aws-sdk-machinelearning 1.25.0 → 1.29.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -429,7 +429,7 @@ module Aws::MachineLearning
429
429
  #
430
430
  #
431
431
  #
432
- # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
432
+ # [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
433
433
  #
434
434
  # @return [Types::CreateBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
435
435
  #
@@ -488,8 +488,10 @@ module Aws::MachineLearning
488
488
  # @option params [required, Types::RDSDataSpec] :rds_data
489
489
  # The data specification of an Amazon RDS `DataSource`\:
490
490
  #
491
- # * DatabaseInformation - * `DatabaseName` - The name of the Amazon RDS
492
- # database.
491
+ # * DatabaseInformation -
492
+ #
493
+ # * `DatabaseName` - The name of the Amazon RDS database.
494
+ #
493
495
  # * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
494
496
  # database instance.
495
497
  #
@@ -527,13 +529,12 @@ module Aws::MachineLearning
527
529
  # * DataRearrangement - A JSON string that represents the splitting and
528
530
  # rearrangement requirements for the `Datasource`.
529
531
  #
530
- #
531
532
  # Sample - `
532
533
  # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
533
534
  #
534
535
  #
535
536
  #
536
- # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
537
+ # [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
537
538
  #
538
539
  # @option params [required, String] :role_arn
539
540
  # The role that Amazon ML assumes on behalf of the user to create and
@@ -544,8 +545,9 @@ module Aws::MachineLearning
544
545
  # The compute statistics for a `DataSource`. The statistics are
545
546
  # generated from the observation data referenced by a `DataSource`.
546
547
  # Amazon ML uses the statistics internally during `MLModel` training.
547
- # This parameter must be set to `true` if the ``DataSource`` needs to be
548
- # used for `MLModel` training.
548
+ # This parameter must be set to `true` if the `DataSource needs to be
549
+ # used for MLModel training. </p>
550
+ # `
549
551
  #
550
552
  # @return [Types::CreateDataSourceFromRDSOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
551
553
  #
@@ -623,15 +625,13 @@ module Aws::MachineLearning
623
625
  # with another variable or will it be split apart into word
624
626
  # combinations? The recipe provides answers to these questions.
625
627
  #
626
- # <?oxy\_insert\_start author="laurama" timestamp="20160406T153842-0700">You can't change an existing datasource, but you can copy and modify
628
+ # You can't change an existing datasource, but you can copy and modify
627
629
  # the settings from an existing Amazon Redshift datasource to create a
628
630
  # new datasource. To do so, call `GetDataSource` for an existing
629
631
  # datasource and copy the values to a `CreateDataSource` call. Change
630
632
  # the settings that you want to change and make sure that all required
631
633
  # fields have the appropriate values.
632
634
  #
633
- # <?oxy\_insert\_end>
634
- #
635
635
  # @option params [required, String] :data_source_id
636
636
  # A user-supplied ID that uniquely identifies the `DataSource`.
637
637
  #
@@ -641,8 +641,10 @@ module Aws::MachineLearning
641
641
  # @option params [required, Types::RedshiftDataSpec] :data_spec
642
642
  # The data specification of an Amazon Redshift `DataSource`\:
643
643
  #
644
- # * DatabaseInformation - * `DatabaseName` - The name of the Amazon
645
- # Redshift database.
644
+ # * DatabaseInformation -
645
+ #
646
+ # * `DatabaseName` - The name of the Amazon Redshift database.
647
+ #
646
648
  # * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
647
649
  # cluster.
648
650
  #
@@ -785,8 +787,9 @@ module Aws::MachineLearning
785
787
  # The compute statistics for a `DataSource`. The statistics are
786
788
  # generated from the observation data referenced by a `DataSource`.
787
789
  # Amazon ML uses the statistics internally during `MLModel` training.
788
- # This parameter must be set to `true` if the ``DataSource`` needs to be
789
- # used for `MLModel` training.
790
+ # This parameter must be set to `true` if the `DataSource needs to be
791
+ # used for MLModel training.</p>
792
+ # `
790
793
  #
791
794
  # @return [Types::CreateDataSourceFromS3Output] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
792
795
  #
@@ -910,7 +913,9 @@ module Aws::MachineLearning
910
913
  #
911
914
  # * Choose `REGRESSION` if the `MLModel` will be used to predict a
912
915
  # numeric value.
916
+ #
913
917
  # * Choose `BINARY` if the `MLModel` result has two possible values.
918
+ #
914
919
  # * Choose `MULTICLASS` if the `MLModel` result has a limited number of
915
920
  # values.
916
921
  #
@@ -919,7 +924,7 @@ module Aws::MachineLearning
919
924
  #
920
925
  #
921
926
  #
922
- # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
927
+ # [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
923
928
  #
924
929
  # @option params [Hash<String,String>] :parameters
925
930
  # A list of the training parameters in the `MLModel`. The list is
@@ -941,9 +946,8 @@ module Aws::MachineLearning
941
946
  # * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
942
947
  # Shuffling the data improves a model's ability to find the optimal
943
948
  # solution for a variety of data types. The valid values are `auto`
944
- # and `none`. The default value is `none`. We <?oxy\_insert\_start
945
- # author="laurama" timestamp="20160329T131121-0700">strongly
946
- # recommend that you shuffle your data.<?oxy\_insert\_end>
949
+ # and `none`. The default value is `none`. We strongly recommend that
950
+ # you shuffle your data.
947
951
  #
948
952
  # * `sgd.l1RegularizationAmount` - The coefficient regularization L1
949
953
  # norm. It controls overfitting the data by penalizing large
@@ -1115,9 +1119,8 @@ module Aws::MachineLearning
1115
1119
  # `GetEvaluation` operation to verify that the status of the
1116
1120
  # `Evaluation` changed to `DELETED`.
1117
1121
  #
1118
- # <caution markdown="1"><title>Caution</title> The results of the `DeleteEvaluation` operation are irreversible.
1119
- #
1120
- # </caution>
1122
+ # **Caution:** The results of the `DeleteEvaluation` operation are
1123
+ # irreversible.
1121
1124
  #
1122
1125
  # @option params [required, String] :evaluation_id
1123
1126
  # A user-supplied ID that uniquely identifies the `Evaluation` to
@@ -1256,15 +1259,21 @@ module Aws::MachineLearning
1256
1259
  #
1257
1260
  # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1258
1261
  # creation date.
1262
+ #
1259
1263
  # * `Status` - Sets the search criteria to the `BatchPrediction` status.
1264
+ #
1260
1265
  # * `Name` - Sets the search criteria to the contents of the
1261
- # `BatchPrediction`<b> </b> `Name`.
1266
+ # `BatchPrediction` <b> </b> `Name`.
1267
+ #
1262
1268
  # * `IAMUser` - Sets the search criteria to the user account that
1263
1269
  # invoked the `BatchPrediction` creation.
1270
+ #
1264
1271
  # * `MLModelId` - Sets the search criteria to the `MLModel` used in the
1265
1272
  # `BatchPrediction`.
1273
+ #
1266
1274
  # * `DataSourceId` - Sets the search criteria to the `DataSource` used
1267
1275
  # in the `BatchPrediction`.
1276
+ #
1268
1277
  # * `DataURI` - Sets the search criteria to the data file(s) used in the
1269
1278
  # `BatchPrediction`. The URL can identify either a file or an Amazon
1270
1279
  # Simple Storage Solution (Amazon S3) bucket or directory.
@@ -1318,6 +1327,7 @@ module Aws::MachineLearning
1318
1327
  # list of `MLModel`s.
1319
1328
  #
1320
1329
  # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1330
+ #
1321
1331
  # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1322
1332
  #
1323
1333
  # Results are sorted by `FilterVariable`.
@@ -1393,12 +1403,16 @@ module Aws::MachineLearning
1393
1403
  #
1394
1404
  # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1395
1405
  # dates.
1406
+ #
1396
1407
  # * `Status` - Sets the search criteria to `DataSource` statuses.
1408
+ #
1397
1409
  # * `Name` - Sets the search criteria to the contents of `DataSource`
1398
- # <b> </b> `Name`.
1410
+ # `Name`.
1411
+ #
1399
1412
  # * `DataUri` - Sets the search criteria to the URI of data files used
1400
1413
  # to create the `DataSource`. The URI can identify either a file or an
1401
1414
  # Amazon Simple Storage Service (Amazon S3) bucket or directory.
1415
+ #
1402
1416
  # * `IAMUser` - Sets the search criteria to the user account that
1403
1417
  # invoked the `DataSource` creation.
1404
1418
  #
@@ -1451,6 +1465,7 @@ module Aws::MachineLearning
1451
1465
  # list of `DataSource`.
1452
1466
  #
1453
1467
  # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1468
+ #
1454
1469
  # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1455
1470
  #
1456
1471
  # Results are sorted by `FilterVariable`.
@@ -1537,15 +1552,21 @@ module Aws::MachineLearning
1537
1552
  #
1538
1553
  # * `CreatedAt` - Sets the search criteria to the `Evaluation` creation
1539
1554
  # date.
1555
+ #
1540
1556
  # * `Status` - Sets the search criteria to the `Evaluation` status.
1557
+ #
1541
1558
  # * `Name` - Sets the search criteria to the contents of `Evaluation`
1542
1559
  # <b> </b> `Name`.
1560
+ #
1543
1561
  # * `IAMUser` - Sets the search criteria to the user account that
1544
1562
  # invoked an `Evaluation`.
1563
+ #
1545
1564
  # * `MLModelId` - Sets the search criteria to the `MLModel` that was
1546
1565
  # evaluated.
1566
+ #
1547
1567
  # * `DataSourceId` - Sets the search criteria to the `DataSource` used
1548
1568
  # in `Evaluation`.
1569
+ #
1549
1570
  # * `DataUri` - Sets the search criteria to the data file(s) used in
1550
1571
  # `Evaluation`. The URL can identify either a file or an Amazon Simple
1551
1572
  # Storage Solution (Amazon S3) bucket or directory.
@@ -1599,6 +1620,7 @@ module Aws::MachineLearning
1599
1620
  # list of `Evaluation`.
1600
1621
  #
1601
1622
  # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1623
+ #
1602
1624
  # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1603
1625
  #
1604
1626
  # Results are sorted by `FilterVariable`.
@@ -1671,19 +1693,27 @@ module Aws::MachineLearning
1671
1693
  # Use one of the following variables to filter a list of `MLModel`\:
1672
1694
  #
1673
1695
  # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1696
+ #
1674
1697
  # * `Status` - Sets the search criteria to `MLModel` status.
1675
- # * `Name` - Sets the search criteria to the contents of `MLModel`<b>
1698
+ #
1699
+ # * `Name` - Sets the search criteria to the contents of `MLModel` <b>
1676
1700
  # </b> `Name`.
1701
+ #
1677
1702
  # * `IAMUser` - Sets the search criteria to the user account that
1678
1703
  # invoked the `MLModel` creation.
1704
+ #
1679
1705
  # * `TrainingDataSourceId` - Sets the search criteria to the
1680
1706
  # `DataSource` used to train one or more `MLModel`.
1707
+ #
1681
1708
  # * `RealtimeEndpointStatus` - Sets the search criteria to the `MLModel`
1682
1709
  # real-time endpoint status.
1710
+ #
1683
1711
  # * `MLModelType` - Sets the search criteria to `MLModel` type: binary,
1684
1712
  # regression, or multi-class.
1713
+ #
1685
1714
  # * `Algorithm` - Sets the search criteria to the algorithm that the
1686
1715
  # `MLModel` uses.
1716
+ #
1687
1717
  # * `TrainingDataURI` - Sets the search criteria to the data file(s)
1688
1718
  # used in training a `MLModel`. The URL can identify either a file or
1689
1719
  # an Amazon Simple Storage Service (Amazon S3) bucket or directory.
@@ -1737,6 +1767,7 @@ module Aws::MachineLearning
1737
1767
  # list of `MLModel`.
1738
1768
  #
1739
1769
  # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1770
+ #
1740
1771
  # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1741
1772
  #
1742
1773
  # Results are sorted by `FilterVariable`.
@@ -2135,10 +2166,9 @@ module Aws::MachineLearning
2135
2166
  # Generates a prediction for the observation using the specified `ML
2136
2167
  # Model`.
2137
2168
  #
2138
- # <note markdown="1"><title>Note</title> Not all response parameters will be populated. Whether a response
2139
- # parameter is populated depends on the type of model requested.
2140
- #
2141
- # </note>
2169
+ # **Note:** Not all response parameters will be populated. Whether a
2170
+ # response parameter is populated depends on the type of model
2171
+ # requested.
2142
2172
  #
2143
2173
  # @option params [required, String] :ml_model_id
2144
2174
  # A unique identifier of the `MLModel`.
@@ -2336,7 +2366,7 @@ module Aws::MachineLearning
2336
2366
  params: params,
2337
2367
  config: config)
2338
2368
  context[:gem_name] = 'aws-sdk-machinelearning'
2339
- context[:gem_version] = '1.25.0'
2369
+ context[:gem_version] = '1.29.0'
2340
2370
  Seahorse::Client::Request.new(handlers, context)
2341
2371
  end
2342
2372
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -712,6 +712,7 @@ module Aws::MachineLearning
712
712
  "jsonVersion" => "1.1",
713
713
  "protocol" => "json",
714
714
  "serviceFullName" => "Amazon Machine Learning",
715
+ "serviceId" => "Machine Learning",
715
716
  "signatureVersion" => "v4",
716
717
  "targetPrefix" => "AmazonML_20141212",
717
718
  "uid" => "machinelearning-2014-12-12",
@@ -2,7 +2,7 @@
2
2
  # WARNING ABOUT GENERATED CODE
3
3
  #
4
4
  # This file is generated. See the contributing for info on making contributions:
5
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
6
6
  #
7
7
  # WARNING ABOUT GENERATED CODE
8
8
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -115,10 +115,14 @@ module Aws::MachineLearning
115
115
  #
116
116
  # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
117
117
  # request to generate predictions for a batch of observations.
118
+ #
118
119
  # * `INPROGRESS` - The process is underway.
120
+ #
119
121
  # * `FAILED` - The request to perform a batch prediction did not run
120
122
  # to completion. It is not usable.
123
+ #
121
124
  # * `COMPLETED` - The batch prediction process completed successfully.
125
+ #
122
126
  # * `DELETED` - The `BatchPrediction` is marked as deleted. It is not
123
127
  # usable.
124
128
  # @return [String]
@@ -218,7 +222,7 @@ module Aws::MachineLearning
218
222
  #
219
223
  #
220
224
  #
221
- # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
225
+ # [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
222
226
  # @return [String]
223
227
  #
224
228
  class CreateBatchPredictionInput < Struct.new(
@@ -292,8 +296,10 @@ module Aws::MachineLearning
292
296
  # @!attribute [rw] rds_data
293
297
  # The data specification of an Amazon RDS `DataSource`\:
294
298
  #
295
- # * DatabaseInformation - * `DatabaseName` - The name of the Amazon
296
- # RDS database.
299
+ # * DatabaseInformation -
300
+ #
301
+ # * `DatabaseName` - The name of the Amazon RDS database.
302
+ #
297
303
  # * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
298
304
  # database instance.
299
305
  #
@@ -331,13 +337,12 @@ module Aws::MachineLearning
331
337
  # * DataRearrangement - A JSON string that represents the splitting
332
338
  # and rearrangement requirements for the `Datasource`.
333
339
  #
334
- #
335
340
  # Sample - `
336
341
  # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
337
342
  #
338
343
  #
339
344
  #
340
- # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
345
+ # [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
341
346
  # @return [Types::RDSDataSpec]
342
347
  #
343
348
  # @!attribute [rw] role_arn
@@ -350,8 +355,9 @@ module Aws::MachineLearning
350
355
  # The compute statistics for a `DataSource`. The statistics are
351
356
  # generated from the observation data referenced by a `DataSource`.
352
357
  # Amazon ML uses the statistics internally during `MLModel` training.
353
- # This parameter must be set to `true` if the ``DataSource`` needs to
354
- # be used for `MLModel` training.
358
+ # This parameter must be set to `true` if the `DataSource needs to be
359
+ # used for MLModel training. </p>
360
+ # `
355
361
  # @return [Boolean]
356
362
  #
357
363
  class CreateDataSourceFromRDSInput < Struct.new(
@@ -422,8 +428,10 @@ module Aws::MachineLearning
422
428
  # @!attribute [rw] data_spec
423
429
  # The data specification of an Amazon Redshift `DataSource`\:
424
430
  #
425
- # * DatabaseInformation - * `DatabaseName` - The name of the Amazon
426
- # Redshift database.
431
+ # * DatabaseInformation -
432
+ #
433
+ # * `DatabaseName` - The name of the Amazon Redshift database.
434
+ #
427
435
  # * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
428
436
  # cluster.
429
437
  #
@@ -544,8 +552,9 @@ module Aws::MachineLearning
544
552
  # The compute statistics for a `DataSource`. The statistics are
545
553
  # generated from the observation data referenced by a `DataSource`.
546
554
  # Amazon ML uses the statistics internally during `MLModel` training.
547
- # This parameter must be set to `true` if the ``DataSource`` needs to
548
- # be used for `MLModel` training.
555
+ # This parameter must be set to `true` if the `DataSource needs to be
556
+ # used for MLModel training.</p>
557
+ # `
549
558
  # @return [Boolean]
550
559
  #
551
560
  class CreateDataSourceFromS3Input < Struct.new(
@@ -663,7 +672,9 @@ module Aws::MachineLearning
663
672
  #
664
673
  # * Choose `REGRESSION` if the `MLModel` will be used to predict a
665
674
  # numeric value.
675
+ #
666
676
  # * Choose `BINARY` if the `MLModel` result has two possible values.
677
+ #
667
678
  # * Choose `MULTICLASS` if the `MLModel` result has a limited number
668
679
  # of values.
669
680
  #
@@ -672,7 +683,7 @@ module Aws::MachineLearning
672
683
  #
673
684
  #
674
685
  #
675
- # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
686
+ # [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
676
687
  # @return [String]
677
688
  #
678
689
  # @!attribute [rw] parameters
@@ -696,9 +707,8 @@ module Aws::MachineLearning
696
707
  # * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
697
708
  # Shuffling the data improves a model's ability to find the optimal
698
709
  # solution for a variety of data types. The valid values are `auto`
699
- # and `none`. The default value is `none`. We <?oxy\_insert\_start
700
- # author="laurama" timestamp="20160329T131121-0700">strongly
701
- # recommend that you shuffle your data.<?oxy\_insert\_end>
710
+ # and `none`. The default value is `none`. We strongly recommend
711
+ # that you shuffle your data.
702
712
  #
703
713
  # * `sgd.l1RegularizationAmount` - The coefficient regularization L1
704
714
  # norm. It controls overfitting the data by penalizing large
@@ -791,11 +801,9 @@ module Aws::MachineLearning
791
801
  # The result contains the `MLModelId` and the endpoint information for
792
802
  # the `MLModel`.
793
803
  #
794
- # <note markdown="1"> The endpoint information includes the URI of the `MLModel`; that is,
795
- # the location to send online prediction requests for the specified
796
- # `MLModel`.
797
- #
798
- # </note>
804
+ # **Note:** The endpoint information includes the URI of the `MLModel`;
805
+ # that is, the location to send online prediction requests for the
806
+ # specified `MLModel`.
799
807
  #
800
808
  # @!attribute [rw] ml_model_id
801
809
  # A user-supplied ID that uniquely identifies the `MLModel`. This
@@ -868,10 +876,14 @@ module Aws::MachineLearning
868
876
  #
869
877
  # * PENDING - Amazon Machine Learning (Amazon ML) submitted a request
870
878
  # to create a `DataSource`.
879
+ #
871
880
  # * INPROGRESS - The creation process is underway.
881
+ #
872
882
  # * FAILED - The request to create a `DataSource` did not run to
873
883
  # completion. It is not usable.
884
+ #
874
885
  # * COMPLETED - The creation process completed successfully.
886
+ #
875
887
  # * DELETED - The `DataSource` is marked as deleted. It is not usable.
876
888
  # @return [String]
877
889
  #
@@ -894,7 +906,7 @@ module Aws::MachineLearning
894
906
  #
895
907
  #
896
908
  #
897
- # [1]: http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
909
+ # [1]: https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
898
910
  # @return [String]
899
911
  #
900
912
  # @!attribute [rw] compute_statistics
@@ -1183,16 +1195,22 @@ module Aws::MachineLearning
1183
1195
  #
1184
1196
  # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1185
1197
  # creation date.
1198
+ #
1186
1199
  # * `Status` - Sets the search criteria to the `BatchPrediction`
1187
1200
  # status.
1201
+ #
1188
1202
  # * `Name` - Sets the search criteria to the contents of the
1189
- # `BatchPrediction`<b> </b> `Name`.
1203
+ # `BatchPrediction` <b> </b> `Name`.
1204
+ #
1190
1205
  # * `IAMUser` - Sets the search criteria to the user account that
1191
1206
  # invoked the `BatchPrediction` creation.
1207
+ #
1192
1208
  # * `MLModelId` - Sets the search criteria to the `MLModel` used in
1193
1209
  # the `BatchPrediction`.
1210
+ #
1194
1211
  # * `DataSourceId` - Sets the search criteria to the `DataSource` used
1195
1212
  # in the `BatchPrediction`.
1213
+ #
1196
1214
  # * `DataURI` - Sets the search criteria to the data file(s) used in
1197
1215
  # the `BatchPrediction`. The URL can identify either a file or an
1198
1216
  # Amazon Simple Storage Solution (Amazon S3) bucket or directory.
@@ -1254,6 +1272,7 @@ module Aws::MachineLearning
1254
1272
  # list of `MLModel`s.
1255
1273
  #
1256
1274
  # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1275
+ #
1257
1276
  # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1258
1277
  #
1259
1278
  # Results are sorted by `FilterVariable`.
@@ -1327,12 +1346,16 @@ module Aws::MachineLearning
1327
1346
  #
1328
1347
  # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1329
1348
  # dates.
1349
+ #
1330
1350
  # * `Status` - Sets the search criteria to `DataSource` statuses.
1351
+ #
1331
1352
  # * `Name` - Sets the search criteria to the contents of `DataSource`
1332
- # <b> </b> `Name`.
1353
+ # `Name`.
1354
+ #
1333
1355
  # * `DataUri` - Sets the search criteria to the URI of data files used
1334
1356
  # to create the `DataSource`. The URI can identify either a file or
1335
1357
  # an Amazon Simple Storage Service (Amazon S3) bucket or directory.
1358
+ #
1336
1359
  # * `IAMUser` - Sets the search criteria to the user account that
1337
1360
  # invoked the `DataSource` creation.
1338
1361
  # @return [String]
@@ -1393,6 +1416,7 @@ module Aws::MachineLearning
1393
1416
  # list of `DataSource`.
1394
1417
  #
1395
1418
  # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1419
+ #
1396
1420
  # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1397
1421
  #
1398
1422
  # Results are sorted by `FilterVariable`.
@@ -1464,15 +1488,21 @@ module Aws::MachineLearning
1464
1488
  #
1465
1489
  # * `CreatedAt` - Sets the search criteria to the `Evaluation`
1466
1490
  # creation date.
1491
+ #
1467
1492
  # * `Status` - Sets the search criteria to the `Evaluation` status.
1493
+ #
1468
1494
  # * `Name` - Sets the search criteria to the contents of `Evaluation`
1469
1495
  # <b> </b> `Name`.
1496
+ #
1470
1497
  # * `IAMUser` - Sets the search criteria to the user account that
1471
1498
  # invoked an `Evaluation`.
1499
+ #
1472
1500
  # * `MLModelId` - Sets the search criteria to the `MLModel` that was
1473
1501
  # evaluated.
1502
+ #
1474
1503
  # * `DataSourceId` - Sets the search criteria to the `DataSource` used
1475
1504
  # in `Evaluation`.
1505
+ #
1476
1506
  # * `DataUri` - Sets the search criteria to the data file(s) used in
1477
1507
  # `Evaluation`. The URL can identify either a file or an Amazon
1478
1508
  # Simple Storage Solution (Amazon S3) bucket or directory.
@@ -1534,6 +1564,7 @@ module Aws::MachineLearning
1534
1564
  # list of `Evaluation`.
1535
1565
  #
1536
1566
  # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1567
+ #
1537
1568
  # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1538
1569
  #
1539
1570
  # Results are sorted by `FilterVariable`.
@@ -1603,19 +1634,27 @@ module Aws::MachineLearning
1603
1634
  # Use one of the following variables to filter a list of `MLModel`\:
1604
1635
  #
1605
1636
  # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1637
+ #
1606
1638
  # * `Status` - Sets the search criteria to `MLModel` status.
1607
- # * `Name` - Sets the search criteria to the contents of `MLModel`<b>
1639
+ #
1640
+ # * `Name` - Sets the search criteria to the contents of `MLModel` <b>
1608
1641
  # </b> `Name`.
1642
+ #
1609
1643
  # * `IAMUser` - Sets the search criteria to the user account that
1610
1644
  # invoked the `MLModel` creation.
1645
+ #
1611
1646
  # * `TrainingDataSourceId` - Sets the search criteria to the
1612
1647
  # `DataSource` used to train one or more `MLModel`.
1648
+ #
1613
1649
  # * `RealtimeEndpointStatus` - Sets the search criteria to the
1614
1650
  # `MLModel` real-time endpoint status.
1651
+ #
1615
1652
  # * `MLModelType` - Sets the search criteria to `MLModel` type:
1616
1653
  # binary, regression, or multi-class.
1654
+ #
1617
1655
  # * `Algorithm` - Sets the search criteria to the algorithm that the
1618
1656
  # `MLModel` uses.
1657
+ #
1619
1658
  # * `TrainingDataURI` - Sets the search criteria to the data file(s)
1620
1659
  # used in training a `MLModel`. The URL can identify either a file
1621
1660
  # or an Amazon Simple Storage Service (Amazon S3) bucket or
@@ -1678,6 +1717,7 @@ module Aws::MachineLearning
1678
1717
  # list of `MLModel`.
1679
1718
  #
1680
1719
  # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1720
+ #
1681
1721
  # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1682
1722
  #
1683
1723
  # Results are sorted by `FilterVariable`.
@@ -1821,10 +1861,14 @@ module Aws::MachineLearning
1821
1861
  #
1822
1862
  # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
1823
1863
  # request to evaluate an `MLModel`.
1864
+ #
1824
1865
  # * `INPROGRESS` - The evaluation is underway.
1866
+ #
1825
1867
  # * `FAILED` - The request to evaluate an `MLModel` did not run to
1826
1868
  # completion. It is not usable.
1869
+ #
1827
1870
  # * `COMPLETED` - The evaluation process completed successfully.
1871
+ #
1828
1872
  # * `DELETED` - The `Evaluation` is marked as deleted. It is not
1829
1873
  # usable.
1830
1874
  # @return [String]
@@ -1850,7 +1894,7 @@ module Aws::MachineLearning
1850
1894
  #
1851
1895
  #
1852
1896
  #
1853
- # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
1897
+ # [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
1854
1898
  # @return [Types::PerformanceMetrics]
1855
1899
  #
1856
1900
  # @!attribute [rw] message
@@ -1956,10 +2000,14 @@ module Aws::MachineLearning
1956
2000
  #
1957
2001
  # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
1958
2002
  # request to generate batch predictions.
2003
+ #
1959
2004
  # * `INPROGRESS` - The batch predictions are in progress.
2005
+ #
1960
2006
  # * `FAILED` - The request to perform a batch prediction did not run
1961
2007
  # to completion. It is not usable.
2008
+ #
1962
2009
  # * `COMPLETED` - The batch prediction process completed successfully.
2010
+ #
1963
2011
  # * `DELETED` - The `BatchPrediction` is marked as deleted. It is not
1964
2012
  # usable.
1965
2013
  # @return [String]
@@ -2111,10 +2159,14 @@ module Aws::MachineLearning
2111
2159
  #
2112
2160
  # * `PENDING` - Amazon ML submitted a request to create a
2113
2161
  # `DataSource`.
2162
+ #
2114
2163
  # * `INPROGRESS` - The creation process is underway.
2164
+ #
2115
2165
  # * `FAILED` - The request to create a `DataSource` did not run to
2116
2166
  # completion. It is not usable.
2167
+ #
2117
2168
  # * `COMPLETED` - The creation process completed successfully.
2169
+ #
2118
2170
  # * `DELETED` - The `DataSource` is marked as deleted. It is not
2119
2171
  # usable.
2120
2172
  # @return [String]
@@ -2143,7 +2195,7 @@ module Aws::MachineLearning
2143
2195
  #
2144
2196
  #
2145
2197
  #
2146
- # [1]: http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
2198
+ # [1]: https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
2147
2199
  # @return [String]
2148
2200
  #
2149
2201
  # @!attribute [rw] compute_statistics
@@ -2174,9 +2226,7 @@ module Aws::MachineLearning
2174
2226
  # @!attribute [rw] data_source_schema
2175
2227
  # The schema used by all of the data files of this `DataSource`.
2176
2228
  #
2177
- # <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
2178
- #
2179
- # </note>
2229
+ # **Note:** This parameter is provided as part of the verbose format.
2180
2230
  # @return [String]
2181
2231
  #
2182
2232
  class GetDataSourceOutput < Struct.new(
@@ -2270,10 +2320,14 @@ module Aws::MachineLearning
2270
2320
  #
2271
2321
  # * `PENDING` - Amazon Machine Language (Amazon ML) submitted a
2272
2322
  # request to evaluate an `MLModel`.
2323
+ #
2273
2324
  # * `INPROGRESS` - The evaluation is underway.
2325
+ #
2274
2326
  # * `FAILED` - The request to evaluate an `MLModel` did not run to
2275
2327
  # completion. It is not usable.
2328
+ #
2276
2329
  # * `COMPLETED` - The evaluation process completed successfully.
2330
+ #
2277
2331
  # * `DELETED` - The `Evaluation` is marked as deleted. It is not
2278
2332
  # usable.
2279
2333
  # @return [String]
@@ -2299,7 +2353,7 @@ module Aws::MachineLearning
2299
2353
  #
2300
2354
  #
2301
2355
  #
2302
- # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
2356
+ # [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
2303
2357
  # @return [Types::PerformanceMetrics]
2304
2358
  #
2305
2359
  # @!attribute [rw] log_uri
@@ -2382,9 +2436,7 @@ module Aws::MachineLearning
2382
2436
  # detailed information about a `MLModel`.
2383
2437
  #
2384
2438
  # @!attribute [rw] ml_model_id
2385
- # The MLModel ID<?oxy\_insert\_start author="annbech"
2386
- # timestamp="20160328T151251-0700">,<?oxy\_insert\_end> which is
2387
- # same as the `MLModelId` in the request.
2439
+ # The MLModel ID, which is same as the `MLModelId` in the request.
2388
2440
  # @return [String]
2389
2441
  #
2390
2442
  # @!attribute [rw] training_data_source_id
@@ -2417,10 +2469,14 @@ module Aws::MachineLearning
2417
2469
  #
2418
2470
  # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
2419
2471
  # request to describe a `MLModel`.
2472
+ #
2420
2473
  # * `INPROGRESS` - The request is processing.
2474
+ #
2421
2475
  # * `FAILED` - The request did not run to completion. The ML model
2422
2476
  # isn't usable.
2477
+ #
2423
2478
  # * `COMPLETED` - The request completed successfully.
2479
+ #
2424
2480
  # * `DELETED` - The `MLModel` is marked as deleted. It isn't usable.
2425
2481
  # @return [String]
2426
2482
  #
@@ -2488,18 +2544,18 @@ module Aws::MachineLearning
2488
2544
  #
2489
2545
  # * REGRESSION -- Produces a numeric result. For example, "What price
2490
2546
  # should a house be listed at?"
2547
+ #
2491
2548
  # * BINARY -- Produces one of two possible results. For example, "Is
2492
2549
  # this an e-commerce website?"
2550
+ #
2493
2551
  # * MULTICLASS -- Produces one of several possible results. For
2494
2552
  # example, "Is this a HIGH, LOW or MEDIUM risk trade?"
2495
2553
  # @return [String]
2496
2554
  #
2497
2555
  # @!attribute [rw] score_threshold
2498
- # The scoring threshold is used in binary classification
2499
- # `MLModel`<?oxy\_insert\_start author="laurama"
2500
- # timestamp="20160329T114851-0700"> <?oxy\_insert\_end>models. It
2501
- # marks the boundary between a positive prediction and a negative
2502
- # prediction.
2556
+ # The scoring threshold is used in binary classification `MLModel`
2557
+ # models. It marks the boundary between a positive prediction and a
2558
+ # negative prediction.
2503
2559
  #
2504
2560
  # Output values greater than or equal to the threshold receive a
2505
2561
  # positive result from the MLModel, such as `true`. Output values less
@@ -2547,18 +2603,14 @@ module Aws::MachineLearning
2547
2603
  # training, and manipulations to perform on the observation data
2548
2604
  # during training.
2549
2605
  #
2550
- # <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
2551
- #
2552
- # </note>
2606
+ # **Note:** This parameter is provided as part of the verbose format.
2553
2607
  # @return [String]
2554
2608
  #
2555
2609
  # @!attribute [rw] schema
2556
2610
  # The schema used by all of the data files referenced by the
2557
2611
  # `DataSource`.
2558
2612
  #
2559
- # <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
2560
- #
2561
- # </note>
2613
+ # **Note:** This parameter is provided as part of the verbose format.
2562
2614
  # @return [String]
2563
2615
  #
2564
2616
  class GetMLModelOutput < Struct.new(
@@ -2700,10 +2752,14 @@ module Aws::MachineLearning
2700
2752
  #
2701
2753
  # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
2702
2754
  # request to create an `MLModel`.
2755
+ #
2703
2756
  # * `INPROGRESS` - The creation process is underway.
2757
+ #
2704
2758
  # * `FAILED` - The request to create an `MLModel` didn't run to
2705
2759
  # completion. The model isn't usable.
2760
+ #
2706
2761
  # * `COMPLETED` - The creation process completed successfully.
2762
+ #
2707
2763
  # * `DELETED` - The `MLModel` is marked as deleted. It isn't usable.
2708
2764
  # @return [String]
2709
2765
  #
@@ -2770,6 +2826,8 @@ module Aws::MachineLearning
2770
2826
  #
2771
2827
  # * `SGD` -- Stochastic gradient descent. The goal of `SGD` is to
2772
2828
  # minimize the gradient of the loss function.
2829
+ #
2830
+ # ^
2773
2831
  # @return [String]
2774
2832
  #
2775
2833
  # @!attribute [rw] ml_model_type
@@ -2778,14 +2836,12 @@ module Aws::MachineLearning
2778
2836
  #
2779
2837
  # * `REGRESSION` - Produces a numeric result. For example, "What
2780
2838
  # price should a house be listed at?"
2839
+ #
2781
2840
  # * `BINARY` - Produces one of two possible results. For example, "Is
2782
2841
  # this a child-friendly web site?".
2842
+ #
2783
2843
  # * `MULTICLASS` - Produces one of several possible results. For
2784
- # example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy\_delete
2785
- # author="annbech" timestamp="20160328T175050-0700" content="
2786
- # "><?oxy\_insert\_start author="annbech"
2787
- # timestamp="20160328T175050-0700">-<?oxy\_insert\_end>risk
2788
- # trade?".
2844
+ # example, "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
2789
2845
  # @return [String]
2790
2846
  #
2791
2847
  # @!attribute [rw] score_threshold
@@ -2857,7 +2913,7 @@ module Aws::MachineLearning
2857
2913
  #
2858
2914
  #
2859
2915
  #
2860
- # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
2916
+ # [1]: https://docs.aws.amazon.com/machine-learning/latest/dg
2861
2917
  #
2862
2918
  # @!attribute [rw] properties
2863
2919
  # @return [Hash<String,String>]
@@ -3028,21 +3084,21 @@ module Aws::MachineLearning
3028
3084
  # There are multiple parameters that control what data is used to
3029
3085
  # create a datasource:
3030
3086
  #
3031
- # * **`percentBegin`**
3087
+ # * <b> <code>percentBegin</code> </b>
3032
3088
  #
3033
3089
  # Use `percentBegin` to indicate the beginning of the range of the
3034
3090
  # data used to create the Datasource. If you do not include
3035
3091
  # `percentBegin` and `percentEnd`, Amazon ML includes all of the
3036
3092
  # data when creating the datasource.
3037
3093
  #
3038
- # * **`percentEnd`**
3094
+ # * <b> <code>percentEnd</code> </b>
3039
3095
  #
3040
3096
  # Use `percentEnd` to indicate the end of the range of the data used
3041
3097
  # to create the Datasource. If you do not include `percentBegin` and
3042
3098
  # `percentEnd`, Amazon ML includes all of the data when creating the
3043
3099
  # datasource.
3044
3100
  #
3045
- # * **`complement`**
3101
+ # * <b> <code>complement</code> </b>
3046
3102
  #
3047
3103
  # The `complement` parameter instructs Amazon ML to use the data
3048
3104
  # that is not included in the range of `percentBegin` to
@@ -3063,7 +3119,7 @@ module Aws::MachineLearning
3063
3119
  # Datasource for training: `\{"splitting":\{"percentBegin":0,
3064
3120
  # "percentEnd":25, "complement":"true"\}\}`
3065
3121
  #
3066
- # * **`strategy`**
3122
+ # * <b> <code>strategy</code> </b>
3067
3123
  #
3068
3124
  # To change how Amazon ML splits the data for a datasource, use the
3069
3125
  # `strategy` parameter.
@@ -3150,8 +3206,6 @@ module Aws::MachineLearning
3150
3206
  # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3151
3207
  #
3152
3208
  # "excludedVariableNames": \[ "F6" \] \\}
3153
- #
3154
- # <?oxy\_insert\_end>
3155
3209
  # @return [String]
3156
3210
  #
3157
3211
  # @!attribute [rw] data_schema_uri
@@ -3166,7 +3220,7 @@ module Aws::MachineLearning
3166
3220
  #
3167
3221
  #
3168
3222
  #
3169
- # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3223
+ # [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3170
3224
  # @return [String]
3171
3225
  #
3172
3226
  # @!attribute [rw] service_role
@@ -3177,7 +3231,7 @@ module Aws::MachineLearning
3177
3231
  #
3178
3232
  #
3179
3233
  #
3180
- # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3234
+ # [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3181
3235
  # @return [String]
3182
3236
  #
3183
3237
  # @!attribute [rw] subnet_id
@@ -3289,7 +3343,7 @@ module Aws::MachineLearning
3289
3343
  #
3290
3344
  #
3291
3345
  #
3292
- # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3346
+ # [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3293
3347
  # @return [String]
3294
3348
  #
3295
3349
  # @!attribute [rw] service_role
@@ -3300,7 +3354,7 @@ module Aws::MachineLearning
3300
3354
  #
3301
3355
  #
3302
3356
  #
3303
- # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3357
+ # [1]: https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3304
3358
  # @return [String]
3305
3359
  #
3306
3360
  # @!attribute [rw] data_pipeline_id
@@ -3336,10 +3390,8 @@ module Aws::MachineLearning
3336
3390
  # The URI that specifies where to send real-time prediction requests
3337
3391
  # for the `MLModel`.
3338
3392
  #
3339
- # <note markdown="1"><title>Note</title> The application must wait until the real-time endpoint is ready
3340
- # before using this URI.
3341
- #
3342
- # </note>
3393
+ # **Note:** The application must wait until the real-time endpoint is
3394
+ # ready before using this URI.
3343
3395
  # @return [String]
3344
3396
  #
3345
3397
  # @!attribute [rw] endpoint_status
@@ -3347,7 +3399,9 @@ module Aws::MachineLearning
3347
3399
  # element can have one of the following values:
3348
3400
  #
3349
3401
  # * `NONE` - Endpoint does not exist or was previously deleted.
3402
+ #
3350
3403
  # * `READY` - Endpoint is ready to be used for real-time predictions.
3404
+ #
3351
3405
  # * `UPDATING` - Updating/creating the endpoint.
3352
3406
  # @return [String]
3353
3407
  #
@@ -3410,21 +3464,21 @@ module Aws::MachineLearning
3410
3464
  # There are multiple parameters that control what data is used to
3411
3465
  # create a datasource:
3412
3466
  #
3413
- # * **`percentBegin`**
3467
+ # * <b> <code>percentBegin</code> </b>
3414
3468
  #
3415
3469
  # Use `percentBegin` to indicate the beginning of the range of the
3416
3470
  # data used to create the Datasource. If you do not include
3417
3471
  # `percentBegin` and `percentEnd`, Amazon ML includes all of the
3418
3472
  # data when creating the datasource.
3419
3473
  #
3420
- # * **`percentEnd`**
3474
+ # * <b> <code>percentEnd</code> </b>
3421
3475
  #
3422
3476
  # Use `percentEnd` to indicate the end of the range of the data used
3423
3477
  # to create the Datasource. If you do not include `percentBegin` and
3424
3478
  # `percentEnd`, Amazon ML includes all of the data when creating the
3425
3479
  # datasource.
3426
3480
  #
3427
- # * **`complement`**
3481
+ # * <b> <code>complement</code> </b>
3428
3482
  #
3429
3483
  # The `complement` parameter instructs Amazon ML to use the data
3430
3484
  # that is not included in the range of `percentBegin` to
@@ -3445,7 +3499,7 @@ module Aws::MachineLearning
3445
3499
  # Datasource for training: `\{"splitting":\{"percentBegin":0,
3446
3500
  # "percentEnd":25, "complement":"true"\}\}`
3447
3501
  #
3448
- # * **`strategy`**
3502
+ # * <b> <code>strategy</code> </b>
3449
3503
  #
3450
3504
  # To change how Amazon ML splits the data for a datasource, use the
3451
3505
  # `strategy` parameter.
@@ -3596,7 +3650,7 @@ module Aws::MachineLearning
3596
3650
  #
3597
3651
  #
3598
3652
  #
3599
- # [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3653
+ # [1]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3600
3654
  # @return [String]
3601
3655
  #
3602
3656
  # @!attribute [rw] password
@@ -3607,7 +3661,7 @@ module Aws::MachineLearning
3607
3661
  #
3608
3662
  #
3609
3663
  #
3610
- # [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3664
+ # [1]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3611
3665
  # @return [String]
3612
3666
  #
3613
3667
  class RedshiftDatabaseCredentials < Struct.new(
@@ -3633,7 +3687,7 @@ module Aws::MachineLearning
3633
3687
  #
3634
3688
  #
3635
3689
  #
3636
- # [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3690
+ # [1]: https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3637
3691
  # @return [String]
3638
3692
  #
3639
3693
  # @!attribute [rw] select_sql_query
@@ -3691,21 +3745,21 @@ module Aws::MachineLearning
3691
3745
  # There are multiple parameters that control what data is used to
3692
3746
  # create a datasource:
3693
3747
  #
3694
- # * **`percentBegin`**
3748
+ # * <b> <code>percentBegin</code> </b>
3695
3749
  #
3696
3750
  # Use `percentBegin` to indicate the beginning of the range of the
3697
3751
  # data used to create the Datasource. If you do not include
3698
3752
  # `percentBegin` and `percentEnd`, Amazon ML includes all of the
3699
3753
  # data when creating the datasource.
3700
3754
  #
3701
- # * **`percentEnd`**
3755
+ # * <b> <code>percentEnd</code> </b>
3702
3756
  #
3703
3757
  # Use `percentEnd` to indicate the end of the range of the data used
3704
3758
  # to create the Datasource. If you do not include `percentBegin` and
3705
3759
  # `percentEnd`, Amazon ML includes all of the data when creating the
3706
3760
  # datasource.
3707
3761
  #
3708
- # * **`complement`**
3762
+ # * <b> <code>complement</code> </b>
3709
3763
  #
3710
3764
  # The `complement` parameter instructs Amazon ML to use the data
3711
3765
  # that is not included in the range of `percentBegin` to
@@ -3726,7 +3780,7 @@ module Aws::MachineLearning
3726
3780
  # Datasource for training: `\{"splitting":\{"percentBegin":0,
3727
3781
  # "percentEnd":25, "complement":"true"\}\}`
3728
3782
  #
3729
- # * **`strategy`**
3783
+ # * <b> <code>strategy</code> </b>
3730
3784
  #
3731
3785
  # To change how Amazon ML splits the data for a datasource, use the
3732
3786
  # `strategy` parameter.
@@ -3814,8 +3868,6 @@ module Aws::MachineLearning
3814
3868
  # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3815
3869
  #
3816
3870
  # "excludedVariableNames": \[ "F6" \] \\}
3817
- #
3818
- # <?oxy\_insert\_end>
3819
3871
  # @return [String]
3820
3872
  #
3821
3873
  # @!attribute [rw] data_schema_location_s3