aws-sdk-lookoutequipment 1.22.0 → 1.23.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-lookoutequipment/client.rb +589 -32
- data/lib/aws-sdk-lookoutequipment/client_api.rb +237 -0
- data/lib/aws-sdk-lookoutequipment/endpoints.rb +112 -0
- data/lib/aws-sdk-lookoutequipment/plugins/endpoints.rb +16 -0
- data/lib/aws-sdk-lookoutequipment/types.rb +650 -69
- data/lib/aws-sdk-lookoutequipment.rb +1 -1
- metadata +2 -2
@@ -472,8 +472,8 @@ module Aws::LookoutEquipment
|
|
472
472
|
# output data.
|
473
473
|
#
|
474
474
|
# @option params [required, String] :model_name
|
475
|
-
# The name of the previously trained
|
476
|
-
# inference scheduler.
|
475
|
+
# The name of the previously trained machine learning model being used
|
476
|
+
# to create the inference scheduler.
|
477
477
|
#
|
478
478
|
# @option params [required, String] :inference_scheduler_name
|
479
479
|
# The name of the inference scheduler being created.
|
@@ -727,7 +727,7 @@ module Aws::LookoutEquipment
|
|
727
727
|
req.send_request(options)
|
728
728
|
end
|
729
729
|
|
730
|
-
# Creates
|
730
|
+
# Creates a machine learning model for data inference.
|
731
731
|
#
|
732
732
|
# A machine-learning (ML) model is a mathematical model that finds
|
733
733
|
# patterns in your data. In Amazon Lookout for Equipment, the model
|
@@ -742,17 +742,17 @@ module Aws::LookoutEquipment
|
|
742
742
|
# is used to evaluate the model's accuracy.
|
743
743
|
#
|
744
744
|
# @option params [required, String] :model_name
|
745
|
-
# The name for the
|
745
|
+
# The name for the machine learning model to be created.
|
746
746
|
#
|
747
747
|
# @option params [required, String] :dataset_name
|
748
|
-
# The name of the dataset for the
|
748
|
+
# The name of the dataset for the machine learning model being created.
|
749
749
|
#
|
750
750
|
# @option params [Types::DatasetSchema] :dataset_schema
|
751
|
-
# The data schema for the
|
751
|
+
# The data schema for the machine learning model being created.
|
752
752
|
#
|
753
753
|
# @option params [Types::LabelsInputConfiguration] :labels_input_configuration
|
754
|
-
# The input configuration for the labels being used for the
|
755
|
-
# that's being created.
|
754
|
+
# The input configuration for the labels being used for the machine
|
755
|
+
# learning model that's being created.
|
756
756
|
#
|
757
757
|
# @option params [required, String] :client_token
|
758
758
|
# A unique identifier for the request. If you do not set the client
|
@@ -763,23 +763,23 @@ module Aws::LookoutEquipment
|
|
763
763
|
#
|
764
764
|
# @option params [Time,DateTime,Date,Integer,String] :training_data_start_time
|
765
765
|
# Indicates the time reference in the dataset that should be used to
|
766
|
-
# begin the subset of training data for the
|
766
|
+
# begin the subset of training data for the machine learning model.
|
767
767
|
#
|
768
768
|
# @option params [Time,DateTime,Date,Integer,String] :training_data_end_time
|
769
769
|
# Indicates the time reference in the dataset that should be used to end
|
770
|
-
# the subset of training data for the
|
770
|
+
# the subset of training data for the machine learning model.
|
771
771
|
#
|
772
772
|
# @option params [Time,DateTime,Date,Integer,String] :evaluation_data_start_time
|
773
773
|
# Indicates the time reference in the dataset that should be used to
|
774
|
-
# begin the subset of evaluation data for the
|
774
|
+
# begin the subset of evaluation data for the machine learning model.
|
775
775
|
#
|
776
776
|
# @option params [Time,DateTime,Date,Integer,String] :evaluation_data_end_time
|
777
777
|
# Indicates the time reference in the dataset that should be used to end
|
778
|
-
# the subset of evaluation data for the
|
778
|
+
# the subset of evaluation data for the machine learning model.
|
779
779
|
#
|
780
780
|
# @option params [String] :role_arn
|
781
781
|
# The Amazon Resource Name (ARN) of a role with permission to access the
|
782
|
-
# data source being used to create the
|
782
|
+
# data source being used to create the machine learning model.
|
783
783
|
#
|
784
784
|
# @option params [Types::DataPreProcessingConfiguration] :data_pre_processing_configuration
|
785
785
|
# The configuration is the `TargetSamplingRate`, which is the sampling
|
@@ -798,7 +798,7 @@ module Aws::LookoutEquipment
|
|
798
798
|
# Amazon Lookout for Equipment.
|
799
799
|
#
|
800
800
|
# @option params [Array<Types::Tag>] :tags
|
801
|
-
# Any tags associated with the
|
801
|
+
# Any tags associated with the machine learning model being created.
|
802
802
|
#
|
803
803
|
# @option params [String] :off_condition
|
804
804
|
# Indicates that the asset associated with this sensor has been shut
|
@@ -858,6 +858,119 @@ module Aws::LookoutEquipment
|
|
858
858
|
req.send_request(options)
|
859
859
|
end
|
860
860
|
|
861
|
+
# Creates a retraining scheduler on the specified model.
|
862
|
+
#
|
863
|
+
# @option params [required, String] :model_name
|
864
|
+
# The name of the model to add the retraining scheduler to.
|
865
|
+
#
|
866
|
+
# @option params [Time,DateTime,Date,Integer,String] :retraining_start_date
|
867
|
+
# The start date for the retraining scheduler. Lookout for Equipment
|
868
|
+
# truncates the time you provide to the nearest UTC day.
|
869
|
+
#
|
870
|
+
# @option params [required, String] :retraining_frequency
|
871
|
+
# This parameter uses the [ISO 8601][1] standard to set the frequency at
|
872
|
+
# which you want retraining to occur in terms of Years, Months, and/or
|
873
|
+
# Days (note: other parameters like Time are not currently supported).
|
874
|
+
# The minimum value is 30 days (P30D) and the maximum value is 1 year
|
875
|
+
# (P1Y). For example, the following values are valid:
|
876
|
+
#
|
877
|
+
# * P3M15D – Every 3 months and 15 days
|
878
|
+
#
|
879
|
+
# * P2M – Every 2 months
|
880
|
+
#
|
881
|
+
# * P150D – Every 150 days
|
882
|
+
#
|
883
|
+
#
|
884
|
+
#
|
885
|
+
# [1]: https://en.wikipedia.org/wiki/ISO_8601#Durations
|
886
|
+
#
|
887
|
+
# @option params [required, String] :lookback_window
|
888
|
+
# The number of past days of data that will be used for retraining.
|
889
|
+
#
|
890
|
+
# @option params [String] :promote_mode
|
891
|
+
# Indicates how the service will use new models. In `MANAGED` mode, new
|
892
|
+
# models will automatically be used for inference if they have better
|
893
|
+
# performance than the current model. In `MANUAL` mode, the new models
|
894
|
+
# will not be used [until they are manually activated][1].
|
895
|
+
#
|
896
|
+
#
|
897
|
+
#
|
898
|
+
# [1]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/versioning-model.html#model-activation
|
899
|
+
#
|
900
|
+
# @option params [required, String] :client_token
|
901
|
+
# A unique identifier for the request. If you do not set the client
|
902
|
+
# request token, Amazon Lookout for Equipment generates one.
|
903
|
+
#
|
904
|
+
# **A suitable default value is auto-generated.** You should normally
|
905
|
+
# not need to pass this option.**
|
906
|
+
#
|
907
|
+
# @return [Types::CreateRetrainingSchedulerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
908
|
+
#
|
909
|
+
# * {Types::CreateRetrainingSchedulerResponse#model_name #model_name} => String
|
910
|
+
# * {Types::CreateRetrainingSchedulerResponse#model_arn #model_arn} => String
|
911
|
+
# * {Types::CreateRetrainingSchedulerResponse#status #status} => String
|
912
|
+
#
|
913
|
+
#
|
914
|
+
# @example Example: Creates a retraining scheduler with manual promote mode
|
915
|
+
#
|
916
|
+
# resp = client.create_retraining_scheduler({
|
917
|
+
# client_token: "sample-client-token",
|
918
|
+
# lookback_window: "P360D",
|
919
|
+
# model_name: "sample-model",
|
920
|
+
# promote_mode: "MANUAL",
|
921
|
+
# retraining_frequency: "P1M",
|
922
|
+
# })
|
923
|
+
#
|
924
|
+
# resp.to_h outputs the following:
|
925
|
+
# {
|
926
|
+
# model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
|
927
|
+
# model_name: "sample-model",
|
928
|
+
# status: "PENDING",
|
929
|
+
# }
|
930
|
+
#
|
931
|
+
# @example Example: Creates a retraining scheduler with a specific start date
|
932
|
+
#
|
933
|
+
# resp = client.create_retraining_scheduler({
|
934
|
+
# client_token: "sample-client-token",
|
935
|
+
# lookback_window: "P360D",
|
936
|
+
# model_name: "sample-model",
|
937
|
+
# retraining_frequency: "P1M",
|
938
|
+
# retraining_start_date: Time.parse("2024-01-01T00:00:00Z"),
|
939
|
+
# })
|
940
|
+
#
|
941
|
+
# resp.to_h outputs the following:
|
942
|
+
# {
|
943
|
+
# model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
|
944
|
+
# model_name: "sample-model",
|
945
|
+
# status: "PENDING",
|
946
|
+
# }
|
947
|
+
#
|
948
|
+
# @example Request syntax with placeholder values
|
949
|
+
#
|
950
|
+
# resp = client.create_retraining_scheduler({
|
951
|
+
# model_name: "ModelName", # required
|
952
|
+
# retraining_start_date: Time.now,
|
953
|
+
# retraining_frequency: "RetrainingFrequency", # required
|
954
|
+
# lookback_window: "LookbackWindow", # required
|
955
|
+
# promote_mode: "MANAGED", # accepts MANAGED, MANUAL
|
956
|
+
# client_token: "IdempotenceToken", # required
|
957
|
+
# })
|
958
|
+
#
|
959
|
+
# @example Response structure
|
960
|
+
#
|
961
|
+
# resp.model_name #=> String
|
962
|
+
# resp.model_arn #=> String
|
963
|
+
# resp.status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
|
964
|
+
#
|
965
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/CreateRetrainingScheduler AWS API Documentation
|
966
|
+
#
|
967
|
+
# @overload create_retraining_scheduler(params = {})
|
968
|
+
# @param [Hash] params ({})
|
969
|
+
def create_retraining_scheduler(params = {}, options = {})
|
970
|
+
req = build_request(:create_retraining_scheduler, params)
|
971
|
+
req.send_request(options)
|
972
|
+
end
|
973
|
+
|
861
974
|
# Deletes a dataset and associated artifacts. The operation will check
|
862
975
|
# to see if any inference scheduler or data ingestion job is currently
|
863
976
|
# using the dataset, and if there isn't, the dataset, its metadata, and
|
@@ -885,8 +998,8 @@ module Aws::LookoutEquipment
|
|
885
998
|
req.send_request(options)
|
886
999
|
end
|
887
1000
|
|
888
|
-
# Deletes an inference scheduler that has been set up.
|
889
|
-
#
|
1001
|
+
# Deletes an inference scheduler that has been set up. Prior inference
|
1002
|
+
# results will not be deleted.
|
890
1003
|
#
|
891
1004
|
# @option params [required, String] :inference_scheduler_name
|
892
1005
|
# The name of the inference scheduler to be deleted.
|
@@ -960,12 +1073,12 @@ module Aws::LookoutEquipment
|
|
960
1073
|
req.send_request(options)
|
961
1074
|
end
|
962
1075
|
|
963
|
-
# Deletes
|
964
|
-
# Equipment. This will prevent it from being used with an
|
965
|
-
# scheduler, even one that is already set up.
|
1076
|
+
# Deletes a machine learning model currently available for Amazon
|
1077
|
+
# Lookout for Equipment. This will prevent it from being used with an
|
1078
|
+
# inference scheduler, even one that is already set up.
|
966
1079
|
#
|
967
1080
|
# @option params [required, String] :model_name
|
968
|
-
# The name of the
|
1081
|
+
# The name of the machine learning model to be deleted.
|
969
1082
|
#
|
970
1083
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
971
1084
|
#
|
@@ -1007,6 +1120,36 @@ module Aws::LookoutEquipment
|
|
1007
1120
|
req.send_request(options)
|
1008
1121
|
end
|
1009
1122
|
|
1123
|
+
# Deletes a retraining scheduler from a model. The retraining scheduler
|
1124
|
+
# must be in the `STOPPED` status.
|
1125
|
+
#
|
1126
|
+
# @option params [required, String] :model_name
|
1127
|
+
# The name of the model whose retraining scheduler you want to delete.
|
1128
|
+
#
|
1129
|
+
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
1130
|
+
#
|
1131
|
+
#
|
1132
|
+
# @example Example: Deletes a retraining scheduler
|
1133
|
+
#
|
1134
|
+
# resp = client.delete_retraining_scheduler({
|
1135
|
+
# model_name: "sample-model",
|
1136
|
+
# })
|
1137
|
+
#
|
1138
|
+
# @example Request syntax with placeholder values
|
1139
|
+
#
|
1140
|
+
# resp = client.delete_retraining_scheduler({
|
1141
|
+
# model_name: "ModelName", # required
|
1142
|
+
# })
|
1143
|
+
#
|
1144
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/DeleteRetrainingScheduler AWS API Documentation
|
1145
|
+
#
|
1146
|
+
# @overload delete_retraining_scheduler(params = {})
|
1147
|
+
# @param [Hash] params ({})
|
1148
|
+
def delete_retraining_scheduler(params = {}, options = {})
|
1149
|
+
req = build_request(:delete_retraining_scheduler, params)
|
1150
|
+
req.send_request(options)
|
1151
|
+
end
|
1152
|
+
|
1010
1153
|
# Provides information on a specific data ingestion job such as creation
|
1011
1154
|
# time, dataset ARN, and status.
|
1012
1155
|
#
|
@@ -1291,12 +1434,12 @@ module Aws::LookoutEquipment
|
|
1291
1434
|
req.send_request(options)
|
1292
1435
|
end
|
1293
1436
|
|
1294
|
-
# Provides a JSON containing the overall information about a specific
|
1295
|
-
# model, including model name and ARN, dataset,
|
1296
|
-
# information, status, and so on.
|
1437
|
+
# Provides a JSON containing the overall information about a specific
|
1438
|
+
# machine learning model, including model name and ARN, dataset,
|
1439
|
+
# training and evaluation information, status, and so on.
|
1297
1440
|
#
|
1298
1441
|
# @option params [required, String] :model_name
|
1299
|
-
# The name of the
|
1442
|
+
# The name of the machine learning model to be described.
|
1300
1443
|
#
|
1301
1444
|
# @return [Types::DescribeModelResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1302
1445
|
#
|
@@ -1330,6 +1473,16 @@ module Aws::LookoutEquipment
|
|
1330
1473
|
# * {Types::DescribeModelResponse#previous_active_model_version #previous_active_model_version} => Integer
|
1331
1474
|
# * {Types::DescribeModelResponse#previous_active_model_version_arn #previous_active_model_version_arn} => String
|
1332
1475
|
# * {Types::DescribeModelResponse#previous_model_version_activated_at #previous_model_version_activated_at} => Time
|
1476
|
+
# * {Types::DescribeModelResponse#prior_model_metrics #prior_model_metrics} => String
|
1477
|
+
# * {Types::DescribeModelResponse#latest_scheduled_retraining_failed_reason #latest_scheduled_retraining_failed_reason} => String
|
1478
|
+
# * {Types::DescribeModelResponse#latest_scheduled_retraining_status #latest_scheduled_retraining_status} => String
|
1479
|
+
# * {Types::DescribeModelResponse#latest_scheduled_retraining_model_version #latest_scheduled_retraining_model_version} => Integer
|
1480
|
+
# * {Types::DescribeModelResponse#latest_scheduled_retraining_start_time #latest_scheduled_retraining_start_time} => Time
|
1481
|
+
# * {Types::DescribeModelResponse#latest_scheduled_retraining_available_data_in_days #latest_scheduled_retraining_available_data_in_days} => Integer
|
1482
|
+
# * {Types::DescribeModelResponse#next_scheduled_retraining_start_date #next_scheduled_retraining_start_date} => Time
|
1483
|
+
# * {Types::DescribeModelResponse#accumulated_inference_data_start_time #accumulated_inference_data_start_time} => Time
|
1484
|
+
# * {Types::DescribeModelResponse#accumulated_inference_data_end_time #accumulated_inference_data_end_time} => Time
|
1485
|
+
# * {Types::DescribeModelResponse#retraining_scheduler_status #retraining_scheduler_status} => String
|
1333
1486
|
#
|
1334
1487
|
# @example Request syntax with placeholder values
|
1335
1488
|
#
|
@@ -1371,6 +1524,16 @@ module Aws::LookoutEquipment
|
|
1371
1524
|
# resp.previous_active_model_version #=> Integer
|
1372
1525
|
# resp.previous_active_model_version_arn #=> String
|
1373
1526
|
# resp.previous_model_version_activated_at #=> Time
|
1527
|
+
# resp.prior_model_metrics #=> String
|
1528
|
+
# resp.latest_scheduled_retraining_failed_reason #=> String
|
1529
|
+
# resp.latest_scheduled_retraining_status #=> String, one of "IN_PROGRESS", "SUCCESS", "FAILED", "IMPORT_IN_PROGRESS", "CANCELED"
|
1530
|
+
# resp.latest_scheduled_retraining_model_version #=> Integer
|
1531
|
+
# resp.latest_scheduled_retraining_start_time #=> Time
|
1532
|
+
# resp.latest_scheduled_retraining_available_data_in_days #=> Integer
|
1533
|
+
# resp.next_scheduled_retraining_start_date #=> Time
|
1534
|
+
# resp.accumulated_inference_data_start_time #=> Time
|
1535
|
+
# resp.accumulated_inference_data_end_time #=> Time
|
1536
|
+
# resp.retraining_scheduler_status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
|
1374
1537
|
#
|
1375
1538
|
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/DescribeModel AWS API Documentation
|
1376
1539
|
#
|
@@ -1419,6 +1582,10 @@ module Aws::LookoutEquipment
|
|
1419
1582
|
# * {Types::DescribeModelVersionResponse#import_job_start_time #import_job_start_time} => Time
|
1420
1583
|
# * {Types::DescribeModelVersionResponse#import_job_end_time #import_job_end_time} => Time
|
1421
1584
|
# * {Types::DescribeModelVersionResponse#imported_data_size_in_bytes #imported_data_size_in_bytes} => Integer
|
1585
|
+
# * {Types::DescribeModelVersionResponse#prior_model_metrics #prior_model_metrics} => String
|
1586
|
+
# * {Types::DescribeModelVersionResponse#retraining_available_data_in_days #retraining_available_data_in_days} => Integer
|
1587
|
+
# * {Types::DescribeModelVersionResponse#auto_promotion_result #auto_promotion_result} => String
|
1588
|
+
# * {Types::DescribeModelVersionResponse#auto_promotion_result_reason #auto_promotion_result_reason} => String
|
1422
1589
|
#
|
1423
1590
|
# @example Request syntax with placeholder values
|
1424
1591
|
#
|
@@ -1459,6 +1626,10 @@ module Aws::LookoutEquipment
|
|
1459
1626
|
# resp.import_job_start_time #=> Time
|
1460
1627
|
# resp.import_job_end_time #=> Time
|
1461
1628
|
# resp.imported_data_size_in_bytes #=> Integer
|
1629
|
+
# resp.prior_model_metrics #=> String
|
1630
|
+
# resp.retraining_available_data_in_days #=> Integer
|
1631
|
+
# resp.auto_promotion_result #=> String, one of "MODEL_PROMOTED", "MODEL_NOT_PROMOTED", "RETRAINING_INTERNAL_ERROR", "RETRAINING_CUSTOMER_ERROR", "RETRAINING_CANCELLED"
|
1632
|
+
# resp.auto_promotion_result_reason #=> String
|
1462
1633
|
#
|
1463
1634
|
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/DescribeModelVersion AWS API Documentation
|
1464
1635
|
#
|
@@ -1504,6 +1675,71 @@ module Aws::LookoutEquipment
|
|
1504
1675
|
req.send_request(options)
|
1505
1676
|
end
|
1506
1677
|
|
1678
|
+
# Provides a description of the retraining scheduler, including
|
1679
|
+
# information such as the model name and retraining parameters.
|
1680
|
+
#
|
1681
|
+
# @option params [required, String] :model_name
|
1682
|
+
# The name of the model that the retraining scheduler is attached to.
|
1683
|
+
#
|
1684
|
+
# @return [Types::DescribeRetrainingSchedulerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1685
|
+
#
|
1686
|
+
# * {Types::DescribeRetrainingSchedulerResponse#model_name #model_name} => String
|
1687
|
+
# * {Types::DescribeRetrainingSchedulerResponse#model_arn #model_arn} => String
|
1688
|
+
# * {Types::DescribeRetrainingSchedulerResponse#retraining_start_date #retraining_start_date} => Time
|
1689
|
+
# * {Types::DescribeRetrainingSchedulerResponse#retraining_frequency #retraining_frequency} => String
|
1690
|
+
# * {Types::DescribeRetrainingSchedulerResponse#lookback_window #lookback_window} => String
|
1691
|
+
# * {Types::DescribeRetrainingSchedulerResponse#status #status} => String
|
1692
|
+
# * {Types::DescribeRetrainingSchedulerResponse#promote_mode #promote_mode} => String
|
1693
|
+
# * {Types::DescribeRetrainingSchedulerResponse#created_at #created_at} => Time
|
1694
|
+
# * {Types::DescribeRetrainingSchedulerResponse#updated_at #updated_at} => Time
|
1695
|
+
#
|
1696
|
+
#
|
1697
|
+
# @example Example: Describes a retraining scheduler
|
1698
|
+
#
|
1699
|
+
# resp = client.describe_retraining_scheduler({
|
1700
|
+
# model_name: "sample-model",
|
1701
|
+
# })
|
1702
|
+
#
|
1703
|
+
# resp.to_h outputs the following:
|
1704
|
+
# {
|
1705
|
+
# created_at: Time.parse("2023-10-01T15:00:00Z"),
|
1706
|
+
# lookback_window: "P360D",
|
1707
|
+
# model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
|
1708
|
+
# model_name: "sample-model",
|
1709
|
+
# promote_mode: "MANAGED",
|
1710
|
+
# retraining_frequency: "P1M",
|
1711
|
+
# retraining_start_date: Time.parse("2023-11-01T00:00:00Z"),
|
1712
|
+
# status: "RUNNING",
|
1713
|
+
# updated_at: Time.parse("2023-10-01T15:00:00Z"),
|
1714
|
+
# }
|
1715
|
+
#
|
1716
|
+
# @example Request syntax with placeholder values
|
1717
|
+
#
|
1718
|
+
# resp = client.describe_retraining_scheduler({
|
1719
|
+
# model_name: "ModelName", # required
|
1720
|
+
# })
|
1721
|
+
#
|
1722
|
+
# @example Response structure
|
1723
|
+
#
|
1724
|
+
# resp.model_name #=> String
|
1725
|
+
# resp.model_arn #=> String
|
1726
|
+
# resp.retraining_start_date #=> Time
|
1727
|
+
# resp.retraining_frequency #=> String
|
1728
|
+
# resp.lookback_window #=> String
|
1729
|
+
# resp.status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
|
1730
|
+
# resp.promote_mode #=> String, one of "MANAGED", "MANUAL"
|
1731
|
+
# resp.created_at #=> Time
|
1732
|
+
# resp.updated_at #=> Time
|
1733
|
+
#
|
1734
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/DescribeRetrainingScheduler AWS API Documentation
|
1735
|
+
#
|
1736
|
+
# @overload describe_retraining_scheduler(params = {})
|
1737
|
+
# @param [Hash] params ({})
|
1738
|
+
def describe_retraining_scheduler(params = {}, options = {})
|
1739
|
+
req = build_request(:describe_retraining_scheduler, params)
|
1740
|
+
req.send_request(options)
|
1741
|
+
end
|
1742
|
+
|
1507
1743
|
# Imports a dataset.
|
1508
1744
|
#
|
1509
1745
|
# @option params [required, String] :source_dataset_arn
|
@@ -1603,6 +1839,18 @@ module Aws::LookoutEquipment
|
|
1603
1839
|
# @option params [Array<Types::Tag>] :tags
|
1604
1840
|
# The tags associated with the machine learning model to be created.
|
1605
1841
|
#
|
1842
|
+
# @option params [String] :inference_data_import_strategy
|
1843
|
+
# Indicates how to import the accumulated inference data when a model
|
1844
|
+
# version is imported. The possible values are as follows:
|
1845
|
+
#
|
1846
|
+
# * NO\_IMPORT – Don't import the data.
|
1847
|
+
#
|
1848
|
+
# * ADD\_WHEN\_EMPTY – Only import the data from the source model if
|
1849
|
+
# there is no existing data in the target model.
|
1850
|
+
#
|
1851
|
+
# * OVERWRITE – Import the data from the source model and overwrite the
|
1852
|
+
# existing data in the target model.
|
1853
|
+
#
|
1606
1854
|
# @return [Types::ImportModelVersionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1607
1855
|
#
|
1608
1856
|
# * {Types::ImportModelVersionResponse#model_name #model_name} => String
|
@@ -1633,6 +1881,7 @@ module Aws::LookoutEquipment
|
|
1633
1881
|
# value: "TagValue", # required
|
1634
1882
|
# },
|
1635
1883
|
# ],
|
1884
|
+
# inference_data_import_strategy: "NO_IMPORT", # accepts NO_IMPORT, ADD_WHEN_EMPTY, OVERWRITE
|
1636
1885
|
# })
|
1637
1886
|
#
|
1638
1887
|
# @example Response structure
|
@@ -1875,6 +2124,8 @@ module Aws::LookoutEquipment
|
|
1875
2124
|
# resp.inference_execution_summaries[0].customer_result_object.key #=> String
|
1876
2125
|
# resp.inference_execution_summaries[0].status #=> String, one of "IN_PROGRESS", "SUCCESS", "FAILED"
|
1877
2126
|
# resp.inference_execution_summaries[0].failed_reason #=> String
|
2127
|
+
# resp.inference_execution_summaries[0].model_version #=> Integer
|
2128
|
+
# resp.inference_execution_summaries[0].model_version_arn #=> String
|
1878
2129
|
#
|
1879
2130
|
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/ListInferenceExecutions AWS API Documentation
|
1880
2131
|
#
|
@@ -1899,7 +2150,8 @@ module Aws::LookoutEquipment
|
|
1899
2150
|
# The beginning of the name of the inference schedulers to be listed.
|
1900
2151
|
#
|
1901
2152
|
# @option params [String] :model_name
|
1902
|
-
# The name of the
|
2153
|
+
# The name of the machine learning model used by the inference scheduler
|
2154
|
+
# to be listed.
|
1903
2155
|
#
|
1904
2156
|
# @option params [String] :status
|
1905
2157
|
# Specifies the current status of the inference schedulers.
|
@@ -2141,20 +2393,20 @@ module Aws::LookoutEquipment
|
|
2141
2393
|
#
|
2142
2394
|
# @option params [String] :next_token
|
2143
2395
|
# An opaque pagination token indicating where to continue the listing of
|
2144
|
-
#
|
2396
|
+
# machine learning models.
|
2145
2397
|
#
|
2146
2398
|
# @option params [Integer] :max_results
|
2147
|
-
# Specifies the maximum number of
|
2399
|
+
# Specifies the maximum number of machine learning models to list.
|
2148
2400
|
#
|
2149
2401
|
# @option params [String] :status
|
2150
|
-
# The status of the
|
2402
|
+
# The status of the machine learning model.
|
2151
2403
|
#
|
2152
2404
|
# @option params [String] :model_name_begins_with
|
2153
|
-
# The beginning of the name of the
|
2405
|
+
# The beginning of the name of the machine learning models being listed.
|
2154
2406
|
#
|
2155
2407
|
# @option params [String] :dataset_name_begins_with
|
2156
|
-
# The beginning of the name of the dataset of the
|
2157
|
-
# listed.
|
2408
|
+
# The beginning of the name of the dataset of the machine learning
|
2409
|
+
# models to be listed.
|
2158
2410
|
#
|
2159
2411
|
# @return [Types::ListModelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
2160
2412
|
#
|
@@ -2185,6 +2437,11 @@ module Aws::LookoutEquipment
|
|
2185
2437
|
# resp.model_summaries[0].created_at #=> Time
|
2186
2438
|
# resp.model_summaries[0].active_model_version #=> Integer
|
2187
2439
|
# resp.model_summaries[0].active_model_version_arn #=> String
|
2440
|
+
# resp.model_summaries[0].latest_scheduled_retraining_status #=> String, one of "IN_PROGRESS", "SUCCESS", "FAILED", "IMPORT_IN_PROGRESS", "CANCELED"
|
2441
|
+
# resp.model_summaries[0].latest_scheduled_retraining_model_version #=> Integer
|
2442
|
+
# resp.model_summaries[0].latest_scheduled_retraining_start_time #=> Time
|
2443
|
+
# resp.model_summaries[0].next_scheduled_retraining_start_date #=> Time
|
2444
|
+
# resp.model_summaries[0].retraining_scheduler_status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
|
2188
2445
|
#
|
2189
2446
|
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/ListModels AWS API Documentation
|
2190
2447
|
#
|
@@ -2195,6 +2452,98 @@ module Aws::LookoutEquipment
|
|
2195
2452
|
req.send_request(options)
|
2196
2453
|
end
|
2197
2454
|
|
2455
|
+
# Lists all retraining schedulers in your account, filtering by model
|
2456
|
+
# name prefix and status.
|
2457
|
+
#
|
2458
|
+
# @option params [String] :model_name_begins_with
|
2459
|
+
# Specify this field to only list retraining schedulers whose machine
|
2460
|
+
# learning models begin with the value you specify.
|
2461
|
+
#
|
2462
|
+
# @option params [String] :status
|
2463
|
+
# Specify this field to only list retraining schedulers whose status
|
2464
|
+
# matches the value you specify.
|
2465
|
+
#
|
2466
|
+
# @option params [String] :next_token
|
2467
|
+
# If the number of results exceeds the maximum, a pagination token is
|
2468
|
+
# returned. Use the token in the request to show the next page of
|
2469
|
+
# retraining schedulers.
|
2470
|
+
#
|
2471
|
+
# @option params [Integer] :max_results
|
2472
|
+
# Specifies the maximum number of retraining schedulers to list.
|
2473
|
+
#
|
2474
|
+
# @return [Types::ListRetrainingSchedulersResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
2475
|
+
#
|
2476
|
+
# * {Types::ListRetrainingSchedulersResponse#retraining_scheduler_summaries #retraining_scheduler_summaries} => Array<Types::RetrainingSchedulerSummary>
|
2477
|
+
# * {Types::ListRetrainingSchedulersResponse#next_token #next_token} => String
|
2478
|
+
#
|
2479
|
+
# The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
|
2480
|
+
#
|
2481
|
+
#
|
2482
|
+
# @example Example: Listing retraining schedulers
|
2483
|
+
#
|
2484
|
+
# resp = client.list_retraining_schedulers({
|
2485
|
+
# max_results: 50,
|
2486
|
+
# })
|
2487
|
+
#
|
2488
|
+
# resp.to_h outputs the following:
|
2489
|
+
# {
|
2490
|
+
# retraining_scheduler_summaries: [
|
2491
|
+
# {
|
2492
|
+
# lookback_window: "P180D",
|
2493
|
+
# model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model-1/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
|
2494
|
+
# model_name: "sample-model-1",
|
2495
|
+
# retraining_frequency: "P1M",
|
2496
|
+
# retraining_start_date: Time.parse("2023-06-01T00:00:00Z"),
|
2497
|
+
# status: "RUNNING",
|
2498
|
+
# },
|
2499
|
+
# {
|
2500
|
+
# lookback_window: "P180D",
|
2501
|
+
# model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model-2/a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
|
2502
|
+
# model_name: "sample-model-2",
|
2503
|
+
# retraining_frequency: "P30D",
|
2504
|
+
# retraining_start_date: Time.parse("2023-08-15T00:00:00Z"),
|
2505
|
+
# status: "RUNNING",
|
2506
|
+
# },
|
2507
|
+
# {
|
2508
|
+
# lookback_window: "P360D",
|
2509
|
+
# model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model-3/a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",
|
2510
|
+
# model_name: "sample-model-3",
|
2511
|
+
# retraining_frequency: "P1M",
|
2512
|
+
# retraining_start_date: Time.parse("2023-09-01T00:00:00Z"),
|
2513
|
+
# status: "STOPPED",
|
2514
|
+
# },
|
2515
|
+
# ],
|
2516
|
+
# }
|
2517
|
+
#
|
2518
|
+
# @example Request syntax with placeholder values
|
2519
|
+
#
|
2520
|
+
# resp = client.list_retraining_schedulers({
|
2521
|
+
# model_name_begins_with: "ModelName",
|
2522
|
+
# status: "PENDING", # accepts PENDING, RUNNING, STOPPING, STOPPED
|
2523
|
+
# next_token: "NextToken",
|
2524
|
+
# max_results: 1,
|
2525
|
+
# })
|
2526
|
+
#
|
2527
|
+
# @example Response structure
|
2528
|
+
#
|
2529
|
+
# resp.retraining_scheduler_summaries #=> Array
|
2530
|
+
# resp.retraining_scheduler_summaries[0].model_name #=> String
|
2531
|
+
# resp.retraining_scheduler_summaries[0].model_arn #=> String
|
2532
|
+
# resp.retraining_scheduler_summaries[0].status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
|
2533
|
+
# resp.retraining_scheduler_summaries[0].retraining_start_date #=> Time
|
2534
|
+
# resp.retraining_scheduler_summaries[0].retraining_frequency #=> String
|
2535
|
+
# resp.retraining_scheduler_summaries[0].lookback_window #=> String
|
2536
|
+
# resp.next_token #=> String
|
2537
|
+
#
|
2538
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/ListRetrainingSchedulers AWS API Documentation
|
2539
|
+
#
|
2540
|
+
# @overload list_retraining_schedulers(params = {})
|
2541
|
+
# @param [Hash] params ({})
|
2542
|
+
def list_retraining_schedulers(params = {}, options = {})
|
2543
|
+
req = build_request(:list_retraining_schedulers, params)
|
2544
|
+
req.send_request(options)
|
2545
|
+
end
|
2546
|
+
|
2198
2547
|
# Lists statistics about the data collected for each of the sensors that
|
2199
2548
|
# have been successfully ingested in the particular dataset. Can also be
|
2200
2549
|
# used to retreive Sensor Statistics for a previous ingestion job.
|
@@ -2435,6 +2784,52 @@ module Aws::LookoutEquipment
|
|
2435
2784
|
req.send_request(options)
|
2436
2785
|
end
|
2437
2786
|
|
2787
|
+
# Starts a retraining scheduler.
|
2788
|
+
#
|
2789
|
+
# @option params [required, String] :model_name
|
2790
|
+
# The name of the model whose retraining scheduler you want to start.
|
2791
|
+
#
|
2792
|
+
# @return [Types::StartRetrainingSchedulerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
2793
|
+
#
|
2794
|
+
# * {Types::StartRetrainingSchedulerResponse#model_name #model_name} => String
|
2795
|
+
# * {Types::StartRetrainingSchedulerResponse#model_arn #model_arn} => String
|
2796
|
+
# * {Types::StartRetrainingSchedulerResponse#status #status} => String
|
2797
|
+
#
|
2798
|
+
#
|
2799
|
+
# @example Example: Starts a retraining scheduler
|
2800
|
+
#
|
2801
|
+
# resp = client.start_retraining_scheduler({
|
2802
|
+
# model_name: "sample-model",
|
2803
|
+
# })
|
2804
|
+
#
|
2805
|
+
# resp.to_h outputs the following:
|
2806
|
+
# {
|
2807
|
+
# model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
|
2808
|
+
# model_name: "sample-model",
|
2809
|
+
# status: "PENDING",
|
2810
|
+
# }
|
2811
|
+
#
|
2812
|
+
# @example Request syntax with placeholder values
|
2813
|
+
#
|
2814
|
+
# resp = client.start_retraining_scheduler({
|
2815
|
+
# model_name: "ModelName", # required
|
2816
|
+
# })
|
2817
|
+
#
|
2818
|
+
# @example Response structure
|
2819
|
+
#
|
2820
|
+
# resp.model_name #=> String
|
2821
|
+
# resp.model_arn #=> String
|
2822
|
+
# resp.status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
|
2823
|
+
#
|
2824
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/StartRetrainingScheduler AWS API Documentation
|
2825
|
+
#
|
2826
|
+
# @overload start_retraining_scheduler(params = {})
|
2827
|
+
# @param [Hash] params ({})
|
2828
|
+
def start_retraining_scheduler(params = {}, options = {})
|
2829
|
+
req = build_request(:start_retraining_scheduler, params)
|
2830
|
+
req.send_request(options)
|
2831
|
+
end
|
2832
|
+
|
2438
2833
|
# Stops an inference scheduler.
|
2439
2834
|
#
|
2440
2835
|
# @option params [required, String] :inference_scheduler_name
|
@@ -2471,6 +2866,52 @@ module Aws::LookoutEquipment
|
|
2471
2866
|
req.send_request(options)
|
2472
2867
|
end
|
2473
2868
|
|
2869
|
+
# Stops a retraining scheduler.
|
2870
|
+
#
|
2871
|
+
# @option params [required, String] :model_name
|
2872
|
+
# The name of the model whose retraining scheduler you want to stop.
|
2873
|
+
#
|
2874
|
+
# @return [Types::StopRetrainingSchedulerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
2875
|
+
#
|
2876
|
+
# * {Types::StopRetrainingSchedulerResponse#model_name #model_name} => String
|
2877
|
+
# * {Types::StopRetrainingSchedulerResponse#model_arn #model_arn} => String
|
2878
|
+
# * {Types::StopRetrainingSchedulerResponse#status #status} => String
|
2879
|
+
#
|
2880
|
+
#
|
2881
|
+
# @example Example: Stops a retraining scheduler
|
2882
|
+
#
|
2883
|
+
# resp = client.stop_retraining_scheduler({
|
2884
|
+
# model_name: "sample-model",
|
2885
|
+
# })
|
2886
|
+
#
|
2887
|
+
# resp.to_h outputs the following:
|
2888
|
+
# {
|
2889
|
+
# model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
|
2890
|
+
# model_name: "sample-model",
|
2891
|
+
# status: "STOPPING",
|
2892
|
+
# }
|
2893
|
+
#
|
2894
|
+
# @example Request syntax with placeholder values
|
2895
|
+
#
|
2896
|
+
# resp = client.stop_retraining_scheduler({
|
2897
|
+
# model_name: "ModelName", # required
|
2898
|
+
# })
|
2899
|
+
#
|
2900
|
+
# @example Response structure
|
2901
|
+
#
|
2902
|
+
# resp.model_name #=> String
|
2903
|
+
# resp.model_arn #=> String
|
2904
|
+
# resp.status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
|
2905
|
+
#
|
2906
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/StopRetrainingScheduler AWS API Documentation
|
2907
|
+
#
|
2908
|
+
# @overload stop_retraining_scheduler(params = {})
|
2909
|
+
# @param [Hash] params ({})
|
2910
|
+
def stop_retraining_scheduler(params = {}, options = {})
|
2911
|
+
req = build_request(:stop_retraining_scheduler, params)
|
2912
|
+
req.send_request(options)
|
2913
|
+
end
|
2914
|
+
|
2474
2915
|
# Associates a given tag to a resource in your account. A tag is a
|
2475
2916
|
# key-value pair which can be added to an Amazon Lookout for Equipment
|
2476
2917
|
# resource as metadata. Tags can be used for organizing your resources
|
@@ -2686,6 +3127,122 @@ module Aws::LookoutEquipment
|
|
2686
3127
|
req.send_request(options)
|
2687
3128
|
end
|
2688
3129
|
|
3130
|
+
# Updates a model in the account.
|
3131
|
+
#
|
3132
|
+
# @option params [required, String] :model_name
|
3133
|
+
# The name of the model to update.
|
3134
|
+
#
|
3135
|
+
# @option params [Types::LabelsInputConfiguration] :labels_input_configuration
|
3136
|
+
# Contains the configuration information for the S3 location being used
|
3137
|
+
# to hold label data.
|
3138
|
+
#
|
3139
|
+
# @option params [String] :role_arn
|
3140
|
+
# The ARN of the model to update.
|
3141
|
+
#
|
3142
|
+
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
3143
|
+
#
|
3144
|
+
#
|
3145
|
+
# @example Example: Updates a model
|
3146
|
+
#
|
3147
|
+
# resp = client.update_model({
|
3148
|
+
# labels_input_configuration: {
|
3149
|
+
# label_group_name: "sample-label-group",
|
3150
|
+
# },
|
3151
|
+
# model_name: "sample-model",
|
3152
|
+
# })
|
3153
|
+
#
|
3154
|
+
# @example Request syntax with placeholder values
|
3155
|
+
#
|
3156
|
+
# resp = client.update_model({
|
3157
|
+
# model_name: "ModelName", # required
|
3158
|
+
# labels_input_configuration: {
|
3159
|
+
# s3_input_configuration: {
|
3160
|
+
# bucket: "S3Bucket", # required
|
3161
|
+
# prefix: "S3Prefix",
|
3162
|
+
# },
|
3163
|
+
# label_group_name: "LabelGroupName",
|
3164
|
+
# },
|
3165
|
+
# role_arn: "IamRoleArn",
|
3166
|
+
# })
|
3167
|
+
#
|
3168
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/UpdateModel AWS API Documentation
|
3169
|
+
#
|
3170
|
+
# @overload update_model(params = {})
|
3171
|
+
# @param [Hash] params ({})
|
3172
|
+
def update_model(params = {}, options = {})
|
3173
|
+
req = build_request(:update_model, params)
|
3174
|
+
req.send_request(options)
|
3175
|
+
end
|
3176
|
+
|
3177
|
+
# Updates a retraining scheduler.
|
3178
|
+
#
|
3179
|
+
# @option params [required, String] :model_name
|
3180
|
+
# The name of the model whose retraining scheduler you want to update.
|
3181
|
+
#
|
3182
|
+
# @option params [Time,DateTime,Date,Integer,String] :retraining_start_date
|
3183
|
+
# The start date for the retraining scheduler. Lookout for Equipment
|
3184
|
+
# truncates the time you provide to the nearest UTC day.
|
3185
|
+
#
|
3186
|
+
# @option params [String] :retraining_frequency
|
3187
|
+
# This parameter uses the [ISO 8601][1] standard to set the frequency at
|
3188
|
+
# which you want retraining to occur in terms of Years, Months, and/or
|
3189
|
+
# Days (note: other parameters like Time are not currently supported).
|
3190
|
+
# The minimum value is 30 days (P30D) and the maximum value is 1 year
|
3191
|
+
# (P1Y). For example, the following values are valid:
|
3192
|
+
#
|
3193
|
+
# * P3M15D – Every 3 months and 15 days
|
3194
|
+
#
|
3195
|
+
# * P2M – Every 2 months
|
3196
|
+
#
|
3197
|
+
# * P150D – Every 150 days
|
3198
|
+
#
|
3199
|
+
#
|
3200
|
+
#
|
3201
|
+
# [1]: https://en.wikipedia.org/wiki/ISO_8601#Durations
|
3202
|
+
#
|
3203
|
+
# @option params [String] :lookback_window
|
3204
|
+
# The number of past days of data that will be used for retraining.
|
3205
|
+
#
|
3206
|
+
# @option params [String] :promote_mode
|
3207
|
+
# Indicates how the service will use new models. In `MANAGED` mode, new
|
3208
|
+
# models will automatically be used for inference if they have better
|
3209
|
+
# performance than the current model. In `MANUAL` mode, the new models
|
3210
|
+
# will not be used [until they are manually activated][1].
|
3211
|
+
#
|
3212
|
+
#
|
3213
|
+
#
|
3214
|
+
# [1]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/versioning-model.html#model-activation
|
3215
|
+
#
|
3216
|
+
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
3217
|
+
#
|
3218
|
+
#
|
3219
|
+
# @example Example: Updates a retraining scheduler
|
3220
|
+
#
|
3221
|
+
# resp = client.update_retraining_scheduler({
|
3222
|
+
# model_name: "sample-model",
|
3223
|
+
# retraining_frequency: "P1Y",
|
3224
|
+
# retraining_start_date: Time.parse("2024-01-01T00:00:00Z"),
|
3225
|
+
# })
|
3226
|
+
#
|
3227
|
+
# @example Request syntax with placeholder values
|
3228
|
+
#
|
3229
|
+
# resp = client.update_retraining_scheduler({
|
3230
|
+
# model_name: "ModelName", # required
|
3231
|
+
# retraining_start_date: Time.now,
|
3232
|
+
# retraining_frequency: "RetrainingFrequency",
|
3233
|
+
# lookback_window: "LookbackWindow",
|
3234
|
+
# promote_mode: "MANAGED", # accepts MANAGED, MANUAL
|
3235
|
+
# })
|
3236
|
+
#
|
3237
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/UpdateRetrainingScheduler AWS API Documentation
|
3238
|
+
#
|
3239
|
+
# @overload update_retraining_scheduler(params = {})
|
3240
|
+
# @param [Hash] params ({})
|
3241
|
+
def update_retraining_scheduler(params = {}, options = {})
|
3242
|
+
req = build_request(:update_retraining_scheduler, params)
|
3243
|
+
req.send_request(options)
|
3244
|
+
end
|
3245
|
+
|
2689
3246
|
# @!endgroup
|
2690
3247
|
|
2691
3248
|
# @param params ({})
|
@@ -2699,7 +3256,7 @@ module Aws::LookoutEquipment
|
|
2699
3256
|
params: params,
|
2700
3257
|
config: config)
|
2701
3258
|
context[:gem_name] = 'aws-sdk-lookoutequipment'
|
2702
|
-
context[:gem_version] = '1.
|
3259
|
+
context[:gem_version] = '1.23.0'
|
2703
3260
|
Seahorse::Client::Request.new(handlers, context)
|
2704
3261
|
end
|
2705
3262
|
|