aws-sdk-forecastservice 1.19.0 → 1.23.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +20 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-forecastservice.rb +1 -1
- data/lib/aws-sdk-forecastservice/client.rb +19 -3
- data/lib/aws-sdk-forecastservice/client_api.rb +8 -0
- data/lib/aws-sdk-forecastservice/types.rb +64 -6
- metadata +4 -4
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 132f535dc18cff4330407089dcdf1fbe973ee3d7b42472045313248316f96efd
|
4
|
+
data.tar.gz: 217285f01d7dbf873d5f0b5015533edeaa8531668272e012c861e0ccc97ca7b0
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 4181ef9f4956b6317a1daa13c32d76746e9dd5eb4c2731b68d37296443cb90cf37a8108fc7662f0978c929b945c59e3e6e815ede872d0b3ceac3af2cb7e44136
|
7
|
+
data.tar.gz: 78647c75639956f74cadb7f431324f16695ddfa76cf33068347394894851cfae4f3e7cae917cf52a806f74ec53796d6ad4290453822bc88b276843a05bb84971
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,26 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.23.0 (2021-07-30)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
|
8
|
+
|
9
|
+
1.22.0 (2021-07-28)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
|
13
|
+
|
14
|
+
1.21.0 (2021-06-03)
|
15
|
+
------------------
|
16
|
+
|
17
|
+
* Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
|
18
|
+
|
19
|
+
1.20.0 (2021-05-21)
|
20
|
+
------------------
|
21
|
+
|
22
|
+
* Feature - Updated attribute statistics in DescribeDatasetImportJob response to support Long values
|
23
|
+
|
4
24
|
1.19.0 (2021-04-30)
|
5
25
|
------------------
|
6
26
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.23.0
|
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
|
|
1077
1077
|
# This is a good option if you aren't sure which algorithm is suitable
|
1078
1078
|
# for your training data. In this case, `PerformHPO` must be false.
|
1079
1079
|
#
|
1080
|
+
# @option params [String] :auto_ml_override_strategy
|
1081
|
+
# Used to overide the default AutoML strategy, which is to optimize
|
1082
|
+
# predictor accuracy. To apply an AutoML strategy that minimizes
|
1083
|
+
# training time, use `LatencyOptimized`.
|
1084
|
+
#
|
1085
|
+
# This parameter is only valid for predictors trained using AutoML.
|
1086
|
+
#
|
1080
1087
|
# @option params [Boolean] :perform_hpo
|
1081
1088
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
1082
1089
|
# optimal hyperparameter values for your training data. The process of
|
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
|
|
1176
1183
|
# forecast_horizon: 1, # required
|
1177
1184
|
# forecast_types: ["ForecastType"],
|
1178
1185
|
# perform_auto_ml: false,
|
1186
|
+
# auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
|
1179
1187
|
# perform_hpo: false,
|
1180
1188
|
# training_parameters: {
|
1181
1189
|
# "ParameterKey" => "ParameterValue",
|
@@ -1556,11 +1564,11 @@ module Aws::ForecastService
|
|
1556
1564
|
# Amazon Forecast resources possess the following parent-child resource
|
1557
1565
|
# hierarchies:
|
1558
1566
|
#
|
1567
|
+
# * **Dataset**\: dataset import jobs
|
1568
|
+
#
|
1559
1569
|
# * **Dataset Group**\: predictors, predictor backtest export jobs,
|
1560
1570
|
# forecasts, forecast export jobs
|
1561
1571
|
#
|
1562
|
-
# * **Dataset**\: dataset import jobs
|
1563
|
-
#
|
1564
1572
|
# * **Predictor**\: predictor backtest export jobs, forecasts, forecast
|
1565
1573
|
# export jobs
|
1566
1574
|
#
|
@@ -1773,6 +1781,10 @@ module Aws::ForecastService
|
|
1773
1781
|
# resp.field_statistics["String"].max #=> String
|
1774
1782
|
# resp.field_statistics["String"].avg #=> Float
|
1775
1783
|
# resp.field_statistics["String"].stddev #=> Float
|
1784
|
+
# resp.field_statistics["String"].count_long #=> Integer
|
1785
|
+
# resp.field_statistics["String"].count_distinct_long #=> Integer
|
1786
|
+
# resp.field_statistics["String"].count_null_long #=> Integer
|
1787
|
+
# resp.field_statistics["String"].count_nan_long #=> Integer
|
1776
1788
|
# resp.data_size #=> Float
|
1777
1789
|
# resp.status #=> String
|
1778
1790
|
# resp.message #=> String
|
@@ -1938,6 +1950,7 @@ module Aws::ForecastService
|
|
1938
1950
|
# * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
|
1939
1951
|
# * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array<String>
|
1940
1952
|
# * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
|
1953
|
+
# * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
|
1941
1954
|
# * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
|
1942
1955
|
# * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String>
|
1943
1956
|
# * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
|
@@ -1969,6 +1982,7 @@ module Aws::ForecastService
|
|
1969
1982
|
# resp.forecast_types #=> Array
|
1970
1983
|
# resp.forecast_types[0] #=> String
|
1971
1984
|
# resp.perform_auto_ml #=> Boolean
|
1985
|
+
# resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
|
1972
1986
|
# resp.perform_hpo #=> Boolean
|
1973
1987
|
# resp.training_parameters #=> Hash
|
1974
1988
|
# resp.training_parameters["ParameterKey"] #=> String
|
@@ -2120,6 +2134,7 @@ module Aws::ForecastService
|
|
2120
2134
|
# @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
2121
2135
|
#
|
2122
2136
|
# * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array<Types::EvaluationResult>
|
2137
|
+
# * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
|
2123
2138
|
#
|
2124
2139
|
# @example Request syntax with placeholder values
|
2125
2140
|
#
|
@@ -2144,6 +2159,7 @@ module Aws::ForecastService
|
|
2144
2159
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
|
2145
2160
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
|
2146
2161
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
|
2162
|
+
# resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
|
2147
2163
|
#
|
2148
2164
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
|
2149
2165
|
#
|
@@ -2871,7 +2887,7 @@ module Aws::ForecastService
|
|
2871
2887
|
params: params,
|
2872
2888
|
config: config)
|
2873
2889
|
context[:gem_name] = 'aws-sdk-forecastservice'
|
2874
|
-
context[:gem_version] = '1.
|
2890
|
+
context[:gem_version] = '1.23.0'
|
2875
2891
|
Seahorse::Client::Request.new(handlers, context)
|
2876
2892
|
end
|
2877
2893
|
|
@@ -16,6 +16,7 @@ module Aws::ForecastService
|
|
16
16
|
Arn = Shapes::StringShape.new(name: 'Arn')
|
17
17
|
ArnList = Shapes::ListShape.new(name: 'ArnList')
|
18
18
|
AttributeType = Shapes::StringShape.new(name: 'AttributeType')
|
19
|
+
AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
|
19
20
|
Boolean = Shapes::BooleanShape.new(name: 'Boolean')
|
20
21
|
CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
|
21
22
|
CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
|
@@ -261,6 +262,7 @@ module Aws::ForecastService
|
|
261
262
|
CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
|
262
263
|
CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
263
264
|
CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
265
|
+
CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
264
266
|
CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
265
267
|
CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
266
268
|
CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
|
@@ -430,6 +432,7 @@ module Aws::ForecastService
|
|
430
432
|
DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
|
431
433
|
DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
432
434
|
DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
435
|
+
DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
433
436
|
DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
434
437
|
DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
435
438
|
DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
|
@@ -527,6 +530,7 @@ module Aws::ForecastService
|
|
527
530
|
GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
|
528
531
|
|
529
532
|
GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
|
533
|
+
GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
530
534
|
GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
|
531
535
|
|
532
536
|
HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
|
@@ -694,6 +698,10 @@ module Aws::ForecastService
|
|
694
698
|
Statistics.add_member(:max, Shapes::ShapeRef.new(shape: String, location_name: "Max"))
|
695
699
|
Statistics.add_member(:avg, Shapes::ShapeRef.new(shape: Double, location_name: "Avg"))
|
696
700
|
Statistics.add_member(:stddev, Shapes::ShapeRef.new(shape: Double, location_name: "Stddev"))
|
701
|
+
Statistics.add_member(:count_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountLong"))
|
702
|
+
Statistics.add_member(:count_distinct_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountDistinctLong"))
|
703
|
+
Statistics.add_member(:count_null_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNullLong"))
|
704
|
+
Statistics.add_member(:count_nan_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNanLong"))
|
697
705
|
Statistics.struct_class = Types::Statistics
|
698
706
|
|
699
707
|
StopResourceRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "ResourceArn"))
|
@@ -782,6 +782,7 @@ module Aws::ForecastService
|
|
782
782
|
# forecast_horizon: 1, # required
|
783
783
|
# forecast_types: ["ForecastType"],
|
784
784
|
# perform_auto_ml: false,
|
785
|
+
# auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
|
785
786
|
# perform_hpo: false,
|
786
787
|
# training_parameters: {
|
787
788
|
# "ParameterKey" => "ParameterValue",
|
@@ -913,6 +914,14 @@ module Aws::ForecastService
|
|
913
914
|
# false.
|
914
915
|
# @return [Boolean]
|
915
916
|
#
|
917
|
+
# @!attribute [rw] auto_ml_override_strategy
|
918
|
+
# Used to overide the default AutoML strategy, which is to optimize
|
919
|
+
# predictor accuracy. To apply an AutoML strategy that minimizes
|
920
|
+
# training time, use `LatencyOptimized`.
|
921
|
+
#
|
922
|
+
# This parameter is only valid for predictors trained using AutoML.
|
923
|
+
# @return [String]
|
924
|
+
#
|
916
925
|
# @!attribute [rw] perform_hpo
|
917
926
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
918
927
|
# optimal hyperparameter values for your training data. The process of
|
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
|
|
1017
1026
|
:forecast_horizon,
|
1018
1027
|
:forecast_types,
|
1019
1028
|
:perform_auto_ml,
|
1029
|
+
:auto_ml_override_strategy,
|
1020
1030
|
:perform_hpo,
|
1021
1031
|
:training_parameters,
|
1022
1032
|
:evaluation_parameters,
|
@@ -2064,6 +2074,14 @@ module Aws::ForecastService
|
|
2064
2074
|
# Whether the predictor is set to perform AutoML.
|
2065
2075
|
# @return [Boolean]
|
2066
2076
|
#
|
2077
|
+
# @!attribute [rw] auto_ml_override_strategy
|
2078
|
+
# The AutoML strategy used to train the predictor. Unless
|
2079
|
+
# `LatencyOptimized` is specified, the AutoML strategy optimizes
|
2080
|
+
# predictor accuracy.
|
2081
|
+
#
|
2082
|
+
# This parameter is only valid for predictors trained using AutoML.
|
2083
|
+
# @return [String]
|
2084
|
+
#
|
2067
2085
|
# @!attribute [rw] perform_hpo
|
2068
2086
|
# Whether the predictor is set to perform hyperparameter optimization
|
2069
2087
|
# (HPO).
|
@@ -2172,6 +2190,7 @@ module Aws::ForecastService
|
|
2172
2190
|
:forecast_horizon,
|
2173
2191
|
:forecast_types,
|
2174
2192
|
:perform_auto_ml,
|
2193
|
+
:auto_ml_override_strategy,
|
2175
2194
|
:perform_hpo,
|
2176
2195
|
:training_parameters,
|
2177
2196
|
:evaluation_parameters,
|
@@ -2740,10 +2759,19 @@ module Aws::ForecastService
|
|
2740
2759
|
# An array of results from evaluating the predictor.
|
2741
2760
|
# @return [Array<Types::EvaluationResult>]
|
2742
2761
|
#
|
2762
|
+
# @!attribute [rw] auto_ml_override_strategy
|
2763
|
+
# The AutoML strategy used to train the predictor. Unless
|
2764
|
+
# `LatencyOptimized` is specified, the AutoML strategy optimizes
|
2765
|
+
# predictor accuracy.
|
2766
|
+
#
|
2767
|
+
# This parameter is only valid for predictors trained using AutoML.
|
2768
|
+
# @return [String]
|
2769
|
+
#
|
2743
2770
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
|
2744
2771
|
#
|
2745
2772
|
class GetAccuracyMetricsResponse < Struct.new(
|
2746
|
-
:predictor_evaluation_results
|
2773
|
+
:predictor_evaluation_results,
|
2774
|
+
:auto_ml_override_strategy)
|
2747
2775
|
SENSITIVE = []
|
2748
2776
|
include Aws::Structure
|
2749
2777
|
end
|
@@ -3884,19 +3912,23 @@ module Aws::ForecastService
|
|
3884
3912
|
# Forecast dataset with the CreateDatasetImportJob operation.
|
3885
3913
|
#
|
3886
3914
|
# @!attribute [rw] count
|
3887
|
-
# The number of values in the field.
|
3915
|
+
# The number of values in the field. If the response value is -1,
|
3916
|
+
# refer to `CountLong`.
|
3888
3917
|
# @return [Integer]
|
3889
3918
|
#
|
3890
3919
|
# @!attribute [rw] count_distinct
|
3891
|
-
# The number of distinct values in the field.
|
3920
|
+
# The number of distinct values in the field. If the response value is
|
3921
|
+
# -1, refer to `CountDistinctLong`.
|
3892
3922
|
# @return [Integer]
|
3893
3923
|
#
|
3894
3924
|
# @!attribute [rw] count_null
|
3895
|
-
# The number of null values in the field.
|
3925
|
+
# The number of null values in the field. If the response value is -1,
|
3926
|
+
# refer to `CountNullLong`.
|
3896
3927
|
# @return [Integer]
|
3897
3928
|
#
|
3898
3929
|
# @!attribute [rw] count_nan
|
3899
|
-
# The number of NAN (not a number) values in the field.
|
3930
|
+
# The number of NAN (not a number) values in the field. If the
|
3931
|
+
# response value is -1, refer to `CountNanLong`.
|
3900
3932
|
# @return [Integer]
|
3901
3933
|
#
|
3902
3934
|
# @!attribute [rw] min
|
@@ -3915,6 +3947,28 @@ module Aws::ForecastService
|
|
3915
3947
|
# For a numeric field, the standard deviation.
|
3916
3948
|
# @return [Float]
|
3917
3949
|
#
|
3950
|
+
# @!attribute [rw] count_long
|
3951
|
+
# The number of values in the field. `CountLong` is used instead of
|
3952
|
+
# `Count` if the value is greater than 2,147,483,647.
|
3953
|
+
# @return [Integer]
|
3954
|
+
#
|
3955
|
+
# @!attribute [rw] count_distinct_long
|
3956
|
+
# The number of distinct values in the field. `CountDistinctLong` is
|
3957
|
+
# used instead of `CountDistinct` if the value is greater than
|
3958
|
+
# 2,147,483,647.
|
3959
|
+
# @return [Integer]
|
3960
|
+
#
|
3961
|
+
# @!attribute [rw] count_null_long
|
3962
|
+
# The number of null values in the field. `CountNullLong` is used
|
3963
|
+
# instead of `CountNull` if the value is greater than 2,147,483,647.
|
3964
|
+
# @return [Integer]
|
3965
|
+
#
|
3966
|
+
# @!attribute [rw] count_nan_long
|
3967
|
+
# The number of NAN (not a number) values in the field. `CountNanLong`
|
3968
|
+
# is used instead of `CountNan` if the value is greater than
|
3969
|
+
# 2,147,483,647.
|
3970
|
+
# @return [Integer]
|
3971
|
+
#
|
3918
3972
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Statistics AWS API Documentation
|
3919
3973
|
#
|
3920
3974
|
class Statistics < Struct.new(
|
@@ -3925,7 +3979,11 @@ module Aws::ForecastService
|
|
3925
3979
|
:min,
|
3926
3980
|
:max,
|
3927
3981
|
:avg,
|
3928
|
-
:stddev
|
3982
|
+
:stddev,
|
3983
|
+
:count_long,
|
3984
|
+
:count_distinct_long,
|
3985
|
+
:count_null_long,
|
3986
|
+
:count_nan_long)
|
3929
3987
|
SENSITIVE = []
|
3930
3988
|
include Aws::Structure
|
3931
3989
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-forecastservice
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.23.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-
|
11
|
+
date: 2021-07-30 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|
@@ -19,7 +19,7 @@ dependencies:
|
|
19
19
|
version: '3'
|
20
20
|
- - ">="
|
21
21
|
- !ruby/object:Gem::Version
|
22
|
-
version: 3.
|
22
|
+
version: 3.119.0
|
23
23
|
type: :runtime
|
24
24
|
prerelease: false
|
25
25
|
version_requirements: !ruby/object:Gem::Requirement
|
@@ -29,7 +29,7 @@ dependencies:
|
|
29
29
|
version: '3'
|
30
30
|
- - ">="
|
31
31
|
- !ruby/object:Gem::Version
|
32
|
-
version: 3.
|
32
|
+
version: 3.119.0
|
33
33
|
- !ruby/object:Gem::Dependency
|
34
34
|
name: aws-sigv4
|
35
35
|
requirement: !ruby/object:Gem::Requirement
|