aws-sdk-lookoutequipment 1.22.0 → 1.23.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -472,8 +472,8 @@ module Aws::LookoutEquipment
472
472
  # output data.
473
473
  #
474
474
  # @option params [required, String] :model_name
475
- # The name of the previously trained ML model being used to create the
476
- # inference scheduler.
475
+ # The name of the previously trained machine learning model being used
476
+ # to create the inference scheduler.
477
477
  #
478
478
  # @option params [required, String] :inference_scheduler_name
479
479
  # The name of the inference scheduler being created.
@@ -727,7 +727,7 @@ module Aws::LookoutEquipment
727
727
  req.send_request(options)
728
728
  end
729
729
 
730
- # Creates an ML model for data inference.
730
+ # Creates a machine learning model for data inference.
731
731
  #
732
732
  # A machine-learning (ML) model is a mathematical model that finds
733
733
  # patterns in your data. In Amazon Lookout for Equipment, the model
@@ -742,17 +742,17 @@ module Aws::LookoutEquipment
742
742
  # is used to evaluate the model's accuracy.
743
743
  #
744
744
  # @option params [required, String] :model_name
745
- # The name for the ML model to be created.
745
+ # The name for the machine learning model to be created.
746
746
  #
747
747
  # @option params [required, String] :dataset_name
748
- # The name of the dataset for the ML model being created.
748
+ # The name of the dataset for the machine learning model being created.
749
749
  #
750
750
  # @option params [Types::DatasetSchema] :dataset_schema
751
- # The data schema for the ML model being created.
751
+ # The data schema for the machine learning model being created.
752
752
  #
753
753
  # @option params [Types::LabelsInputConfiguration] :labels_input_configuration
754
- # The input configuration for the labels being used for the ML model
755
- # that's being created.
754
+ # The input configuration for the labels being used for the machine
755
+ # learning model that's being created.
756
756
  #
757
757
  # @option params [required, String] :client_token
758
758
  # A unique identifier for the request. If you do not set the client
@@ -763,23 +763,23 @@ module Aws::LookoutEquipment
763
763
  #
764
764
  # @option params [Time,DateTime,Date,Integer,String] :training_data_start_time
765
765
  # Indicates the time reference in the dataset that should be used to
766
- # begin the subset of training data for the ML model.
766
+ # begin the subset of training data for the machine learning model.
767
767
  #
768
768
  # @option params [Time,DateTime,Date,Integer,String] :training_data_end_time
769
769
  # Indicates the time reference in the dataset that should be used to end
770
- # the subset of training data for the ML model.
770
+ # the subset of training data for the machine learning model.
771
771
  #
772
772
  # @option params [Time,DateTime,Date,Integer,String] :evaluation_data_start_time
773
773
  # Indicates the time reference in the dataset that should be used to
774
- # begin the subset of evaluation data for the ML model.
774
+ # begin the subset of evaluation data for the machine learning model.
775
775
  #
776
776
  # @option params [Time,DateTime,Date,Integer,String] :evaluation_data_end_time
777
777
  # Indicates the time reference in the dataset that should be used to end
778
- # the subset of evaluation data for the ML model.
778
+ # the subset of evaluation data for the machine learning model.
779
779
  #
780
780
  # @option params [String] :role_arn
781
781
  # The Amazon Resource Name (ARN) of a role with permission to access the
782
- # data source being used to create the ML model.
782
+ # data source being used to create the machine learning model.
783
783
  #
784
784
  # @option params [Types::DataPreProcessingConfiguration] :data_pre_processing_configuration
785
785
  # The configuration is the `TargetSamplingRate`, which is the sampling
@@ -798,7 +798,7 @@ module Aws::LookoutEquipment
798
798
  # Amazon Lookout for Equipment.
799
799
  #
800
800
  # @option params [Array<Types::Tag>] :tags
801
- # Any tags associated with the ML model being created.
801
+ # Any tags associated with the machine learning model being created.
802
802
  #
803
803
  # @option params [String] :off_condition
804
804
  # Indicates that the asset associated with this sensor has been shut
@@ -858,6 +858,119 @@ module Aws::LookoutEquipment
858
858
  req.send_request(options)
859
859
  end
860
860
 
861
+ # Creates a retraining scheduler on the specified model.
862
+ #
863
+ # @option params [required, String] :model_name
864
+ # The name of the model to add the retraining scheduler to.
865
+ #
866
+ # @option params [Time,DateTime,Date,Integer,String] :retraining_start_date
867
+ # The start date for the retraining scheduler. Lookout for Equipment
868
+ # truncates the time you provide to the nearest UTC day.
869
+ #
870
+ # @option params [required, String] :retraining_frequency
871
+ # This parameter uses the [ISO 8601][1] standard to set the frequency at
872
+ # which you want retraining to occur in terms of Years, Months, and/or
873
+ # Days (note: other parameters like Time are not currently supported).
874
+ # The minimum value is 30 days (P30D) and the maximum value is 1 year
875
+ # (P1Y). For example, the following values are valid:
876
+ #
877
+ # * P3M15D – Every 3 months and 15 days
878
+ #
879
+ # * P2M – Every 2 months
880
+ #
881
+ # * P150D – Every 150 days
882
+ #
883
+ #
884
+ #
885
+ # [1]: https://en.wikipedia.org/wiki/ISO_8601#Durations
886
+ #
887
+ # @option params [required, String] :lookback_window
888
+ # The number of past days of data that will be used for retraining.
889
+ #
890
+ # @option params [String] :promote_mode
891
+ # Indicates how the service will use new models. In `MANAGED` mode, new
892
+ # models will automatically be used for inference if they have better
893
+ # performance than the current model. In `MANUAL` mode, the new models
894
+ # will not be used [until they are manually activated][1].
895
+ #
896
+ #
897
+ #
898
+ # [1]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/versioning-model.html#model-activation
899
+ #
900
+ # @option params [required, String] :client_token
901
+ # A unique identifier for the request. If you do not set the client
902
+ # request token, Amazon Lookout for Equipment generates one.
903
+ #
904
+ # **A suitable default value is auto-generated.** You should normally
905
+ # not need to pass this option.**
906
+ #
907
+ # @return [Types::CreateRetrainingSchedulerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
908
+ #
909
+ # * {Types::CreateRetrainingSchedulerResponse#model_name #model_name} => String
910
+ # * {Types::CreateRetrainingSchedulerResponse#model_arn #model_arn} => String
911
+ # * {Types::CreateRetrainingSchedulerResponse#status #status} => String
912
+ #
913
+ #
914
+ # @example Example: Creates a retraining scheduler with manual promote mode
915
+ #
916
+ # resp = client.create_retraining_scheduler({
917
+ # client_token: "sample-client-token",
918
+ # lookback_window: "P360D",
919
+ # model_name: "sample-model",
920
+ # promote_mode: "MANUAL",
921
+ # retraining_frequency: "P1M",
922
+ # })
923
+ #
924
+ # resp.to_h outputs the following:
925
+ # {
926
+ # model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
927
+ # model_name: "sample-model",
928
+ # status: "PENDING",
929
+ # }
930
+ #
931
+ # @example Example: Creates a retraining scheduler with a specific start date
932
+ #
933
+ # resp = client.create_retraining_scheduler({
934
+ # client_token: "sample-client-token",
935
+ # lookback_window: "P360D",
936
+ # model_name: "sample-model",
937
+ # retraining_frequency: "P1M",
938
+ # retraining_start_date: Time.parse("2024-01-01T00:00:00Z"),
939
+ # })
940
+ #
941
+ # resp.to_h outputs the following:
942
+ # {
943
+ # model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
944
+ # model_name: "sample-model",
945
+ # status: "PENDING",
946
+ # }
947
+ #
948
+ # @example Request syntax with placeholder values
949
+ #
950
+ # resp = client.create_retraining_scheduler({
951
+ # model_name: "ModelName", # required
952
+ # retraining_start_date: Time.now,
953
+ # retraining_frequency: "RetrainingFrequency", # required
954
+ # lookback_window: "LookbackWindow", # required
955
+ # promote_mode: "MANAGED", # accepts MANAGED, MANUAL
956
+ # client_token: "IdempotenceToken", # required
957
+ # })
958
+ #
959
+ # @example Response structure
960
+ #
961
+ # resp.model_name #=> String
962
+ # resp.model_arn #=> String
963
+ # resp.status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
964
+ #
965
+ # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/CreateRetrainingScheduler AWS API Documentation
966
+ #
967
+ # @overload create_retraining_scheduler(params = {})
968
+ # @param [Hash] params ({})
969
+ def create_retraining_scheduler(params = {}, options = {})
970
+ req = build_request(:create_retraining_scheduler, params)
971
+ req.send_request(options)
972
+ end
973
+
861
974
  # Deletes a dataset and associated artifacts. The operation will check
862
975
  # to see if any inference scheduler or data ingestion job is currently
863
976
  # using the dataset, and if there isn't, the dataset, its metadata, and
@@ -885,8 +998,8 @@ module Aws::LookoutEquipment
885
998
  req.send_request(options)
886
999
  end
887
1000
 
888
- # Deletes an inference scheduler that has been set up. Already processed
889
- # output results are not affected.
1001
+ # Deletes an inference scheduler that has been set up. Prior inference
1002
+ # results will not be deleted.
890
1003
  #
891
1004
  # @option params [required, String] :inference_scheduler_name
892
1005
  # The name of the inference scheduler to be deleted.
@@ -960,12 +1073,12 @@ module Aws::LookoutEquipment
960
1073
  req.send_request(options)
961
1074
  end
962
1075
 
963
- # Deletes an ML model currently available for Amazon Lookout for
964
- # Equipment. This will prevent it from being used with an inference
965
- # scheduler, even one that is already set up.
1076
+ # Deletes a machine learning model currently available for Amazon
1077
+ # Lookout for Equipment. This will prevent it from being used with an
1078
+ # inference scheduler, even one that is already set up.
966
1079
  #
967
1080
  # @option params [required, String] :model_name
968
- # The name of the ML model to be deleted.
1081
+ # The name of the machine learning model to be deleted.
969
1082
  #
970
1083
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
971
1084
  #
@@ -1007,6 +1120,36 @@ module Aws::LookoutEquipment
1007
1120
  req.send_request(options)
1008
1121
  end
1009
1122
 
1123
+ # Deletes a retraining scheduler from a model. The retraining scheduler
1124
+ # must be in the `STOPPED` status.
1125
+ #
1126
+ # @option params [required, String] :model_name
1127
+ # The name of the model whose retraining scheduler you want to delete.
1128
+ #
1129
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
1130
+ #
1131
+ #
1132
+ # @example Example: Deletes a retraining scheduler
1133
+ #
1134
+ # resp = client.delete_retraining_scheduler({
1135
+ # model_name: "sample-model",
1136
+ # })
1137
+ #
1138
+ # @example Request syntax with placeholder values
1139
+ #
1140
+ # resp = client.delete_retraining_scheduler({
1141
+ # model_name: "ModelName", # required
1142
+ # })
1143
+ #
1144
+ # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/DeleteRetrainingScheduler AWS API Documentation
1145
+ #
1146
+ # @overload delete_retraining_scheduler(params = {})
1147
+ # @param [Hash] params ({})
1148
+ def delete_retraining_scheduler(params = {}, options = {})
1149
+ req = build_request(:delete_retraining_scheduler, params)
1150
+ req.send_request(options)
1151
+ end
1152
+
1010
1153
  # Provides information on a specific data ingestion job such as creation
1011
1154
  # time, dataset ARN, and status.
1012
1155
  #
@@ -1291,12 +1434,12 @@ module Aws::LookoutEquipment
1291
1434
  req.send_request(options)
1292
1435
  end
1293
1436
 
1294
- # Provides a JSON containing the overall information about a specific ML
1295
- # model, including model name and ARN, dataset, training and evaluation
1296
- # information, status, and so on.
1437
+ # Provides a JSON containing the overall information about a specific
1438
+ # machine learning model, including model name and ARN, dataset,
1439
+ # training and evaluation information, status, and so on.
1297
1440
  #
1298
1441
  # @option params [required, String] :model_name
1299
- # The name of the ML model to be described.
1442
+ # The name of the machine learning model to be described.
1300
1443
  #
1301
1444
  # @return [Types::DescribeModelResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1302
1445
  #
@@ -1330,6 +1473,16 @@ module Aws::LookoutEquipment
1330
1473
  # * {Types::DescribeModelResponse#previous_active_model_version #previous_active_model_version} => Integer
1331
1474
  # * {Types::DescribeModelResponse#previous_active_model_version_arn #previous_active_model_version_arn} => String
1332
1475
  # * {Types::DescribeModelResponse#previous_model_version_activated_at #previous_model_version_activated_at} => Time
1476
+ # * {Types::DescribeModelResponse#prior_model_metrics #prior_model_metrics} => String
1477
+ # * {Types::DescribeModelResponse#latest_scheduled_retraining_failed_reason #latest_scheduled_retraining_failed_reason} => String
1478
+ # * {Types::DescribeModelResponse#latest_scheduled_retraining_status #latest_scheduled_retraining_status} => String
1479
+ # * {Types::DescribeModelResponse#latest_scheduled_retraining_model_version #latest_scheduled_retraining_model_version} => Integer
1480
+ # * {Types::DescribeModelResponse#latest_scheduled_retraining_start_time #latest_scheduled_retraining_start_time} => Time
1481
+ # * {Types::DescribeModelResponse#latest_scheduled_retraining_available_data_in_days #latest_scheduled_retraining_available_data_in_days} => Integer
1482
+ # * {Types::DescribeModelResponse#next_scheduled_retraining_start_date #next_scheduled_retraining_start_date} => Time
1483
+ # * {Types::DescribeModelResponse#accumulated_inference_data_start_time #accumulated_inference_data_start_time} => Time
1484
+ # * {Types::DescribeModelResponse#accumulated_inference_data_end_time #accumulated_inference_data_end_time} => Time
1485
+ # * {Types::DescribeModelResponse#retraining_scheduler_status #retraining_scheduler_status} => String
1333
1486
  #
1334
1487
  # @example Request syntax with placeholder values
1335
1488
  #
@@ -1371,6 +1524,16 @@ module Aws::LookoutEquipment
1371
1524
  # resp.previous_active_model_version #=> Integer
1372
1525
  # resp.previous_active_model_version_arn #=> String
1373
1526
  # resp.previous_model_version_activated_at #=> Time
1527
+ # resp.prior_model_metrics #=> String
1528
+ # resp.latest_scheduled_retraining_failed_reason #=> String
1529
+ # resp.latest_scheduled_retraining_status #=> String, one of "IN_PROGRESS", "SUCCESS", "FAILED", "IMPORT_IN_PROGRESS", "CANCELED"
1530
+ # resp.latest_scheduled_retraining_model_version #=> Integer
1531
+ # resp.latest_scheduled_retraining_start_time #=> Time
1532
+ # resp.latest_scheduled_retraining_available_data_in_days #=> Integer
1533
+ # resp.next_scheduled_retraining_start_date #=> Time
1534
+ # resp.accumulated_inference_data_start_time #=> Time
1535
+ # resp.accumulated_inference_data_end_time #=> Time
1536
+ # resp.retraining_scheduler_status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
1374
1537
  #
1375
1538
  # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/DescribeModel AWS API Documentation
1376
1539
  #
@@ -1419,6 +1582,10 @@ module Aws::LookoutEquipment
1419
1582
  # * {Types::DescribeModelVersionResponse#import_job_start_time #import_job_start_time} => Time
1420
1583
  # * {Types::DescribeModelVersionResponse#import_job_end_time #import_job_end_time} => Time
1421
1584
  # * {Types::DescribeModelVersionResponse#imported_data_size_in_bytes #imported_data_size_in_bytes} => Integer
1585
+ # * {Types::DescribeModelVersionResponse#prior_model_metrics #prior_model_metrics} => String
1586
+ # * {Types::DescribeModelVersionResponse#retraining_available_data_in_days #retraining_available_data_in_days} => Integer
1587
+ # * {Types::DescribeModelVersionResponse#auto_promotion_result #auto_promotion_result} => String
1588
+ # * {Types::DescribeModelVersionResponse#auto_promotion_result_reason #auto_promotion_result_reason} => String
1422
1589
  #
1423
1590
  # @example Request syntax with placeholder values
1424
1591
  #
@@ -1459,6 +1626,10 @@ module Aws::LookoutEquipment
1459
1626
  # resp.import_job_start_time #=> Time
1460
1627
  # resp.import_job_end_time #=> Time
1461
1628
  # resp.imported_data_size_in_bytes #=> Integer
1629
+ # resp.prior_model_metrics #=> String
1630
+ # resp.retraining_available_data_in_days #=> Integer
1631
+ # resp.auto_promotion_result #=> String, one of "MODEL_PROMOTED", "MODEL_NOT_PROMOTED", "RETRAINING_INTERNAL_ERROR", "RETRAINING_CUSTOMER_ERROR", "RETRAINING_CANCELLED"
1632
+ # resp.auto_promotion_result_reason #=> String
1462
1633
  #
1463
1634
  # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/DescribeModelVersion AWS API Documentation
1464
1635
  #
@@ -1504,6 +1675,71 @@ module Aws::LookoutEquipment
1504
1675
  req.send_request(options)
1505
1676
  end
1506
1677
 
1678
+ # Provides a description of the retraining scheduler, including
1679
+ # information such as the model name and retraining parameters.
1680
+ #
1681
+ # @option params [required, String] :model_name
1682
+ # The name of the model that the retraining scheduler is attached to.
1683
+ #
1684
+ # @return [Types::DescribeRetrainingSchedulerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1685
+ #
1686
+ # * {Types::DescribeRetrainingSchedulerResponse#model_name #model_name} => String
1687
+ # * {Types::DescribeRetrainingSchedulerResponse#model_arn #model_arn} => String
1688
+ # * {Types::DescribeRetrainingSchedulerResponse#retraining_start_date #retraining_start_date} => Time
1689
+ # * {Types::DescribeRetrainingSchedulerResponse#retraining_frequency #retraining_frequency} => String
1690
+ # * {Types::DescribeRetrainingSchedulerResponse#lookback_window #lookback_window} => String
1691
+ # * {Types::DescribeRetrainingSchedulerResponse#status #status} => String
1692
+ # * {Types::DescribeRetrainingSchedulerResponse#promote_mode #promote_mode} => String
1693
+ # * {Types::DescribeRetrainingSchedulerResponse#created_at #created_at} => Time
1694
+ # * {Types::DescribeRetrainingSchedulerResponse#updated_at #updated_at} => Time
1695
+ #
1696
+ #
1697
+ # @example Example: Describes a retraining scheduler
1698
+ #
1699
+ # resp = client.describe_retraining_scheduler({
1700
+ # model_name: "sample-model",
1701
+ # })
1702
+ #
1703
+ # resp.to_h outputs the following:
1704
+ # {
1705
+ # created_at: Time.parse("2023-10-01T15:00:00Z"),
1706
+ # lookback_window: "P360D",
1707
+ # model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
1708
+ # model_name: "sample-model",
1709
+ # promote_mode: "MANAGED",
1710
+ # retraining_frequency: "P1M",
1711
+ # retraining_start_date: Time.parse("2023-11-01T00:00:00Z"),
1712
+ # status: "RUNNING",
1713
+ # updated_at: Time.parse("2023-10-01T15:00:00Z"),
1714
+ # }
1715
+ #
1716
+ # @example Request syntax with placeholder values
1717
+ #
1718
+ # resp = client.describe_retraining_scheduler({
1719
+ # model_name: "ModelName", # required
1720
+ # })
1721
+ #
1722
+ # @example Response structure
1723
+ #
1724
+ # resp.model_name #=> String
1725
+ # resp.model_arn #=> String
1726
+ # resp.retraining_start_date #=> Time
1727
+ # resp.retraining_frequency #=> String
1728
+ # resp.lookback_window #=> String
1729
+ # resp.status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
1730
+ # resp.promote_mode #=> String, one of "MANAGED", "MANUAL"
1731
+ # resp.created_at #=> Time
1732
+ # resp.updated_at #=> Time
1733
+ #
1734
+ # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/DescribeRetrainingScheduler AWS API Documentation
1735
+ #
1736
+ # @overload describe_retraining_scheduler(params = {})
1737
+ # @param [Hash] params ({})
1738
+ def describe_retraining_scheduler(params = {}, options = {})
1739
+ req = build_request(:describe_retraining_scheduler, params)
1740
+ req.send_request(options)
1741
+ end
1742
+
1507
1743
  # Imports a dataset.
1508
1744
  #
1509
1745
  # @option params [required, String] :source_dataset_arn
@@ -1603,6 +1839,18 @@ module Aws::LookoutEquipment
1603
1839
  # @option params [Array<Types::Tag>] :tags
1604
1840
  # The tags associated with the machine learning model to be created.
1605
1841
  #
1842
+ # @option params [String] :inference_data_import_strategy
1843
+ # Indicates how to import the accumulated inference data when a model
1844
+ # version is imported. The possible values are as follows:
1845
+ #
1846
+ # * NO\_IMPORT – Don't import the data.
1847
+ #
1848
+ # * ADD\_WHEN\_EMPTY – Only import the data from the source model if
1849
+ # there is no existing data in the target model.
1850
+ #
1851
+ # * OVERWRITE – Import the data from the source model and overwrite the
1852
+ # existing data in the target model.
1853
+ #
1606
1854
  # @return [Types::ImportModelVersionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1607
1855
  #
1608
1856
  # * {Types::ImportModelVersionResponse#model_name #model_name} => String
@@ -1633,6 +1881,7 @@ module Aws::LookoutEquipment
1633
1881
  # value: "TagValue", # required
1634
1882
  # },
1635
1883
  # ],
1884
+ # inference_data_import_strategy: "NO_IMPORT", # accepts NO_IMPORT, ADD_WHEN_EMPTY, OVERWRITE
1636
1885
  # })
1637
1886
  #
1638
1887
  # @example Response structure
@@ -1875,6 +2124,8 @@ module Aws::LookoutEquipment
1875
2124
  # resp.inference_execution_summaries[0].customer_result_object.key #=> String
1876
2125
  # resp.inference_execution_summaries[0].status #=> String, one of "IN_PROGRESS", "SUCCESS", "FAILED"
1877
2126
  # resp.inference_execution_summaries[0].failed_reason #=> String
2127
+ # resp.inference_execution_summaries[0].model_version #=> Integer
2128
+ # resp.inference_execution_summaries[0].model_version_arn #=> String
1878
2129
  #
1879
2130
  # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/ListInferenceExecutions AWS API Documentation
1880
2131
  #
@@ -1899,7 +2150,8 @@ module Aws::LookoutEquipment
1899
2150
  # The beginning of the name of the inference schedulers to be listed.
1900
2151
  #
1901
2152
  # @option params [String] :model_name
1902
- # The name of the ML model used by the inference scheduler to be listed.
2153
+ # The name of the machine learning model used by the inference scheduler
2154
+ # to be listed.
1903
2155
  #
1904
2156
  # @option params [String] :status
1905
2157
  # Specifies the current status of the inference schedulers.
@@ -2141,20 +2393,20 @@ module Aws::LookoutEquipment
2141
2393
  #
2142
2394
  # @option params [String] :next_token
2143
2395
  # An opaque pagination token indicating where to continue the listing of
2144
- # ML models.
2396
+ # machine learning models.
2145
2397
  #
2146
2398
  # @option params [Integer] :max_results
2147
- # Specifies the maximum number of ML models to list.
2399
+ # Specifies the maximum number of machine learning models to list.
2148
2400
  #
2149
2401
  # @option params [String] :status
2150
- # The status of the ML model.
2402
+ # The status of the machine learning model.
2151
2403
  #
2152
2404
  # @option params [String] :model_name_begins_with
2153
- # The beginning of the name of the ML models being listed.
2405
+ # The beginning of the name of the machine learning models being listed.
2154
2406
  #
2155
2407
  # @option params [String] :dataset_name_begins_with
2156
- # The beginning of the name of the dataset of the ML models to be
2157
- # listed.
2408
+ # The beginning of the name of the dataset of the machine learning
2409
+ # models to be listed.
2158
2410
  #
2159
2411
  # @return [Types::ListModelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2160
2412
  #
@@ -2185,6 +2437,11 @@ module Aws::LookoutEquipment
2185
2437
  # resp.model_summaries[0].created_at #=> Time
2186
2438
  # resp.model_summaries[0].active_model_version #=> Integer
2187
2439
  # resp.model_summaries[0].active_model_version_arn #=> String
2440
+ # resp.model_summaries[0].latest_scheduled_retraining_status #=> String, one of "IN_PROGRESS", "SUCCESS", "FAILED", "IMPORT_IN_PROGRESS", "CANCELED"
2441
+ # resp.model_summaries[0].latest_scheduled_retraining_model_version #=> Integer
2442
+ # resp.model_summaries[0].latest_scheduled_retraining_start_time #=> Time
2443
+ # resp.model_summaries[0].next_scheduled_retraining_start_date #=> Time
2444
+ # resp.model_summaries[0].retraining_scheduler_status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
2188
2445
  #
2189
2446
  # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/ListModels AWS API Documentation
2190
2447
  #
@@ -2195,6 +2452,98 @@ module Aws::LookoutEquipment
2195
2452
  req.send_request(options)
2196
2453
  end
2197
2454
 
2455
+ # Lists all retraining schedulers in your account, filtering by model
2456
+ # name prefix and status.
2457
+ #
2458
+ # @option params [String] :model_name_begins_with
2459
+ # Specify this field to only list retraining schedulers whose machine
2460
+ # learning models begin with the value you specify.
2461
+ #
2462
+ # @option params [String] :status
2463
+ # Specify this field to only list retraining schedulers whose status
2464
+ # matches the value you specify.
2465
+ #
2466
+ # @option params [String] :next_token
2467
+ # If the number of results exceeds the maximum, a pagination token is
2468
+ # returned. Use the token in the request to show the next page of
2469
+ # retraining schedulers.
2470
+ #
2471
+ # @option params [Integer] :max_results
2472
+ # Specifies the maximum number of retraining schedulers to list.
2473
+ #
2474
+ # @return [Types::ListRetrainingSchedulersResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2475
+ #
2476
+ # * {Types::ListRetrainingSchedulersResponse#retraining_scheduler_summaries #retraining_scheduler_summaries} => Array&lt;Types::RetrainingSchedulerSummary&gt;
2477
+ # * {Types::ListRetrainingSchedulersResponse#next_token #next_token} => String
2478
+ #
2479
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
2480
+ #
2481
+ #
2482
+ # @example Example: Listing retraining schedulers
2483
+ #
2484
+ # resp = client.list_retraining_schedulers({
2485
+ # max_results: 50,
2486
+ # })
2487
+ #
2488
+ # resp.to_h outputs the following:
2489
+ # {
2490
+ # retraining_scheduler_summaries: [
2491
+ # {
2492
+ # lookback_window: "P180D",
2493
+ # model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model-1/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
2494
+ # model_name: "sample-model-1",
2495
+ # retraining_frequency: "P1M",
2496
+ # retraining_start_date: Time.parse("2023-06-01T00:00:00Z"),
2497
+ # status: "RUNNING",
2498
+ # },
2499
+ # {
2500
+ # lookback_window: "P180D",
2501
+ # model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model-2/a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
2502
+ # model_name: "sample-model-2",
2503
+ # retraining_frequency: "P30D",
2504
+ # retraining_start_date: Time.parse("2023-08-15T00:00:00Z"),
2505
+ # status: "RUNNING",
2506
+ # },
2507
+ # {
2508
+ # lookback_window: "P360D",
2509
+ # model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model-3/a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",
2510
+ # model_name: "sample-model-3",
2511
+ # retraining_frequency: "P1M",
2512
+ # retraining_start_date: Time.parse("2023-09-01T00:00:00Z"),
2513
+ # status: "STOPPED",
2514
+ # },
2515
+ # ],
2516
+ # }
2517
+ #
2518
+ # @example Request syntax with placeholder values
2519
+ #
2520
+ # resp = client.list_retraining_schedulers({
2521
+ # model_name_begins_with: "ModelName",
2522
+ # status: "PENDING", # accepts PENDING, RUNNING, STOPPING, STOPPED
2523
+ # next_token: "NextToken",
2524
+ # max_results: 1,
2525
+ # })
2526
+ #
2527
+ # @example Response structure
2528
+ #
2529
+ # resp.retraining_scheduler_summaries #=> Array
2530
+ # resp.retraining_scheduler_summaries[0].model_name #=> String
2531
+ # resp.retraining_scheduler_summaries[0].model_arn #=> String
2532
+ # resp.retraining_scheduler_summaries[0].status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
2533
+ # resp.retraining_scheduler_summaries[0].retraining_start_date #=> Time
2534
+ # resp.retraining_scheduler_summaries[0].retraining_frequency #=> String
2535
+ # resp.retraining_scheduler_summaries[0].lookback_window #=> String
2536
+ # resp.next_token #=> String
2537
+ #
2538
+ # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/ListRetrainingSchedulers AWS API Documentation
2539
+ #
2540
+ # @overload list_retraining_schedulers(params = {})
2541
+ # @param [Hash] params ({})
2542
+ def list_retraining_schedulers(params = {}, options = {})
2543
+ req = build_request(:list_retraining_schedulers, params)
2544
+ req.send_request(options)
2545
+ end
2546
+
2198
2547
  # Lists statistics about the data collected for each of the sensors that
2199
2548
  # have been successfully ingested in the particular dataset. Can also be
2200
2549
  # used to retreive Sensor Statistics for a previous ingestion job.
@@ -2435,6 +2784,52 @@ module Aws::LookoutEquipment
2435
2784
  req.send_request(options)
2436
2785
  end
2437
2786
 
2787
+ # Starts a retraining scheduler.
2788
+ #
2789
+ # @option params [required, String] :model_name
2790
+ # The name of the model whose retraining scheduler you want to start.
2791
+ #
2792
+ # @return [Types::StartRetrainingSchedulerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2793
+ #
2794
+ # * {Types::StartRetrainingSchedulerResponse#model_name #model_name} => String
2795
+ # * {Types::StartRetrainingSchedulerResponse#model_arn #model_arn} => String
2796
+ # * {Types::StartRetrainingSchedulerResponse#status #status} => String
2797
+ #
2798
+ #
2799
+ # @example Example: Starts a retraining scheduler
2800
+ #
2801
+ # resp = client.start_retraining_scheduler({
2802
+ # model_name: "sample-model",
2803
+ # })
2804
+ #
2805
+ # resp.to_h outputs the following:
2806
+ # {
2807
+ # model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
2808
+ # model_name: "sample-model",
2809
+ # status: "PENDING",
2810
+ # }
2811
+ #
2812
+ # @example Request syntax with placeholder values
2813
+ #
2814
+ # resp = client.start_retraining_scheduler({
2815
+ # model_name: "ModelName", # required
2816
+ # })
2817
+ #
2818
+ # @example Response structure
2819
+ #
2820
+ # resp.model_name #=> String
2821
+ # resp.model_arn #=> String
2822
+ # resp.status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
2823
+ #
2824
+ # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/StartRetrainingScheduler AWS API Documentation
2825
+ #
2826
+ # @overload start_retraining_scheduler(params = {})
2827
+ # @param [Hash] params ({})
2828
+ def start_retraining_scheduler(params = {}, options = {})
2829
+ req = build_request(:start_retraining_scheduler, params)
2830
+ req.send_request(options)
2831
+ end
2832
+
2438
2833
  # Stops an inference scheduler.
2439
2834
  #
2440
2835
  # @option params [required, String] :inference_scheduler_name
@@ -2471,6 +2866,52 @@ module Aws::LookoutEquipment
2471
2866
  req.send_request(options)
2472
2867
  end
2473
2868
 
2869
+ # Stops a retraining scheduler.
2870
+ #
2871
+ # @option params [required, String] :model_name
2872
+ # The name of the model whose retraining scheduler you want to stop.
2873
+ #
2874
+ # @return [Types::StopRetrainingSchedulerResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2875
+ #
2876
+ # * {Types::StopRetrainingSchedulerResponse#model_name #model_name} => String
2877
+ # * {Types::StopRetrainingSchedulerResponse#model_arn #model_arn} => String
2878
+ # * {Types::StopRetrainingSchedulerResponse#status #status} => String
2879
+ #
2880
+ #
2881
+ # @example Example: Stops a retraining scheduler
2882
+ #
2883
+ # resp = client.stop_retraining_scheduler({
2884
+ # model_name: "sample-model",
2885
+ # })
2886
+ #
2887
+ # resp.to_h outputs the following:
2888
+ # {
2889
+ # model_arn: "arn:aws:lookoutequipment:us-east-1:123456789012:model/sample-model/a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
2890
+ # model_name: "sample-model",
2891
+ # status: "STOPPING",
2892
+ # }
2893
+ #
2894
+ # @example Request syntax with placeholder values
2895
+ #
2896
+ # resp = client.stop_retraining_scheduler({
2897
+ # model_name: "ModelName", # required
2898
+ # })
2899
+ #
2900
+ # @example Response structure
2901
+ #
2902
+ # resp.model_name #=> String
2903
+ # resp.model_arn #=> String
2904
+ # resp.status #=> String, one of "PENDING", "RUNNING", "STOPPING", "STOPPED"
2905
+ #
2906
+ # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/StopRetrainingScheduler AWS API Documentation
2907
+ #
2908
+ # @overload stop_retraining_scheduler(params = {})
2909
+ # @param [Hash] params ({})
2910
+ def stop_retraining_scheduler(params = {}, options = {})
2911
+ req = build_request(:stop_retraining_scheduler, params)
2912
+ req.send_request(options)
2913
+ end
2914
+
2474
2915
  # Associates a given tag to a resource in your account. A tag is a
2475
2916
  # key-value pair which can be added to an Amazon Lookout for Equipment
2476
2917
  # resource as metadata. Tags can be used for organizing your resources
@@ -2686,6 +3127,122 @@ module Aws::LookoutEquipment
2686
3127
  req.send_request(options)
2687
3128
  end
2688
3129
 
3130
+ # Updates a model in the account.
3131
+ #
3132
+ # @option params [required, String] :model_name
3133
+ # The name of the model to update.
3134
+ #
3135
+ # @option params [Types::LabelsInputConfiguration] :labels_input_configuration
3136
+ # Contains the configuration information for the S3 location being used
3137
+ # to hold label data.
3138
+ #
3139
+ # @option params [String] :role_arn
3140
+ # The ARN of the model to update.
3141
+ #
3142
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
3143
+ #
3144
+ #
3145
+ # @example Example: Updates a model
3146
+ #
3147
+ # resp = client.update_model({
3148
+ # labels_input_configuration: {
3149
+ # label_group_name: "sample-label-group",
3150
+ # },
3151
+ # model_name: "sample-model",
3152
+ # })
3153
+ #
3154
+ # @example Request syntax with placeholder values
3155
+ #
3156
+ # resp = client.update_model({
3157
+ # model_name: "ModelName", # required
3158
+ # labels_input_configuration: {
3159
+ # s3_input_configuration: {
3160
+ # bucket: "S3Bucket", # required
3161
+ # prefix: "S3Prefix",
3162
+ # },
3163
+ # label_group_name: "LabelGroupName",
3164
+ # },
3165
+ # role_arn: "IamRoleArn",
3166
+ # })
3167
+ #
3168
+ # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/UpdateModel AWS API Documentation
3169
+ #
3170
+ # @overload update_model(params = {})
3171
+ # @param [Hash] params ({})
3172
+ def update_model(params = {}, options = {})
3173
+ req = build_request(:update_model, params)
3174
+ req.send_request(options)
3175
+ end
3176
+
3177
+ # Updates a retraining scheduler.
3178
+ #
3179
+ # @option params [required, String] :model_name
3180
+ # The name of the model whose retraining scheduler you want to update.
3181
+ #
3182
+ # @option params [Time,DateTime,Date,Integer,String] :retraining_start_date
3183
+ # The start date for the retraining scheduler. Lookout for Equipment
3184
+ # truncates the time you provide to the nearest UTC day.
3185
+ #
3186
+ # @option params [String] :retraining_frequency
3187
+ # This parameter uses the [ISO 8601][1] standard to set the frequency at
3188
+ # which you want retraining to occur in terms of Years, Months, and/or
3189
+ # Days (note: other parameters like Time are not currently supported).
3190
+ # The minimum value is 30 days (P30D) and the maximum value is 1 year
3191
+ # (P1Y). For example, the following values are valid:
3192
+ #
3193
+ # * P3M15D – Every 3 months and 15 days
3194
+ #
3195
+ # * P2M – Every 2 months
3196
+ #
3197
+ # * P150D – Every 150 days
3198
+ #
3199
+ #
3200
+ #
3201
+ # [1]: https://en.wikipedia.org/wiki/ISO_8601#Durations
3202
+ #
3203
+ # @option params [String] :lookback_window
3204
+ # The number of past days of data that will be used for retraining.
3205
+ #
3206
+ # @option params [String] :promote_mode
3207
+ # Indicates how the service will use new models. In `MANAGED` mode, new
3208
+ # models will automatically be used for inference if they have better
3209
+ # performance than the current model. In `MANUAL` mode, the new models
3210
+ # will not be used [until they are manually activated][1].
3211
+ #
3212
+ #
3213
+ #
3214
+ # [1]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/versioning-model.html#model-activation
3215
+ #
3216
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
3217
+ #
3218
+ #
3219
+ # @example Example: Updates a retraining scheduler
3220
+ #
3221
+ # resp = client.update_retraining_scheduler({
3222
+ # model_name: "sample-model",
3223
+ # retraining_frequency: "P1Y",
3224
+ # retraining_start_date: Time.parse("2024-01-01T00:00:00Z"),
3225
+ # })
3226
+ #
3227
+ # @example Request syntax with placeholder values
3228
+ #
3229
+ # resp = client.update_retraining_scheduler({
3230
+ # model_name: "ModelName", # required
3231
+ # retraining_start_date: Time.now,
3232
+ # retraining_frequency: "RetrainingFrequency",
3233
+ # lookback_window: "LookbackWindow",
3234
+ # promote_mode: "MANAGED", # accepts MANAGED, MANUAL
3235
+ # })
3236
+ #
3237
+ # @see http://docs.aws.amazon.com/goto/WebAPI/lookoutequipment-2020-12-15/UpdateRetrainingScheduler AWS API Documentation
3238
+ #
3239
+ # @overload update_retraining_scheduler(params = {})
3240
+ # @param [Hash] params ({})
3241
+ def update_retraining_scheduler(params = {}, options = {})
3242
+ req = build_request(:update_retraining_scheduler, params)
3243
+ req.send_request(options)
3244
+ end
3245
+
2689
3246
  # @!endgroup
2690
3247
 
2691
3248
  # @param params ({})
@@ -2699,7 +3256,7 @@ module Aws::LookoutEquipment
2699
3256
  params: params,
2700
3257
  config: config)
2701
3258
  context[:gem_name] = 'aws-sdk-lookoutequipment'
2702
- context[:gem_version] = '1.22.0'
3259
+ context[:gem_version] = '1.23.0'
2703
3260
  Seahorse::Client::Request.new(handlers, context)
2704
3261
  end
2705
3262