aws-sdk-machinelearning 1.17.0 → 1.22.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
- SHA1:
3
- metadata.gz: 2f675aa06628853f21f117d5ccee33aacb177979
4
- data.tar.gz: c9d5112f3dc7570beaaf0f4b0a3cd20466d17dcf
2
+ SHA256:
3
+ metadata.gz: f07b3c71943d41dbbdf7ae1f6ba356c19ba48e00880650a5860f6049eb7b1a87
4
+ data.tar.gz: d56db7f0aa5b881f71a345f691bf88ba7691029fed6ab3f64bde3ec43f269bc8
5
5
  SHA512:
6
- metadata.gz: e764a94263cf637191c000f239d9edac8c7c7a61a9c228deb8c2018c68f7b26754fc0cce02f9dfaf66428232fd453f5fcd16cd6039f36b9214eccd22e0911491
7
- data.tar.gz: 8abc38264e25f09b666cb8ca31ebded893911b8f7c79673026732561486958447c62b8b12d46f1a4051fcd29baf11eacf92ef5310fa40faadb0cb2016228efae
6
+ metadata.gz: 437d06d1a3fd724a4e19d0b4f7a539a74fe6fe2503f1177d69206ee8904462d8865b2f879a9779f3930fab0610be62a5dbcbc2c0e98da06e2b8557b18ebca915
7
+ data.tar.gz: 6acc8c27bb1a7d00ad7059670c740f25ccd6cfe1ba7af88f59263f0c2fbd208ff581bdb316f9bbd64eb6fbca82d021616937e39a56902fa321c58375f1be9527
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -25,17 +27,20 @@ require_relative 'aws-sdk-machinelearning/customizations'
25
27
  # methods each accept a hash of request parameters and return a response
26
28
  # structure.
27
29
  #
30
+ # machine_learning = Aws::MachineLearning::Client.new
31
+ # resp = machine_learning.add_tags(params)
32
+ #
28
33
  # See {Client} for more information.
29
34
  #
30
35
  # # Errors
31
36
  #
32
- # Errors returned from Amazon Machine Learning all
33
- # extend {Errors::ServiceError}.
37
+ # Errors returned from Amazon Machine Learning are defined in the
38
+ # {Errors} module and all extend {Errors::ServiceError}.
34
39
  #
35
40
  # begin
36
41
  # # do stuff
37
42
  # rescue Aws::MachineLearning::Errors::ServiceError
38
- # # rescues all service API errors
43
+ # # rescues all Amazon Machine Learning API errors
39
44
  # end
40
45
  #
41
46
  # See {Errors} for more information.
@@ -43,6 +48,6 @@ require_relative 'aws-sdk-machinelearning/customizations'
43
48
  # @service
44
49
  module Aws::MachineLearning
45
50
 
46
- GEM_VERSION = '1.17.0'
51
+ GEM_VERSION = '1.22.0'
47
52
 
48
53
  end
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -24,6 +26,7 @@ require 'aws-sdk-core/plugins/jsonvalue_converter.rb'
24
26
  require 'aws-sdk-core/plugins/client_metrics_plugin.rb'
25
27
  require 'aws-sdk-core/plugins/client_metrics_send_plugin.rb'
26
28
  require 'aws-sdk-core/plugins/transfer_encoding.rb'
29
+ require 'aws-sdk-core/plugins/http_checksum.rb'
27
30
  require 'aws-sdk-core/plugins/signature_v4.rb'
28
31
  require 'aws-sdk-core/plugins/protocols/json_rpc.rb'
29
32
  require 'aws-sdk-machinelearning/plugins/predict_endpoint.rb'
@@ -31,6 +34,18 @@ require 'aws-sdk-machinelearning/plugins/predict_endpoint.rb'
31
34
  Aws::Plugins::GlobalConfiguration.add_identifier(:machinelearning)
32
35
 
33
36
  module Aws::MachineLearning
37
+ # An API client for MachineLearning. To construct a client, you need to configure a `:region` and `:credentials`.
38
+ #
39
+ # client = Aws::MachineLearning::Client.new(
40
+ # region: region_name,
41
+ # credentials: credentials,
42
+ # # ...
43
+ # )
44
+ #
45
+ # For details on configuring region and credentials see
46
+ # the [developer guide](/sdk-for-ruby/v3/developer-guide/setup-config.html).
47
+ #
48
+ # See {#initialize} for a full list of supported configuration options.
34
49
  class Client < Seahorse::Client::Base
35
50
 
36
51
  include Aws::ClientStubs
@@ -58,6 +73,7 @@ module Aws::MachineLearning
58
73
  add_plugin(Aws::Plugins::ClientMetricsPlugin)
59
74
  add_plugin(Aws::Plugins::ClientMetricsSendPlugin)
60
75
  add_plugin(Aws::Plugins::TransferEncoding)
76
+ add_plugin(Aws::Plugins::HttpChecksum)
61
77
  add_plugin(Aws::Plugins::SignatureV4)
62
78
  add_plugin(Aws::Plugins::Protocols::JsonRpc)
63
79
  add_plugin(Aws::MachineLearning::Plugins::PredictEndpoint)
@@ -95,7 +111,7 @@ module Aws::MachineLearning
95
111
  # @option options [required, String] :region
96
112
  # The AWS region to connect to. The configured `:region` is
97
113
  # used to determine the service `:endpoint`. When not passed,
98
- # a default `:region` is search for in the following locations:
114
+ # a default `:region` is searched for in the following locations:
99
115
  #
100
116
  # * `Aws.config[:region]`
101
117
  # * `ENV['AWS_REGION']`
@@ -110,6 +126,12 @@ module Aws::MachineLearning
110
126
  # When set to `true`, a thread polling for endpoints will be running in
111
127
  # the background every 60 secs (default). Defaults to `false`.
112
128
  #
129
+ # @option options [Boolean] :adaptive_retry_wait_to_fill (true)
130
+ # Used only in `adaptive` retry mode. When true, the request will sleep
131
+ # until there is sufficent client side capacity to retry the request.
132
+ # When false, the request will raise a `RetryCapacityNotAvailableError` and will
133
+ # not retry instead of sleeping.
134
+ #
113
135
  # @option options [Boolean] :client_side_monitoring (false)
114
136
  # When `true`, client-side metrics will be collected for all API requests from
115
137
  # this client.
@@ -134,6 +156,10 @@ module Aws::MachineLearning
134
156
  # When `true`, an attempt is made to coerce request parameters into
135
157
  # the required types.
136
158
  #
159
+ # @option options [Boolean] :correct_clock_skew (true)
160
+ # Used only in `standard` and adaptive retry modes. Specifies whether to apply
161
+ # a clock skew correction and retry requests with skewed client clocks.
162
+ #
137
163
  # @option options [Boolean] :disable_host_prefix_injection (false)
138
164
  # Set to true to disable SDK automatically adding host prefix
139
165
  # to default service endpoint when available.
@@ -141,7 +167,7 @@ module Aws::MachineLearning
141
167
  # @option options [String] :endpoint
142
168
  # The client endpoint is normally constructed from the `:region`
143
169
  # option. You should only configure an `:endpoint` when connecting
144
- # to test endpoints. This should be avalid HTTP(S) URI.
170
+ # to test or custom endpoints. This should be a valid HTTP(S) URI.
145
171
  #
146
172
  # @option options [Integer] :endpoint_cache_max_entries (1000)
147
173
  # Used for the maximum size limit of the LRU cache storing endpoints data
@@ -156,7 +182,7 @@ module Aws::MachineLearning
156
182
  # requests fetching endpoints information. Defaults to 60 sec.
157
183
  #
158
184
  # @option options [Boolean] :endpoint_discovery (false)
159
- # When set to `true`, endpoint discovery will be enabled for operations when available. Defaults to `false`.
185
+ # When set to `true`, endpoint discovery will be enabled for operations when available.
160
186
  #
161
187
  # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
162
188
  # The log formatter.
@@ -168,15 +194,29 @@ module Aws::MachineLearning
168
194
  # The Logger instance to send log messages to. If this option
169
195
  # is not set, logging will be disabled.
170
196
  #
197
+ # @option options [Integer] :max_attempts (3)
198
+ # An integer representing the maximum number attempts that will be made for
199
+ # a single request, including the initial attempt. For example,
200
+ # setting this value to 5 will result in a request being retried up to
201
+ # 4 times. Used in `standard` and `adaptive` retry modes.
202
+ #
171
203
  # @option options [String] :profile ("default")
172
204
  # Used when loading credentials from the shared credentials file
173
205
  # at HOME/.aws/credentials. When not specified, 'default' is used.
174
206
  #
207
+ # @option options [Proc] :retry_backoff
208
+ # A proc or lambda used for backoff. Defaults to 2**retries * retry_base_delay.
209
+ # This option is only used in the `legacy` retry mode.
210
+ #
175
211
  # @option options [Float] :retry_base_delay (0.3)
176
- # The base delay in seconds used by the default backoff function.
212
+ # The base delay in seconds used by the default backoff function. This option
213
+ # is only used in the `legacy` retry mode.
177
214
  #
178
215
  # @option options [Symbol] :retry_jitter (:none)
179
- # A delay randomiser function used by the default backoff function. Some predefined functions can be referenced by name - :none, :equal, :full, otherwise a Proc that takes and returns a number.
216
+ # A delay randomiser function used by the default backoff function.
217
+ # Some predefined functions can be referenced by name - :none, :equal, :full,
218
+ # otherwise a Proc that takes and returns a number. This option is only used
219
+ # in the `legacy` retry mode.
180
220
  #
181
221
  # @see https://www.awsarchitectureblog.com/2015/03/backoff.html
182
222
  #
@@ -184,11 +224,30 @@ module Aws::MachineLearning
184
224
  # The maximum number of times to retry failed requests. Only
185
225
  # ~ 500 level server errors and certain ~ 400 level client errors
186
226
  # are retried. Generally, these are throttling errors, data
187
- # checksum errors, networking errors, timeout errors and auth
188
- # errors from expired credentials.
227
+ # checksum errors, networking errors, timeout errors, auth errors,
228
+ # endpoint discovery, and errors from expired credentials.
229
+ # This option is only used in the `legacy` retry mode.
189
230
  #
190
231
  # @option options [Integer] :retry_max_delay (0)
191
- # The maximum number of seconds to delay between retries (0 for no limit) used by the default backoff function.
232
+ # The maximum number of seconds to delay between retries (0 for no limit)
233
+ # used by the default backoff function. This option is only used in the
234
+ # `legacy` retry mode.
235
+ #
236
+ # @option options [String] :retry_mode ("legacy")
237
+ # Specifies which retry algorithm to use. Values are:
238
+ #
239
+ # * `legacy` - The pre-existing retry behavior. This is default value if
240
+ # no retry mode is provided.
241
+ #
242
+ # * `standard` - A standardized set of retry rules across the AWS SDKs.
243
+ # This includes support for retry quotas, which limit the number of
244
+ # unsuccessful retries a client can make.
245
+ #
246
+ # * `adaptive` - An experimental retry mode that includes all the
247
+ # functionality of `standard` mode along with automatic client side
248
+ # throttling. This is a provisional mode that may change behavior
249
+ # in the future.
250
+ #
192
251
  #
193
252
  # @option options [String] :secret_access_key
194
253
  #
@@ -221,16 +280,15 @@ module Aws::MachineLearning
221
280
  # requests through. Formatted like 'http://proxy.com:123'.
222
281
  #
223
282
  # @option options [Float] :http_open_timeout (15) The number of
224
- # seconds to wait when opening a HTTP session before rasing a
283
+ # seconds to wait when opening a HTTP session before raising a
225
284
  # `Timeout::Error`.
226
285
  #
227
286
  # @option options [Integer] :http_read_timeout (60) The default
228
287
  # number of seconds to wait for response data. This value can
229
- # safely be set
230
- # per-request on the session yeidled by {#session_for}.
288
+ # safely be set per-request on the session.
231
289
  #
232
290
  # @option options [Float] :http_idle_timeout (5) The number of
233
- # seconds a connection is allowed to sit idble before it is
291
+ # seconds a connection is allowed to sit idle before it is
234
292
  # considered stale. Stale connections are closed and removed
235
293
  # from the pool before making a request.
236
294
  #
@@ -239,7 +297,7 @@ module Aws::MachineLearning
239
297
  # request body. This option has no effect unless the request has
240
298
  # "Expect" header set to "100-continue". Defaults to `nil` which
241
299
  # disables this behaviour. This value can safely be set per
242
- # request on the session yeidled by {#session_for}.
300
+ # request on the session.
243
301
  #
244
302
  # @option options [Boolean] :http_wire_trace (false) When `true`,
245
303
  # HTTP debug output will be sent to the `:logger`.
@@ -1261,6 +1319,8 @@ module Aws::MachineLearning
1261
1319
  # * {Types::DescribeBatchPredictionsOutput#results #results} => Array&lt;Types::BatchPrediction&gt;
1262
1320
  # * {Types::DescribeBatchPredictionsOutput#next_token #next_token} => String
1263
1321
  #
1322
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1323
+ #
1264
1324
  # @example Request syntax with placeholder values
1265
1325
  #
1266
1326
  # resp = client.describe_batch_predictions({
@@ -1298,6 +1358,11 @@ module Aws::MachineLearning
1298
1358
  # resp.results[0].invalid_record_count #=> Integer
1299
1359
  # resp.next_token #=> String
1300
1360
  #
1361
+ #
1362
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1363
+ #
1364
+ # * batch_prediction_available
1365
+ #
1301
1366
  # @overload describe_batch_predictions(params = {})
1302
1367
  # @param [Hash] params ({})
1303
1368
  def describe_batch_predictions(params = {}, options = {})
@@ -1386,6 +1451,8 @@ module Aws::MachineLearning
1386
1451
  # * {Types::DescribeDataSourcesOutput#results #results} => Array&lt;Types::DataSource&gt;
1387
1452
  # * {Types::DescribeDataSourcesOutput#next_token #next_token} => String
1388
1453
  #
1454
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1455
+ #
1389
1456
  # @example Request syntax with placeholder values
1390
1457
  #
1391
1458
  # resp = client.describe_data_sources({
@@ -1434,6 +1501,11 @@ module Aws::MachineLearning
1434
1501
  # resp.results[0].started_at #=> Time
1435
1502
  # resp.next_token #=> String
1436
1503
  #
1504
+ #
1505
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1506
+ #
1507
+ # * data_source_available
1508
+ #
1437
1509
  # @overload describe_data_sources(params = {})
1438
1510
  # @param [Hash] params ({})
1439
1511
  def describe_data_sources(params = {}, options = {})
@@ -1527,6 +1599,8 @@ module Aws::MachineLearning
1527
1599
  # * {Types::DescribeEvaluationsOutput#results #results} => Array&lt;Types::Evaluation&gt;
1528
1600
  # * {Types::DescribeEvaluationsOutput#next_token #next_token} => String
1529
1601
  #
1602
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1603
+ #
1530
1604
  # @example Request syntax with placeholder values
1531
1605
  #
1532
1606
  # resp = client.describe_evaluations({
@@ -1563,6 +1637,11 @@ module Aws::MachineLearning
1563
1637
  # resp.results[0].started_at #=> Time
1564
1638
  # resp.next_token #=> String
1565
1639
  #
1640
+ #
1641
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1642
+ #
1643
+ # * evaluation_available
1644
+ #
1566
1645
  # @overload describe_evaluations(params = {})
1567
1646
  # @param [Hash] params ({})
1568
1647
  def describe_evaluations(params = {}, options = {})
@@ -1659,6 +1738,8 @@ module Aws::MachineLearning
1659
1738
  # * {Types::DescribeMLModelsOutput#results #results} => Array&lt;Types::MLModel&gt;
1660
1739
  # * {Types::DescribeMLModelsOutput#next_token #next_token} => String
1661
1740
  #
1741
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
1742
+ #
1662
1743
  # @example Request syntax with placeholder values
1663
1744
  #
1664
1745
  # resp = client.describe_ml_models({
@@ -1703,6 +1784,11 @@ module Aws::MachineLearning
1703
1784
  # resp.results[0].started_at #=> Time
1704
1785
  # resp.next_token #=> String
1705
1786
  #
1787
+ #
1788
+ # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
1789
+ #
1790
+ # * ml_model_available
1791
+ #
1706
1792
  # @overload describe_ml_models(params = {})
1707
1793
  # @param [Hash] params ({})
1708
1794
  def describe_ml_models(params = {}, options = {})
@@ -2235,7 +2321,7 @@ module Aws::MachineLearning
2235
2321
  params: params,
2236
2322
  config: config)
2237
2323
  context[:gem_name] = 'aws-sdk-machinelearning'
2238
- context[:gem_version] = '1.17.0'
2324
+ context[:gem_version] = '1.22.0'
2239
2325
  Seahorse::Client::Request.new(handlers, context)
2240
2326
  end
2241
2327
 
@@ -2301,12 +2387,12 @@ module Aws::MachineLearning
2301
2387
  # The following table lists the valid waiter names, the operations they call,
2302
2388
  # and the default `:delay` and `:max_attempts` values.
2303
2389
  #
2304
- # | waiter_name | params | :delay | :max_attempts |
2305
- # | -------------------------- | ----------------------------- | -------- | ------------- |
2306
- # | batch_prediction_available | {#describe_batch_predictions} | 30 | 60 |
2307
- # | data_source_available | {#describe_data_sources} | 30 | 60 |
2308
- # | evaluation_available | {#describe_evaluations} | 30 | 60 |
2309
- # | ml_model_available | {#describe_ml_models} | 30 | 60 |
2390
+ # | waiter_name | params | :delay | :max_attempts |
2391
+ # | -------------------------- | ----------------------------------- | -------- | ------------- |
2392
+ # | batch_prediction_available | {Client#describe_batch_predictions} | 30 | 60 |
2393
+ # | data_source_available | {Client#describe_data_sources} | 30 | 60 |
2394
+ # | evaluation_available | {Client#describe_evaluations} | 30 | 60 |
2395
+ # | ml_model_available | {Client#describe_ml_models} | 30 | 60 |
2310
2396
  #
2311
2397
  # @raise [Errors::FailureStateError] Raised when the waiter terminates
2312
2398
  # because the waiter has entered a state that it will not transition
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -1,3 +1,4 @@
1
+ # frozen_string_literal: true
1
2
  # WARNING ABOUT GENERATED CODE
2
3
  #
3
4
  # This file is generated. See the contributing for info on making contributions:
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -6,6 +8,36 @@
6
8
  # WARNING ABOUT GENERATED CODE
7
9
 
8
10
  module Aws::MachineLearning
11
+
12
+ # When MachineLearning returns an error response, the Ruby SDK constructs and raises an error.
13
+ # These errors all extend Aws::MachineLearning::Errors::ServiceError < {Aws::Errors::ServiceError}
14
+ #
15
+ # You can rescue all MachineLearning errors using ServiceError:
16
+ #
17
+ # begin
18
+ # # do stuff
19
+ # rescue Aws::MachineLearning::Errors::ServiceError
20
+ # # rescues all MachineLearning API errors
21
+ # end
22
+ #
23
+ #
24
+ # ## Request Context
25
+ # ServiceError objects have a {Aws::Errors::ServiceError#context #context} method that returns
26
+ # information about the request that generated the error.
27
+ # See {Seahorse::Client::RequestContext} for more information.
28
+ #
29
+ # ## Error Classes
30
+ # * {IdempotentParameterMismatchException}
31
+ # * {InternalServerException}
32
+ # * {InvalidInputException}
33
+ # * {InvalidTagException}
34
+ # * {LimitExceededException}
35
+ # * {PredictorNotMountedException}
36
+ # * {ResourceNotFoundException}
37
+ # * {TagLimitExceededException}
38
+ #
39
+ # Additionally, error classes are dynamically generated for service errors based on the error code
40
+ # if they are not defined above.
9
41
  module Errors
10
42
 
11
43
  extend Aws::Errors::DynamicErrors
@@ -28,7 +60,6 @@ module Aws::MachineLearning
28
60
  def code
29
61
  @code || @data[:code]
30
62
  end
31
-
32
63
  end
33
64
 
34
65
  class InternalServerException < ServiceError
@@ -49,7 +80,6 @@ module Aws::MachineLearning
49
80
  def code
50
81
  @code || @data[:code]
51
82
  end
52
-
53
83
  end
54
84
 
55
85
  class InvalidInputException < ServiceError
@@ -70,7 +100,6 @@ module Aws::MachineLearning
70
100
  def code
71
101
  @code || @data[:code]
72
102
  end
73
-
74
103
  end
75
104
 
76
105
  class InvalidTagException < ServiceError
@@ -86,7 +115,6 @@ module Aws::MachineLearning
86
115
  def message
87
116
  @message || @data[:message]
88
117
  end
89
-
90
118
  end
91
119
 
92
120
  class LimitExceededException < ServiceError
@@ -107,7 +135,6 @@ module Aws::MachineLearning
107
135
  def code
108
136
  @code || @data[:code]
109
137
  end
110
-
111
138
  end
112
139
 
113
140
  class PredictorNotMountedException < ServiceError
@@ -123,7 +150,6 @@ module Aws::MachineLearning
123
150
  def message
124
151
  @message || @data[:message]
125
152
  end
126
-
127
153
  end
128
154
 
129
155
  class ResourceNotFoundException < ServiceError
@@ -144,7 +170,6 @@ module Aws::MachineLearning
144
170
  def code
145
171
  @code || @data[:code]
146
172
  end
147
-
148
173
  end
149
174
 
150
175
  class TagLimitExceededException < ServiceError
@@ -160,7 +185,6 @@ module Aws::MachineLearning
160
185
  def message
161
186
  @message || @data[:message]
162
187
  end
163
-
164
188
  end
165
189
 
166
190
  end
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  module Aws
2
4
  module MachineLearning
3
5
  module Plugins
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -6,6 +8,7 @@
6
8
  # WARNING ABOUT GENERATED CODE
7
9
 
8
10
  module Aws::MachineLearning
11
+
9
12
  class Resource
10
13
 
11
14
  # @param options ({})
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -40,6 +42,7 @@ module Aws::MachineLearning
40
42
  :tags,
41
43
  :resource_id,
42
44
  :resource_type)
45
+ SENSITIVE = []
43
46
  include Aws::Structure
44
47
  end
45
48
 
@@ -56,6 +59,7 @@ module Aws::MachineLearning
56
59
  class AddTagsOutput < Struct.new(
57
60
  :resource_id,
58
61
  :resource_type)
62
+ SENSITIVE = []
59
63
  include Aws::Structure
60
64
  end
61
65
 
@@ -168,6 +172,7 @@ module Aws::MachineLearning
168
172
  :started_at,
169
173
  :total_record_count,
170
174
  :invalid_record_count)
175
+ SENSITIVE = []
171
176
  include Aws::Structure
172
177
  end
173
178
 
@@ -222,6 +227,7 @@ module Aws::MachineLearning
222
227
  :ml_model_id,
223
228
  :batch_prediction_data_source_id,
224
229
  :output_uri)
230
+ SENSITIVE = []
225
231
  include Aws::Structure
226
232
  end
227
233
 
@@ -240,6 +246,7 @@ module Aws::MachineLearning
240
246
  #
241
247
  class CreateBatchPredictionOutput < Struct.new(
242
248
  :batch_prediction_id)
249
+ SENSITIVE = []
243
250
  include Aws::Structure
244
251
  end
245
252
 
@@ -353,6 +360,7 @@ module Aws::MachineLearning
353
360
  :rds_data,
354
361
  :role_arn,
355
362
  :compute_statistics)
363
+ SENSITIVE = []
356
364
  include Aws::Structure
357
365
  end
358
366
 
@@ -374,6 +382,7 @@ module Aws::MachineLearning
374
382
  #
375
383
  class CreateDataSourceFromRDSOutput < Struct.new(
376
384
  :data_source_id)
385
+ SENSITIVE = []
377
386
  include Aws::Structure
378
387
  end
379
388
 
@@ -467,6 +476,7 @@ module Aws::MachineLearning
467
476
  :data_spec,
468
477
  :role_arn,
469
478
  :compute_statistics)
479
+ SENSITIVE = []
470
480
  include Aws::Structure
471
481
  end
472
482
 
@@ -485,6 +495,7 @@ module Aws::MachineLearning
485
495
  #
486
496
  class CreateDataSourceFromRedshiftOutput < Struct.new(
487
497
  :data_source_id)
498
+ SENSITIVE = []
488
499
  include Aws::Structure
489
500
  end
490
501
 
@@ -542,6 +553,7 @@ module Aws::MachineLearning
542
553
  :data_source_name,
543
554
  :data_spec,
544
555
  :compute_statistics)
556
+ SENSITIVE = []
545
557
  include Aws::Structure
546
558
  end
547
559
 
@@ -560,6 +572,7 @@ module Aws::MachineLearning
560
572
  #
561
573
  class CreateDataSourceFromS3Output < Struct.new(
562
574
  :data_source_id)
575
+ SENSITIVE = []
563
576
  include Aws::Structure
564
577
  end
565
578
 
@@ -598,6 +611,7 @@ module Aws::MachineLearning
598
611
  :evaluation_name,
599
612
  :ml_model_id,
600
613
  :evaluation_data_source_id)
614
+ SENSITIVE = []
601
615
  include Aws::Structure
602
616
  end
603
617
 
@@ -616,6 +630,7 @@ module Aws::MachineLearning
616
630
  #
617
631
  class CreateEvaluationOutput < Struct.new(
618
632
  :evaluation_id)
633
+ SENSITIVE = []
619
634
  include Aws::Structure
620
635
  end
621
636
 
@@ -731,6 +746,7 @@ module Aws::MachineLearning
731
746
  :training_data_source_id,
732
747
  :recipe,
733
748
  :recipe_uri)
749
+ SENSITIVE = []
734
750
  include Aws::Structure
735
751
  end
736
752
 
@@ -749,6 +765,7 @@ module Aws::MachineLearning
749
765
  #
750
766
  class CreateMLModelOutput < Struct.new(
751
767
  :ml_model_id)
768
+ SENSITIVE = []
752
769
  include Aws::Structure
753
770
  end
754
771
 
@@ -765,6 +782,7 @@ module Aws::MachineLearning
765
782
  #
766
783
  class CreateRealtimeEndpointInput < Struct.new(
767
784
  :ml_model_id)
785
+ SENSITIVE = []
768
786
  include Aws::Structure
769
787
  end
770
788
 
@@ -792,6 +810,7 @@ module Aws::MachineLearning
792
810
  class CreateRealtimeEndpointOutput < Struct.new(
793
811
  :ml_model_id,
794
812
  :realtime_endpoint_info)
813
+ SENSITIVE = []
795
814
  include Aws::Structure
796
815
  end
797
816
 
@@ -914,6 +933,7 @@ module Aws::MachineLearning
914
933
  :compute_time,
915
934
  :finished_at,
916
935
  :started_at)
936
+ SENSITIVE = []
917
937
  include Aws::Structure
918
938
  end
919
939
 
@@ -930,6 +950,7 @@ module Aws::MachineLearning
930
950
  #
931
951
  class DeleteBatchPredictionInput < Struct.new(
932
952
  :batch_prediction_id)
953
+ SENSITIVE = []
933
954
  include Aws::Structure
934
955
  end
935
956
 
@@ -947,6 +968,7 @@ module Aws::MachineLearning
947
968
  #
948
969
  class DeleteBatchPredictionOutput < Struct.new(
949
970
  :batch_prediction_id)
971
+ SENSITIVE = []
950
972
  include Aws::Structure
951
973
  end
952
974
 
@@ -963,6 +985,7 @@ module Aws::MachineLearning
963
985
  #
964
986
  class DeleteDataSourceInput < Struct.new(
965
987
  :data_source_id)
988
+ SENSITIVE = []
966
989
  include Aws::Structure
967
990
  end
968
991
 
@@ -976,6 +999,7 @@ module Aws::MachineLearning
976
999
  #
977
1000
  class DeleteDataSourceOutput < Struct.new(
978
1001
  :data_source_id)
1002
+ SENSITIVE = []
979
1003
  include Aws::Structure
980
1004
  end
981
1005
 
@@ -993,6 +1017,7 @@ module Aws::MachineLearning
993
1017
  #
994
1018
  class DeleteEvaluationInput < Struct.new(
995
1019
  :evaluation_id)
1020
+ SENSITIVE = []
996
1021
  include Aws::Structure
997
1022
  end
998
1023
 
@@ -1012,6 +1037,7 @@ module Aws::MachineLearning
1012
1037
  #
1013
1038
  class DeleteEvaluationOutput < Struct.new(
1014
1039
  :evaluation_id)
1040
+ SENSITIVE = []
1015
1041
  include Aws::Structure
1016
1042
  end
1017
1043
 
@@ -1028,6 +1054,7 @@ module Aws::MachineLearning
1028
1054
  #
1029
1055
  class DeleteMLModelInput < Struct.new(
1030
1056
  :ml_model_id)
1057
+ SENSITIVE = []
1031
1058
  include Aws::Structure
1032
1059
  end
1033
1060
 
@@ -1044,6 +1071,7 @@ module Aws::MachineLearning
1044
1071
  #
1045
1072
  class DeleteMLModelOutput < Struct.new(
1046
1073
  :ml_model_id)
1074
+ SENSITIVE = []
1047
1075
  include Aws::Structure
1048
1076
  end
1049
1077
 
@@ -1060,6 +1088,7 @@ module Aws::MachineLearning
1060
1088
  #
1061
1089
  class DeleteRealtimeEndpointInput < Struct.new(
1062
1090
  :ml_model_id)
1091
+ SENSITIVE = []
1063
1092
  include Aws::Structure
1064
1093
  end
1065
1094
 
@@ -1081,6 +1110,7 @@ module Aws::MachineLearning
1081
1110
  class DeleteRealtimeEndpointOutput < Struct.new(
1082
1111
  :ml_model_id,
1083
1112
  :realtime_endpoint_info)
1113
+ SENSITIVE = []
1084
1114
  include Aws::Structure
1085
1115
  end
1086
1116
 
@@ -1109,6 +1139,7 @@ module Aws::MachineLearning
1109
1139
  :tag_keys,
1110
1140
  :resource_id,
1111
1141
  :resource_type)
1142
+ SENSITIVE = []
1112
1143
  include Aws::Structure
1113
1144
  end
1114
1145
 
@@ -1125,6 +1156,7 @@ module Aws::MachineLearning
1125
1156
  class DeleteTagsOutput < Struct.new(
1126
1157
  :resource_id,
1127
1158
  :resource_type)
1159
+ SENSITIVE = []
1128
1160
  include Aws::Structure
1129
1161
  end
1130
1162
 
@@ -1249,6 +1281,7 @@ module Aws::MachineLearning
1249
1281
  :sort_order,
1250
1282
  :next_token,
1251
1283
  :limit)
1284
+ SENSITIVE = []
1252
1285
  include Aws::Structure
1253
1286
  end
1254
1287
 
@@ -1267,6 +1300,7 @@ module Aws::MachineLearning
1267
1300
  class DescribeBatchPredictionsOutput < Struct.new(
1268
1301
  :results,
1269
1302
  :next_token)
1303
+ SENSITIVE = []
1270
1304
  include Aws::Structure
1271
1305
  end
1272
1306
 
@@ -1384,6 +1418,7 @@ module Aws::MachineLearning
1384
1418
  :sort_order,
1385
1419
  :next_token,
1386
1420
  :limit)
1421
+ SENSITIVE = []
1387
1422
  include Aws::Structure
1388
1423
  end
1389
1424
 
@@ -1402,6 +1437,7 @@ module Aws::MachineLearning
1402
1437
  class DescribeDataSourcesOutput < Struct.new(
1403
1438
  :results,
1404
1439
  :next_token)
1440
+ SENSITIVE = []
1405
1441
  include Aws::Structure
1406
1442
  end
1407
1443
 
@@ -1523,6 +1559,7 @@ module Aws::MachineLearning
1523
1559
  :sort_order,
1524
1560
  :next_token,
1525
1561
  :limit)
1562
+ SENSITIVE = []
1526
1563
  include Aws::Structure
1527
1564
  end
1528
1565
 
@@ -1541,6 +1578,7 @@ module Aws::MachineLearning
1541
1578
  class DescribeEvaluationsOutput < Struct.new(
1542
1579
  :results,
1543
1580
  :next_token)
1581
+ SENSITIVE = []
1544
1582
  include Aws::Structure
1545
1583
  end
1546
1584
 
@@ -1667,6 +1705,7 @@ module Aws::MachineLearning
1667
1705
  :sort_order,
1668
1706
  :next_token,
1669
1707
  :limit)
1708
+ SENSITIVE = []
1670
1709
  include Aws::Structure
1671
1710
  end
1672
1711
 
@@ -1685,6 +1724,7 @@ module Aws::MachineLearning
1685
1724
  class DescribeMLModelsOutput < Struct.new(
1686
1725
  :results,
1687
1726
  :next_token)
1727
+ SENSITIVE = []
1688
1728
  include Aws::Structure
1689
1729
  end
1690
1730
 
@@ -1707,6 +1747,7 @@ module Aws::MachineLearning
1707
1747
  class DescribeTagsInput < Struct.new(
1708
1748
  :resource_id,
1709
1749
  :resource_type)
1750
+ SENSITIVE = []
1710
1751
  include Aws::Structure
1711
1752
  end
1712
1753
 
@@ -1728,6 +1769,7 @@ module Aws::MachineLearning
1728
1769
  :resource_id,
1729
1770
  :resource_type,
1730
1771
  :tags)
1772
+ SENSITIVE = []
1731
1773
  include Aws::Structure
1732
1774
  end
1733
1775
 
@@ -1843,6 +1885,7 @@ module Aws::MachineLearning
1843
1885
  :compute_time,
1844
1886
  :finished_at,
1845
1887
  :started_at)
1888
+ SENSITIVE = []
1846
1889
  include Aws::Structure
1847
1890
  end
1848
1891
 
@@ -1859,6 +1902,7 @@ module Aws::MachineLearning
1859
1902
  #
1860
1903
  class GetBatchPredictionInput < Struct.new(
1861
1904
  :batch_prediction_id)
1905
+ SENSITIVE = []
1862
1906
  include Aws::Structure
1863
1907
  end
1864
1908
 
@@ -1983,6 +2027,7 @@ module Aws::MachineLearning
1983
2027
  :started_at,
1984
2028
  :total_record_count,
1985
2029
  :invalid_record_count)
2030
+ SENSITIVE = []
1986
2031
  include Aws::Structure
1987
2032
  end
1988
2033
 
@@ -2010,6 +2055,7 @@ module Aws::MachineLearning
2010
2055
  class GetDataSourceInput < Struct.new(
2011
2056
  :data_source_id,
2012
2057
  :verbose)
2058
+ SENSITIVE = []
2013
2059
  include Aws::Structure
2014
2060
  end
2015
2061
 
@@ -2154,6 +2200,7 @@ module Aws::MachineLearning
2154
2200
  :finished_at,
2155
2201
  :started_at,
2156
2202
  :data_source_schema)
2203
+ SENSITIVE = []
2157
2204
  include Aws::Structure
2158
2205
  end
2159
2206
 
@@ -2172,6 +2219,7 @@ module Aws::MachineLearning
2172
2219
  #
2173
2220
  class GetEvaluationInput < Struct.new(
2174
2221
  :evaluation_id)
2222
+ SENSITIVE = []
2175
2223
  include Aws::Structure
2176
2224
  end
2177
2225
 
@@ -2299,6 +2347,7 @@ module Aws::MachineLearning
2299
2347
  :compute_time,
2300
2348
  :finished_at,
2301
2349
  :started_at)
2350
+ SENSITIVE = []
2302
2351
  include Aws::Structure
2303
2352
  end
2304
2353
 
@@ -2325,6 +2374,7 @@ module Aws::MachineLearning
2325
2374
  class GetMLModelInput < Struct.new(
2326
2375
  :ml_model_id,
2327
2376
  :verbose)
2377
+ SENSITIVE = []
2328
2378
  include Aws::Structure
2329
2379
  end
2330
2380
 
@@ -2533,6 +2583,7 @@ module Aws::MachineLearning
2533
2583
  :started_at,
2534
2584
  :recipe,
2535
2585
  :schema)
2586
+ SENSITIVE = []
2536
2587
  include Aws::Structure
2537
2588
  end
2538
2589
 
@@ -2549,6 +2600,7 @@ module Aws::MachineLearning
2549
2600
  class IdempotentParameterMismatchException < Struct.new(
2550
2601
  :message,
2551
2602
  :code)
2603
+ SENSITIVE = []
2552
2604
  include Aws::Structure
2553
2605
  end
2554
2606
 
@@ -2563,6 +2615,7 @@ module Aws::MachineLearning
2563
2615
  class InternalServerException < Struct.new(
2564
2616
  :message,
2565
2617
  :code)
2618
+ SENSITIVE = []
2566
2619
  include Aws::Structure
2567
2620
  end
2568
2621
 
@@ -2578,6 +2631,7 @@ module Aws::MachineLearning
2578
2631
  class InvalidInputException < Struct.new(
2579
2632
  :message,
2580
2633
  :code)
2634
+ SENSITIVE = []
2581
2635
  include Aws::Structure
2582
2636
  end
2583
2637
 
@@ -2586,6 +2640,7 @@ module Aws::MachineLearning
2586
2640
  #
2587
2641
  class InvalidTagException < Struct.new(
2588
2642
  :message)
2643
+ SENSITIVE = []
2589
2644
  include Aws::Structure
2590
2645
  end
2591
2646
 
@@ -2601,6 +2656,7 @@ module Aws::MachineLearning
2601
2656
  class LimitExceededException < Struct.new(
2602
2657
  :message,
2603
2658
  :code)
2659
+ SENSITIVE = []
2604
2660
  include Aws::Structure
2605
2661
  end
2606
2662
 
@@ -2777,6 +2833,7 @@ module Aws::MachineLearning
2777
2833
  :compute_time,
2778
2834
  :finished_at,
2779
2835
  :started_at)
2836
+ SENSITIVE = []
2780
2837
  include Aws::Structure
2781
2838
  end
2782
2839
 
@@ -2807,6 +2864,7 @@ module Aws::MachineLearning
2807
2864
  #
2808
2865
  class PerformanceMetrics < Struct.new(
2809
2866
  :properties)
2867
+ SENSITIVE = []
2810
2868
  include Aws::Structure
2811
2869
  end
2812
2870
 
@@ -2836,6 +2894,7 @@ module Aws::MachineLearning
2836
2894
  :ml_model_id,
2837
2895
  :record,
2838
2896
  :predict_endpoint)
2897
+ SENSITIVE = []
2839
2898
  include Aws::Structure
2840
2899
  end
2841
2900
 
@@ -2857,6 +2916,7 @@ module Aws::MachineLearning
2857
2916
  #
2858
2917
  class PredictOutput < Struct.new(
2859
2918
  :prediction)
2919
+ SENSITIVE = []
2860
2920
  include Aws::Structure
2861
2921
  end
2862
2922
 
@@ -2896,6 +2956,7 @@ module Aws::MachineLearning
2896
2956
  :predicted_value,
2897
2957
  :predicted_scores,
2898
2958
  :details)
2959
+ SENSITIVE = []
2899
2960
  include Aws::Structure
2900
2961
  end
2901
2962
 
@@ -2907,6 +2968,7 @@ module Aws::MachineLearning
2907
2968
  #
2908
2969
  class PredictorNotMountedException < Struct.new(
2909
2970
  :message)
2971
+ SENSITIVE = []
2910
2972
  include Aws::Structure
2911
2973
  end
2912
2974
 
@@ -3144,6 +3206,7 @@ module Aws::MachineLearning
3144
3206
  :service_role,
3145
3207
  :subnet_id,
3146
3208
  :security_group_ids)
3209
+ SENSITIVE = []
3147
3210
  include Aws::Structure
3148
3211
  end
3149
3212
 
@@ -3168,6 +3231,7 @@ module Aws::MachineLearning
3168
3231
  class RDSDatabase < Struct.new(
3169
3232
  :instance_identifier,
3170
3233
  :database_name)
3234
+ SENSITIVE = []
3171
3235
  include Aws::Structure
3172
3236
  end
3173
3237
 
@@ -3197,6 +3261,7 @@ module Aws::MachineLearning
3197
3261
  class RDSDatabaseCredentials < Struct.new(
3198
3262
  :username,
3199
3263
  :password)
3264
+ SENSITIVE = []
3200
3265
  include Aws::Structure
3201
3266
  end
3202
3267
 
@@ -3251,6 +3316,7 @@ module Aws::MachineLearning
3251
3316
  :resource_role,
3252
3317
  :service_role,
3253
3318
  :data_pipeline_id)
3319
+ SENSITIVE = []
3254
3320
  include Aws::Structure
3255
3321
  end
3256
3322
 
@@ -3290,6 +3356,7 @@ module Aws::MachineLearning
3290
3356
  :created_at,
3291
3357
  :endpoint_url,
3292
3358
  :endpoint_status)
3359
+ SENSITIVE = []
3293
3360
  include Aws::Structure
3294
3361
  end
3295
3362
 
@@ -3479,6 +3546,7 @@ module Aws::MachineLearning
3479
3546
  :data_rearrangement,
3480
3547
  :data_schema,
3481
3548
  :data_schema_uri)
3549
+ SENSITIVE = []
3482
3550
  include Aws::Structure
3483
3551
  end
3484
3552
 
@@ -3504,6 +3572,7 @@ module Aws::MachineLearning
3504
3572
  class RedshiftDatabase < Struct.new(
3505
3573
  :database_name,
3506
3574
  :cluster_identifier)
3575
+ SENSITIVE = []
3507
3576
  include Aws::Structure
3508
3577
  end
3509
3578
 
@@ -3544,6 +3613,7 @@ module Aws::MachineLearning
3544
3613
  class RedshiftDatabaseCredentials < Struct.new(
3545
3614
  :username,
3546
3615
  :password)
3616
+ SENSITIVE = []
3547
3617
  include Aws::Structure
3548
3618
  end
3549
3619
 
@@ -3575,6 +3645,7 @@ module Aws::MachineLearning
3575
3645
  :redshift_database,
3576
3646
  :database_user_name,
3577
3647
  :select_sql_query)
3648
+ SENSITIVE = []
3578
3649
  include Aws::Structure
3579
3650
  end
3580
3651
 
@@ -3589,6 +3660,7 @@ module Aws::MachineLearning
3589
3660
  class ResourceNotFoundException < Struct.new(
3590
3661
  :message,
3591
3662
  :code)
3663
+ SENSITIVE = []
3592
3664
  include Aws::Structure
3593
3665
  end
3594
3666
 
@@ -3756,6 +3828,7 @@ module Aws::MachineLearning
3756
3828
  :data_rearrangement,
3757
3829
  :data_schema,
3758
3830
  :data_schema_location_s3)
3831
+ SENSITIVE = []
3759
3832
  include Aws::Structure
3760
3833
  end
3761
3834
 
@@ -3784,6 +3857,7 @@ module Aws::MachineLearning
3784
3857
  class Tag < Struct.new(
3785
3858
  :key,
3786
3859
  :value)
3860
+ SENSITIVE = []
3787
3861
  include Aws::Structure
3788
3862
  end
3789
3863
 
@@ -3792,6 +3866,7 @@ module Aws::MachineLearning
3792
3866
  #
3793
3867
  class TagLimitExceededException < Struct.new(
3794
3868
  :message)
3869
+ SENSITIVE = []
3795
3870
  include Aws::Structure
3796
3871
  end
3797
3872
 
@@ -3814,6 +3889,7 @@ module Aws::MachineLearning
3814
3889
  class UpdateBatchPredictionInput < Struct.new(
3815
3890
  :batch_prediction_id,
3816
3891
  :batch_prediction_name)
3892
+ SENSITIVE = []
3817
3893
  include Aws::Structure
3818
3894
  end
3819
3895
 
@@ -3830,6 +3906,7 @@ module Aws::MachineLearning
3830
3906
  #
3831
3907
  class UpdateBatchPredictionOutput < Struct.new(
3832
3908
  :batch_prediction_id)
3909
+ SENSITIVE = []
3833
3910
  include Aws::Structure
3834
3911
  end
3835
3912
 
@@ -3853,6 +3930,7 @@ module Aws::MachineLearning
3853
3930
  class UpdateDataSourceInput < Struct.new(
3854
3931
  :data_source_id,
3855
3932
  :data_source_name)
3933
+ SENSITIVE = []
3856
3934
  include Aws::Structure
3857
3935
  end
3858
3936
 
@@ -3869,6 +3947,7 @@ module Aws::MachineLearning
3869
3947
  #
3870
3948
  class UpdateDataSourceOutput < Struct.new(
3871
3949
  :data_source_id)
3950
+ SENSITIVE = []
3872
3951
  include Aws::Structure
3873
3952
  end
3874
3953
 
@@ -3892,6 +3971,7 @@ module Aws::MachineLearning
3892
3971
  class UpdateEvaluationInput < Struct.new(
3893
3972
  :evaluation_id,
3894
3973
  :evaluation_name)
3974
+ SENSITIVE = []
3895
3975
  include Aws::Structure
3896
3976
  end
3897
3977
 
@@ -3907,6 +3987,7 @@ module Aws::MachineLearning
3907
3987
  #
3908
3988
  class UpdateEvaluationOutput < Struct.new(
3909
3989
  :evaluation_id)
3990
+ SENSITIVE = []
3910
3991
  include Aws::Structure
3911
3992
  end
3912
3993
 
@@ -3942,6 +4023,7 @@ module Aws::MachineLearning
3942
4023
  :ml_model_id,
3943
4024
  :ml_model_name,
3944
4025
  :score_threshold)
4026
+ SENSITIVE = []
3945
4027
  include Aws::Structure
3946
4028
  end
3947
4029
 
@@ -3956,6 +4038,7 @@ module Aws::MachineLearning
3956
4038
  #
3957
4039
  class UpdateMLModelOutput < Struct.new(
3958
4040
  :ml_model_id)
4041
+ SENSITIVE = []
3959
4042
  include Aws::Structure
3960
4043
  end
3961
4044
 
@@ -1,3 +1,5 @@
1
+ # frozen_string_literal: true
2
+
1
3
  # WARNING ABOUT GENERATED CODE
2
4
  #
3
5
  # This file is generated. See the contributing guide for more information:
@@ -8,6 +10,70 @@
8
10
  require 'aws-sdk-core/waiters'
9
11
 
10
12
  module Aws::MachineLearning
13
+ # Waiters are utility methods that poll for a particular state to occur
14
+ # on a client. Waiters can fail after a number of attempts at a polling
15
+ # interval defined for the service client.
16
+ #
17
+ # For a list of operations that can be waited for and the
18
+ # client methods called for each operation, see the table below or the
19
+ # {Client#wait_until} field documentation for the {Client}.
20
+ #
21
+ # # Invoking a Waiter
22
+ # To invoke a waiter, call #wait_until on a {Client}. The first parameter
23
+ # is the waiter name, which is specific to the service client and indicates
24
+ # which operation is being waited for. The second parameter is a hash of
25
+ # parameters that are passed to the client method called by the waiter,
26
+ # which varies according to the waiter name.
27
+ #
28
+ # # Wait Failures
29
+ # To catch errors in a waiter, use WaiterFailed,
30
+ # as shown in the following example.
31
+ #
32
+ # rescue rescue Aws::Waiters::Errors::WaiterFailed => error
33
+ # puts "failed waiting for instance running: #{error.message}
34
+ # end
35
+ #
36
+ # # Configuring a Waiter
37
+ # Each waiter has a default polling interval and a maximum number of
38
+ # attempts it will make before returning control to your program.
39
+ # To set these values, use the `max_attempts` and `delay` parameters
40
+ # in your `#wait_until` call.
41
+ # The following example waits for up to 25 seconds, polling every five seconds.
42
+ #
43
+ # client.wait_until(...) do |w|
44
+ # w.max_attempts = 5
45
+ # w.delay = 5
46
+ # end
47
+ #
48
+ # To disable wait failures, set the value of either of these parameters
49
+ # to `nil`.
50
+ #
51
+ # # Extending a Waiter
52
+ # To modify the behavior of waiters, you can register callbacks that are
53
+ # triggered before each polling attempt and before waiting.
54
+ #
55
+ # The following example implements an exponential backoff in a waiter
56
+ # by doubling the amount of time to wait on every attempt.
57
+ #
58
+ # client.wait_until(...) do |w|
59
+ # w.interval = 0 # disable normal sleep
60
+ # w.before_wait do |n, resp|
61
+ # sleep(n ** 2)
62
+ # end
63
+ # end
64
+ #
65
+ # # Available Waiters
66
+ #
67
+ # The following table lists the valid waiter names, the operations they call,
68
+ # and the default `:delay` and `:max_attempts` values.
69
+ #
70
+ # | waiter_name | params | :delay | :max_attempts |
71
+ # | -------------------------- | ----------------------------------- | -------- | ------------- |
72
+ # | batch_prediction_available | {Client#describe_batch_predictions} | 30 | 60 |
73
+ # | data_source_available | {Client#describe_data_sources} | 30 | 60 |
74
+ # | evaluation_available | {Client#describe_evaluations} | 30 | 60 |
75
+ # | ml_model_available | {Client#describe_ml_models} | 30 | 60 |
76
+ #
11
77
  module Waiters
12
78
 
13
79
  class BatchPredictionAvailable
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.17.0
4
+ version: 1.22.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2019-10-23 00:00:00.000000000 Z
11
+ date: 2020-06-23 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.71.0
22
+ version: 3.99.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.71.0
32
+ version: 3.99.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement
@@ -83,7 +83,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
83
83
  version: '0'
84
84
  requirements: []
85
85
  rubyforge_project:
86
- rubygems_version: 2.5.2.3
86
+ rubygems_version: 2.7.6.2
87
87
  signing_key:
88
88
  specification_version: 4
89
89
  summary: AWS SDK for Ruby - Amazon Machine Learning