aws-sdk-forecastservice 1.18.0 → 1.22.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +20 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-forecastservice.rb +1 -1
- data/lib/aws-sdk-forecastservice/client.rb +64 -1
- data/lib/aws-sdk-forecastservice/client_api.rb +23 -0
- data/lib/aws-sdk-forecastservice/types.rb +90 -11
- metadata +5 -6
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 00c3030d401f9d06d591a780f3c2d2a84aa6c10ab307c5f09d2247d56604a2b6
|
4
|
+
data.tar.gz: 0a01b3b3e21b05d0f96c5023dfd540adc2f0d335c58372a6900394a955c37899
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e77216a4cd8a2e9a8eb6c123e087fb82b936dd408026294504b35fa15d7a793c3b7ba23bb476460a6df5f67b81421000043839f3a127067efd43f5c0158b84b7
|
7
|
+
data.tar.gz: d99cf5bfaf53c2ce2aae1302f50d4c12cda059a3064448e6d2707e8e4ed708fc4b32a3939c13498aaea710f38e54897ad2112c486084b814761c35791f6e5ca5
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,26 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.22.0 (2021-07-28)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
|
8
|
+
|
9
|
+
1.21.0 (2021-06-03)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
|
13
|
+
|
14
|
+
1.20.0 (2021-05-21)
|
15
|
+
------------------
|
16
|
+
|
17
|
+
* Feature - Updated attribute statistics in DescribeDatasetImportJob response to support Long values
|
18
|
+
|
19
|
+
1.19.0 (2021-04-30)
|
20
|
+
------------------
|
21
|
+
|
22
|
+
* Feature - Added new DeleteResourceTree operation that helps in deleting all the child resources of a given resource including the given resource.
|
23
|
+
|
4
24
|
1.18.0 (2021-04-22)
|
5
25
|
------------------
|
6
26
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.22.0
|
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
|
|
1077
1077
|
# This is a good option if you aren't sure which algorithm is suitable
|
1078
1078
|
# for your training data. In this case, `PerformHPO` must be false.
|
1079
1079
|
#
|
1080
|
+
# @option params [String] :auto_ml_override_strategy
|
1081
|
+
# Used to overide the default AutoML strategy, which is to optimize
|
1082
|
+
# predictor accuracy. To apply an AutoML strategy that minimizes
|
1083
|
+
# training time, use `LatencyOptimized`.
|
1084
|
+
#
|
1085
|
+
# This parameter is only valid for predictors trained using AutoML.
|
1086
|
+
#
|
1080
1087
|
# @option params [Boolean] :perform_hpo
|
1081
1088
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
1082
1089
|
# optimal hyperparameter values for your training data. The process of
|
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
|
|
1176
1183
|
# forecast_horizon: 1, # required
|
1177
1184
|
# forecast_types: ["ForecastType"],
|
1178
1185
|
# perform_auto_ml: false,
|
1186
|
+
# auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
|
1179
1187
|
# perform_hpo: false,
|
1180
1188
|
# training_parameters: {
|
1181
1189
|
# "ParameterKey" => "ParameterValue",
|
@@ -1545,6 +1553,53 @@ module Aws::ForecastService
|
|
1545
1553
|
req.send_request(options)
|
1546
1554
|
end
|
1547
1555
|
|
1556
|
+
# Deletes an entire resource tree. This operation will delete the parent
|
1557
|
+
# resource and its child resources.
|
1558
|
+
#
|
1559
|
+
# Child resources are resources that were created from another resource.
|
1560
|
+
# For example, when a forecast is generated from a predictor, the
|
1561
|
+
# forecast is the child resource and the predictor is the parent
|
1562
|
+
# resource.
|
1563
|
+
#
|
1564
|
+
# Amazon Forecast resources possess the following parent-child resource
|
1565
|
+
# hierarchies:
|
1566
|
+
#
|
1567
|
+
# * **Dataset**\: dataset import jobs
|
1568
|
+
#
|
1569
|
+
# * **Dataset Group**\: predictors, predictor backtest export jobs,
|
1570
|
+
# forecasts, forecast export jobs
|
1571
|
+
#
|
1572
|
+
# * **Predictor**\: predictor backtest export jobs, forecasts, forecast
|
1573
|
+
# export jobs
|
1574
|
+
#
|
1575
|
+
# * **Forecast**\: forecast export jobs
|
1576
|
+
#
|
1577
|
+
# <note markdown="1"> `DeleteResourceTree` will only delete Amazon Forecast resources, and
|
1578
|
+
# will not delete datasets or exported files stored in Amazon S3.
|
1579
|
+
#
|
1580
|
+
# </note>
|
1581
|
+
#
|
1582
|
+
# @option params [required, String] :resource_arn
|
1583
|
+
# The Amazon Resource Name (ARN) of the parent resource to delete. All
|
1584
|
+
# child resources of the parent resource will also be deleted.
|
1585
|
+
#
|
1586
|
+
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
1587
|
+
#
|
1588
|
+
# @example Request syntax with placeholder values
|
1589
|
+
#
|
1590
|
+
# resp = client.delete_resource_tree({
|
1591
|
+
# resource_arn: "Arn", # required
|
1592
|
+
# })
|
1593
|
+
#
|
1594
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteResourceTree AWS API Documentation
|
1595
|
+
#
|
1596
|
+
# @overload delete_resource_tree(params = {})
|
1597
|
+
# @param [Hash] params ({})
|
1598
|
+
def delete_resource_tree(params = {}, options = {})
|
1599
|
+
req = build_request(:delete_resource_tree, params)
|
1600
|
+
req.send_request(options)
|
1601
|
+
end
|
1602
|
+
|
1548
1603
|
# Describes an Amazon Forecast dataset created using the CreateDataset
|
1549
1604
|
# operation.
|
1550
1605
|
#
|
@@ -1726,6 +1781,10 @@ module Aws::ForecastService
|
|
1726
1781
|
# resp.field_statistics["String"].max #=> String
|
1727
1782
|
# resp.field_statistics["String"].avg #=> Float
|
1728
1783
|
# resp.field_statistics["String"].stddev #=> Float
|
1784
|
+
# resp.field_statistics["String"].count_long #=> Integer
|
1785
|
+
# resp.field_statistics["String"].count_distinct_long #=> Integer
|
1786
|
+
# resp.field_statistics["String"].count_null_long #=> Integer
|
1787
|
+
# resp.field_statistics["String"].count_nan_long #=> Integer
|
1729
1788
|
# resp.data_size #=> Float
|
1730
1789
|
# resp.status #=> String
|
1731
1790
|
# resp.message #=> String
|
@@ -1891,6 +1950,7 @@ module Aws::ForecastService
|
|
1891
1950
|
# * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
|
1892
1951
|
# * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array<String>
|
1893
1952
|
# * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
|
1953
|
+
# * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
|
1894
1954
|
# * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
|
1895
1955
|
# * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String>
|
1896
1956
|
# * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
|
@@ -1922,6 +1982,7 @@ module Aws::ForecastService
|
|
1922
1982
|
# resp.forecast_types #=> Array
|
1923
1983
|
# resp.forecast_types[0] #=> String
|
1924
1984
|
# resp.perform_auto_ml #=> Boolean
|
1985
|
+
# resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
|
1925
1986
|
# resp.perform_hpo #=> Boolean
|
1926
1987
|
# resp.training_parameters #=> Hash
|
1927
1988
|
# resp.training_parameters["ParameterKey"] #=> String
|
@@ -2073,6 +2134,7 @@ module Aws::ForecastService
|
|
2073
2134
|
# @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
2074
2135
|
#
|
2075
2136
|
# * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array<Types::EvaluationResult>
|
2137
|
+
# * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
|
2076
2138
|
#
|
2077
2139
|
# @example Request syntax with placeholder values
|
2078
2140
|
#
|
@@ -2097,6 +2159,7 @@ module Aws::ForecastService
|
|
2097
2159
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
|
2098
2160
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
|
2099
2161
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
|
2162
|
+
# resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
|
2100
2163
|
#
|
2101
2164
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
|
2102
2165
|
#
|
@@ -2824,7 +2887,7 @@ module Aws::ForecastService
|
|
2824
2887
|
params: params,
|
2825
2888
|
config: config)
|
2826
2889
|
context[:gem_name] = 'aws-sdk-forecastservice'
|
2827
|
-
context[:gem_version] = '1.
|
2890
|
+
context[:gem_version] = '1.22.0'
|
2828
2891
|
Seahorse::Client::Request.new(handlers, context)
|
2829
2892
|
end
|
2830
2893
|
|
@@ -16,6 +16,7 @@ module Aws::ForecastService
|
|
16
16
|
Arn = Shapes::StringShape.new(name: 'Arn')
|
17
17
|
ArnList = Shapes::ListShape.new(name: 'ArnList')
|
18
18
|
AttributeType = Shapes::StringShape.new(name: 'AttributeType')
|
19
|
+
AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
|
19
20
|
Boolean = Shapes::BooleanShape.new(name: 'Boolean')
|
20
21
|
CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
|
21
22
|
CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
|
@@ -51,6 +52,7 @@ module Aws::ForecastService
|
|
51
52
|
DeleteForecastRequest = Shapes::StructureShape.new(name: 'DeleteForecastRequest')
|
52
53
|
DeletePredictorBacktestExportJobRequest = Shapes::StructureShape.new(name: 'DeletePredictorBacktestExportJobRequest')
|
53
54
|
DeletePredictorRequest = Shapes::StructureShape.new(name: 'DeletePredictorRequest')
|
55
|
+
DeleteResourceTreeRequest = Shapes::StructureShape.new(name: 'DeleteResourceTreeRequest')
|
54
56
|
DescribeDatasetGroupRequest = Shapes::StructureShape.new(name: 'DescribeDatasetGroupRequest')
|
55
57
|
DescribeDatasetGroupResponse = Shapes::StructureShape.new(name: 'DescribeDatasetGroupResponse')
|
56
58
|
DescribeDatasetImportJobRequest = Shapes::StructureShape.new(name: 'DescribeDatasetImportJobRequest')
|
@@ -260,6 +262,7 @@ module Aws::ForecastService
|
|
260
262
|
CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
|
261
263
|
CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
262
264
|
CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
265
|
+
CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
263
266
|
CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
264
267
|
CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
265
268
|
CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
|
@@ -329,6 +332,9 @@ module Aws::ForecastService
|
|
329
332
|
DeletePredictorRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
|
330
333
|
DeletePredictorRequest.struct_class = Types::DeletePredictorRequest
|
331
334
|
|
335
|
+
DeleteResourceTreeRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "ResourceArn"))
|
336
|
+
DeleteResourceTreeRequest.struct_class = Types::DeleteResourceTreeRequest
|
337
|
+
|
332
338
|
DescribeDatasetGroupRequest.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "DatasetGroupArn"))
|
333
339
|
DescribeDatasetGroupRequest.struct_class = Types::DescribeDatasetGroupRequest
|
334
340
|
|
@@ -426,6 +432,7 @@ module Aws::ForecastService
|
|
426
432
|
DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
|
427
433
|
DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
428
434
|
DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
435
|
+
DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
429
436
|
DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
430
437
|
DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
431
438
|
DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
|
@@ -523,6 +530,7 @@ module Aws::ForecastService
|
|
523
530
|
GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
|
524
531
|
|
525
532
|
GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
|
533
|
+
GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
526
534
|
GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
|
527
535
|
|
528
536
|
HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
|
@@ -690,6 +698,10 @@ module Aws::ForecastService
|
|
690
698
|
Statistics.add_member(:max, Shapes::ShapeRef.new(shape: String, location_name: "Max"))
|
691
699
|
Statistics.add_member(:avg, Shapes::ShapeRef.new(shape: Double, location_name: "Avg"))
|
692
700
|
Statistics.add_member(:stddev, Shapes::ShapeRef.new(shape: Double, location_name: "Stddev"))
|
701
|
+
Statistics.add_member(:count_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountLong"))
|
702
|
+
Statistics.add_member(:count_distinct_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountDistinctLong"))
|
703
|
+
Statistics.add_member(:count_null_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNullLong"))
|
704
|
+
Statistics.add_member(:count_nan_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNanLong"))
|
693
705
|
Statistics.struct_class = Types::Statistics
|
694
706
|
|
695
707
|
StopResourceRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "ResourceArn"))
|
@@ -940,6 +952,17 @@ module Aws::ForecastService
|
|
940
952
|
o.errors << Shapes::ShapeRef.new(shape: ResourceInUseException)
|
941
953
|
end)
|
942
954
|
|
955
|
+
api.add_operation(:delete_resource_tree, Seahorse::Model::Operation.new.tap do |o|
|
956
|
+
o.name = "DeleteResourceTree"
|
957
|
+
o.http_method = "POST"
|
958
|
+
o.http_request_uri = "/"
|
959
|
+
o.input = Shapes::ShapeRef.new(shape: DeleteResourceTreeRequest)
|
960
|
+
o.output = Shapes::ShapeRef.new(shape: Shapes::StructureShape.new(struct_class: Aws::EmptyStructure))
|
961
|
+
o.errors << Shapes::ShapeRef.new(shape: InvalidInputException)
|
962
|
+
o.errors << Shapes::ShapeRef.new(shape: ResourceNotFoundException)
|
963
|
+
o.errors << Shapes::ShapeRef.new(shape: ResourceInUseException)
|
964
|
+
end)
|
965
|
+
|
943
966
|
api.add_operation(:describe_dataset, Seahorse::Model::Operation.new.tap do |o|
|
944
967
|
o.name = "DescribeDataset"
|
945
968
|
o.http_method = "POST"
|
@@ -782,6 +782,7 @@ module Aws::ForecastService
|
|
782
782
|
# forecast_horizon: 1, # required
|
783
783
|
# forecast_types: ["ForecastType"],
|
784
784
|
# perform_auto_ml: false,
|
785
|
+
# auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
|
785
786
|
# perform_hpo: false,
|
786
787
|
# training_parameters: {
|
787
788
|
# "ParameterKey" => "ParameterValue",
|
@@ -913,6 +914,14 @@ module Aws::ForecastService
|
|
913
914
|
# false.
|
914
915
|
# @return [Boolean]
|
915
916
|
#
|
917
|
+
# @!attribute [rw] auto_ml_override_strategy
|
918
|
+
# Used to overide the default AutoML strategy, which is to optimize
|
919
|
+
# predictor accuracy. To apply an AutoML strategy that minimizes
|
920
|
+
# training time, use `LatencyOptimized`.
|
921
|
+
#
|
922
|
+
# This parameter is only valid for predictors trained using AutoML.
|
923
|
+
# @return [String]
|
924
|
+
#
|
916
925
|
# @!attribute [rw] perform_hpo
|
917
926
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
918
927
|
# optimal hyperparameter values for your training data. The process of
|
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
|
|
1017
1026
|
:forecast_horizon,
|
1018
1027
|
:forecast_types,
|
1019
1028
|
:perform_auto_ml,
|
1029
|
+
:auto_ml_override_strategy,
|
1020
1030
|
:perform_hpo,
|
1021
1031
|
:training_parameters,
|
1022
1032
|
:evaluation_parameters,
|
@@ -1385,6 +1395,26 @@ module Aws::ForecastService
|
|
1385
1395
|
include Aws::Structure
|
1386
1396
|
end
|
1387
1397
|
|
1398
|
+
# @note When making an API call, you may pass DeleteResourceTreeRequest
|
1399
|
+
# data as a hash:
|
1400
|
+
#
|
1401
|
+
# {
|
1402
|
+
# resource_arn: "Arn", # required
|
1403
|
+
# }
|
1404
|
+
#
|
1405
|
+
# @!attribute [rw] resource_arn
|
1406
|
+
# The Amazon Resource Name (ARN) of the parent resource to delete. All
|
1407
|
+
# child resources of the parent resource will also be deleted.
|
1408
|
+
# @return [String]
|
1409
|
+
#
|
1410
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteResourceTreeRequest AWS API Documentation
|
1411
|
+
#
|
1412
|
+
class DeleteResourceTreeRequest < Struct.new(
|
1413
|
+
:resource_arn)
|
1414
|
+
SENSITIVE = []
|
1415
|
+
include Aws::Structure
|
1416
|
+
end
|
1417
|
+
|
1388
1418
|
# @note When making an API call, you may pass DescribeDatasetGroupRequest
|
1389
1419
|
# data as a hash:
|
1390
1420
|
#
|
@@ -1537,8 +1567,8 @@ module Aws::ForecastService
|
|
1537
1567
|
# @return [Types::DataSource]
|
1538
1568
|
#
|
1539
1569
|
# @!attribute [rw] estimated_time_remaining_in_minutes
|
1540
|
-
# The estimated time in minutes for the dataset import job
|
1541
|
-
# complete.
|
1570
|
+
# The estimated time remaining in minutes for the dataset import job
|
1571
|
+
# to complete.
|
1542
1572
|
# @return [Integer]
|
1543
1573
|
#
|
1544
1574
|
# @!attribute [rw] field_statistics
|
@@ -1847,7 +1877,8 @@ module Aws::ForecastService
|
|
1847
1877
|
# @return [String]
|
1848
1878
|
#
|
1849
1879
|
# @!attribute [rw] estimated_time_remaining_in_minutes
|
1850
|
-
# The estimated time in minutes for the forecast job to
|
1880
|
+
# The estimated time remaining in minutes for the forecast job to
|
1881
|
+
# complete.
|
1851
1882
|
# @return [Integer]
|
1852
1883
|
#
|
1853
1884
|
# @!attribute [rw] status
|
@@ -2043,6 +2074,14 @@ module Aws::ForecastService
|
|
2043
2074
|
# Whether the predictor is set to perform AutoML.
|
2044
2075
|
# @return [Boolean]
|
2045
2076
|
#
|
2077
|
+
# @!attribute [rw] auto_ml_override_strategy
|
2078
|
+
# The AutoML strategy used to train the predictor. Unless
|
2079
|
+
# `LatencyOptimized` is specified, the AutoML strategy optimizes
|
2080
|
+
# predictor accuracy.
|
2081
|
+
#
|
2082
|
+
# This parameter is only valid for predictors trained using AutoML.
|
2083
|
+
# @return [String]
|
2084
|
+
#
|
2046
2085
|
# @!attribute [rw] perform_hpo
|
2047
2086
|
# Whether the predictor is set to perform hyperparameter optimization
|
2048
2087
|
# (HPO).
|
@@ -2089,8 +2128,8 @@ module Aws::ForecastService
|
|
2089
2128
|
# @return [Types::PredictorExecutionDetails]
|
2090
2129
|
#
|
2091
2130
|
# @!attribute [rw] estimated_time_remaining_in_minutes
|
2092
|
-
# The estimated time in minutes for the predictor training
|
2093
|
-
# complete.
|
2131
|
+
# The estimated time remaining in minutes for the predictor training
|
2132
|
+
# job to complete.
|
2094
2133
|
# @return [Integer]
|
2095
2134
|
#
|
2096
2135
|
# @!attribute [rw] dataset_import_job_arns
|
@@ -2151,6 +2190,7 @@ module Aws::ForecastService
|
|
2151
2190
|
:forecast_horizon,
|
2152
2191
|
:forecast_types,
|
2153
2192
|
:perform_auto_ml,
|
2193
|
+
:auto_ml_override_strategy,
|
2154
2194
|
:perform_hpo,
|
2155
2195
|
:training_parameters,
|
2156
2196
|
:evaluation_parameters,
|
@@ -2719,10 +2759,19 @@ module Aws::ForecastService
|
|
2719
2759
|
# An array of results from evaluating the predictor.
|
2720
2760
|
# @return [Array<Types::EvaluationResult>]
|
2721
2761
|
#
|
2762
|
+
# @!attribute [rw] auto_ml_override_strategy
|
2763
|
+
# The AutoML strategy used to train the predictor. Unless
|
2764
|
+
# `LatencyOptimized` is specified, the AutoML strategy optimizes
|
2765
|
+
# predictor accuracy.
|
2766
|
+
#
|
2767
|
+
# This parameter is only valid for predictors trained using AutoML.
|
2768
|
+
# @return [String]
|
2769
|
+
#
|
2722
2770
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
|
2723
2771
|
#
|
2724
2772
|
class GetAccuracyMetricsResponse < Struct.new(
|
2725
|
-
:predictor_evaluation_results
|
2773
|
+
:predictor_evaluation_results,
|
2774
|
+
:auto_ml_override_strategy)
|
2726
2775
|
SENSITIVE = []
|
2727
2776
|
include Aws::Structure
|
2728
2777
|
end
|
@@ -3863,19 +3912,23 @@ module Aws::ForecastService
|
|
3863
3912
|
# Forecast dataset with the CreateDatasetImportJob operation.
|
3864
3913
|
#
|
3865
3914
|
# @!attribute [rw] count
|
3866
|
-
# The number of values in the field.
|
3915
|
+
# The number of values in the field. If the response value is -1,
|
3916
|
+
# refer to `CountLong`.
|
3867
3917
|
# @return [Integer]
|
3868
3918
|
#
|
3869
3919
|
# @!attribute [rw] count_distinct
|
3870
|
-
# The number of distinct values in the field.
|
3920
|
+
# The number of distinct values in the field. If the response value is
|
3921
|
+
# -1, refer to `CountDistinctLong`.
|
3871
3922
|
# @return [Integer]
|
3872
3923
|
#
|
3873
3924
|
# @!attribute [rw] count_null
|
3874
|
-
# The number of null values in the field.
|
3925
|
+
# The number of null values in the field. If the response value is -1,
|
3926
|
+
# refer to `CountNullLong`.
|
3875
3927
|
# @return [Integer]
|
3876
3928
|
#
|
3877
3929
|
# @!attribute [rw] count_nan
|
3878
|
-
# The number of NAN (not a number) values in the field.
|
3930
|
+
# The number of NAN (not a number) values in the field. If the
|
3931
|
+
# response value is -1, refer to `CountNanLong`.
|
3879
3932
|
# @return [Integer]
|
3880
3933
|
#
|
3881
3934
|
# @!attribute [rw] min
|
@@ -3894,6 +3947,28 @@ module Aws::ForecastService
|
|
3894
3947
|
# For a numeric field, the standard deviation.
|
3895
3948
|
# @return [Float]
|
3896
3949
|
#
|
3950
|
+
# @!attribute [rw] count_long
|
3951
|
+
# The number of values in the field. `CountLong` is used instead of
|
3952
|
+
# `Count` if the value is greater than 2,147,483,647.
|
3953
|
+
# @return [Integer]
|
3954
|
+
#
|
3955
|
+
# @!attribute [rw] count_distinct_long
|
3956
|
+
# The number of distinct values in the field. `CountDistinctLong` is
|
3957
|
+
# used instead of `CountDistinct` if the value is greater than
|
3958
|
+
# 2,147,483,647.
|
3959
|
+
# @return [Integer]
|
3960
|
+
#
|
3961
|
+
# @!attribute [rw] count_null_long
|
3962
|
+
# The number of null values in the field. `CountNullLong` is used
|
3963
|
+
# instead of `CountNull` if the value is greater than 2,147,483,647.
|
3964
|
+
# @return [Integer]
|
3965
|
+
#
|
3966
|
+
# @!attribute [rw] count_nan_long
|
3967
|
+
# The number of NAN (not a number) values in the field. `CountNanLong`
|
3968
|
+
# is used instead of `CountNan` if the value is greater than
|
3969
|
+
# 2,147,483,647.
|
3970
|
+
# @return [Integer]
|
3971
|
+
#
|
3897
3972
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Statistics AWS API Documentation
|
3898
3973
|
#
|
3899
3974
|
class Statistics < Struct.new(
|
@@ -3904,7 +3979,11 @@ module Aws::ForecastService
|
|
3904
3979
|
:min,
|
3905
3980
|
:max,
|
3906
3981
|
:avg,
|
3907
|
-
:stddev
|
3982
|
+
:stddev,
|
3983
|
+
:count_long,
|
3984
|
+
:count_distinct_long,
|
3985
|
+
:count_null_long,
|
3986
|
+
:count_nan_long)
|
3908
3987
|
SENSITIVE = []
|
3909
3988
|
include Aws::Structure
|
3910
3989
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-forecastservice
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.22.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-
|
11
|
+
date: 2021-07-28 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|
@@ -19,7 +19,7 @@ dependencies:
|
|
19
19
|
version: '3'
|
20
20
|
- - ">="
|
21
21
|
- !ruby/object:Gem::Version
|
22
|
-
version: 3.
|
22
|
+
version: 3.118.0
|
23
23
|
type: :runtime
|
24
24
|
prerelease: false
|
25
25
|
version_requirements: !ruby/object:Gem::Requirement
|
@@ -29,7 +29,7 @@ dependencies:
|
|
29
29
|
version: '3'
|
30
30
|
- - ">="
|
31
31
|
- !ruby/object:Gem::Version
|
32
|
-
version: 3.
|
32
|
+
version: 3.118.0
|
33
33
|
- !ruby/object:Gem::Dependency
|
34
34
|
name: aws-sigv4
|
35
35
|
requirement: !ruby/object:Gem::Requirement
|
@@ -83,8 +83,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
83
83
|
- !ruby/object:Gem::Version
|
84
84
|
version: '0'
|
85
85
|
requirements: []
|
86
|
-
|
87
|
-
rubygems_version: 2.7.6.3
|
86
|
+
rubygems_version: 3.1.6
|
88
87
|
signing_key:
|
89
88
|
specification_version: 4
|
90
89
|
summary: AWS SDK for Ruby - Amazon Forecast Service
|