aws-sdk-machinelearning 1.18.0 → 1.23.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 38396999391af51e3a75da99661b2d6994407e967314ed061693b5669da2158d
4
- data.tar.gz: 78295e22f992294b1a09dd298c697649719b32dc10d72d756d493bbb2a96fc5c
3
+ metadata.gz: fb7e32d457d3877941526a42c6717f92bda607500c0a20c7fa6ce8e588bd99dc
4
+ data.tar.gz: 3d240312f03b245a09383eb443461ce374eb3fc45da041ae11a757cdcd61f262
5
5
  SHA512:
6
- metadata.gz: 1ea8124aec1dfd3f33d66c3c3ca6e5ff3b79767e221a20302d0ec80070499012343ace1a21602d6a6f4f2c29323caabe2f9cbb64f38a8a969ef15adf456de514
7
- data.tar.gz: 91d2c9bc138318b2d1f4571c591464a385fba7aae950667d4b01c63623937000289bf477a5276e78cfe66c68528f5aa31546a64e71d9daab449a1e98c675b5d0
6
+ metadata.gz: c45fac09770f1f46dd5a46c8a4bff211f71ecaaa632d5acb77282a160b437e909b29b6193091fdf62564b0307c5bed94b24ea6de15de0b8ef1bbf02d1b968c57
7
+ data.tar.gz: 5315f4322c0f63754029aca97aef2ad80335d069faa141ee92dc8cb8a1a48d7fe58c6c9f3c60dc759639fd8940e37d6e75ebddfb86508116c7947bff112e6acd
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -43,9 +45,9 @@ require_relative 'aws-sdk-machinelearning/customizations'
43
45
  #
44
46
  # See {Errors} for more information.
45
47
  #
46
- # @service
48
+ # @!group service
47
49
  module Aws::MachineLearning
48
50
 
49
- GEM_VERSION = '1.18.0'
51
+ GEM_VERSION = '1.23.0'
50
52
 
51
53
  end
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -24,6 +26,7 @@ require 'aws-sdk-core/plugins/jsonvalue_converter.rb'
24
26
  require 'aws-sdk-core/plugins/client_metrics_plugin.rb'
25
27
  require 'aws-sdk-core/plugins/client_metrics_send_plugin.rb'
26
28
  require 'aws-sdk-core/plugins/transfer_encoding.rb'
29
+ require 'aws-sdk-core/plugins/http_checksum.rb'
27
30
  require 'aws-sdk-core/plugins/signature_v4.rb'
28
31
  require 'aws-sdk-core/plugins/protocols/json_rpc.rb'
29
32
  require 'aws-sdk-machinelearning/plugins/predict_endpoint.rb'
@@ -70,6 +73,7 @@ module Aws::MachineLearning
70
73
  add_plugin(Aws::Plugins::ClientMetricsPlugin)
71
74
  add_plugin(Aws::Plugins::ClientMetricsSendPlugin)
72
75
  add_plugin(Aws::Plugins::TransferEncoding)
76
+ add_plugin(Aws::Plugins::HttpChecksum)
73
77
  add_plugin(Aws::Plugins::SignatureV4)
74
78
  add_plugin(Aws::Plugins::Protocols::JsonRpc)
75
79
  add_plugin(Aws::MachineLearning::Plugins::PredictEndpoint)
@@ -83,13 +87,28 @@ module Aws::MachineLearning
83
87
  # * `Aws::Credentials` - Used for configuring static, non-refreshing
84
88
  # credentials.
85
89
  #
90
+ # * `Aws::SharedCredentials` - Used for loading static credentials from a
91
+ # shared file, such as `~/.aws/config`.
92
+ #
93
+ # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
94
+ #
95
+ # * `Aws::AssumeRoleWebIdentityCredentials` - Used when you need to
96
+ # assume a role after providing credentials via the web.
97
+ #
98
+ # * `Aws::SSOCredentials` - Used for loading credentials from AWS SSO using an
99
+ # access token generated from `aws login`.
100
+ #
101
+ # * `Aws::ProcessCredentials` - Used for loading credentials from a
102
+ # process that outputs to stdout.
103
+ #
86
104
  # * `Aws::InstanceProfileCredentials` - Used for loading credentials
87
105
  # from an EC2 IMDS on an EC2 instance.
88
106
  #
89
- # * `Aws::SharedCredentials` - Used for loading credentials from a
90
- # shared file, such as `~/.aws/config`.
107
+ # * `Aws::ECSCredentials` - Used for loading credentials from
108
+ # instances running in ECS.
91
109
  #
92
- # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
110
+ # * `Aws::CognitoIdentityCredentials` - Used for loading credentials
111
+ # from the Cognito Identity service.
93
112
  #
94
113
  # When `:credentials` are not configured directly, the following
95
114
  # locations will be searched for credentials:
@@ -99,15 +118,15 @@ module Aws::MachineLearning
99
118
  # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
100
119
  # * `~/.aws/credentials`
101
120
  # * `~/.aws/config`
102
- # * EC2 IMDS instance profile - When used by default, the timeouts are
103
- # very aggressive. Construct and pass an instance of
104
- # `Aws::InstanceProfileCredentails` to enable retries and extended
105
- # timeouts.
121
+ # * EC2/ECS IMDS instance profile - When used by default, the timeouts
122
+ # are very aggressive. Construct and pass an instance of
123
+ # `Aws::InstanceProfileCredentails` or `Aws::ECSCredentials` to
124
+ # enable retries and extended timeouts.
106
125
  #
107
126
  # @option options [required, String] :region
108
127
  # The AWS region to connect to. The configured `:region` is
109
128
  # used to determine the service `:endpoint`. When not passed,
110
- # a default `:region` is search for in the following locations:
129
+ # a default `:region` is searched for in the following locations:
111
130
  #
112
131
  # * `Aws.config[:region]`
113
132
  # * `ENV['AWS_REGION']`
@@ -163,7 +182,7 @@ module Aws::MachineLearning
163
182
  # @option options [String] :endpoint
164
183
  # The client endpoint is normally constructed from the `:region`
165
184
  # option. You should only configure an `:endpoint` when connecting
166
- # to test endpoints. This should be avalid HTTP(S) URI.
185
+ # to test or custom endpoints. This should be a valid HTTP(S) URI.
167
186
  #
168
187
  # @option options [Integer] :endpoint_cache_max_entries (1000)
169
188
  # Used for the maximum size limit of the LRU cache storing endpoints data
@@ -178,7 +197,7 @@ module Aws::MachineLearning
178
197
  # requests fetching endpoints information. Defaults to 60 sec.
179
198
  #
180
199
  # @option options [Boolean] :endpoint_discovery (false)
181
- # When set to `true`, endpoint discovery will be enabled for operations when available. Defaults to `false`.
200
+ # When set to `true`, endpoint discovery will be enabled for operations when available.
182
201
  #
183
202
  # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
184
203
  # The log formatter.
@@ -281,8 +300,7 @@ module Aws::MachineLearning
281
300
  #
282
301
  # @option options [Integer] :http_read_timeout (60) The default
283
302
  # number of seconds to wait for response data. This value can
284
- # safely be set
285
- # per-request on the session yielded by {#session_for}.
303
+ # safely be set per-request on the session.
286
304
  #
287
305
  # @option options [Float] :http_idle_timeout (5) The number of
288
306
  # seconds a connection is allowed to sit idle before it is
@@ -294,7 +312,7 @@ module Aws::MachineLearning
294
312
  # request body. This option has no effect unless the request has
295
313
  # "Expect" header set to "100-continue". Defaults to `nil` which
296
314
  # disables this behaviour. This value can safely be set per
297
- # request on the session yielded by {#session_for}.
315
+ # request on the session.
298
316
  #
299
317
  # @option options [Boolean] :http_wire_trace (false) When `true`,
300
318
  # HTTP debug output will be sent to the `:logger`.
@@ -1316,6 +1334,8 @@ module Aws::MachineLearning
1316
1334
  # * {Types::DescribeBatchPredictionsOutput#results #results} => Array<Types::BatchPrediction>
1317
1335
  # * {Types::DescribeBatchPredictionsOutput#next_token #next_token} => String
1318
1336
  #
1337
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1338
+ #
1319
1339
  # @example Request syntax with placeholder values
1320
1340
  #
1321
1341
  # resp = client.describe_batch_predictions({
@@ -1353,6 +1373,11 @@ module Aws::MachineLearning
1353
1373
  # resp.results[0].invalid_record_count #=> Integer
1354
1374
  # resp.next_token #=> String
1355
1375
  #
1376
+ #
1377
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1378
+ #
1379
+ # * batch_prediction_available
1380
+ #
1356
1381
  # @overload describe_batch_predictions(params = {})
1357
1382
  # @param [Hash] params ({})
1358
1383
  def describe_batch_predictions(params = {}, options = {})
@@ -1441,6 +1466,8 @@ module Aws::MachineLearning
1441
1466
  # * {Types::DescribeDataSourcesOutput#results #results} => Array<Types::DataSource>
1442
1467
  # * {Types::DescribeDataSourcesOutput#next_token #next_token} => String
1443
1468
  #
1469
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1470
+ #
1444
1471
  # @example Request syntax with placeholder values
1445
1472
  #
1446
1473
  # resp = client.describe_data_sources({
@@ -1489,6 +1516,11 @@ module Aws::MachineLearning
1489
1516
  # resp.results[0].started_at #=> Time
1490
1517
  # resp.next_token #=> String
1491
1518
  #
1519
+ #
1520
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1521
+ #
1522
+ # * data_source_available
1523
+ #
1492
1524
  # @overload describe_data_sources(params = {})
1493
1525
  # @param [Hash] params ({})
1494
1526
  def describe_data_sources(params = {}, options = {})
@@ -1582,6 +1614,8 @@ module Aws::MachineLearning
1582
1614
  # * {Types::DescribeEvaluationsOutput#results #results} => Array<Types::Evaluation>
1583
1615
  # * {Types::DescribeEvaluationsOutput#next_token #next_token} => String
1584
1616
  #
1617
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1618
+ #
1585
1619
  # @example Request syntax with placeholder values
1586
1620
  #
1587
1621
  # resp = client.describe_evaluations({
@@ -1618,6 +1652,11 @@ module Aws::MachineLearning
1618
1652
  # resp.results[0].started_at #=> Time
1619
1653
  # resp.next_token #=> String
1620
1654
  #
1655
+ #
1656
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1657
+ #
1658
+ # * evaluation_available
1659
+ #
1621
1660
  # @overload describe_evaluations(params = {})
1622
1661
  # @param [Hash] params ({})
1623
1662
  def describe_evaluations(params = {}, options = {})
@@ -1714,6 +1753,8 @@ module Aws::MachineLearning
1714
1753
  # * {Types::DescribeMLModelsOutput#results #results} => Array<Types::MLModel>
1715
1754
  # * {Types::DescribeMLModelsOutput#next_token #next_token} => String
1716
1755
  #
1756
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1757
+ #
1717
1758
  # @example Request syntax with placeholder values
1718
1759
  #
1719
1760
  # resp = client.describe_ml_models({
@@ -1758,6 +1799,11 @@ module Aws::MachineLearning
1758
1799
  # resp.results[0].started_at #=> Time
1759
1800
  # resp.next_token #=> String
1760
1801
  #
1802
+ #
1803
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1804
+ #
1805
+ # * ml_model_available
1806
+ #
1761
1807
  # @overload describe_ml_models(params = {})
1762
1808
  # @param [Hash] params ({})
1763
1809
  def describe_ml_models(params = {}, options = {})
@@ -2290,7 +2336,7 @@ module Aws::MachineLearning
2290
2336
  params: params,
2291
2337
  config: config)
2292
2338
  context[:gem_name] = 'aws-sdk-machinelearning'
2293
- context[:gem_version] = '1.18.0'
2339
+ context[:gem_version] = '1.23.0'
2294
2340
  Seahorse::Client::Request.new(handlers, context)
2295
2341
  end
2296
2342
 
@@ -2356,12 +2402,12 @@ module Aws::MachineLearning
2356
2402
  # The following table lists the valid waiter names, the operations they call,
2357
2403
  # and the default `:delay` and `:max_attempts` values.
2358
2404
  #
2359
- # | waiter_name | params | :delay | :max_attempts |
2360
- # | -------------------------- | ----------------------------- | -------- | ------------- |
2361
- # | batch_prediction_available | {#describe_batch_predictions} | 30 | 60 |
2362
- # | data_source_available | {#describe_data_sources} | 30 | 60 |
2363
- # | evaluation_available | {#describe_evaluations} | 30 | 60 |
2364
- # | ml_model_available | {#describe_ml_models} | 30 | 60 |
2405
+ # | waiter_name | params | :delay | :max_attempts |
2406
+ # | -------------------------- | ----------------------------------- | -------- | ------------- |
2407
+ # | batch_prediction_available | {Client#describe_batch_predictions} | 30 | 60 |
2408
+ # | data_source_available | {Client#describe_data_sources} | 30 | 60 |
2409
+ # | evaluation_available | {Client#describe_evaluations} | 30 | 60 |
2410
+ # | ml_model_available | {Client#describe_ml_models} | 30 | 60 |
2365
2411
  #
2366
2412
  # @raise [Errors::FailureStateError] Raised when the waiter terminates
2367
2413
  # because the waiter has entered a state that it will not transition
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -1,3 +1,4 @@
1
+ # frozen_string_literal: true
1
2
  # WARNING ABOUT GENERATED CODE
2
3
  #
3
4
  # This file is generated. See the contributing for info on making contributions:
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  module Aws
2
4
  module MachineLearning
3
5
  module Plugins
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -6,13 +8,7 @@
6
8
  # WARNING ABOUT GENERATED CODE
7
9
 
8
10
  module Aws::MachineLearning
9
- # This class provides a resource oriented interface for MachineLearning.
10
- # To create a resource object:
11
- # resource = Aws::MachineLearning::Resource.new(region: 'us-west-2')
12
- # You can supply a client object with custom configuration that will be used for all resource operations.
13
- # If you do not pass +:client+, a default client will be constructed.
14
- # client = Aws::MachineLearning::Client.new(region: 'us-west-2')
15
- # resource = Aws::MachineLearning::Resource.new(client: client)
11
+
16
12
  class Resource
17
13
 
18
14
  # @param options ({})
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -40,6 +42,7 @@ module Aws::MachineLearning
40
42
  :tags,
41
43
  :resource_id,
42
44
  :resource_type)
45
+ SENSITIVE = []
43
46
  include Aws::Structure
44
47
  end
45
48
 
@@ -56,6 +59,7 @@ module Aws::MachineLearning
56
59
  class AddTagsOutput < Struct.new(
57
60
  :resource_id,
58
61
  :resource_type)
62
+ SENSITIVE = []
59
63
  include Aws::Structure
60
64
  end
61
65
 
@@ -168,6 +172,7 @@ module Aws::MachineLearning
168
172
  :started_at,
169
173
  :total_record_count,
170
174
  :invalid_record_count)
175
+ SENSITIVE = []
171
176
  include Aws::Structure
172
177
  end
173
178
 
@@ -222,6 +227,7 @@ module Aws::MachineLearning
222
227
  :ml_model_id,
223
228
  :batch_prediction_data_source_id,
224
229
  :output_uri)
230
+ SENSITIVE = []
225
231
  include Aws::Structure
226
232
  end
227
233
 
@@ -240,6 +246,7 @@ module Aws::MachineLearning
240
246
  #
241
247
  class CreateBatchPredictionOutput < Struct.new(
242
248
  :batch_prediction_id)
249
+ SENSITIVE = []
243
250
  include Aws::Structure
244
251
  end
245
252
 
@@ -353,6 +360,7 @@ module Aws::MachineLearning
353
360
  :rds_data,
354
361
  :role_arn,
355
362
  :compute_statistics)
363
+ SENSITIVE = []
356
364
  include Aws::Structure
357
365
  end
358
366
 
@@ -374,6 +382,7 @@ module Aws::MachineLearning
374
382
  #
375
383
  class CreateDataSourceFromRDSOutput < Struct.new(
376
384
  :data_source_id)
385
+ SENSITIVE = []
377
386
  include Aws::Structure
378
387
  end
379
388
 
@@ -467,6 +476,7 @@ module Aws::MachineLearning
467
476
  :data_spec,
468
477
  :role_arn,
469
478
  :compute_statistics)
479
+ SENSITIVE = []
470
480
  include Aws::Structure
471
481
  end
472
482
 
@@ -485,6 +495,7 @@ module Aws::MachineLearning
485
495
  #
486
496
  class CreateDataSourceFromRedshiftOutput < Struct.new(
487
497
  :data_source_id)
498
+ SENSITIVE = []
488
499
  include Aws::Structure
489
500
  end
490
501
 
@@ -542,6 +553,7 @@ module Aws::MachineLearning
542
553
  :data_source_name,
543
554
  :data_spec,
544
555
  :compute_statistics)
556
+ SENSITIVE = []
545
557
  include Aws::Structure
546
558
  end
547
559
 
@@ -560,6 +572,7 @@ module Aws::MachineLearning
560
572
  #
561
573
  class CreateDataSourceFromS3Output < Struct.new(
562
574
  :data_source_id)
575
+ SENSITIVE = []
563
576
  include Aws::Structure
564
577
  end
565
578
 
@@ -598,6 +611,7 @@ module Aws::MachineLearning
598
611
  :evaluation_name,
599
612
  :ml_model_id,
600
613
  :evaluation_data_source_id)
614
+ SENSITIVE = []
601
615
  include Aws::Structure
602
616
  end
603
617
 
@@ -616,6 +630,7 @@ module Aws::MachineLearning
616
630
  #
617
631
  class CreateEvaluationOutput < Struct.new(
618
632
  :evaluation_id)
633
+ SENSITIVE = []
619
634
  include Aws::Structure
620
635
  end
621
636
 
@@ -731,6 +746,7 @@ module Aws::MachineLearning
731
746
  :training_data_source_id,
732
747
  :recipe,
733
748
  :recipe_uri)
749
+ SENSITIVE = []
734
750
  include Aws::Structure
735
751
  end
736
752
 
@@ -749,6 +765,7 @@ module Aws::MachineLearning
749
765
  #
750
766
  class CreateMLModelOutput < Struct.new(
751
767
  :ml_model_id)
768
+ SENSITIVE = []
752
769
  include Aws::Structure
753
770
  end
754
771
 
@@ -765,6 +782,7 @@ module Aws::MachineLearning
765
782
  #
766
783
  class CreateRealtimeEndpointInput < Struct.new(
767
784
  :ml_model_id)
785
+ SENSITIVE = []
768
786
  include Aws::Structure
769
787
  end
770
788
 
@@ -792,6 +810,7 @@ module Aws::MachineLearning
792
810
  class CreateRealtimeEndpointOutput < Struct.new(
793
811
  :ml_model_id,
794
812
  :realtime_endpoint_info)
813
+ SENSITIVE = []
795
814
  include Aws::Structure
796
815
  end
797
816
 
@@ -914,6 +933,7 @@ module Aws::MachineLearning
914
933
  :compute_time,
915
934
  :finished_at,
916
935
  :started_at)
936
+ SENSITIVE = []
917
937
  include Aws::Structure
918
938
  end
919
939
 
@@ -930,6 +950,7 @@ module Aws::MachineLearning
930
950
  #
931
951
  class DeleteBatchPredictionInput < Struct.new(
932
952
  :batch_prediction_id)
953
+ SENSITIVE = []
933
954
  include Aws::Structure
934
955
  end
935
956
 
@@ -947,6 +968,7 @@ module Aws::MachineLearning
947
968
  #
948
969
  class DeleteBatchPredictionOutput < Struct.new(
949
970
  :batch_prediction_id)
971
+ SENSITIVE = []
950
972
  include Aws::Structure
951
973
  end
952
974
 
@@ -963,6 +985,7 @@ module Aws::MachineLearning
963
985
  #
964
986
  class DeleteDataSourceInput < Struct.new(
965
987
  :data_source_id)
988
+ SENSITIVE = []
966
989
  include Aws::Structure
967
990
  end
968
991
 
@@ -976,6 +999,7 @@ module Aws::MachineLearning
976
999
  #
977
1000
  class DeleteDataSourceOutput < Struct.new(
978
1001
  :data_source_id)
1002
+ SENSITIVE = []
979
1003
  include Aws::Structure
980
1004
  end
981
1005
 
@@ -993,6 +1017,7 @@ module Aws::MachineLearning
993
1017
  #
994
1018
  class DeleteEvaluationInput < Struct.new(
995
1019
  :evaluation_id)
1020
+ SENSITIVE = []
996
1021
  include Aws::Structure
997
1022
  end
998
1023
 
@@ -1012,6 +1037,7 @@ module Aws::MachineLearning
1012
1037
  #
1013
1038
  class DeleteEvaluationOutput < Struct.new(
1014
1039
  :evaluation_id)
1040
+ SENSITIVE = []
1015
1041
  include Aws::Structure
1016
1042
  end
1017
1043
 
@@ -1028,6 +1054,7 @@ module Aws::MachineLearning
1028
1054
  #
1029
1055
  class DeleteMLModelInput < Struct.new(
1030
1056
  :ml_model_id)
1057
+ SENSITIVE = []
1031
1058
  include Aws::Structure
1032
1059
  end
1033
1060
 
@@ -1044,6 +1071,7 @@ module Aws::MachineLearning
1044
1071
  #
1045
1072
  class DeleteMLModelOutput < Struct.new(
1046
1073
  :ml_model_id)
1074
+ SENSITIVE = []
1047
1075
  include Aws::Structure
1048
1076
  end
1049
1077
 
@@ -1060,6 +1088,7 @@ module Aws::MachineLearning
1060
1088
  #
1061
1089
  class DeleteRealtimeEndpointInput < Struct.new(
1062
1090
  :ml_model_id)
1091
+ SENSITIVE = []
1063
1092
  include Aws::Structure
1064
1093
  end
1065
1094
 
@@ -1081,6 +1110,7 @@ module Aws::MachineLearning
1081
1110
  class DeleteRealtimeEndpointOutput < Struct.new(
1082
1111
  :ml_model_id,
1083
1112
  :realtime_endpoint_info)
1113
+ SENSITIVE = []
1084
1114
  include Aws::Structure
1085
1115
  end
1086
1116
 
@@ -1109,6 +1139,7 @@ module Aws::MachineLearning
1109
1139
  :tag_keys,
1110
1140
  :resource_id,
1111
1141
  :resource_type)
1142
+ SENSITIVE = []
1112
1143
  include Aws::Structure
1113
1144
  end
1114
1145
 
@@ -1125,6 +1156,7 @@ module Aws::MachineLearning
1125
1156
  class DeleteTagsOutput < Struct.new(
1126
1157
  :resource_id,
1127
1158
  :resource_type)
1159
+ SENSITIVE = []
1128
1160
  include Aws::Structure
1129
1161
  end
1130
1162
 
@@ -1249,6 +1281,7 @@ module Aws::MachineLearning
1249
1281
  :sort_order,
1250
1282
  :next_token,
1251
1283
  :limit)
1284
+ SENSITIVE = []
1252
1285
  include Aws::Structure
1253
1286
  end
1254
1287
 
@@ -1267,6 +1300,7 @@ module Aws::MachineLearning
1267
1300
  class DescribeBatchPredictionsOutput < Struct.new(
1268
1301
  :results,
1269
1302
  :next_token)
1303
+ SENSITIVE = []
1270
1304
  include Aws::Structure
1271
1305
  end
1272
1306
 
@@ -1384,6 +1418,7 @@ module Aws::MachineLearning
1384
1418
  :sort_order,
1385
1419
  :next_token,
1386
1420
  :limit)
1421
+ SENSITIVE = []
1387
1422
  include Aws::Structure
1388
1423
  end
1389
1424
 
@@ -1402,6 +1437,7 @@ module Aws::MachineLearning
1402
1437
  class DescribeDataSourcesOutput < Struct.new(
1403
1438
  :results,
1404
1439
  :next_token)
1440
+ SENSITIVE = []
1405
1441
  include Aws::Structure
1406
1442
  end
1407
1443
 
@@ -1523,6 +1559,7 @@ module Aws::MachineLearning
1523
1559
  :sort_order,
1524
1560
  :next_token,
1525
1561
  :limit)
1562
+ SENSITIVE = []
1526
1563
  include Aws::Structure
1527
1564
  end
1528
1565
 
@@ -1541,6 +1578,7 @@ module Aws::MachineLearning
1541
1578
  class DescribeEvaluationsOutput < Struct.new(
1542
1579
  :results,
1543
1580
  :next_token)
1581
+ SENSITIVE = []
1544
1582
  include Aws::Structure
1545
1583
  end
1546
1584
 
@@ -1667,6 +1705,7 @@ module Aws::MachineLearning
1667
1705
  :sort_order,
1668
1706
  :next_token,
1669
1707
  :limit)
1708
+ SENSITIVE = []
1670
1709
  include Aws::Structure
1671
1710
  end
1672
1711
 
@@ -1685,6 +1724,7 @@ module Aws::MachineLearning
1685
1724
  class DescribeMLModelsOutput < Struct.new(
1686
1725
  :results,
1687
1726
  :next_token)
1727
+ SENSITIVE = []
1688
1728
  include Aws::Structure
1689
1729
  end
1690
1730
 
@@ -1707,6 +1747,7 @@ module Aws::MachineLearning
1707
1747
  class DescribeTagsInput < Struct.new(
1708
1748
  :resource_id,
1709
1749
  :resource_type)
1750
+ SENSITIVE = []
1710
1751
  include Aws::Structure
1711
1752
  end
1712
1753
 
@@ -1728,6 +1769,7 @@ module Aws::MachineLearning
1728
1769
  :resource_id,
1729
1770
  :resource_type,
1730
1771
  :tags)
1772
+ SENSITIVE = []
1731
1773
  include Aws::Structure
1732
1774
  end
1733
1775
 
@@ -1843,6 +1885,7 @@ module Aws::MachineLearning
1843
1885
  :compute_time,
1844
1886
  :finished_at,
1845
1887
  :started_at)
1888
+ SENSITIVE = []
1846
1889
  include Aws::Structure
1847
1890
  end
1848
1891
 
@@ -1859,6 +1902,7 @@ module Aws::MachineLearning
1859
1902
  #
1860
1903
  class GetBatchPredictionInput < Struct.new(
1861
1904
  :batch_prediction_id)
1905
+ SENSITIVE = []
1862
1906
  include Aws::Structure
1863
1907
  end
1864
1908
 
@@ -1983,6 +2027,7 @@ module Aws::MachineLearning
1983
2027
  :started_at,
1984
2028
  :total_record_count,
1985
2029
  :invalid_record_count)
2030
+ SENSITIVE = []
1986
2031
  include Aws::Structure
1987
2032
  end
1988
2033
 
@@ -2010,6 +2055,7 @@ module Aws::MachineLearning
2010
2055
  class GetDataSourceInput < Struct.new(
2011
2056
  :data_source_id,
2012
2057
  :verbose)
2058
+ SENSITIVE = []
2013
2059
  include Aws::Structure
2014
2060
  end
2015
2061
 
@@ -2154,6 +2200,7 @@ module Aws::MachineLearning
2154
2200
  :finished_at,
2155
2201
  :started_at,
2156
2202
  :data_source_schema)
2203
+ SENSITIVE = []
2157
2204
  include Aws::Structure
2158
2205
  end
2159
2206
 
@@ -2172,6 +2219,7 @@ module Aws::MachineLearning
2172
2219
  #
2173
2220
  class GetEvaluationInput < Struct.new(
2174
2221
  :evaluation_id)
2222
+ SENSITIVE = []
2175
2223
  include Aws::Structure
2176
2224
  end
2177
2225
 
@@ -2299,6 +2347,7 @@ module Aws::MachineLearning
2299
2347
  :compute_time,
2300
2348
  :finished_at,
2301
2349
  :started_at)
2350
+ SENSITIVE = []
2302
2351
  include Aws::Structure
2303
2352
  end
2304
2353
 
@@ -2325,6 +2374,7 @@ module Aws::MachineLearning
2325
2374
  class GetMLModelInput < Struct.new(
2326
2375
  :ml_model_id,
2327
2376
  :verbose)
2377
+ SENSITIVE = []
2328
2378
  include Aws::Structure
2329
2379
  end
2330
2380
 
@@ -2533,6 +2583,7 @@ module Aws::MachineLearning
2533
2583
  :started_at,
2534
2584
  :recipe,
2535
2585
  :schema)
2586
+ SENSITIVE = []
2536
2587
  include Aws::Structure
2537
2588
  end
2538
2589
 
@@ -2549,6 +2600,7 @@ module Aws::MachineLearning
2549
2600
  class IdempotentParameterMismatchException < Struct.new(
2550
2601
  :message,
2551
2602
  :code)
2603
+ SENSITIVE = []
2552
2604
  include Aws::Structure
2553
2605
  end
2554
2606
 
@@ -2563,6 +2615,7 @@ module Aws::MachineLearning
2563
2615
  class InternalServerException < Struct.new(
2564
2616
  :message,
2565
2617
  :code)
2618
+ SENSITIVE = []
2566
2619
  include Aws::Structure
2567
2620
  end
2568
2621
 
@@ -2578,6 +2631,7 @@ module Aws::MachineLearning
2578
2631
  class InvalidInputException < Struct.new(
2579
2632
  :message,
2580
2633
  :code)
2634
+ SENSITIVE = []
2581
2635
  include Aws::Structure
2582
2636
  end
2583
2637
 
@@ -2586,6 +2640,7 @@ module Aws::MachineLearning
2586
2640
  #
2587
2641
  class InvalidTagException < Struct.new(
2588
2642
  :message)
2643
+ SENSITIVE = []
2589
2644
  include Aws::Structure
2590
2645
  end
2591
2646
 
@@ -2601,6 +2656,7 @@ module Aws::MachineLearning
2601
2656
  class LimitExceededException < Struct.new(
2602
2657
  :message,
2603
2658
  :code)
2659
+ SENSITIVE = []
2604
2660
  include Aws::Structure
2605
2661
  end
2606
2662
 
@@ -2777,6 +2833,7 @@ module Aws::MachineLearning
2777
2833
  :compute_time,
2778
2834
  :finished_at,
2779
2835
  :started_at)
2836
+ SENSITIVE = []
2780
2837
  include Aws::Structure
2781
2838
  end
2782
2839
 
@@ -2807,6 +2864,7 @@ module Aws::MachineLearning
2807
2864
  #
2808
2865
  class PerformanceMetrics < Struct.new(
2809
2866
  :properties)
2867
+ SENSITIVE = []
2810
2868
  include Aws::Structure
2811
2869
  end
2812
2870
 
@@ -2836,6 +2894,7 @@ module Aws::MachineLearning
2836
2894
  :ml_model_id,
2837
2895
  :record,
2838
2896
  :predict_endpoint)
2897
+ SENSITIVE = []
2839
2898
  include Aws::Structure
2840
2899
  end
2841
2900
 
@@ -2857,6 +2916,7 @@ module Aws::MachineLearning
2857
2916
  #
2858
2917
  class PredictOutput < Struct.new(
2859
2918
  :prediction)
2919
+ SENSITIVE = []
2860
2920
  include Aws::Structure
2861
2921
  end
2862
2922
 
@@ -2896,6 +2956,7 @@ module Aws::MachineLearning
2896
2956
  :predicted_value,
2897
2957
  :predicted_scores,
2898
2958
  :details)
2959
+ SENSITIVE = []
2899
2960
  include Aws::Structure
2900
2961
  end
2901
2962
 
@@ -2907,6 +2968,7 @@ module Aws::MachineLearning
2907
2968
  #
2908
2969
  class PredictorNotMountedException < Struct.new(
2909
2970
  :message)
2971
+ SENSITIVE = []
2910
2972
  include Aws::Structure
2911
2973
  end
2912
2974
 
@@ -3144,6 +3206,7 @@ module Aws::MachineLearning
3144
3206
  :service_role,
3145
3207
  :subnet_id,
3146
3208
  :security_group_ids)
3209
+ SENSITIVE = []
3147
3210
  include Aws::Structure
3148
3211
  end
3149
3212
 
@@ -3168,6 +3231,7 @@ module Aws::MachineLearning
3168
3231
  class RDSDatabase < Struct.new(
3169
3232
  :instance_identifier,
3170
3233
  :database_name)
3234
+ SENSITIVE = []
3171
3235
  include Aws::Structure
3172
3236
  end
3173
3237
 
@@ -3197,6 +3261,7 @@ module Aws::MachineLearning
3197
3261
  class RDSDatabaseCredentials < Struct.new(
3198
3262
  :username,
3199
3263
  :password)
3264
+ SENSITIVE = []
3200
3265
  include Aws::Structure
3201
3266
  end
3202
3267
 
@@ -3251,6 +3316,7 @@ module Aws::MachineLearning
3251
3316
  :resource_role,
3252
3317
  :service_role,
3253
3318
  :data_pipeline_id)
3319
+ SENSITIVE = []
3254
3320
  include Aws::Structure
3255
3321
  end
3256
3322
 
@@ -3290,6 +3356,7 @@ module Aws::MachineLearning
3290
3356
  :created_at,
3291
3357
  :endpoint_url,
3292
3358
  :endpoint_status)
3359
+ SENSITIVE = []
3293
3360
  include Aws::Structure
3294
3361
  end
3295
3362
 
@@ -3479,6 +3546,7 @@ module Aws::MachineLearning
3479
3546
  :data_rearrangement,
3480
3547
  :data_schema,
3481
3548
  :data_schema_uri)
3549
+ SENSITIVE = []
3482
3550
  include Aws::Structure
3483
3551
  end
3484
3552
 
@@ -3504,6 +3572,7 @@ module Aws::MachineLearning
3504
3572
  class RedshiftDatabase < Struct.new(
3505
3573
  :database_name,
3506
3574
  :cluster_identifier)
3575
+ SENSITIVE = []
3507
3576
  include Aws::Structure
3508
3577
  end
3509
3578
 
@@ -3544,6 +3613,7 @@ module Aws::MachineLearning
3544
3613
  class RedshiftDatabaseCredentials < Struct.new(
3545
3614
  :username,
3546
3615
  :password)
3616
+ SENSITIVE = []
3547
3617
  include Aws::Structure
3548
3618
  end
3549
3619
 
@@ -3575,6 +3645,7 @@ module Aws::MachineLearning
3575
3645
  :redshift_database,
3576
3646
  :database_user_name,
3577
3647
  :select_sql_query)
3648
+ SENSITIVE = []
3578
3649
  include Aws::Structure
3579
3650
  end
3580
3651
 
@@ -3589,6 +3660,7 @@ module Aws::MachineLearning
3589
3660
  class ResourceNotFoundException < Struct.new(
3590
3661
  :message,
3591
3662
  :code)
3663
+ SENSITIVE = []
3592
3664
  include Aws::Structure
3593
3665
  end
3594
3666
 
@@ -3756,6 +3828,7 @@ module Aws::MachineLearning
3756
3828
  :data_rearrangement,
3757
3829
  :data_schema,
3758
3830
  :data_schema_location_s3)
3831
+ SENSITIVE = []
3759
3832
  include Aws::Structure
3760
3833
  end
3761
3834
 
@@ -3784,6 +3857,7 @@ module Aws::MachineLearning
3784
3857
  class Tag < Struct.new(
3785
3858
  :key,
3786
3859
  :value)
3860
+ SENSITIVE = []
3787
3861
  include Aws::Structure
3788
3862
  end
3789
3863
 
@@ -3792,6 +3866,7 @@ module Aws::MachineLearning
3792
3866
  #
3793
3867
  class TagLimitExceededException < Struct.new(
3794
3868
  :message)
3869
+ SENSITIVE = []
3795
3870
  include Aws::Structure
3796
3871
  end
3797
3872
 
@@ -3814,6 +3889,7 @@ module Aws::MachineLearning
3814
3889
  class UpdateBatchPredictionInput < Struct.new(
3815
3890
  :batch_prediction_id,
3816
3891
  :batch_prediction_name)
3892
+ SENSITIVE = []
3817
3893
  include Aws::Structure
3818
3894
  end
3819
3895
 
@@ -3830,6 +3906,7 @@ module Aws::MachineLearning
3830
3906
  #
3831
3907
  class UpdateBatchPredictionOutput < Struct.new(
3832
3908
  :batch_prediction_id)
3909
+ SENSITIVE = []
3833
3910
  include Aws::Structure
3834
3911
  end
3835
3912
 
@@ -3853,6 +3930,7 @@ module Aws::MachineLearning
3853
3930
  class UpdateDataSourceInput < Struct.new(
3854
3931
  :data_source_id,
3855
3932
  :data_source_name)
3933
+ SENSITIVE = []
3856
3934
  include Aws::Structure
3857
3935
  end
3858
3936
 
@@ -3869,6 +3947,7 @@ module Aws::MachineLearning
3869
3947
  #
3870
3948
  class UpdateDataSourceOutput < Struct.new(
3871
3949
  :data_source_id)
3950
+ SENSITIVE = []
3872
3951
  include Aws::Structure
3873
3952
  end
3874
3953
 
@@ -3892,6 +3971,7 @@ module Aws::MachineLearning
3892
3971
  class UpdateEvaluationInput < Struct.new(
3893
3972
  :evaluation_id,
3894
3973
  :evaluation_name)
3974
+ SENSITIVE = []
3895
3975
  include Aws::Structure
3896
3976
  end
3897
3977
 
@@ -3907,6 +3987,7 @@ module Aws::MachineLearning
3907
3987
  #
3908
3988
  class UpdateEvaluationOutput < Struct.new(
3909
3989
  :evaluation_id)
3990
+ SENSITIVE = []
3910
3991
  include Aws::Structure
3911
3992
  end
3912
3993
 
@@ -3942,6 +4023,7 @@ module Aws::MachineLearning
3942
4023
  :ml_model_id,
3943
4024
  :ml_model_name,
3944
4025
  :score_threshold)
4026
+ SENSITIVE = []
3945
4027
  include Aws::Structure
3946
4028
  end
3947
4029
 
@@ -3956,6 +4038,7 @@ module Aws::MachineLearning
3956
4038
  #
3957
4039
  class UpdateMLModelOutput < Struct.new(
3958
4040
  :ml_model_id)
4041
+ SENSITIVE = []
3959
4042
  include Aws::Structure
3960
4043
  end
3961
4044
 
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -8,6 +10,70 @@
8
10
  require 'aws-sdk-core/waiters'
9
11
 
10
12
  module Aws::MachineLearning
13
+ # Waiters are utility methods that poll for a particular state to occur
14
+ # on a client. Waiters can fail after a number of attempts at a polling
15
+ # interval defined for the service client.
16
+ #
17
+ # For a list of operations that can be waited for and the
18
+ # client methods called for each operation, see the table below or the
19
+ # {Client#wait_until} field documentation for the {Client}.
20
+ #
21
+ # # Invoking a Waiter
22
+ # To invoke a waiter, call #wait_until on a {Client}. The first parameter
23
+ # is the waiter name, which is specific to the service client and indicates
24
+ # which operation is being waited for. The second parameter is a hash of
25
+ # parameters that are passed to the client method called by the waiter,
26
+ # which varies according to the waiter name.
27
+ #
28
+ # # Wait Failures
29
+ # To catch errors in a waiter, use WaiterFailed,
30
+ # as shown in the following example.
31
+ #
32
+ # rescue rescue Aws::Waiters::Errors::WaiterFailed => error
33
+ # puts "failed waiting for instance running: #{error.message}
34
+ # end
35
+ #
36
+ # # Configuring a Waiter
37
+ # Each waiter has a default polling interval and a maximum number of
38
+ # attempts it will make before returning control to your program.
39
+ # To set these values, use the `max_attempts` and `delay` parameters
40
+ # in your `#wait_until` call.
41
+ # The following example waits for up to 25 seconds, polling every five seconds.
42
+ #
43
+ # client.wait_until(...) do |w|
44
+ # w.max_attempts = 5
45
+ # w.delay = 5
46
+ # end
47
+ #
48
+ # To disable wait failures, set the value of either of these parameters
49
+ # to `nil`.
50
+ #
51
+ # # Extending a Waiter
52
+ # To modify the behavior of waiters, you can register callbacks that are
53
+ # triggered before each polling attempt and before waiting.
54
+ #
55
+ # The following example implements an exponential backoff in a waiter
56
+ # by doubling the amount of time to wait on every attempt.
57
+ #
58
+ # client.wait_until(...) do |w|
59
+ # w.interval = 0 # disable normal sleep
60
+ # w.before_wait do |n, resp|
61
+ # sleep(n ** 2)
62
+ # end
63
+ # end
64
+ #
65
+ # # Available Waiters
66
+ #
67
+ # The following table lists the valid waiter names, the operations they call,
68
+ # and the default `:delay` and `:max_attempts` values.
69
+ #
70
+ # | waiter_name | params | :delay | :max_attempts |
71
+ # | -------------------------- | ----------------------------------- | -------- | ------------- |
72
+ # | batch_prediction_available | {Client#describe_batch_predictions} | 30 | 60 |
73
+ # | data_source_available | {Client#describe_data_sources} | 30 | 60 |
74
+ # | evaluation_available | {Client#describe_evaluations} | 30 | 60 |
75
+ # | ml_model_available | {Client#describe_ml_models} | 30 | 60 |
76
+ #
11
77
  module Waiters
12
78
 
13
79
  class BatchPredictionAvailable
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.18.0
4
+ version: 1.23.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-03-16 00:00:00.000000000 Z
11
+ date: 2020-08-25 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.71.0
22
+ version: 3.99.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.71.0
32
+ version: 3.99.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement
@@ -82,7 +82,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
82
82
  - !ruby/object:Gem::Version
83
83
  version: '0'
84
84
  requirements: []
85
- rubygems_version: 3.0.3
85
+ rubyforge_project:
86
+ rubygems_version: 2.7.6.2
86
87
  signing_key:
87
88
  specification_version: 4
88
89
  summary: AWS SDK for Ruby - Amazon Machine Learning