aws-sdk-machinelearning 1.18.0 → 1.23.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 38396999391af51e3a75da99661b2d6994407e967314ed061693b5669da2158d
4
- data.tar.gz: 78295e22f992294b1a09dd298c697649719b32dc10d72d756d493bbb2a96fc5c
3
+ metadata.gz: fb7e32d457d3877941526a42c6717f92bda607500c0a20c7fa6ce8e588bd99dc
4
+ data.tar.gz: 3d240312f03b245a09383eb443461ce374eb3fc45da041ae11a757cdcd61f262
5
5
  SHA512:
6
- metadata.gz: 1ea8124aec1dfd3f33d66c3c3ca6e5ff3b79767e221a20302d0ec80070499012343ace1a21602d6a6f4f2c29323caabe2f9cbb64f38a8a969ef15adf456de514
7
- data.tar.gz: 91d2c9bc138318b2d1f4571c591464a385fba7aae950667d4b01c63623937000289bf477a5276e78cfe66c68528f5aa31546a64e71d9daab449a1e98c675b5d0
6
+ metadata.gz: c45fac09770f1f46dd5a46c8a4bff211f71ecaaa632d5acb77282a160b437e909b29b6193091fdf62564b0307c5bed94b24ea6de15de0b8ef1bbf02d1b968c57
7
+ data.tar.gz: 5315f4322c0f63754029aca97aef2ad80335d069faa141ee92dc8cb8a1a48d7fe58c6c9f3c60dc759639fd8940e37d6e75ebddfb86508116c7947bff112e6acd
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -43,9 +45,9 @@ require_relative 'aws-sdk-machinelearning/customizations'
43
45
  #
44
46
  # See {Errors} for more information.
45
47
  #
46
- # @service
48
+ # @!group service
47
49
  module Aws::MachineLearning
48
50
 
49
- GEM_VERSION = '1.18.0'
51
+ GEM_VERSION = '1.23.0'
50
52
 
51
53
  end
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -24,6 +26,7 @@ require 'aws-sdk-core/plugins/jsonvalue_converter.rb'
24
26
  require 'aws-sdk-core/plugins/client_metrics_plugin.rb'
25
27
  require 'aws-sdk-core/plugins/client_metrics_send_plugin.rb'
26
28
  require 'aws-sdk-core/plugins/transfer_encoding.rb'
29
+ require 'aws-sdk-core/plugins/http_checksum.rb'
27
30
  require 'aws-sdk-core/plugins/signature_v4.rb'
28
31
  require 'aws-sdk-core/plugins/protocols/json_rpc.rb'
29
32
  require 'aws-sdk-machinelearning/plugins/predict_endpoint.rb'
@@ -70,6 +73,7 @@ module Aws::MachineLearning
70
73
  add_plugin(Aws::Plugins::ClientMetricsPlugin)
71
74
  add_plugin(Aws::Plugins::ClientMetricsSendPlugin)
72
75
  add_plugin(Aws::Plugins::TransferEncoding)
76
+ add_plugin(Aws::Plugins::HttpChecksum)
73
77
  add_plugin(Aws::Plugins::SignatureV4)
74
78
  add_plugin(Aws::Plugins::Protocols::JsonRpc)
75
79
  add_plugin(Aws::MachineLearning::Plugins::PredictEndpoint)
@@ -83,13 +87,28 @@ module Aws::MachineLearning
83
87
  # * `Aws::Credentials` - Used for configuring static, non-refreshing
84
88
  # credentials.
85
89
  #
90
+ # * `Aws::SharedCredentials` - Used for loading static credentials from a
91
+ # shared file, such as `~/.aws/config`.
92
+ #
93
+ # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
94
+ #
95
+ # * `Aws::AssumeRoleWebIdentityCredentials` - Used when you need to
96
+ # assume a role after providing credentials via the web.
97
+ #
98
+ # * `Aws::SSOCredentials` - Used for loading credentials from AWS SSO using an
99
+ # access token generated from `aws login`.
100
+ #
101
+ # * `Aws::ProcessCredentials` - Used for loading credentials from a
102
+ # process that outputs to stdout.
103
+ #
86
104
  # * `Aws::InstanceProfileCredentials` - Used for loading credentials
87
105
  # from an EC2 IMDS on an EC2 instance.
88
106
  #
89
- # * `Aws::SharedCredentials` - Used for loading credentials from a
90
- # shared file, such as `~/.aws/config`.
107
+ # * `Aws::ECSCredentials` - Used for loading credentials from
108
+ # instances running in ECS.
91
109
  #
92
- # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
110
+ # * `Aws::CognitoIdentityCredentials` - Used for loading credentials
111
+ # from the Cognito Identity service.
93
112
  #
94
113
  # When `:credentials` are not configured directly, the following
95
114
  # locations will be searched for credentials:
@@ -99,15 +118,15 @@ module Aws::MachineLearning
99
118
  # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
100
119
  # * `~/.aws/credentials`
101
120
  # * `~/.aws/config`
102
- # * EC2 IMDS instance profile - When used by default, the timeouts are
103
- # very aggressive. Construct and pass an instance of
104
- # `Aws::InstanceProfileCredentails` to enable retries and extended
105
- # timeouts.
121
+ # * EC2/ECS IMDS instance profile - When used by default, the timeouts
122
+ # are very aggressive. Construct and pass an instance of
123
+ # `Aws::InstanceProfileCredentails` or `Aws::ECSCredentials` to
124
+ # enable retries and extended timeouts.
106
125
  #
107
126
  # @option options [required, String] :region
108
127
  # The AWS region to connect to. The configured `:region` is
109
128
  # used to determine the service `:endpoint`. When not passed,
110
- # a default `:region` is search for in the following locations:
129
+ # a default `:region` is searched for in the following locations:
111
130
  #
112
131
  # * `Aws.config[:region]`
113
132
  # * `ENV['AWS_REGION']`
@@ -163,7 +182,7 @@ module Aws::MachineLearning
163
182
  # @option options [String] :endpoint
164
183
  # The client endpoint is normally constructed from the `:region`
165
184
  # option. You should only configure an `:endpoint` when connecting
166
- # to test endpoints. This should be avalid HTTP(S) URI.
185
+ # to test or custom endpoints. This should be a valid HTTP(S) URI.
167
186
  #
168
187
  # @option options [Integer] :endpoint_cache_max_entries (1000)
169
188
  # Used for the maximum size limit of the LRU cache storing endpoints data
@@ -178,7 +197,7 @@ module Aws::MachineLearning
178
197
  # requests fetching endpoints information. Defaults to 60 sec.
179
198
  #
180
199
  # @option options [Boolean] :endpoint_discovery (false)
181
- # When set to `true`, endpoint discovery will be enabled for operations when available. Defaults to `false`.
200
+ # When set to `true`, endpoint discovery will be enabled for operations when available.
182
201
  #
183
202
  # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
184
203
  # The log formatter.
@@ -281,8 +300,7 @@ module Aws::MachineLearning
281
300
  #
282
301
  # @option options [Integer] :http_read_timeout (60) The default
283
302
  # number of seconds to wait for response data. This value can
284
- # safely be set
285
- # per-request on the session yielded by {#session_for}.
303
+ # safely be set per-request on the session.
286
304
  #
287
305
  # @option options [Float] :http_idle_timeout (5) The number of
288
306
  # seconds a connection is allowed to sit idle before it is
@@ -294,7 +312,7 @@ module Aws::MachineLearning
294
312
  # request body. This option has no effect unless the request has
295
313
  # "Expect" header set to "100-continue". Defaults to `nil` which
296
314
  # disables this behaviour. This value can safely be set per
297
- # request on the session yielded by {#session_for}.
315
+ # request on the session.
298
316
  #
299
317
  # @option options [Boolean] :http_wire_trace (false) When `true`,
300
318
  # HTTP debug output will be sent to the `:logger`.
@@ -1316,6 +1334,8 @@ module Aws::MachineLearning
1316
1334
  # * {Types::DescribeBatchPredictionsOutput#results #results} => Array<Types::BatchPrediction>
1317
1335
  # * {Types::DescribeBatchPredictionsOutput#next_token #next_token} => String
1318
1336
  #
1337
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1338
+ #
1319
1339
  # @example Request syntax with placeholder values
1320
1340
  #
1321
1341
  # resp = client.describe_batch_predictions({
@@ -1353,6 +1373,11 @@ module Aws::MachineLearning
1353
1373
  # resp.results[0].invalid_record_count #=> Integer
1354
1374
  # resp.next_token #=> String
1355
1375
  #
1376
+ #
1377
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1378
+ #
1379
+ # * batch_prediction_available
1380
+ #
1356
1381
  # @overload describe_batch_predictions(params = {})
1357
1382
  # @param [Hash] params ({})
1358
1383
  def describe_batch_predictions(params = {}, options = {})
@@ -1441,6 +1466,8 @@ module Aws::MachineLearning
1441
1466
  # * {Types::DescribeDataSourcesOutput#results #results} => Array<Types::DataSource>
1442
1467
  # * {Types::DescribeDataSourcesOutput#next_token #next_token} => String
1443
1468
  #
1469
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1470
+ #
1444
1471
  # @example Request syntax with placeholder values
1445
1472
  #
1446
1473
  # resp = client.describe_data_sources({
@@ -1489,6 +1516,11 @@ module Aws::MachineLearning
1489
1516
  # resp.results[0].started_at #=> Time
1490
1517
  # resp.next_token #=> String
1491
1518
  #
1519
+ #
1520
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1521
+ #
1522
+ # * data_source_available
1523
+ #
1492
1524
  # @overload describe_data_sources(params = {})
1493
1525
  # @param [Hash] params ({})
1494
1526
  def describe_data_sources(params = {}, options = {})
@@ -1582,6 +1614,8 @@ module Aws::MachineLearning
1582
1614
  # * {Types::DescribeEvaluationsOutput#results #results} => Array<Types::Evaluation>
1583
1615
  # * {Types::DescribeEvaluationsOutput#next_token #next_token} => String
1584
1616
  #
1617
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1618
+ #
1585
1619
  # @example Request syntax with placeholder values
1586
1620
  #
1587
1621
  # resp = client.describe_evaluations({
@@ -1618,6 +1652,11 @@ module Aws::MachineLearning
1618
1652
  # resp.results[0].started_at #=> Time
1619
1653
  # resp.next_token #=> String
1620
1654
  #
1655
+ #
1656
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1657
+ #
1658
+ # * evaluation_available
1659
+ #
1621
1660
  # @overload describe_evaluations(params = {})
1622
1661
  # @param [Hash] params ({})
1623
1662
  def describe_evaluations(params = {}, options = {})
@@ -1714,6 +1753,8 @@ module Aws::MachineLearning
1714
1753
  # * {Types::DescribeMLModelsOutput#results #results} => Array<Types::MLModel>
1715
1754
  # * {Types::DescribeMLModelsOutput#next_token #next_token} => String
1716
1755
  #
1756
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1757
+ #
1717
1758
  # @example Request syntax with placeholder values
1718
1759
  #
1719
1760
  # resp = client.describe_ml_models({
@@ -1758,6 +1799,11 @@ module Aws::MachineLearning
1758
1799
  # resp.results[0].started_at #=> Time
1759
1800
  # resp.next_token #=> String
1760
1801
  #
1802
+ #
1803
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1804
+ #
1805
+ # * ml_model_available
1806
+ #
1761
1807
  # @overload describe_ml_models(params = {})
1762
1808
  # @param [Hash] params ({})
1763
1809
  def describe_ml_models(params = {}, options = {})
@@ -2290,7 +2336,7 @@ module Aws::MachineLearning
2290
2336
  params: params,
2291
2337
  config: config)
2292
2338
  context[:gem_name] = 'aws-sdk-machinelearning'
2293
- context[:gem_version] = '1.18.0'
2339
+ context[:gem_version] = '1.23.0'
2294
2340
  Seahorse::Client::Request.new(handlers, context)
2295
2341
  end
2296
2342
 
@@ -2356,12 +2402,12 @@ module Aws::MachineLearning
2356
2402
  # The following table lists the valid waiter names, the operations they call,
2357
2403
  # and the default `:delay` and `:max_attempts` values.
2358
2404
  #
2359
- # | waiter_name | params | :delay | :max_attempts |
2360
- # | -------------------------- | ----------------------------- | -------- | ------------- |
2361
- # | batch_prediction_available | {#describe_batch_predictions} | 30 | 60 |
2362
- # | data_source_available | {#describe_data_sources} | 30 | 60 |
2363
- # | evaluation_available | {#describe_evaluations} | 30 | 60 |
2364
- # | ml_model_available | {#describe_ml_models} | 30 | 60 |
2405
+ # | waiter_name | params | :delay | :max_attempts |
2406
+ # | -------------------------- | ----------------------------------- | -------- | ------------- |
2407
+ # | batch_prediction_available | {Client#describe_batch_predictions} | 30 | 60 |
2408
+ # | data_source_available | {Client#describe_data_sources} | 30 | 60 |
2409
+ # | evaluation_available | {Client#describe_evaluations} | 30 | 60 |
2410
+ # | ml_model_available | {Client#describe_ml_models} | 30 | 60 |
2365
2411
  #
2366
2412
  # @raise [Errors::FailureStateError] Raised when the waiter terminates
2367
2413
  # because the waiter has entered a state that it will not transition
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -1,3 +1,4 @@
1
+ # frozen_string_literal: true
1
2
  # WARNING ABOUT GENERATED CODE
2
3
  #
3
4
  # This file is generated. See the contributing for info on making contributions:
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  module Aws
2
4
  module MachineLearning
3
5
  module Plugins
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -6,13 +8,7 @@
6
8
  # WARNING ABOUT GENERATED CODE
7
9
 
8
10
  module Aws::MachineLearning
9
- # This class provides a resource oriented interface for MachineLearning.
10
- # To create a resource object:
11
- # resource = Aws::MachineLearning::Resource.new(region: 'us-west-2')
12
- # You can supply a client object with custom configuration that will be used for all resource operations.
13
- # If you do not pass +:client+, a default client will be constructed.
14
- # client = Aws::MachineLearning::Client.new(region: 'us-west-2')
15
- # resource = Aws::MachineLearning::Resource.new(client: client)
11
+
16
12
  class Resource
17
13
 
18
14
  # @param options ({})
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -40,6 +42,7 @@ module Aws::MachineLearning
40
42
  :tags,
41
43
  :resource_id,
42
44
  :resource_type)
45
+ SENSITIVE = []
43
46
  include Aws::Structure
44
47
  end
45
48
 
@@ -56,6 +59,7 @@ module Aws::MachineLearning
56
59
  class AddTagsOutput < Struct.new(
57
60
  :resource_id,
58
61
  :resource_type)
62
+ SENSITIVE = []
59
63
  include Aws::Structure
60
64
  end
61
65
 
@@ -168,6 +172,7 @@ module Aws::MachineLearning
168
172
  :started_at,
169
173
  :total_record_count,
170
174
  :invalid_record_count)
175
+ SENSITIVE = []
171
176
  include Aws::Structure
172
177
  end
173
178
 
@@ -222,6 +227,7 @@ module Aws::MachineLearning
222
227
  :ml_model_id,
223
228
  :batch_prediction_data_source_id,
224
229
  :output_uri)
230
+ SENSITIVE = []
225
231
  include Aws::Structure
226
232
  end
227
233
 
@@ -240,6 +246,7 @@ module Aws::MachineLearning
240
246
  #
241
247
  class CreateBatchPredictionOutput < Struct.new(
242
248
  :batch_prediction_id)
249
+ SENSITIVE = []
243
250
  include Aws::Structure
244
251
  end
245
252
 
@@ -353,6 +360,7 @@ module Aws::MachineLearning
353
360
  :rds_data,
354
361
  :role_arn,
355
362
  :compute_statistics)
363
+ SENSITIVE = []
356
364
  include Aws::Structure
357
365
  end
358
366
 
@@ -374,6 +382,7 @@ module Aws::MachineLearning
374
382
  #
375
383
  class CreateDataSourceFromRDSOutput < Struct.new(
376
384
  :data_source_id)
385
+ SENSITIVE = []
377
386
  include Aws::Structure
378
387
  end
379
388
 
@@ -467,6 +476,7 @@ module Aws::MachineLearning
467
476
  :data_spec,
468
477
  :role_arn,
469
478
  :compute_statistics)
479
+ SENSITIVE = []
470
480
  include Aws::Structure
471
481
  end
472
482
 
@@ -485,6 +495,7 @@ module Aws::MachineLearning
485
495
  #
486
496
  class CreateDataSourceFromRedshiftOutput < Struct.new(
487
497
  :data_source_id)
498
+ SENSITIVE = []
488
499
  include Aws::Structure
489
500
  end
490
501
 
@@ -542,6 +553,7 @@ module Aws::MachineLearning
542
553
  :data_source_name,
543
554
  :data_spec,
544
555
  :compute_statistics)
556
+ SENSITIVE = []
545
557
  include Aws::Structure
546
558
  end
547
559
 
@@ -560,6 +572,7 @@ module Aws::MachineLearning
560
572
  #
561
573
  class CreateDataSourceFromS3Output < Struct.new(
562
574
  :data_source_id)
575
+ SENSITIVE = []
563
576
  include Aws::Structure
564
577
  end
565
578
 
@@ -598,6 +611,7 @@ module Aws::MachineLearning
598
611
  :evaluation_name,
599
612
  :ml_model_id,
600
613
  :evaluation_data_source_id)
614
+ SENSITIVE = []
601
615
  include Aws::Structure
602
616
  end
603
617
 
@@ -616,6 +630,7 @@ module Aws::MachineLearning
616
630
  #
617
631
  class CreateEvaluationOutput < Struct.new(
618
632
  :evaluation_id)
633
+ SENSITIVE = []
619
634
  include Aws::Structure
620
635
  end
621
636
 
@@ -731,6 +746,7 @@ module Aws::MachineLearning
731
746
  :training_data_source_id,
732
747
  :recipe,
733
748
  :recipe_uri)
749
+ SENSITIVE = []
734
750
  include Aws::Structure
735
751
  end
736
752
 
@@ -749,6 +765,7 @@ module Aws::MachineLearning
749
765
  #
750
766
  class CreateMLModelOutput < Struct.new(
751
767
  :ml_model_id)
768
+ SENSITIVE = []
752
769
  include Aws::Structure
753
770
  end
754
771
 
@@ -765,6 +782,7 @@ module Aws::MachineLearning
765
782
  #
766
783
  class CreateRealtimeEndpointInput < Struct.new(
767
784
  :ml_model_id)
785
+ SENSITIVE = []
768
786
  include Aws::Structure
769
787
  end
770
788
 
@@ -792,6 +810,7 @@ module Aws::MachineLearning
792
810
  class CreateRealtimeEndpointOutput < Struct.new(
793
811
  :ml_model_id,
794
812
  :realtime_endpoint_info)
813
+ SENSITIVE = []
795
814
  include Aws::Structure
796
815
  end
797
816
 
@@ -914,6 +933,7 @@ module Aws::MachineLearning
914
933
  :compute_time,
915
934
  :finished_at,
916
935
  :started_at)
936
+ SENSITIVE = []
917
937
  include Aws::Structure
918
938
  end
919
939
 
@@ -930,6 +950,7 @@ module Aws::MachineLearning
930
950
  #
931
951
  class DeleteBatchPredictionInput < Struct.new(
932
952
  :batch_prediction_id)
953
+ SENSITIVE = []
933
954
  include Aws::Structure
934
955
  end
935
956
 
@@ -947,6 +968,7 @@ module Aws::MachineLearning
947
968
  #
948
969
  class DeleteBatchPredictionOutput < Struct.new(
949
970
  :batch_prediction_id)
971
+ SENSITIVE = []
950
972
  include Aws::Structure
951
973
  end
952
974
 
@@ -963,6 +985,7 @@ module Aws::MachineLearning
963
985
  #
964
986
  class DeleteDataSourceInput < Struct.new(
965
987
  :data_source_id)
988
+ SENSITIVE = []
966
989
  include Aws::Structure
967
990
  end
968
991
 
@@ -976,6 +999,7 @@ module Aws::MachineLearning
976
999
  #
977
1000
  class DeleteDataSourceOutput < Struct.new(
978
1001
  :data_source_id)
1002
+ SENSITIVE = []
979
1003
  include Aws::Structure
980
1004
  end
981
1005
 
@@ -993,6 +1017,7 @@ module Aws::MachineLearning
993
1017
  #
994
1018
  class DeleteEvaluationInput < Struct.new(
995
1019
  :evaluation_id)
1020
+ SENSITIVE = []
996
1021
  include Aws::Structure
997
1022
  end
998
1023
 
@@ -1012,6 +1037,7 @@ module Aws::MachineLearning
1012
1037
  #
1013
1038
  class DeleteEvaluationOutput < Struct.new(
1014
1039
  :evaluation_id)
1040
+ SENSITIVE = []
1015
1041
  include Aws::Structure
1016
1042
  end
1017
1043
 
@@ -1028,6 +1054,7 @@ module Aws::MachineLearning
1028
1054
  #
1029
1055
  class DeleteMLModelInput < Struct.new(
1030
1056
  :ml_model_id)
1057
+ SENSITIVE = []
1031
1058
  include Aws::Structure
1032
1059
  end
1033
1060
 
@@ -1044,6 +1071,7 @@ module Aws::MachineLearning
1044
1071
  #
1045
1072
  class DeleteMLModelOutput < Struct.new(
1046
1073
  :ml_model_id)
1074
+ SENSITIVE = []
1047
1075
  include Aws::Structure
1048
1076
  end
1049
1077
 
@@ -1060,6 +1088,7 @@ module Aws::MachineLearning
1060
1088
  #
1061
1089
  class DeleteRealtimeEndpointInput < Struct.new(
1062
1090
  :ml_model_id)
1091
+ SENSITIVE = []
1063
1092
  include Aws::Structure
1064
1093
  end
1065
1094
 
@@ -1081,6 +1110,7 @@ module Aws::MachineLearning
1081
1110
  class DeleteRealtimeEndpointOutput < Struct.new(
1082
1111
  :ml_model_id,
1083
1112
  :realtime_endpoint_info)
1113
+ SENSITIVE = []
1084
1114
  include Aws::Structure
1085
1115
  end
1086
1116
 
@@ -1109,6 +1139,7 @@ module Aws::MachineLearning
1109
1139
  :tag_keys,
1110
1140
  :resource_id,
1111
1141
  :resource_type)
1142
+ SENSITIVE = []
1112
1143
  include Aws::Structure
1113
1144
  end
1114
1145
 
@@ -1125,6 +1156,7 @@ module Aws::MachineLearning
1125
1156
  class DeleteTagsOutput < Struct.new(
1126
1157
  :resource_id,
1127
1158
  :resource_type)
1159
+ SENSITIVE = []
1128
1160
  include Aws::Structure
1129
1161
  end
1130
1162
 
@@ -1249,6 +1281,7 @@ module Aws::MachineLearning
1249
1281
  :sort_order,
1250
1282
  :next_token,
1251
1283
  :limit)
1284
+ SENSITIVE = []
1252
1285
  include Aws::Structure
1253
1286
  end
1254
1287
 
@@ -1267,6 +1300,7 @@ module Aws::MachineLearning
1267
1300
  class DescribeBatchPredictionsOutput < Struct.new(
1268
1301
  :results,
1269
1302
  :next_token)
1303
+ SENSITIVE = []
1270
1304
  include Aws::Structure
1271
1305
  end
1272
1306
 
@@ -1384,6 +1418,7 @@ module Aws::MachineLearning
1384
1418
  :sort_order,
1385
1419
  :next_token,
1386
1420
  :limit)
1421
+ SENSITIVE = []
1387
1422
  include Aws::Structure
1388
1423
  end
1389
1424
 
@@ -1402,6 +1437,7 @@ module Aws::MachineLearning
1402
1437
  class DescribeDataSourcesOutput < Struct.new(
1403
1438
  :results,
1404
1439
  :next_token)
1440
+ SENSITIVE = []
1405
1441
  include Aws::Structure
1406
1442
  end
1407
1443
 
@@ -1523,6 +1559,7 @@ module Aws::MachineLearning
1523
1559
  :sort_order,
1524
1560
  :next_token,
1525
1561
  :limit)
1562
+ SENSITIVE = []
1526
1563
  include Aws::Structure
1527
1564
  end
1528
1565
 
@@ -1541,6 +1578,7 @@ module Aws::MachineLearning
1541
1578
  class DescribeEvaluationsOutput < Struct.new(
1542
1579
  :results,
1543
1580
  :next_token)
1581
+ SENSITIVE = []
1544
1582
  include Aws::Structure
1545
1583
  end
1546
1584
 
@@ -1667,6 +1705,7 @@ module Aws::MachineLearning
1667
1705
  :sort_order,
1668
1706
  :next_token,
1669
1707
  :limit)
1708
+ SENSITIVE = []
1670
1709
  include Aws::Structure
1671
1710
  end
1672
1711
 
@@ -1685,6 +1724,7 @@ module Aws::MachineLearning
1685
1724
  class DescribeMLModelsOutput < Struct.new(
1686
1725
  :results,
1687
1726
  :next_token)
1727
+ SENSITIVE = []
1688
1728
  include Aws::Structure
1689
1729
  end
1690
1730
 
@@ -1707,6 +1747,7 @@ module Aws::MachineLearning
1707
1747
  class DescribeTagsInput < Struct.new(
1708
1748
  :resource_id,
1709
1749
  :resource_type)
1750
+ SENSITIVE = []
1710
1751
  include Aws::Structure
1711
1752
  end
1712
1753
 
@@ -1728,6 +1769,7 @@ module Aws::MachineLearning
1728
1769
  :resource_id,
1729
1770
  :resource_type,
1730
1771
  :tags)
1772
+ SENSITIVE = []
1731
1773
  include Aws::Structure
1732
1774
  end
1733
1775
 
@@ -1843,6 +1885,7 @@ module Aws::MachineLearning
1843
1885
  :compute_time,
1844
1886
  :finished_at,
1845
1887
  :started_at)
1888
+ SENSITIVE = []
1846
1889
  include Aws::Structure
1847
1890
  end
1848
1891
 
@@ -1859,6 +1902,7 @@ module Aws::MachineLearning
1859
1902
  #
1860
1903
  class GetBatchPredictionInput < Struct.new(
1861
1904
  :batch_prediction_id)
1905
+ SENSITIVE = []
1862
1906
  include Aws::Structure
1863
1907
  end
1864
1908
 
@@ -1983,6 +2027,7 @@ module Aws::MachineLearning
1983
2027
  :started_at,
1984
2028
  :total_record_count,
1985
2029
  :invalid_record_count)
2030
+ SENSITIVE = []
1986
2031
  include Aws::Structure
1987
2032
  end
1988
2033
 
@@ -2010,6 +2055,7 @@ module Aws::MachineLearning
2010
2055
  class GetDataSourceInput < Struct.new(
2011
2056
  :data_source_id,
2012
2057
  :verbose)
2058
+ SENSITIVE = []
2013
2059
  include Aws::Structure
2014
2060
  end
2015
2061
 
@@ -2154,6 +2200,7 @@ module Aws::MachineLearning
2154
2200
  :finished_at,
2155
2201
  :started_at,
2156
2202
  :data_source_schema)
2203
+ SENSITIVE = []
2157
2204
  include Aws::Structure
2158
2205
  end
2159
2206
 
@@ -2172,6 +2219,7 @@ module Aws::MachineLearning
2172
2219
  #
2173
2220
  class GetEvaluationInput < Struct.new(
2174
2221
  :evaluation_id)
2222
+ SENSITIVE = []
2175
2223
  include Aws::Structure
2176
2224
  end
2177
2225
 
@@ -2299,6 +2347,7 @@ module Aws::MachineLearning
2299
2347
  :compute_time,
2300
2348
  :finished_at,
2301
2349
  :started_at)
2350
+ SENSITIVE = []
2302
2351
  include Aws::Structure
2303
2352
  end
2304
2353
 
@@ -2325,6 +2374,7 @@ module Aws::MachineLearning
2325
2374
  class GetMLModelInput < Struct.new(
2326
2375
  :ml_model_id,
2327
2376
  :verbose)
2377
+ SENSITIVE = []
2328
2378
  include Aws::Structure
2329
2379
  end
2330
2380
 
@@ -2533,6 +2583,7 @@ module Aws::MachineLearning
2533
2583
  :started_at,
2534
2584
  :recipe,
2535
2585
  :schema)
2586
+ SENSITIVE = []
2536
2587
  include Aws::Structure
2537
2588
  end
2538
2589
 
@@ -2549,6 +2600,7 @@ module Aws::MachineLearning
2549
2600
  class IdempotentParameterMismatchException < Struct.new(
2550
2601
  :message,
2551
2602
  :code)
2603
+ SENSITIVE = []
2552
2604
  include Aws::Structure
2553
2605
  end
2554
2606
 
@@ -2563,6 +2615,7 @@ module Aws::MachineLearning
2563
2615
  class InternalServerException < Struct.new(
2564
2616
  :message,
2565
2617
  :code)
2618
+ SENSITIVE = []
2566
2619
  include Aws::Structure
2567
2620
  end
2568
2621
 
@@ -2578,6 +2631,7 @@ module Aws::MachineLearning
2578
2631
  class InvalidInputException < Struct.new(
2579
2632
  :message,
2580
2633
  :code)
2634
+ SENSITIVE = []
2581
2635
  include Aws::Structure
2582
2636
  end
2583
2637
 
@@ -2586,6 +2640,7 @@ module Aws::MachineLearning
2586
2640
  #
2587
2641
  class InvalidTagException < Struct.new(
2588
2642
  :message)
2643
+ SENSITIVE = []
2589
2644
  include Aws::Structure
2590
2645
  end
2591
2646
 
@@ -2601,6 +2656,7 @@ module Aws::MachineLearning
2601
2656
  class LimitExceededException < Struct.new(
2602
2657
  :message,
2603
2658
  :code)
2659
+ SENSITIVE = []
2604
2660
  include Aws::Structure
2605
2661
  end
2606
2662
 
@@ -2777,6 +2833,7 @@ module Aws::MachineLearning
2777
2833
  :compute_time,
2778
2834
  :finished_at,
2779
2835
  :started_at)
2836
+ SENSITIVE = []
2780
2837
  include Aws::Structure
2781
2838
  end
2782
2839
 
@@ -2807,6 +2864,7 @@ module Aws::MachineLearning
2807
2864
  #
2808
2865
  class PerformanceMetrics < Struct.new(
2809
2866
  :properties)
2867
+ SENSITIVE = []
2810
2868
  include Aws::Structure
2811
2869
  end
2812
2870
 
@@ -2836,6 +2894,7 @@ module Aws::MachineLearning
2836
2894
  :ml_model_id,
2837
2895
  :record,
2838
2896
  :predict_endpoint)
2897
+ SENSITIVE = []
2839
2898
  include Aws::Structure
2840
2899
  end
2841
2900
 
@@ -2857,6 +2916,7 @@ module Aws::MachineLearning
2857
2916
  #
2858
2917
  class PredictOutput < Struct.new(
2859
2918
  :prediction)
2919
+ SENSITIVE = []
2860
2920
  include Aws::Structure
2861
2921
  end
2862
2922
 
@@ -2896,6 +2956,7 @@ module Aws::MachineLearning
2896
2956
  :predicted_value,
2897
2957
  :predicted_scores,
2898
2958
  :details)
2959
+ SENSITIVE = []
2899
2960
  include Aws::Structure
2900
2961
  end
2901
2962
 
@@ -2907,6 +2968,7 @@ module Aws::MachineLearning
2907
2968
  #
2908
2969
  class PredictorNotMountedException < Struct.new(
2909
2970
  :message)
2971
+ SENSITIVE = []
2910
2972
  include Aws::Structure
2911
2973
  end
2912
2974
 
@@ -3144,6 +3206,7 @@ module Aws::MachineLearning
3144
3206
  :service_role,
3145
3207
  :subnet_id,
3146
3208
  :security_group_ids)
3209
+ SENSITIVE = []
3147
3210
  include Aws::Structure
3148
3211
  end
3149
3212
 
@@ -3168,6 +3231,7 @@ module Aws::MachineLearning
3168
3231
  class RDSDatabase < Struct.new(
3169
3232
  :instance_identifier,
3170
3233
  :database_name)
3234
+ SENSITIVE = []
3171
3235
  include Aws::Structure
3172
3236
  end
3173
3237
 
@@ -3197,6 +3261,7 @@ module Aws::MachineLearning
3197
3261
  class RDSDatabaseCredentials < Struct.new(
3198
3262
  :username,
3199
3263
  :password)
3264
+ SENSITIVE = []
3200
3265
  include Aws::Structure
3201
3266
  end
3202
3267
 
@@ -3251,6 +3316,7 @@ module Aws::MachineLearning
3251
3316
  :resource_role,
3252
3317
  :service_role,
3253
3318
  :data_pipeline_id)
3319
+ SENSITIVE = []
3254
3320
  include Aws::Structure
3255
3321
  end
3256
3322
 
@@ -3290,6 +3356,7 @@ module Aws::MachineLearning
3290
3356
  :created_at,
3291
3357
  :endpoint_url,
3292
3358
  :endpoint_status)
3359
+ SENSITIVE = []
3293
3360
  include Aws::Structure
3294
3361
  end
3295
3362
 
@@ -3479,6 +3546,7 @@ module Aws::MachineLearning
3479
3546
  :data_rearrangement,
3480
3547
  :data_schema,
3481
3548
  :data_schema_uri)
3549
+ SENSITIVE = []
3482
3550
  include Aws::Structure
3483
3551
  end
3484
3552
 
@@ -3504,6 +3572,7 @@ module Aws::MachineLearning
3504
3572
  class RedshiftDatabase < Struct.new(
3505
3573
  :database_name,
3506
3574
  :cluster_identifier)
3575
+ SENSITIVE = []
3507
3576
  include Aws::Structure
3508
3577
  end
3509
3578
 
@@ -3544,6 +3613,7 @@ module Aws::MachineLearning
3544
3613
  class RedshiftDatabaseCredentials < Struct.new(
3545
3614
  :username,
3546
3615
  :password)
3616
+ SENSITIVE = []
3547
3617
  include Aws::Structure
3548
3618
  end
3549
3619
 
@@ -3575,6 +3645,7 @@ module Aws::MachineLearning
3575
3645
  :redshift_database,
3576
3646
  :database_user_name,
3577
3647
  :select_sql_query)
3648
+ SENSITIVE = []
3578
3649
  include Aws::Structure
3579
3650
  end
3580
3651
 
@@ -3589,6 +3660,7 @@ module Aws::MachineLearning
3589
3660
  class ResourceNotFoundException < Struct.new(
3590
3661
  :message,
3591
3662
  :code)
3663
+ SENSITIVE = []
3592
3664
  include Aws::Structure
3593
3665
  end
3594
3666
 
@@ -3756,6 +3828,7 @@ module Aws::MachineLearning
3756
3828
  :data_rearrangement,
3757
3829
  :data_schema,
3758
3830
  :data_schema_location_s3)
3831
+ SENSITIVE = []
3759
3832
  include Aws::Structure
3760
3833
  end
3761
3834
 
@@ -3784,6 +3857,7 @@ module Aws::MachineLearning
3784
3857
  class Tag < Struct.new(
3785
3858
  :key,
3786
3859
  :value)
3860
+ SENSITIVE = []
3787
3861
  include Aws::Structure
3788
3862
  end
3789
3863
 
@@ -3792,6 +3866,7 @@ module Aws::MachineLearning
3792
3866
  #
3793
3867
  class TagLimitExceededException < Struct.new(
3794
3868
  :message)
3869
+ SENSITIVE = []
3795
3870
  include Aws::Structure
3796
3871
  end
3797
3872
 
@@ -3814,6 +3889,7 @@ module Aws::MachineLearning
3814
3889
  class UpdateBatchPredictionInput < Struct.new(
3815
3890
  :batch_prediction_id,
3816
3891
  :batch_prediction_name)
3892
+ SENSITIVE = []
3817
3893
  include Aws::Structure
3818
3894
  end
3819
3895
 
@@ -3830,6 +3906,7 @@ module Aws::MachineLearning
3830
3906
  #
3831
3907
  class UpdateBatchPredictionOutput < Struct.new(
3832
3908
  :batch_prediction_id)
3909
+ SENSITIVE = []
3833
3910
  include Aws::Structure
3834
3911
  end
3835
3912
 
@@ -3853,6 +3930,7 @@ module Aws::MachineLearning
3853
3930
  class UpdateDataSourceInput < Struct.new(
3854
3931
  :data_source_id,
3855
3932
  :data_source_name)
3933
+ SENSITIVE = []
3856
3934
  include Aws::Structure
3857
3935
  end
3858
3936
 
@@ -3869,6 +3947,7 @@ module Aws::MachineLearning
3869
3947
  #
3870
3948
  class UpdateDataSourceOutput < Struct.new(
3871
3949
  :data_source_id)
3950
+ SENSITIVE = []
3872
3951
  include Aws::Structure
3873
3952
  end
3874
3953
 
@@ -3892,6 +3971,7 @@ module Aws::MachineLearning
3892
3971
  class UpdateEvaluationInput < Struct.new(
3893
3972
  :evaluation_id,
3894
3973
  :evaluation_name)
3974
+ SENSITIVE = []
3895
3975
  include Aws::Structure
3896
3976
  end
3897
3977
 
@@ -3907,6 +3987,7 @@ module Aws::MachineLearning
3907
3987
  #
3908
3988
  class UpdateEvaluationOutput < Struct.new(
3909
3989
  :evaluation_id)
3990
+ SENSITIVE = []
3910
3991
  include Aws::Structure
3911
3992
  end
3912
3993
 
@@ -3942,6 +4023,7 @@ module Aws::MachineLearning
3942
4023
  :ml_model_id,
3943
4024
  :ml_model_name,
3944
4025
  :score_threshold)
4026
+ SENSITIVE = []
3945
4027
  include Aws::Structure
3946
4028
  end
3947
4029
 
@@ -3956,6 +4038,7 @@ module Aws::MachineLearning
3956
4038
  #
3957
4039
  class UpdateMLModelOutput < Struct.new(
3958
4040
  :ml_model_id)
4041
+ SENSITIVE = []
3959
4042
  include Aws::Structure
3960
4043
  end
3961
4044
 
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -8,6 +10,70 @@
8
10
  require 'aws-sdk-core/waiters'
9
11
 
10
12
  module Aws::MachineLearning
13
+ # Waiters are utility methods that poll for a particular state to occur
14
+ # on a client. Waiters can fail after a number of attempts at a polling
15
+ # interval defined for the service client.
16
+ #
17
+ # For a list of operations that can be waited for and the
18
+ # client methods called for each operation, see the table below or the
19
+ # {Client#wait_until} field documentation for the {Client}.
20
+ #
21
+ # # Invoking a Waiter
22
+ # To invoke a waiter, call #wait_until on a {Client}. The first parameter
23
+ # is the waiter name, which is specific to the service client and indicates
24
+ # which operation is being waited for. The second parameter is a hash of
25
+ # parameters that are passed to the client method called by the waiter,
26
+ # which varies according to the waiter name.
27
+ #
28
+ # # Wait Failures
29
+ # To catch errors in a waiter, use WaiterFailed,
30
+ # as shown in the following example.
31
+ #
32
+ # rescue rescue Aws::Waiters::Errors::WaiterFailed => error
33
+ # puts "failed waiting for instance running: #{error.message}
34
+ # end
35
+ #
36
+ # # Configuring a Waiter
37
+ # Each waiter has a default polling interval and a maximum number of
38
+ # attempts it will make before returning control to your program.
39
+ # To set these values, use the `max_attempts` and `delay` parameters
40
+ # in your `#wait_until` call.
41
+ # The following example waits for up to 25 seconds, polling every five seconds.
42
+ #
43
+ # client.wait_until(...) do |w|
44
+ # w.max_attempts = 5
45
+ # w.delay = 5
46
+ # end
47
+ #
48
+ # To disable wait failures, set the value of either of these parameters
49
+ # to `nil`.
50
+ #
51
+ # # Extending a Waiter
52
+ # To modify the behavior of waiters, you can register callbacks that are
53
+ # triggered before each polling attempt and before waiting.
54
+ #
55
+ # The following example implements an exponential backoff in a waiter
56
+ # by doubling the amount of time to wait on every attempt.
57
+ #
58
+ # client.wait_until(...) do |w|
59
+ # w.interval = 0 # disable normal sleep
60
+ # w.before_wait do |n, resp|
61
+ # sleep(n ** 2)
62
+ # end
63
+ # end
64
+ #
65
+ # # Available Waiters
66
+ #
67
+ # The following table lists the valid waiter names, the operations they call,
68
+ # and the default `:delay` and `:max_attempts` values.
69
+ #
70
+ # | waiter_name | params | :delay | :max_attempts |
71
+ # | -------------------------- | ----------------------------------- | -------- | ------------- |
72
+ # | batch_prediction_available | {Client#describe_batch_predictions} | 30 | 60 |
73
+ # | data_source_available | {Client#describe_data_sources} | 30 | 60 |
74
+ # | evaluation_available | {Client#describe_evaluations} | 30 | 60 |
75
+ # | ml_model_available | {Client#describe_ml_models} | 30 | 60 |
76
+ #
11
77
  module Waiters
12
78
 
13
79
  class BatchPredictionAvailable
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.18.0
4
+ version: 1.23.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-03-16 00:00:00.000000000 Z
11
+ date: 2020-08-25 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.71.0
22
+ version: 3.99.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.71.0
32
+ version: 3.99.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement
@@ -82,7 +82,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
82
82
  - !ruby/object:Gem::Version
83
83
  version: '0'
84
84
  requirements: []
85
- rubygems_version: 3.0.3
85
+ rubyforge_project:
86
+ rubygems_version: 2.7.6.2
86
87
  signing_key:
87
88
  specification_version: 4
88
89
  summary: AWS SDK for Ruby - Amazon Machine Learning