
3303
|
-
# [1]:
|
3357
|
+
# [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
3304
3358
|
# @return [String]
|
3305
3359
|
#
|
3306
3360
|
# @!attribute [rw] data_pipeline_id
|
@@ -3336,10 +3390,8 @@ module Aws::MachineLearning
|
|
3336
3390
|
# The URI that specifies where to send real-time prediction requests
|
3337
3391
|
# for the `MLModel`.
|
3338
3392
|
#
|
3339
|
-
#
|
3340
|
-
# before using this URI.
|
3341
|
-
#
|
3342
|
-
# </note>
|
3393
|
+
# **Note:** The application must wait until the real-time endpoint is
|
3394
|
+
# ready before using this URI.
|
3343
3395
|
# @return [String]
|
3344
3396
|
#
|
3345
3397
|
# @!attribute [rw] endpoint_status
|
@@ -3347,7 +3399,9 @@ module Aws::MachineLearning
|
|
3347
3399
|
# element can have one of the following values:
|
3348
3400
|
#
|
3349
3401
|
# * `NONE` - Endpoint does not exist or was previously deleted.
|
3402
|
+
#
|
3350
3403
|
# * `READY` - Endpoint is ready to be used for real-time predictions.
|
3404
|
+
#
|
3351
3405
|
# * `UPDATING` - Updating/creating the endpoint.
|
3352
3406
|
# @return [String]
|
3353
3407
|
#
|
@@ -3410,21 +3464,21 @@ module Aws::MachineLearning
|
|
3410
3464
|
# There are multiple parameters that control what data is used to
|
3411
3465
|
# create a datasource:
|
3412
3466
|
#
|
3413
|
-
# *
|
3467
|
+
# * <b> <code>percentBegin</code> </b>
|
3414
3468
|
#
|
3415
3469
|
# Use `percentBegin` to indicate the beginning of the range of the
|
3416
3470
|
# data used to create the Datasource. If you do not include
|
3417
3471
|
# `percentBegin` and `percentEnd`, Amazon ML includes all of the
|
3418
3472
|
# data when creating the datasource.
|
3419
3473
|
#
|
3420
|
-
# *
|
3474
|
+
# * <b> <code>percentEnd</code> </b>
|
3421
3475
|
#
|
3422
3476
|
# Use `percentEnd` to indicate the end of the range of the data used
|
3423
3477
|
# to create the Datasource. If you do not include `percentBegin` and
|
3424
3478
|
# `percentEnd`, Amazon ML includes all of the data when creating the
|
3425
3479
|
# datasource.
|
3426
3480
|
#
|
3427
|
-
# *
|
3481
|
+
# * <b> <code>complement</code> </b>
|
3428
3482
|
#
|
3429
3483
|
# The `complement` parameter instructs Amazon ML to use the data
|
3430
3484
|
# that is not included in the range of `percentBegin` to
|
@@ -3445,7 +3499,7 @@ module Aws::MachineLearning
|
|
3445
3499
|
# Datasource for training: `\{"splitting":\{"percentBegin":0,
|
3446
3500
|
# "percentEnd":25, "complement":"true"\}\}`
|
3447
3501
|
#
|
3448
|
-
# *
|
3502
|
+
# * <b> <code>strategy</code> </b>
|
3449
3503
|
#
|
3450
3504
|
# To change how Amazon ML splits the data for a datasource, use the
|
3451
3505
|
# `strategy` parameter.
|
@@ -3596,7 +3650,7 @@ module Aws::MachineLearning
|
|
3596
3650
|
#
|
3597
3651
|
#
|
3598
3652
|
#
|
3599
|
-
# [1]:
|
3653
|
+
# [1]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
|
3600
3654
|
# @return [String]
|
3601
3655
|
#
|
3602
3656
|
# @!attribute [rw] password
|
@@ -3607,7 +3661,7 @@ module Aws::MachineLearning
|
|
3607
3661
|
#
|
3608
3662
|
#
|
3609
3663
|
#
|
3610
|
-
# [1]:
|
3664
|
+
# [1]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
|
3611
3665
|
# @return [String]
|
3612
3666
|
#
|
3613
3667
|
class RedshiftDatabaseCredentials < Struct.new(
|
@@ -3633,7 +3687,7 @@ module Aws::MachineLearning
|
|
3633
3687
|
#
|
3634
3688
|
#
|
3635
3689
|
#
|
3636
|
-
# [1]:
|
3690
|
+
# [1]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
|
3637
3691
|
# @return [String]
|
3638
3692
|
#
|
3639
3693
|
# @!attribute [rw] select_sql_query
|
@@ -3691,21 +3745,21 @@ module Aws::MachineLearning
|
|
3691
3745
|
# There are multiple parameters that control what data is used to
|
3692
3746
|
# create a datasource:
|
3693
3747
|
#
|
3694
|
-
# *
|
3748
|
+
# * <b> <code>percentBegin</code> </b>
|
3695
3749
|
#
|
3696
3750
|
# Use `percentBegin` to indicate the beginning of the range of the
|
3697
3751
|
# data used to create the Datasource. If you do not include
|
3698
3752
|
# `percentBegin` and `percentEnd`, Amazon ML includes all of the
|
3699
3753
|
# data when creating the datasource.
|
3700
3754
|
#
|
3701
|
-
# *
|
3755
|
+
# * <b> <code>percentEnd</code> </b>
|
3702
3756
|
#
|
3703
3757
|
# Use `percentEnd` to indicate the end of the range of the data used
|
3704
3758
|
# to create the Datasource. If you do not include `percentBegin` and
|
3705
3759
|
# `percentEnd`, Amazon ML includes all of the data when creating the
|
3706
3760
|
# datasource.
|
3707
3761
|
#
|
3708
|
-
# *
|
3762
|
+
# * <b> <code>complement</code> </b>
|
3709
3763
|
#
|
3710
3764
|
# The `complement` parameter instructs Amazon ML to use the data
|
3711
3765
|
# that is not included in the range of `percentBegin` to
|
@@ -3726,7 +3780,7 @@ module Aws::MachineLearning
|
|
3726
3780
|
# Datasource for training: `\{"splitting":\{"percentBegin":0,
|
3727
3781
|
# "percentEnd":25, "complement":"true"\}\}`
|
3728
3782
|
#
|
3729
|
-
# *
|
3783
|
+
# * <b> <code>strategy</code> </b>
|
3730
3784
|
#
|
3731
3785
|
# To change how Amazon ML splits the data for a datasource, use the
|
3732
3786
|
# `strategy` parameter.
|
@@ -3814,8 +3868,6 @@ module Aws::MachineLearning
|
|
3814
3868
|
# "WEIGHTED\_STRING\_SEQUENCE" \\} \],
|
3815
3869
|
#
|
3816
3870
|
# "excludedVariableNames": \[ "F6" \] \\}
|
3817
|
-
#
|
3818
|
-
# <?oxy\_insert\_end>
|
3819
3871
|
# @return [String]
|
3820
3872
|
#
|
3821
3873
|
# @!attribute [rw] data_schema_location_s3
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-machinelearning
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.31.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-
|
11
|
+
date: 2021-09-01 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|
@@ -19,7 +19,7 @@ dependencies:
|
|
19
19
|
version: '3'
|
20
20
|
- - ">="
|
21
21
|
- !ruby/object:Gem::Version
|
22
|
-
version: 3.
|
22
|
+
version: 3.120.0
|
23
23
|
type: :runtime
|
24
24
|
prerelease: false
|
25
25
|
version_requirements: !ruby/object:Gem::Requirement
|
@@ -29,7 +29,7 @@ dependencies:
|
|
29
29
|
version: '3'
|
30
30
|
- - ">="
|
31
31
|
- !ruby/object:Gem::Version
|
32
|
-
version: 3.
|
32
|
+
version: 3.120.0
|
33
33
|
- !ruby/object:Gem::Dependency
|
34
34
|
name: aws-sigv4
|
35
35
|
requirement: !ruby/object:Gem::Requirement
|
@@ -68,8 +68,8 @@ homepage: https://github.com/aws/aws-sdk-ruby
|
|
68
68
|
licenses:
|
69
69
|
- Apache-2.0
|
70
70
|
metadata:
|
71
|
-
source_code_uri: https://github.com/aws/aws-sdk-ruby/tree/
|
72
|
-
changelog_uri: https://github.com/aws/aws-sdk-ruby/tree/
|
71
|
+
source_code_uri: https://github.com/aws/aws-sdk-ruby/tree/version-3/gems/aws-sdk-machinelearning
|
72
|
+
changelog_uri: https://github.com/aws/aws-sdk-ruby/tree/version-3/gems/aws-sdk-machinelearning/CHANGELOG.md
|
73
73
|
post_install_message:
|
74
74
|
rdoc_options: []
|
75
75
|
require_paths:
|
@@ -78,15 +78,14 @@ required_ruby_version: !ruby/object:Gem::Requirement
|
|
78
78
|
requirements:
|
79
79
|
- - ">="
|
80
80
|
- !ruby/object:Gem::Version
|
81
|
-
version: '
|
81
|
+
version: '2.3'
|
82
82
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
83
83
|
requirements:
|
84
84
|
- - ">="
|
85
85
|
- !ruby/object:Gem::Version
|
86
86
|
version: '0'
|
87
87
|
requirements: []
|
88
|
-
|
89
|
-
rubygems_version: 2.7.6.2
|
88
|
+
rubygems_version: 3.1.6
|
90
89
|
signing_key:
|
91
90
|
specification_version: 4
|
92
91
|
summary: AWS SDK for Ruby - Amazon Machine Learning
|