aws-sdk-forecastservice 1.23.0 → 1.27.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 132f535dc18cff4330407089dcdf1fbe973ee3d7b42472045313248316f96efd
4
- data.tar.gz: 217285f01d7dbf873d5f0b5015533edeaa8531668272e012c861e0ccc97ca7b0
3
+ metadata.gz: 8e9be0a90c54285a79a0a91505639a20e9516aba21d3124b8ee8c5ba34c49c22
4
+ data.tar.gz: a8fde4fc6c7379853f29ca5d17c3ef11178e8cb41c67e4fd2f0ce220d3d4b373
5
5
  SHA512:
6
- metadata.gz: 4181ef9f4956b6317a1daa13c32d76746e9dd5eb4c2731b68d37296443cb90cf37a8108fc7662f0978c929b945c59e3e6e815ede872d0b3ceac3af2cb7e44136
7
- data.tar.gz: 78647c75639956f74cadb7f431324f16695ddfa76cf33068347394894851cfae4f3e7cae917cf52a806f74ec53796d6ad4290453822bc88b276843a05bb84971
6
+ metadata.gz: 839acaf4bf96461a2febdeba2a0b81abdb12d5453c392f4bf66bfc4a25cb93b372372ccc9a22c46687bbfe9a3a5787bb3421d2b59b50cc805daee92e757844b8
7
+ data.tar.gz: 5ecde6ca30d06ba2117ccd7ad45e008049172f37376ab83ed1345f030f1ae327ff84684422d09f1888ec20dfc33b89986e841539252b8ebfbd083faf259a13d8
data/CHANGELOG.md CHANGED
@@ -1,6 +1,26 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.27.0 (2021-11-04)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
9
+ 1.26.0 (2021-10-18)
10
+ ------------------
11
+
12
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
13
+
14
+ 1.25.0 (2021-09-07)
15
+ ------------------
16
+
17
+ * Feature - Predictor creation now supports selecting an accuracy metric to optimize in AutoML and hyperparameter optimization. This release adds additional accuracy metrics for predictors - AverageWeightedQuantileLoss, MAPE and MASE.
18
+
19
+ 1.24.0 (2021-09-01)
20
+ ------------------
21
+
22
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
23
+
4
24
  1.23.0 (2021-07-30)
5
25
  ------------------
6
26
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.23.0
1
+ 1.27.0
@@ -285,6 +285,15 @@ module Aws::ForecastService
285
285
  # ** Please note ** When response stubbing is enabled, no HTTP
286
286
  # requests are made, and retries are disabled.
287
287
  #
288
+ # @option options [Boolean] :use_dualstack_endpoint
289
+ # When set to `true`, dualstack enabled endpoints (with `.aws` TLD)
290
+ # will be used if available.
291
+ #
292
+ # @option options [Boolean] :use_fips_endpoint
293
+ # When set to `true`, fips compatible endpoints will be used if available.
294
+ # When a `fips` region is used, the region is normalized and this config
295
+ # is set to `true`.
296
+ #
288
297
  # @option options [Boolean] :validate_params (true)
289
298
  # When `true`, request parameters are validated before
290
299
  # sending the request.
@@ -1078,6 +1087,12 @@ module Aws::ForecastService
1078
1087
  # for your training data. In this case, `PerformHPO` must be false.
1079
1088
  #
1080
1089
  # @option params [String] :auto_ml_override_strategy
1090
+ # <note markdown="1"> The `LatencyOptimized` AutoML override strategy is only available in
1091
+ # private beta. Contact AWS Support or your account manager to learn
1092
+ # more about access privileges.
1093
+ #
1094
+ # </note>
1095
+ #
1081
1096
  # Used to overide the default AutoML strategy, which is to optimize
1082
1097
  # predictor accuracy. To apply an AutoML strategy that minimizes
1083
1098
  # training time, use `LatencyOptimized`.
@@ -1171,6 +1186,9 @@ module Aws::ForecastService
1171
1186
  # the limit of 50 tags. Tags with only the key prefix of `aws` do not
1172
1187
  # count against your tags per resource limit.
1173
1188
  #
1189
+ # @option params [String] :optimization_metric
1190
+ # The accuracy metric used to optimize the predictor.
1191
+ #
1174
1192
  # @return [Types::CreatePredictorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1175
1193
  #
1176
1194
  # * {Types::CreatePredictorResponse#predictor_arn #predictor_arn} => String
@@ -1254,6 +1272,7 @@ module Aws::ForecastService
1254
1272
  # value: "TagValue", # required
1255
1273
  # },
1256
1274
  # ],
1275
+ # optimization_metric: "WAPE", # accepts WAPE, RMSE, AverageWeightedQuantileLoss, MASE, MAPE
1257
1276
  # })
1258
1277
  #
1259
1278
  # @example Response structure
@@ -1966,6 +1985,7 @@ module Aws::ForecastService
1966
1985
  # * {Types::DescribePredictorResponse#message #message} => String
1967
1986
  # * {Types::DescribePredictorResponse#creation_time #creation_time} => Time
1968
1987
  # * {Types::DescribePredictorResponse#last_modification_time #last_modification_time} => Time
1988
+ # * {Types::DescribePredictorResponse#optimization_metric #optimization_metric} => String
1969
1989
  #
1970
1990
  # @example Request syntax with placeholder values
1971
1991
  #
@@ -2033,6 +2053,7 @@ module Aws::ForecastService
2033
2053
  # resp.message #=> String
2034
2054
  # resp.creation_time #=> Time
2035
2055
  # resp.last_modification_time #=> Time
2056
+ # resp.optimization_metric #=> String, one of "WAPE", "RMSE", "AverageWeightedQuantileLoss", "MASE", "MAPE"
2036
2057
  #
2037
2058
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictor AWS API Documentation
2038
2059
  #
@@ -2135,6 +2156,7 @@ module Aws::ForecastService
2135
2156
  #
2136
2157
  # * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array&lt;Types::EvaluationResult&gt;
2137
2158
  # * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
2159
+ # * {Types::GetAccuracyMetricsResponse#optimization_metric #optimization_metric} => String
2138
2160
  #
2139
2161
  # @example Request syntax with placeholder values
2140
2162
  #
@@ -2159,7 +2181,11 @@ module Aws::ForecastService
2159
2181
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
2160
2182
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
2161
2183
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
2184
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].mase #=> Float
2185
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].mape #=> Float
2186
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.average_weighted_quantile_loss #=> Float
2162
2187
  # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
2188
+ # resp.optimization_metric #=> String, one of "WAPE", "RMSE", "AverageWeightedQuantileLoss", "MASE", "MAPE"
2163
2189
  #
2164
2190
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
2165
2191
  #
@@ -2887,7 +2913,7 @@ module Aws::ForecastService
2887
2913
  params: params,
2888
2914
  config: config)
2889
2915
  context[:gem_name] = 'aws-sdk-forecastservice'
2890
- context[:gem_version] = '1.23.0'
2916
+ context[:gem_version] = '1.27.0'
2891
2917
  Seahorse::Client::Request.new(handlers, context)
2892
2918
  end
2893
2919
 
@@ -129,6 +129,7 @@ module Aws::ForecastService
129
129
  Metrics = Shapes::StructureShape.new(name: 'Metrics')
130
130
  Name = Shapes::StringShape.new(name: 'Name')
131
131
  NextToken = Shapes::StringShape.new(name: 'NextToken')
132
+ OptimizationMetric = Shapes::StringShape.new(name: 'OptimizationMetric')
132
133
  ParameterKey = Shapes::StringShape.new(name: 'ParameterKey')
133
134
  ParameterRanges = Shapes::StructureShape.new(name: 'ParameterRanges')
134
135
  ParameterValue = Shapes::StringShape.new(name: 'ParameterValue')
@@ -271,6 +272,7 @@ module Aws::ForecastService
271
272
  CreatePredictorRequest.add_member(:featurization_config, Shapes::ShapeRef.new(shape: FeaturizationConfig, required: true, location_name: "FeaturizationConfig"))
272
273
  CreatePredictorRequest.add_member(:encryption_config, Shapes::ShapeRef.new(shape: EncryptionConfig, location_name: "EncryptionConfig"))
273
274
  CreatePredictorRequest.add_member(:tags, Shapes::ShapeRef.new(shape: Tags, location_name: "Tags"))
275
+ CreatePredictorRequest.add_member(:optimization_metric, Shapes::ShapeRef.new(shape: OptimizationMetric, location_name: "OptimizationMetric"))
274
276
  CreatePredictorRequest.struct_class = Types::CreatePredictorRequest
275
277
 
276
278
  CreatePredictorResponse.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
@@ -448,6 +450,7 @@ module Aws::ForecastService
448
450
  DescribePredictorResponse.add_member(:message, Shapes::ShapeRef.new(shape: Message, location_name: "Message"))
449
451
  DescribePredictorResponse.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
450
452
  DescribePredictorResponse.add_member(:last_modification_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModificationTime"))
453
+ DescribePredictorResponse.add_member(:optimization_metric, Shapes::ShapeRef.new(shape: OptimizationMetric, location_name: "OptimizationMetric"))
451
454
  DescribePredictorResponse.struct_class = Types::DescribePredictorResponse
452
455
 
453
456
  EncryptionConfig.add_member(:role_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "RoleArn"))
@@ -457,6 +460,8 @@ module Aws::ForecastService
457
460
  ErrorMetric.add_member(:forecast_type, Shapes::ShapeRef.new(shape: ForecastType, location_name: "ForecastType"))
458
461
  ErrorMetric.add_member(:wape, Shapes::ShapeRef.new(shape: Double, location_name: "WAPE"))
459
462
  ErrorMetric.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, location_name: "RMSE"))
463
+ ErrorMetric.add_member(:mase, Shapes::ShapeRef.new(shape: Double, location_name: "MASE"))
464
+ ErrorMetric.add_member(:mape, Shapes::ShapeRef.new(shape: Double, location_name: "MAPE"))
460
465
  ErrorMetric.struct_class = Types::ErrorMetric
461
466
 
462
467
  ErrorMetrics.member = Shapes::ShapeRef.new(shape: ErrorMetric)
@@ -531,6 +536,7 @@ module Aws::ForecastService
531
536
 
532
537
  GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
533
538
  GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
539
+ GetAccuracyMetricsResponse.add_member(:optimization_metric, Shapes::ShapeRef.new(shape: OptimizationMetric, location_name: "OptimizationMetric"))
534
540
  GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
535
541
 
536
542
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -627,6 +633,7 @@ module Aws::ForecastService
627
633
  Metrics.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, deprecated: true, location_name: "RMSE", metadata: {"deprecatedMessage"=>"This property is deprecated, please refer to ErrorMetrics for both RMSE and WAPE"}))
628
634
  Metrics.add_member(:weighted_quantile_losses, Shapes::ShapeRef.new(shape: WeightedQuantileLosses, location_name: "WeightedQuantileLosses"))
629
635
  Metrics.add_member(:error_metrics, Shapes::ShapeRef.new(shape: ErrorMetrics, location_name: "ErrorMetrics"))
636
+ Metrics.add_member(:average_weighted_quantile_loss, Shapes::ShapeRef.new(shape: Double, location_name: "AverageWeightedQuantileLoss"))
630
637
  Metrics.struct_class = Types::Metrics
631
638
 
632
639
  ParameterRanges.add_member(:categorical_parameter_ranges, Shapes::ShapeRef.new(shape: CategoricalParameterRanges, location_name: "CategoricalParameterRanges"))
@@ -853,6 +853,7 @@ module Aws::ForecastService
853
853
  # value: "TagValue", # required
854
854
  # },
855
855
  # ],
856
+ # optimization_metric: "WAPE", # accepts WAPE, RMSE, AverageWeightedQuantileLoss, MASE, MAPE
856
857
  # }
857
858
  #
858
859
  # @!attribute [rw] predictor_name
@@ -915,6 +916,12 @@ module Aws::ForecastService
915
916
  # @return [Boolean]
916
917
  #
917
918
  # @!attribute [rw] auto_ml_override_strategy
919
+ # <note markdown="1"> The `LatencyOptimized` AutoML override strategy is only available in
920
+ # private beta. Contact AWS Support or your account manager to learn
921
+ # more about access privileges.
922
+ #
923
+ # </note>
924
+ #
918
925
  # Used to overide the default AutoML strategy, which is to optimize
919
926
  # predictor accuracy. To apply an AutoML strategy that minimizes
920
927
  # training time, use `LatencyOptimized`.
@@ -1018,6 +1025,10 @@ module Aws::ForecastService
1018
1025
  # of `aws` do not count against your tags per resource limit.
1019
1026
  # @return [Array<Types::Tag>]
1020
1027
  #
1028
+ # @!attribute [rw] optimization_metric
1029
+ # The accuracy metric used to optimize the predictor.
1030
+ # @return [String]
1031
+ #
1021
1032
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreatePredictorRequest AWS API Documentation
1022
1033
  #
1023
1034
  class CreatePredictorRequest < Struct.new(
@@ -1034,7 +1045,8 @@ module Aws::ForecastService
1034
1045
  :input_data_config,
1035
1046
  :featurization_config,
1036
1047
  :encryption_config,
1037
- :tags)
1048
+ :tags,
1049
+ :optimization_metric)
1038
1050
  SENSITIVE = []
1039
1051
  include Aws::Structure
1040
1052
  end
@@ -2075,6 +2087,12 @@ module Aws::ForecastService
2075
2087
  # @return [Boolean]
2076
2088
  #
2077
2089
  # @!attribute [rw] auto_ml_override_strategy
2090
+ # <note markdown="1"> The `LatencyOptimized` AutoML override strategy is only available in
2091
+ # private beta. Contact AWS Support or your account manager to learn
2092
+ # more about access privileges.
2093
+ #
2094
+ # </note>
2095
+ #
2078
2096
  # The AutoML strategy used to train the predictor. Unless
2079
2097
  # `LatencyOptimized` is specified, the AutoML strategy optimizes
2080
2098
  # predictor accuracy.
@@ -2181,6 +2199,10 @@ module Aws::ForecastService
2181
2199
  # * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
2182
2200
  # @return [Time]
2183
2201
  #
2202
+ # @!attribute [rw] optimization_metric
2203
+ # The accuracy metric used to optimize the predictor.
2204
+ # @return [String]
2205
+ #
2184
2206
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictorResponse AWS API Documentation
2185
2207
  #
2186
2208
  class DescribePredictorResponse < Struct.new(
@@ -2205,7 +2227,8 @@ module Aws::ForecastService
2205
2227
  :status,
2206
2228
  :message,
2207
2229
  :creation_time,
2208
- :last_modification_time)
2230
+ :last_modification_time,
2231
+ :optimization_metric)
2209
2232
  SENSITIVE = []
2210
2233
  include Aws::Structure
2211
2234
  end
@@ -2249,7 +2272,7 @@ module Aws::ForecastService
2249
2272
  # predictor. This object is part of the Metrics object.
2250
2273
  #
2251
2274
  # @!attribute [rw] forecast_type
2252
- # The Forecast type used to compute WAPE and RMSE.
2275
+ # The Forecast type used to compute WAPE, MAPE, MASE, and RMSE.
2253
2276
  # @return [String]
2254
2277
  #
2255
2278
  # @!attribute [rw] wape
@@ -2260,12 +2283,22 @@ module Aws::ForecastService
2260
2283
  # The root-mean-square error (RMSE).
2261
2284
  # @return [Float]
2262
2285
  #
2286
+ # @!attribute [rw] mase
2287
+ # The Mean Absolute Scaled Error (MASE)
2288
+ # @return [Float]
2289
+ #
2290
+ # @!attribute [rw] mape
2291
+ # The Mean Absolute Percentage Error (MAPE)
2292
+ # @return [Float]
2293
+ #
2263
2294
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ErrorMetric AWS API Documentation
2264
2295
  #
2265
2296
  class ErrorMetric < Struct.new(
2266
2297
  :forecast_type,
2267
2298
  :wape,
2268
- :rmse)
2299
+ :rmse,
2300
+ :mase,
2301
+ :mape)
2269
2302
  SENSITIVE = []
2270
2303
  include Aws::Structure
2271
2304
  end
@@ -2760,6 +2793,12 @@ module Aws::ForecastService
2760
2793
  # @return [Array<Types::EvaluationResult>]
2761
2794
  #
2762
2795
  # @!attribute [rw] auto_ml_override_strategy
2796
+ # <note markdown="1"> The `LatencyOptimized` AutoML override strategy is only available in
2797
+ # private beta. Contact AWS Support or your account manager to learn
2798
+ # more about access privileges.
2799
+ #
2800
+ # </note>
2801
+ #
2763
2802
  # The AutoML strategy used to train the predictor. Unless
2764
2803
  # `LatencyOptimized` is specified, the AutoML strategy optimizes
2765
2804
  # predictor accuracy.
@@ -2767,11 +2806,16 @@ module Aws::ForecastService
2767
2806
  # This parameter is only valid for predictors trained using AutoML.
2768
2807
  # @return [String]
2769
2808
  #
2809
+ # @!attribute [rw] optimization_metric
2810
+ # The accuracy metric used to optimize the predictor.
2811
+ # @return [String]
2812
+ #
2770
2813
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
2771
2814
  #
2772
2815
  class GetAccuracyMetricsResponse < Struct.new(
2773
2816
  :predictor_evaluation_results,
2774
- :auto_ml_override_strategy)
2817
+ :auto_ml_override_strategy,
2818
+ :optimization_metric)
2775
2819
  SENSITIVE = []
2776
2820
  include Aws::Structure
2777
2821
  end
@@ -3508,16 +3552,23 @@ module Aws::ForecastService
3508
3552
  # @return [Array<Types::WeightedQuantileLoss>]
3509
3553
  #
3510
3554
  # @!attribute [rw] error_metrics
3511
- # Provides detailed error metrics on forecast type, root-mean
3512
- # square-error (RMSE), and weighted average percentage error (WAPE).
3555
+ # Provides detailed error metrics for each forecast type. Metrics
3556
+ # include root-mean square-error (RMSE), mean absolute percentage
3557
+ # error (MAPE), mean absolute scaled error (MASE), and weighted
3558
+ # average percentage error (WAPE).
3513
3559
  # @return [Array<Types::ErrorMetric>]
3514
3560
  #
3561
+ # @!attribute [rw] average_weighted_quantile_loss
3562
+ # The average value of all weighted quantile losses.
3563
+ # @return [Float]
3564
+ #
3515
3565
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Metrics AWS API Documentation
3516
3566
  #
3517
3567
  class Metrics < Struct.new(
3518
3568
  :rmse,
3519
3569
  :weighted_quantile_losses,
3520
- :error_metrics)
3570
+ :error_metrics,
3571
+ :average_weighted_quantile_loss)
3521
3572
  SENSITIVE = []
3522
3573
  include Aws::Structure
3523
3574
  end
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
48
48
  # @!group service
49
49
  module Aws::ForecastService
50
50
 
51
- GEM_VERSION = '1.23.0'
51
+ GEM_VERSION = '1.27.0'
52
52
 
53
53
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-forecastservice
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.23.0
4
+ version: 1.27.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-07-30 00:00:00.000000000 Z
11
+ date: 2021-11-04 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.119.0
22
+ version: 3.122.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.119.0
32
+ version: 3.122.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement
@@ -76,7 +76,7 @@ required_ruby_version: !ruby/object:Gem::Requirement
76
76
  requirements:
77
77
  - - ">="
78
78
  - !ruby/object:Gem::Version
79
- version: '0'
79
+ version: '2.3'
80
80
  required_rubygems_version: !ruby/object:Gem::Requirement
81
81
  requirements:
82
82
  - - ">="