aws-sdk-frauddetector 1.18.0 → 1.19.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-frauddetector.rb +1 -1
- data/lib/aws-sdk-frauddetector/client.rb +29 -1
- data/lib/aws-sdk-frauddetector/client_api.rb +15 -0
- data/lib/aws-sdk-frauddetector/types.rb +68 -1
- metadata +3 -4
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: bbd86904fddba909c196b603b40635be5efae07efe43f60bb87365c3535fbc0e
|
4
|
+
data.tar.gz: dbc24ed06586e6163e83a7f0167e855e49128fb91a75c34d77e6dd0bcb85775c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 8369d73396a68183c669a68fedfb3751d758efb8a8058d519b4673d7572eea38551bcfbeb899e5450caa5963c6dc1f9f209b93caceb0e4cf11a19b3e08eed7b1
|
7
|
+
data.tar.gz: 36f9ca8489fc3f5a7a9b9d8844bfd2d16e99e4769e5c4369347cde59cc6292f440f6b0899797465dd4b82c3fc8cbd01c60532f2d40b40a1228ccf2d5bb836ace
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.19.0 (2021-07-09)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - This release adds support for ML Explainability to display model variable importance value in Amazon Fraud Detector.
|
8
|
+
|
4
9
|
1.18.0 (2021-03-30)
|
5
10
|
------------------
|
6
11
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.19.0
|
@@ -1329,6 +1329,10 @@ module Aws::FraudDetector
|
|
1329
1329
|
# resp.model_version_details[0].training_result.training_metrics.metric_data_points[0].precision #=> Float
|
1330
1330
|
# resp.model_version_details[0].training_result.training_metrics.metric_data_points[0].tpr #=> Float
|
1331
1331
|
# resp.model_version_details[0].training_result.training_metrics.metric_data_points[0].threshold #=> Float
|
1332
|
+
# resp.model_version_details[0].training_result.variable_importance_metrics.logit_metrics #=> Array
|
1333
|
+
# resp.model_version_details[0].training_result.variable_importance_metrics.logit_metrics[0].variable_name #=> String
|
1334
|
+
# resp.model_version_details[0].training_result.variable_importance_metrics.logit_metrics[0].variable_type #=> String
|
1335
|
+
# resp.model_version_details[0].training_result.variable_importance_metrics.logit_metrics[0].variable_importance #=> Float
|
1332
1336
|
# resp.model_version_details[0].last_updated_time #=> String
|
1333
1337
|
# resp.model_version_details[0].created_time #=> String
|
1334
1338
|
# resp.model_version_details[0].arn #=> String
|
@@ -1596,6 +1600,30 @@ module Aws::FraudDetector
|
|
1596
1600
|
# Detector to represent data elements and their corresponding values for
|
1597
1601
|
# the event you are sending for evaluation.
|
1598
1602
|
#
|
1603
|
+
# * You must provide at least one eventVariable
|
1604
|
+
#
|
1605
|
+
# * If detectorVersion is associated with a modelVersion, you must
|
1606
|
+
# provide at least one associated eventVariable
|
1607
|
+
#
|
1608
|
+
# To ensure highest possible fraud prediction and to simplify your data
|
1609
|
+
# preparation, Amazon Fraud Detector will replace all missing variables
|
1610
|
+
# or values as follows:
|
1611
|
+
#
|
1612
|
+
# **For Amazon Fraud Detector trained models:**
|
1613
|
+
#
|
1614
|
+
# If a null value is provided explicitly for a variable or if a variable
|
1615
|
+
# is missing, model will replace the null value or the missing variable
|
1616
|
+
# (no variable name in the eventVariables map) with calculated default
|
1617
|
+
# mean/medians for numeric variables and with special values for
|
1618
|
+
# categorical variables.
|
1619
|
+
#
|
1620
|
+
# **For External models ( for example, imported SageMaker):**
|
1621
|
+
#
|
1622
|
+
# If a null value is provided explicitly for a variable, the model and
|
1623
|
+
# rules will use “null” as the value. If a variable is not provided (no
|
1624
|
+
# variable name in the eventVariables map), model and rules will use the
|
1625
|
+
# default value that is provided for the variable.
|
1626
|
+
#
|
1599
1627
|
# @option params [Hash<String,Types::ModelEndpointDataBlob>] :external_model_endpoint_data_blobs
|
1600
1628
|
# The Amazon SageMaker model endpoint input data blobs.
|
1601
1629
|
#
|
@@ -2942,7 +2970,7 @@ module Aws::FraudDetector
|
|
2942
2970
|
params: params,
|
2943
2971
|
config: config)
|
2944
2972
|
context[:gem_name] = 'aws-sdk-frauddetector'
|
2945
|
-
context[:gem_version] = '1.
|
2973
|
+
context[:gem_version] = '1.19.0'
|
2946
2974
|
Seahorse::Client::Request.new(handlers, context)
|
2947
2975
|
end
|
2948
2976
|
|
@@ -127,12 +127,14 @@ module Aws::FraudDetector
|
|
127
127
|
Label = Shapes::StructureShape.new(name: 'Label')
|
128
128
|
LabelSchema = Shapes::StructureShape.new(name: 'LabelSchema')
|
129
129
|
Language = Shapes::StringShape.new(name: 'Language')
|
130
|
+
ListOfLogitMetrics = Shapes::ListShape.new(name: 'ListOfLogitMetrics')
|
130
131
|
ListOfModelScores = Shapes::ListShape.new(name: 'ListOfModelScores')
|
131
132
|
ListOfModelVersions = Shapes::ListShape.new(name: 'ListOfModelVersions')
|
132
133
|
ListOfRuleResults = Shapes::ListShape.new(name: 'ListOfRuleResults')
|
133
134
|
ListOfStrings = Shapes::ListShape.new(name: 'ListOfStrings')
|
134
135
|
ListTagsForResourceRequest = Shapes::StructureShape.new(name: 'ListTagsForResourceRequest')
|
135
136
|
ListTagsForResourceResult = Shapes::StructureShape.new(name: 'ListTagsForResourceResult')
|
137
|
+
LogitMetric = Shapes::StructureShape.new(name: 'LogitMetric')
|
136
138
|
MetricDataPoint = Shapes::StructureShape.new(name: 'MetricDataPoint')
|
137
139
|
Model = Shapes::StructureShape.new(name: 'Model')
|
138
140
|
ModelEndpointDataBlob = Shapes::StructureShape.new(name: 'ModelEndpointDataBlob')
|
@@ -209,6 +211,7 @@ module Aws::FraudDetector
|
|
209
211
|
Variable = Shapes::StructureShape.new(name: 'Variable')
|
210
212
|
VariableEntry = Shapes::StructureShape.new(name: 'VariableEntry')
|
211
213
|
VariableEntryList = Shapes::ListShape.new(name: 'VariableEntryList')
|
214
|
+
VariableImportanceMetrics = Shapes::StructureShape.new(name: 'VariableImportanceMetrics')
|
212
215
|
VariableList = Shapes::ListShape.new(name: 'VariableList')
|
213
216
|
VariablesMaxResults = Shapes::IntegerShape.new(name: 'VariablesMaxResults')
|
214
217
|
batchPredictionsMaxPageSize = Shapes::IntegerShape.new(name: 'batchPredictionsMaxPageSize')
|
@@ -714,6 +717,8 @@ module Aws::FraudDetector
|
|
714
717
|
LabelSchema.add_member(:label_mapper, Shapes::ShapeRef.new(shape: labelMapper, required: true, location_name: "labelMapper"))
|
715
718
|
LabelSchema.struct_class = Types::LabelSchema
|
716
719
|
|
720
|
+
ListOfLogitMetrics.member = Shapes::ShapeRef.new(shape: LogitMetric)
|
721
|
+
|
717
722
|
ListOfModelScores.member = Shapes::ShapeRef.new(shape: ModelScores)
|
718
723
|
|
719
724
|
ListOfModelVersions.member = Shapes::ShapeRef.new(shape: ModelVersion)
|
@@ -731,6 +736,11 @@ module Aws::FraudDetector
|
|
731
736
|
ListTagsForResourceResult.add_member(:next_token, Shapes::ShapeRef.new(shape: string, location_name: "nextToken"))
|
732
737
|
ListTagsForResourceResult.struct_class = Types::ListTagsForResourceResult
|
733
738
|
|
739
|
+
LogitMetric.add_member(:variable_name, Shapes::ShapeRef.new(shape: string, required: true, location_name: "variableName"))
|
740
|
+
LogitMetric.add_member(:variable_type, Shapes::ShapeRef.new(shape: string, required: true, location_name: "variableType"))
|
741
|
+
LogitMetric.add_member(:variable_importance, Shapes::ShapeRef.new(shape: float, required: true, location_name: "variableImportance"))
|
742
|
+
LogitMetric.struct_class = Types::LogitMetric
|
743
|
+
|
734
744
|
MetricDataPoint.add_member(:fpr, Shapes::ShapeRef.new(shape: float, location_name: "fpr"))
|
735
745
|
MetricDataPoint.add_member(:precision, Shapes::ShapeRef.new(shape: float, location_name: "precision"))
|
736
746
|
MetricDataPoint.add_member(:tpr, Shapes::ShapeRef.new(shape: float, location_name: "tpr"))
|
@@ -907,6 +917,7 @@ module Aws::FraudDetector
|
|
907
917
|
|
908
918
|
TrainingResult.add_member(:data_validation_metrics, Shapes::ShapeRef.new(shape: DataValidationMetrics, location_name: "dataValidationMetrics"))
|
909
919
|
TrainingResult.add_member(:training_metrics, Shapes::ShapeRef.new(shape: TrainingMetrics, location_name: "trainingMetrics"))
|
920
|
+
TrainingResult.add_member(:variable_importance_metrics, Shapes::ShapeRef.new(shape: VariableImportanceMetrics, location_name: "variableImportanceMetrics"))
|
910
921
|
TrainingResult.struct_class = Types::TrainingResult
|
911
922
|
|
912
923
|
UntagResourceRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: fraudDetectorArn, required: true, location_name: "resourceARN"))
|
@@ -1017,6 +1028,9 @@ module Aws::FraudDetector
|
|
1017
1028
|
|
1018
1029
|
VariableEntryList.member = Shapes::ShapeRef.new(shape: VariableEntry)
|
1019
1030
|
|
1031
|
+
VariableImportanceMetrics.add_member(:logit_metrics, Shapes::ShapeRef.new(shape: ListOfLogitMetrics, location_name: "LogitMetrics"))
|
1032
|
+
VariableImportanceMetrics.struct_class = Types::VariableImportanceMetrics
|
1033
|
+
|
1020
1034
|
VariableList.member = Shapes::ShapeRef.new(shape: Variable)
|
1021
1035
|
|
1022
1036
|
entityTypeList.member = Shapes::ShapeRef.new(shape: EntityType)
|
@@ -1107,6 +1121,7 @@ module Aws::FraudDetector
|
|
1107
1121
|
o.errors << Shapes::ShapeRef.new(shape: ValidationException)
|
1108
1122
|
o.errors << Shapes::ShapeRef.new(shape: InternalServerException)
|
1109
1123
|
o.errors << Shapes::ShapeRef.new(shape: AccessDeniedException)
|
1124
|
+
o.errors << Shapes::ShapeRef.new(shape: ResourceNotFoundException)
|
1110
1125
|
end)
|
1111
1126
|
|
1112
1127
|
api.add_operation(:create_detector_version, Seahorse::Model::Operation.new.tap do |o|
|
@@ -1855,6 +1855,30 @@ module Aws::FraudDetector
|
|
1855
1855
|
# Names of the event type's variables you defined in Amazon Fraud
|
1856
1856
|
# Detector to represent data elements and their corresponding values
|
1857
1857
|
# for the event you are sending for evaluation.
|
1858
|
+
#
|
1859
|
+
# * You must provide at least one eventVariable
|
1860
|
+
#
|
1861
|
+
# * If detectorVersion is associated with a modelVersion, you must
|
1862
|
+
# provide at least one associated eventVariable
|
1863
|
+
#
|
1864
|
+
# To ensure highest possible fraud prediction and to simplify your
|
1865
|
+
# data preparation, Amazon Fraud Detector will replace all missing
|
1866
|
+
# variables or values as follows:
|
1867
|
+
#
|
1868
|
+
# **For Amazon Fraud Detector trained models:**
|
1869
|
+
#
|
1870
|
+
# If a null value is provided explicitly for a variable or if a
|
1871
|
+
# variable is missing, model will replace the null value or the
|
1872
|
+
# missing variable (no variable name in the eventVariables map) with
|
1873
|
+
# calculated default mean/medians for numeric variables and with
|
1874
|
+
# special values for categorical variables.
|
1875
|
+
#
|
1876
|
+
# **For External models ( for example, imported SageMaker):**
|
1877
|
+
#
|
1878
|
+
# If a null value is provided explicitly for a variable, the model and
|
1879
|
+
# rules will use “null” as the value. If a variable is not provided
|
1880
|
+
# (no variable name in the eventVariables map), model and rules will
|
1881
|
+
# use the default value that is provided for the variable.
|
1858
1882
|
# @return [Hash<String,String>]
|
1859
1883
|
#
|
1860
1884
|
# @!attribute [rw] external_model_endpoint_data_blobs
|
@@ -2502,6 +2526,30 @@ module Aws::FraudDetector
|
|
2502
2526
|
include Aws::Structure
|
2503
2527
|
end
|
2504
2528
|
|
2529
|
+
# The logit metric details.
|
2530
|
+
#
|
2531
|
+
# @!attribute [rw] variable_name
|
2532
|
+
# The name of the variable.
|
2533
|
+
# @return [String]
|
2534
|
+
#
|
2535
|
+
# @!attribute [rw] variable_type
|
2536
|
+
# The type of variable.
|
2537
|
+
# @return [String]
|
2538
|
+
#
|
2539
|
+
# @!attribute [rw] variable_importance
|
2540
|
+
# The relative importance of the variable.
|
2541
|
+
# @return [Float]
|
2542
|
+
#
|
2543
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/frauddetector-2019-11-15/LogitMetric AWS API Documentation
|
2544
|
+
#
|
2545
|
+
class LogitMetric < Struct.new(
|
2546
|
+
:variable_name,
|
2547
|
+
:variable_type,
|
2548
|
+
:variable_importance)
|
2549
|
+
SENSITIVE = []
|
2550
|
+
include Aws::Structure
|
2551
|
+
end
|
2552
|
+
|
2505
2553
|
# Model performance metrics data points.
|
2506
2554
|
#
|
2507
2555
|
# @!attribute [rw] fpr
|
@@ -3445,11 +3493,16 @@ module Aws::FraudDetector
|
|
3445
3493
|
# The training metric details.
|
3446
3494
|
# @return [Types::TrainingMetrics]
|
3447
3495
|
#
|
3496
|
+
# @!attribute [rw] variable_importance_metrics
|
3497
|
+
# The variable importance metrics.
|
3498
|
+
# @return [Types::VariableImportanceMetrics]
|
3499
|
+
#
|
3448
3500
|
# @see http://docs.aws.amazon.com/goto/WebAPI/frauddetector-2019-11-15/TrainingResult AWS API Documentation
|
3449
3501
|
#
|
3450
3502
|
class TrainingResult < Struct.new(
|
3451
3503
|
:data_validation_metrics,
|
3452
|
-
:training_metrics
|
3504
|
+
:training_metrics,
|
3505
|
+
:variable_importance_metrics)
|
3453
3506
|
SENSITIVE = []
|
3454
3507
|
include Aws::Structure
|
3455
3508
|
end
|
@@ -4089,5 +4142,19 @@ module Aws::FraudDetector
|
|
4089
4142
|
include Aws::Structure
|
4090
4143
|
end
|
4091
4144
|
|
4145
|
+
# The variable importance metrics details.
|
4146
|
+
#
|
4147
|
+
# @!attribute [rw] logit_metrics
|
4148
|
+
# List of variable metrics.
|
4149
|
+
# @return [Array<Types::LogitMetric>]
|
4150
|
+
#
|
4151
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/frauddetector-2019-11-15/VariableImportanceMetrics AWS API Documentation
|
4152
|
+
#
|
4153
|
+
class VariableImportanceMetrics < Struct.new(
|
4154
|
+
:logit_metrics)
|
4155
|
+
SENSITIVE = []
|
4156
|
+
include Aws::Structure
|
4157
|
+
end
|
4158
|
+
|
4092
4159
|
end
|
4093
4160
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-frauddetector
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.19.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-
|
11
|
+
date: 2021-07-09 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|
@@ -83,8 +83,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
83
83
|
- !ruby/object:Gem::Version
|
84
84
|
version: '0'
|
85
85
|
requirements: []
|
86
|
-
|
87
|
-
rubygems_version: 2.7.6.2
|
86
|
+
rubygems_version: 3.1.6
|
88
87
|
signing_key:
|
89
88
|
specification_version: 4
|
90
89
|
summary: AWS SDK for Ruby - Amazon Fraud Detector
|