aws-sdk-forecastservice 1.19.0 → 1.23.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d79d633707c8953bd8cc89f0952a823d24fbd7a917cd3561427e1c60349a127c
4
- data.tar.gz: 466a77106df21a9f4b2381dc97131c6511cc7003c49cad4a4666d2dcbcffbf9a
3
+ metadata.gz: 132f535dc18cff4330407089dcdf1fbe973ee3d7b42472045313248316f96efd
4
+ data.tar.gz: 217285f01d7dbf873d5f0b5015533edeaa8531668272e012c861e0ccc97ca7b0
5
5
  SHA512:
6
- metadata.gz: 76fe9b76a782ea4d470dcc9dc274e3dfc729ee0d8b24685ce1cec8e98c94ca05ca26bfcf2ed8a6ea9df99af701a94dff94e879027c1bce01dd7319bc10537cc4
7
- data.tar.gz: 8bbe22ac35094a7c86dafb2c3855279d8fec90449b13049ea8bb9c2ade6f1b9cc63aaeb4688350b03c48dd39c28e0a89f40d1f35d3e1845cee1dfe3e3fcc74a6
6
+ metadata.gz: 4181ef9f4956b6317a1daa13c32d76746e9dd5eb4c2731b68d37296443cb90cf37a8108fc7662f0978c929b945c59e3e6e815ede872d0b3ceac3af2cb7e44136
7
+ data.tar.gz: 78647c75639956f74cadb7f431324f16695ddfa76cf33068347394894851cfae4f3e7cae917cf52a806f74ec53796d6ad4290453822bc88b276843a05bb84971
data/CHANGELOG.md CHANGED
@@ -1,6 +1,26 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.23.0 (2021-07-30)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
9
+ 1.22.0 (2021-07-28)
10
+ ------------------
11
+
12
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
13
+
14
+ 1.21.0 (2021-06-03)
15
+ ------------------
16
+
17
+ * Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
18
+
19
+ 1.20.0 (2021-05-21)
20
+ ------------------
21
+
22
+ * Feature - Updated attribute statistics in DescribeDatasetImportJob response to support Long values
23
+
4
24
  1.19.0 (2021-04-30)
5
25
  ------------------
6
26
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.19.0
1
+ 1.23.0
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
48
48
  # @!group service
49
49
  module Aws::ForecastService
50
50
 
51
- GEM_VERSION = '1.19.0'
51
+ GEM_VERSION = '1.23.0'
52
52
 
53
53
  end
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
1077
1077
  # This is a good option if you aren't sure which algorithm is suitable
1078
1078
  # for your training data. In this case, `PerformHPO` must be false.
1079
1079
  #
1080
+ # @option params [String] :auto_ml_override_strategy
1081
+ # Used to overide the default AutoML strategy, which is to optimize
1082
+ # predictor accuracy. To apply an AutoML strategy that minimizes
1083
+ # training time, use `LatencyOptimized`.
1084
+ #
1085
+ # This parameter is only valid for predictors trained using AutoML.
1086
+ #
1080
1087
  # @option params [Boolean] :perform_hpo
1081
1088
  # Whether to perform hyperparameter optimization (HPO). HPO finds
1082
1089
  # optimal hyperparameter values for your training data. The process of
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
1176
1183
  # forecast_horizon: 1, # required
1177
1184
  # forecast_types: ["ForecastType"],
1178
1185
  # perform_auto_ml: false,
1186
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
1179
1187
  # perform_hpo: false,
1180
1188
  # training_parameters: {
1181
1189
  # "ParameterKey" => "ParameterValue",
@@ -1556,11 +1564,11 @@ module Aws::ForecastService
1556
1564
  # Amazon Forecast resources possess the following parent-child resource
1557
1565
  # hierarchies:
1558
1566
  #
1567
+ # * **Dataset**\: dataset import jobs
1568
+ #
1559
1569
  # * **Dataset Group**\: predictors, predictor backtest export jobs,
1560
1570
  # forecasts, forecast export jobs
1561
1571
  #
1562
- # * **Dataset**\: dataset import jobs
1563
- #
1564
1572
  # * **Predictor**\: predictor backtest export jobs, forecasts, forecast
1565
1573
  # export jobs
1566
1574
  #
@@ -1773,6 +1781,10 @@ module Aws::ForecastService
1773
1781
  # resp.field_statistics["String"].max #=> String
1774
1782
  # resp.field_statistics["String"].avg #=> Float
1775
1783
  # resp.field_statistics["String"].stddev #=> Float
1784
+ # resp.field_statistics["String"].count_long #=> Integer
1785
+ # resp.field_statistics["String"].count_distinct_long #=> Integer
1786
+ # resp.field_statistics["String"].count_null_long #=> Integer
1787
+ # resp.field_statistics["String"].count_nan_long #=> Integer
1776
1788
  # resp.data_size #=> Float
1777
1789
  # resp.status #=> String
1778
1790
  # resp.message #=> String
@@ -1938,6 +1950,7 @@ module Aws::ForecastService
1938
1950
  # * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
1939
1951
  # * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array<String>
1940
1952
  # * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
1953
+ # * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
1941
1954
  # * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
1942
1955
  # * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String>
1943
1956
  # * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
@@ -1969,6 +1982,7 @@ module Aws::ForecastService
1969
1982
  # resp.forecast_types #=> Array
1970
1983
  # resp.forecast_types[0] #=> String
1971
1984
  # resp.perform_auto_ml #=> Boolean
1985
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
1972
1986
  # resp.perform_hpo #=> Boolean
1973
1987
  # resp.training_parameters #=> Hash
1974
1988
  # resp.training_parameters["ParameterKey"] #=> String
@@ -2120,6 +2134,7 @@ module Aws::ForecastService
2120
2134
  # @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2121
2135
  #
2122
2136
  # * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array<Types::EvaluationResult>
2137
+ # * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
2123
2138
  #
2124
2139
  # @example Request syntax with placeholder values
2125
2140
  #
@@ -2144,6 +2159,7 @@ module Aws::ForecastService
2144
2159
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
2145
2160
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
2146
2161
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
2162
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
2147
2163
  #
2148
2164
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
2149
2165
  #
@@ -2871,7 +2887,7 @@ module Aws::ForecastService
2871
2887
  params: params,
2872
2888
  config: config)
2873
2889
  context[:gem_name] = 'aws-sdk-forecastservice'
2874
- context[:gem_version] = '1.19.0'
2890
+ context[:gem_version] = '1.23.0'
2875
2891
  Seahorse::Client::Request.new(handlers, context)
2876
2892
  end
2877
2893
 
@@ -16,6 +16,7 @@ module Aws::ForecastService
16
16
  Arn = Shapes::StringShape.new(name: 'Arn')
17
17
  ArnList = Shapes::ListShape.new(name: 'ArnList')
18
18
  AttributeType = Shapes::StringShape.new(name: 'AttributeType')
19
+ AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
19
20
  Boolean = Shapes::BooleanShape.new(name: 'Boolean')
20
21
  CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
21
22
  CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
@@ -261,6 +262,7 @@ module Aws::ForecastService
261
262
  CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
262
263
  CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
263
264
  CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
265
+ CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
264
266
  CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
265
267
  CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
266
268
  CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -430,6 +432,7 @@ module Aws::ForecastService
430
432
  DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
431
433
  DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
432
434
  DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
435
+ DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
433
436
  DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
434
437
  DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
435
438
  DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -527,6 +530,7 @@ module Aws::ForecastService
527
530
  GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
528
531
 
529
532
  GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
533
+ GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
530
534
  GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
531
535
 
532
536
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -694,6 +698,10 @@ module Aws::ForecastService
694
698
  Statistics.add_member(:max, Shapes::ShapeRef.new(shape: String, location_name: "Max"))
695
699
  Statistics.add_member(:avg, Shapes::ShapeRef.new(shape: Double, location_name: "Avg"))
696
700
  Statistics.add_member(:stddev, Shapes::ShapeRef.new(shape: Double, location_name: "Stddev"))
701
+ Statistics.add_member(:count_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountLong"))
702
+ Statistics.add_member(:count_distinct_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountDistinctLong"))
703
+ Statistics.add_member(:count_null_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNullLong"))
704
+ Statistics.add_member(:count_nan_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNanLong"))
697
705
  Statistics.struct_class = Types::Statistics
698
706
 
699
707
  StopResourceRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "ResourceArn"))
@@ -782,6 +782,7 @@ module Aws::ForecastService
782
782
  # forecast_horizon: 1, # required
783
783
  # forecast_types: ["ForecastType"],
784
784
  # perform_auto_ml: false,
785
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
785
786
  # perform_hpo: false,
786
787
  # training_parameters: {
787
788
  # "ParameterKey" => "ParameterValue",
@@ -913,6 +914,14 @@ module Aws::ForecastService
913
914
  # false.
914
915
  # @return [Boolean]
915
916
  #
917
+ # @!attribute [rw] auto_ml_override_strategy
918
+ # Used to overide the default AutoML strategy, which is to optimize
919
+ # predictor accuracy. To apply an AutoML strategy that minimizes
920
+ # training time, use `LatencyOptimized`.
921
+ #
922
+ # This parameter is only valid for predictors trained using AutoML.
923
+ # @return [String]
924
+ #
916
925
  # @!attribute [rw] perform_hpo
917
926
  # Whether to perform hyperparameter optimization (HPO). HPO finds
918
927
  # optimal hyperparameter values for your training data. The process of
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
1017
1026
  :forecast_horizon,
1018
1027
  :forecast_types,
1019
1028
  :perform_auto_ml,
1029
+ :auto_ml_override_strategy,
1020
1030
  :perform_hpo,
1021
1031
  :training_parameters,
1022
1032
  :evaluation_parameters,
@@ -2064,6 +2074,14 @@ module Aws::ForecastService
2064
2074
  # Whether the predictor is set to perform AutoML.
2065
2075
  # @return [Boolean]
2066
2076
  #
2077
+ # @!attribute [rw] auto_ml_override_strategy
2078
+ # The AutoML strategy used to train the predictor. Unless
2079
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2080
+ # predictor accuracy.
2081
+ #
2082
+ # This parameter is only valid for predictors trained using AutoML.
2083
+ # @return [String]
2084
+ #
2067
2085
  # @!attribute [rw] perform_hpo
2068
2086
  # Whether the predictor is set to perform hyperparameter optimization
2069
2087
  # (HPO).
@@ -2172,6 +2190,7 @@ module Aws::ForecastService
2172
2190
  :forecast_horizon,
2173
2191
  :forecast_types,
2174
2192
  :perform_auto_ml,
2193
+ :auto_ml_override_strategy,
2175
2194
  :perform_hpo,
2176
2195
  :training_parameters,
2177
2196
  :evaluation_parameters,
@@ -2740,10 +2759,19 @@ module Aws::ForecastService
2740
2759
  # An array of results from evaluating the predictor.
2741
2760
  # @return [Array<Types::EvaluationResult>]
2742
2761
  #
2762
+ # @!attribute [rw] auto_ml_override_strategy
2763
+ # The AutoML strategy used to train the predictor. Unless
2764
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2765
+ # predictor accuracy.
2766
+ #
2767
+ # This parameter is only valid for predictors trained using AutoML.
2768
+ # @return [String]
2769
+ #
2743
2770
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
2744
2771
  #
2745
2772
  class GetAccuracyMetricsResponse < Struct.new(
2746
- :predictor_evaluation_results)
2773
+ :predictor_evaluation_results,
2774
+ :auto_ml_override_strategy)
2747
2775
  SENSITIVE = []
2748
2776
  include Aws::Structure
2749
2777
  end
@@ -3884,19 +3912,23 @@ module Aws::ForecastService
3884
3912
  # Forecast dataset with the CreateDatasetImportJob operation.
3885
3913
  #
3886
3914
  # @!attribute [rw] count
3887
- # The number of values in the field.
3915
+ # The number of values in the field. If the response value is -1,
3916
+ # refer to `CountLong`.
3888
3917
  # @return [Integer]
3889
3918
  #
3890
3919
  # @!attribute [rw] count_distinct
3891
- # The number of distinct values in the field.
3920
+ # The number of distinct values in the field. If the response value is
3921
+ # -1, refer to `CountDistinctLong`.
3892
3922
  # @return [Integer]
3893
3923
  #
3894
3924
  # @!attribute [rw] count_null
3895
- # The number of null values in the field.
3925
+ # The number of null values in the field. If the response value is -1,
3926
+ # refer to `CountNullLong`.
3896
3927
  # @return [Integer]
3897
3928
  #
3898
3929
  # @!attribute [rw] count_nan
3899
- # The number of NAN (not a number) values in the field.
3930
+ # The number of NAN (not a number) values in the field. If the
3931
+ # response value is -1, refer to `CountNanLong`.
3900
3932
  # @return [Integer]
3901
3933
  #
3902
3934
  # @!attribute [rw] min
@@ -3915,6 +3947,28 @@ module Aws::ForecastService
3915
3947
  # For a numeric field, the standard deviation.
3916
3948
  # @return [Float]
3917
3949
  #
3950
+ # @!attribute [rw] count_long
3951
+ # The number of values in the field. `CountLong` is used instead of
3952
+ # `Count` if the value is greater than 2,147,483,647.
3953
+ # @return [Integer]
3954
+ #
3955
+ # @!attribute [rw] count_distinct_long
3956
+ # The number of distinct values in the field. `CountDistinctLong` is
3957
+ # used instead of `CountDistinct` if the value is greater than
3958
+ # 2,147,483,647.
3959
+ # @return [Integer]
3960
+ #
3961
+ # @!attribute [rw] count_null_long
3962
+ # The number of null values in the field. `CountNullLong` is used
3963
+ # instead of `CountNull` if the value is greater than 2,147,483,647.
3964
+ # @return [Integer]
3965
+ #
3966
+ # @!attribute [rw] count_nan_long
3967
+ # The number of NAN (not a number) values in the field. `CountNanLong`
3968
+ # is used instead of `CountNan` if the value is greater than
3969
+ # 2,147,483,647.
3970
+ # @return [Integer]
3971
+ #
3918
3972
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Statistics AWS API Documentation
3919
3973
  #
3920
3974
  class Statistics < Struct.new(
@@ -3925,7 +3979,11 @@ module Aws::ForecastService
3925
3979
  :min,
3926
3980
  :max,
3927
3981
  :avg,
3928
- :stddev)
3982
+ :stddev,
3983
+ :count_long,
3984
+ :count_distinct_long,
3985
+ :count_null_long,
3986
+ :count_nan_long)
3929
3987
  SENSITIVE = []
3930
3988
  include Aws::Structure
3931
3989
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-forecastservice
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.19.0
4
+ version: 1.23.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-04-30 00:00:00.000000000 Z
11
+ date: 2021-07-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.112.0
22
+ version: 3.119.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.112.0
32
+ version: 3.119.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement