aws-sdk-frauddetector 1.18.0 → 1.19.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 5b8efd1c69e484d5f59cbf3a0b409eeca74444fdcf73f2004d10766256fa923e
4
- data.tar.gz: 6cbf59696fa93173a7f93484f54998ff22ae5258bfa6833694bb3d3efb6c6692
3
+ metadata.gz: bbd86904fddba909c196b603b40635be5efae07efe43f60bb87365c3535fbc0e
4
+ data.tar.gz: dbc24ed06586e6163e83a7f0167e855e49128fb91a75c34d77e6dd0bcb85775c
5
5
  SHA512:
6
- metadata.gz: f20b1dacc4eb1f56b46bc2601e3d55425df51caa26b0b95dd8ee6080a4dbf7d40a5955a5db1ea5e485d38cb3157796167d62d94d47fafd46232a8596fa1095cc
7
- data.tar.gz: d51893a1ea7dfaa579db5756b02bebd071decc18a2d40f7d6c33c29b217d386e6b3e3b09300a74b90e4b53469241667d6ea7d393ec4863ad9f94b038fd6afa75
6
+ metadata.gz: 8369d73396a68183c669a68fedfb3751d758efb8a8058d519b4673d7572eea38551bcfbeb899e5450caa5963c6dc1f9f209b93caceb0e4cf11a19b3e08eed7b1
7
+ data.tar.gz: 36f9ca8489fc3f5a7a9b9d8844bfd2d16e99e4769e5c4369347cde59cc6292f440f6b0899797465dd4b82c3fc8cbd01c60532f2d40b40a1228ccf2d5bb836ace
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.19.0 (2021-07-09)
5
+ ------------------
6
+
7
+ * Feature - This release adds support for ML Explainability to display model variable importance value in Amazon Fraud Detector.
8
+
4
9
  1.18.0 (2021-03-30)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.18.0
1
+ 1.19.0
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-frauddetector/customizations'
48
48
  # @!group service
49
49
  module Aws::FraudDetector
50
50
 
51
- GEM_VERSION = '1.18.0'
51
+ GEM_VERSION = '1.19.0'
52
52
 
53
53
  end
@@ -1329,6 +1329,10 @@ module Aws::FraudDetector
1329
1329
  # resp.model_version_details[0].training_result.training_metrics.metric_data_points[0].precision #=> Float
1330
1330
  # resp.model_version_details[0].training_result.training_metrics.metric_data_points[0].tpr #=> Float
1331
1331
  # resp.model_version_details[0].training_result.training_metrics.metric_data_points[0].threshold #=> Float
1332
+ # resp.model_version_details[0].training_result.variable_importance_metrics.logit_metrics #=> Array
1333
+ # resp.model_version_details[0].training_result.variable_importance_metrics.logit_metrics[0].variable_name #=> String
1334
+ # resp.model_version_details[0].training_result.variable_importance_metrics.logit_metrics[0].variable_type #=> String
1335
+ # resp.model_version_details[0].training_result.variable_importance_metrics.logit_metrics[0].variable_importance #=> Float
1332
1336
  # resp.model_version_details[0].last_updated_time #=> String
1333
1337
  # resp.model_version_details[0].created_time #=> String
1334
1338
  # resp.model_version_details[0].arn #=> String
@@ -1596,6 +1600,30 @@ module Aws::FraudDetector
1596
1600
  # Detector to represent data elements and their corresponding values for
1597
1601
  # the event you are sending for evaluation.
1598
1602
  #
1603
+ # * You must provide at least one eventVariable
1604
+ #
1605
+ # * If detectorVersion is associated with a modelVersion, you must
1606
+ # provide at least one associated eventVariable
1607
+ #
1608
+ # To ensure highest possible fraud prediction and to simplify your data
1609
+ # preparation, Amazon Fraud Detector will replace all missing variables
1610
+ # or values as follows:
1611
+ #
1612
+ # **For Amazon Fraud Detector trained models:**
1613
+ #
1614
+ # If a null value is provided explicitly for a variable or if a variable
1615
+ # is missing, model will replace the null value or the missing variable
1616
+ # (no variable name in the eventVariables map) with calculated default
1617
+ # mean/medians for numeric variables and with special values for
1618
+ # categorical variables.
1619
+ #
1620
+ # **For External models ( for example, imported SageMaker):**
1621
+ #
1622
+ # If a null value is provided explicitly for a variable, the model and
1623
+ # rules will use “null” as the value. If a variable is not provided (no
1624
+ # variable name in the eventVariables map), model and rules will use the
1625
+ # default value that is provided for the variable.
1626
+ #
1599
1627
  # @option params [Hash<String,Types::ModelEndpointDataBlob>] :external_model_endpoint_data_blobs
1600
1628
  # The Amazon SageMaker model endpoint input data blobs.
1601
1629
  #
@@ -2942,7 +2970,7 @@ module Aws::FraudDetector
2942
2970
  params: params,
2943
2971
  config: config)
2944
2972
  context[:gem_name] = 'aws-sdk-frauddetector'
2945
- context[:gem_version] = '1.18.0'
2973
+ context[:gem_version] = '1.19.0'
2946
2974
  Seahorse::Client::Request.new(handlers, context)
2947
2975
  end
2948
2976
 
@@ -127,12 +127,14 @@ module Aws::FraudDetector
127
127
  Label = Shapes::StructureShape.new(name: 'Label')
128
128
  LabelSchema = Shapes::StructureShape.new(name: 'LabelSchema')
129
129
  Language = Shapes::StringShape.new(name: 'Language')
130
+ ListOfLogitMetrics = Shapes::ListShape.new(name: 'ListOfLogitMetrics')
130
131
  ListOfModelScores = Shapes::ListShape.new(name: 'ListOfModelScores')
131
132
  ListOfModelVersions = Shapes::ListShape.new(name: 'ListOfModelVersions')
132
133
  ListOfRuleResults = Shapes::ListShape.new(name: 'ListOfRuleResults')
133
134
  ListOfStrings = Shapes::ListShape.new(name: 'ListOfStrings')
134
135
  ListTagsForResourceRequest = Shapes::StructureShape.new(name: 'ListTagsForResourceRequest')
135
136
  ListTagsForResourceResult = Shapes::StructureShape.new(name: 'ListTagsForResourceResult')
137
+ LogitMetric = Shapes::StructureShape.new(name: 'LogitMetric')
136
138
  MetricDataPoint = Shapes::StructureShape.new(name: 'MetricDataPoint')
137
139
  Model = Shapes::StructureShape.new(name: 'Model')
138
140
  ModelEndpointDataBlob = Shapes::StructureShape.new(name: 'ModelEndpointDataBlob')
@@ -209,6 +211,7 @@ module Aws::FraudDetector
209
211
  Variable = Shapes::StructureShape.new(name: 'Variable')
210
212
  VariableEntry = Shapes::StructureShape.new(name: 'VariableEntry')
211
213
  VariableEntryList = Shapes::ListShape.new(name: 'VariableEntryList')
214
+ VariableImportanceMetrics = Shapes::StructureShape.new(name: 'VariableImportanceMetrics')
212
215
  VariableList = Shapes::ListShape.new(name: 'VariableList')
213
216
  VariablesMaxResults = Shapes::IntegerShape.new(name: 'VariablesMaxResults')
214
217
  batchPredictionsMaxPageSize = Shapes::IntegerShape.new(name: 'batchPredictionsMaxPageSize')
@@ -714,6 +717,8 @@ module Aws::FraudDetector
714
717
  LabelSchema.add_member(:label_mapper, Shapes::ShapeRef.new(shape: labelMapper, required: true, location_name: "labelMapper"))
715
718
  LabelSchema.struct_class = Types::LabelSchema
716
719
 
720
+ ListOfLogitMetrics.member = Shapes::ShapeRef.new(shape: LogitMetric)
721
+
717
722
  ListOfModelScores.member = Shapes::ShapeRef.new(shape: ModelScores)
718
723
 
719
724
  ListOfModelVersions.member = Shapes::ShapeRef.new(shape: ModelVersion)
@@ -731,6 +736,11 @@ module Aws::FraudDetector
731
736
  ListTagsForResourceResult.add_member(:next_token, Shapes::ShapeRef.new(shape: string, location_name: "nextToken"))
732
737
  ListTagsForResourceResult.struct_class = Types::ListTagsForResourceResult
733
738
 
739
+ LogitMetric.add_member(:variable_name, Shapes::ShapeRef.new(shape: string, required: true, location_name: "variableName"))
740
+ LogitMetric.add_member(:variable_type, Shapes::ShapeRef.new(shape: string, required: true, location_name: "variableType"))
741
+ LogitMetric.add_member(:variable_importance, Shapes::ShapeRef.new(shape: float, required: true, location_name: "variableImportance"))
742
+ LogitMetric.struct_class = Types::LogitMetric
743
+
734
744
  MetricDataPoint.add_member(:fpr, Shapes::ShapeRef.new(shape: float, location_name: "fpr"))
735
745
  MetricDataPoint.add_member(:precision, Shapes::ShapeRef.new(shape: float, location_name: "precision"))
736
746
  MetricDataPoint.add_member(:tpr, Shapes::ShapeRef.new(shape: float, location_name: "tpr"))
@@ -907,6 +917,7 @@ module Aws::FraudDetector
907
917
 
908
918
  TrainingResult.add_member(:data_validation_metrics, Shapes::ShapeRef.new(shape: DataValidationMetrics, location_name: "dataValidationMetrics"))
909
919
  TrainingResult.add_member(:training_metrics, Shapes::ShapeRef.new(shape: TrainingMetrics, location_name: "trainingMetrics"))
920
+ TrainingResult.add_member(:variable_importance_metrics, Shapes::ShapeRef.new(shape: VariableImportanceMetrics, location_name: "variableImportanceMetrics"))
910
921
  TrainingResult.struct_class = Types::TrainingResult
911
922
 
912
923
  UntagResourceRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: fraudDetectorArn, required: true, location_name: "resourceARN"))
@@ -1017,6 +1028,9 @@ module Aws::FraudDetector
1017
1028
 
1018
1029
  VariableEntryList.member = Shapes::ShapeRef.new(shape: VariableEntry)
1019
1030
 
1031
+ VariableImportanceMetrics.add_member(:logit_metrics, Shapes::ShapeRef.new(shape: ListOfLogitMetrics, location_name: "LogitMetrics"))
1032
+ VariableImportanceMetrics.struct_class = Types::VariableImportanceMetrics
1033
+
1020
1034
  VariableList.member = Shapes::ShapeRef.new(shape: Variable)
1021
1035
 
1022
1036
  entityTypeList.member = Shapes::ShapeRef.new(shape: EntityType)
@@ -1107,6 +1121,7 @@ module Aws::FraudDetector
1107
1121
  o.errors << Shapes::ShapeRef.new(shape: ValidationException)
1108
1122
  o.errors << Shapes::ShapeRef.new(shape: InternalServerException)
1109
1123
  o.errors << Shapes::ShapeRef.new(shape: AccessDeniedException)
1124
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFoundException)
1110
1125
  end)
1111
1126
 
1112
1127
  api.add_operation(:create_detector_version, Seahorse::Model::Operation.new.tap do |o|
@@ -1855,6 +1855,30 @@ module Aws::FraudDetector
1855
1855
  # Names of the event type's variables you defined in Amazon Fraud
1856
1856
  # Detector to represent data elements and their corresponding values
1857
1857
  # for the event you are sending for evaluation.
1858
+ #
1859
+ # * You must provide at least one eventVariable
1860
+ #
1861
+ # * If detectorVersion is associated with a modelVersion, you must
1862
+ # provide at least one associated eventVariable
1863
+ #
1864
+ # To ensure highest possible fraud prediction and to simplify your
1865
+ # data preparation, Amazon Fraud Detector will replace all missing
1866
+ # variables or values as follows:
1867
+ #
1868
+ # **For Amazon Fraud Detector trained models:**
1869
+ #
1870
+ # If a null value is provided explicitly for a variable or if a
1871
+ # variable is missing, model will replace the null value or the
1872
+ # missing variable (no variable name in the eventVariables map) with
1873
+ # calculated default mean/medians for numeric variables and with
1874
+ # special values for categorical variables.
1875
+ #
1876
+ # **For External models ( for example, imported SageMaker):**
1877
+ #
1878
+ # If a null value is provided explicitly for a variable, the model and
1879
+ # rules will use “null” as the value. If a variable is not provided
1880
+ # (no variable name in the eventVariables map), model and rules will
1881
+ # use the default value that is provided for the variable.
1858
1882
  # @return [Hash<String,String>]
1859
1883
  #
1860
1884
  # @!attribute [rw] external_model_endpoint_data_blobs
@@ -2502,6 +2526,30 @@ module Aws::FraudDetector
2502
2526
  include Aws::Structure
2503
2527
  end
2504
2528
 
2529
+ # The logit metric details.
2530
+ #
2531
+ # @!attribute [rw] variable_name
2532
+ # The name of the variable.
2533
+ # @return [String]
2534
+ #
2535
+ # @!attribute [rw] variable_type
2536
+ # The type of variable.
2537
+ # @return [String]
2538
+ #
2539
+ # @!attribute [rw] variable_importance
2540
+ # The relative importance of the variable.
2541
+ # @return [Float]
2542
+ #
2543
+ # @see http://docs.aws.amazon.com/goto/WebAPI/frauddetector-2019-11-15/LogitMetric AWS API Documentation
2544
+ #
2545
+ class LogitMetric < Struct.new(
2546
+ :variable_name,
2547
+ :variable_type,
2548
+ :variable_importance)
2549
+ SENSITIVE = []
2550
+ include Aws::Structure
2551
+ end
2552
+
2505
2553
  # Model performance metrics data points.
2506
2554
  #
2507
2555
  # @!attribute [rw] fpr
@@ -3445,11 +3493,16 @@ module Aws::FraudDetector
3445
3493
  # The training metric details.
3446
3494
  # @return [Types::TrainingMetrics]
3447
3495
  #
3496
+ # @!attribute [rw] variable_importance_metrics
3497
+ # The variable importance metrics.
3498
+ # @return [Types::VariableImportanceMetrics]
3499
+ #
3448
3500
  # @see http://docs.aws.amazon.com/goto/WebAPI/frauddetector-2019-11-15/TrainingResult AWS API Documentation
3449
3501
  #
3450
3502
  class TrainingResult < Struct.new(
3451
3503
  :data_validation_metrics,
3452
- :training_metrics)
3504
+ :training_metrics,
3505
+ :variable_importance_metrics)
3453
3506
  SENSITIVE = []
3454
3507
  include Aws::Structure
3455
3508
  end
@@ -4089,5 +4142,19 @@ module Aws::FraudDetector
4089
4142
  include Aws::Structure
4090
4143
  end
4091
4144
 
4145
+ # The variable importance metrics details.
4146
+ #
4147
+ # @!attribute [rw] logit_metrics
4148
+ # List of variable metrics.
4149
+ # @return [Array<Types::LogitMetric>]
4150
+ #
4151
+ # @see http://docs.aws.amazon.com/goto/WebAPI/frauddetector-2019-11-15/VariableImportanceMetrics AWS API Documentation
4152
+ #
4153
+ class VariableImportanceMetrics < Struct.new(
4154
+ :logit_metrics)
4155
+ SENSITIVE = []
4156
+ include Aws::Structure
4157
+ end
4158
+
4092
4159
  end
4093
4160
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-frauddetector
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.18.0
4
+ version: 1.19.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-03-30 00:00:00.000000000 Z
11
+ date: 2021-07-09 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -83,8 +83,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
83
83
  - !ruby/object:Gem::Version
84
84
  version: '0'
85
85
  requirements: []
86
- rubyforge_project:
87
- rubygems_version: 2.7.6.2
86
+ rubygems_version: 3.1.6
88
87
  signing_key:
89
88
  specification_version: 4
90
89
  summary: AWS SDK for Ruby - Amazon Fraud Detector