aws-sdk-forecastservice 1.18.0 → 1.22.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d4505e2958ccef434b286bfde0776cd4c9a9b17db955a21f0ffb41c5ce0ca155
4
- data.tar.gz: 98f9c7dda74be1e2289140ea00deeb4101005b3217c8fd56b6826dd7fad2ad3c
3
+ metadata.gz: 00c3030d401f9d06d591a780f3c2d2a84aa6c10ab307c5f09d2247d56604a2b6
4
+ data.tar.gz: 0a01b3b3e21b05d0f96c5023dfd540adc2f0d335c58372a6900394a955c37899
5
5
  SHA512:
6
- metadata.gz: 62670e9857c74d051f7081f229c41dceb5d52d05deab619f40ccb274848aa175550a1ab56b2972d81ce8f4386eb26447fea63702a81ee59bab77cd3b75973960
7
- data.tar.gz: e846cafe6fecbd9aca11ef1ab8514d4e237d91b7cbd03519de2f363813da87679084e342708f4c604bdc76d1d77b750c35590f5892f1f37d77c49fcfe50fc1cf
6
+ metadata.gz: e77216a4cd8a2e9a8eb6c123e087fb82b936dd408026294504b35fa15d7a793c3b7ba23bb476460a6df5f67b81421000043839f3a127067efd43f5c0158b84b7
7
+ data.tar.gz: d99cf5bfaf53c2ce2aae1302f50d4c12cda059a3064448e6d2707e8e4ed708fc4b32a3939c13498aaea710f38e54897ad2112c486084b814761c35791f6e5ca5
data/CHANGELOG.md CHANGED
@@ -1,6 +1,26 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.22.0 (2021-07-28)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
9
+ 1.21.0 (2021-06-03)
10
+ ------------------
11
+
12
+ * Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
13
+
14
+ 1.20.0 (2021-05-21)
15
+ ------------------
16
+
17
+ * Feature - Updated attribute statistics in DescribeDatasetImportJob response to support Long values
18
+
19
+ 1.19.0 (2021-04-30)
20
+ ------------------
21
+
22
+ * Feature - Added new DeleteResourceTree operation that helps in deleting all the child resources of a given resource including the given resource.
23
+
4
24
  1.18.0 (2021-04-22)
5
25
  ------------------
6
26
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.18.0
1
+ 1.22.0
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
48
48
  # @!group service
49
49
  module Aws::ForecastService
50
50
 
51
- GEM_VERSION = '1.18.0'
51
+ GEM_VERSION = '1.22.0'
52
52
 
53
53
  end
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
1077
1077
  # This is a good option if you aren't sure which algorithm is suitable
1078
1078
  # for your training data. In this case, `PerformHPO` must be false.
1079
1079
  #
1080
+ # @option params [String] :auto_ml_override_strategy
1081
+ # Used to overide the default AutoML strategy, which is to optimize
1082
+ # predictor accuracy. To apply an AutoML strategy that minimizes
1083
+ # training time, use `LatencyOptimized`.
1084
+ #
1085
+ # This parameter is only valid for predictors trained using AutoML.
1086
+ #
1080
1087
  # @option params [Boolean] :perform_hpo
1081
1088
  # Whether to perform hyperparameter optimization (HPO). HPO finds
1082
1089
  # optimal hyperparameter values for your training data. The process of
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
1176
1183
  # forecast_horizon: 1, # required
1177
1184
  # forecast_types: ["ForecastType"],
1178
1185
  # perform_auto_ml: false,
1186
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
1179
1187
  # perform_hpo: false,
1180
1188
  # training_parameters: {
1181
1189
  # "ParameterKey" => "ParameterValue",
@@ -1545,6 +1553,53 @@ module Aws::ForecastService
1545
1553
  req.send_request(options)
1546
1554
  end
1547
1555
 
1556
+ # Deletes an entire resource tree. This operation will delete the parent
1557
+ # resource and its child resources.
1558
+ #
1559
+ # Child resources are resources that were created from another resource.
1560
+ # For example, when a forecast is generated from a predictor, the
1561
+ # forecast is the child resource and the predictor is the parent
1562
+ # resource.
1563
+ #
1564
+ # Amazon Forecast resources possess the following parent-child resource
1565
+ # hierarchies:
1566
+ #
1567
+ # * **Dataset**\: dataset import jobs
1568
+ #
1569
+ # * **Dataset Group**\: predictors, predictor backtest export jobs,
1570
+ # forecasts, forecast export jobs
1571
+ #
1572
+ # * **Predictor**\: predictor backtest export jobs, forecasts, forecast
1573
+ # export jobs
1574
+ #
1575
+ # * **Forecast**\: forecast export jobs
1576
+ #
1577
+ # <note markdown="1"> `DeleteResourceTree` will only delete Amazon Forecast resources, and
1578
+ # will not delete datasets or exported files stored in Amazon S3.
1579
+ #
1580
+ # </note>
1581
+ #
1582
+ # @option params [required, String] :resource_arn
1583
+ # The Amazon Resource Name (ARN) of the parent resource to delete. All
1584
+ # child resources of the parent resource will also be deleted.
1585
+ #
1586
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
1587
+ #
1588
+ # @example Request syntax with placeholder values
1589
+ #
1590
+ # resp = client.delete_resource_tree({
1591
+ # resource_arn: "Arn", # required
1592
+ # })
1593
+ #
1594
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteResourceTree AWS API Documentation
1595
+ #
1596
+ # @overload delete_resource_tree(params = {})
1597
+ # @param [Hash] params ({})
1598
+ def delete_resource_tree(params = {}, options = {})
1599
+ req = build_request(:delete_resource_tree, params)
1600
+ req.send_request(options)
1601
+ end
1602
+
1548
1603
  # Describes an Amazon Forecast dataset created using the CreateDataset
1549
1604
  # operation.
1550
1605
  #
@@ -1726,6 +1781,10 @@ module Aws::ForecastService
1726
1781
  # resp.field_statistics["String"].max #=> String
1727
1782
  # resp.field_statistics["String"].avg #=> Float
1728
1783
  # resp.field_statistics["String"].stddev #=> Float
1784
+ # resp.field_statistics["String"].count_long #=> Integer
1785
+ # resp.field_statistics["String"].count_distinct_long #=> Integer
1786
+ # resp.field_statistics["String"].count_null_long #=> Integer
1787
+ # resp.field_statistics["String"].count_nan_long #=> Integer
1729
1788
  # resp.data_size #=> Float
1730
1789
  # resp.status #=> String
1731
1790
  # resp.message #=> String
@@ -1891,6 +1950,7 @@ module Aws::ForecastService
1891
1950
  # * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
1892
1951
  # * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array&lt;String&gt;
1893
1952
  # * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
1953
+ # * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
1894
1954
  # * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
1895
1955
  # * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash&lt;String,String&gt;
1896
1956
  # * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
@@ -1922,6 +1982,7 @@ module Aws::ForecastService
1922
1982
  # resp.forecast_types #=> Array
1923
1983
  # resp.forecast_types[0] #=> String
1924
1984
  # resp.perform_auto_ml #=> Boolean
1985
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
1925
1986
  # resp.perform_hpo #=> Boolean
1926
1987
  # resp.training_parameters #=> Hash
1927
1988
  # resp.training_parameters["ParameterKey"] #=> String
@@ -2073,6 +2134,7 @@ module Aws::ForecastService
2073
2134
  # @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2074
2135
  #
2075
2136
  # * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array&lt;Types::EvaluationResult&gt;
2137
+ # * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
2076
2138
  #
2077
2139
  # @example Request syntax with placeholder values
2078
2140
  #
@@ -2097,6 +2159,7 @@ module Aws::ForecastService
2097
2159
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
2098
2160
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
2099
2161
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
2162
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
2100
2163
  #
2101
2164
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
2102
2165
  #
@@ -2824,7 +2887,7 @@ module Aws::ForecastService
2824
2887
  params: params,
2825
2888
  config: config)
2826
2889
  context[:gem_name] = 'aws-sdk-forecastservice'
2827
- context[:gem_version] = '1.18.0'
2890
+ context[:gem_version] = '1.22.0'
2828
2891
  Seahorse::Client::Request.new(handlers, context)
2829
2892
  end
2830
2893
 
@@ -16,6 +16,7 @@ module Aws::ForecastService
16
16
  Arn = Shapes::StringShape.new(name: 'Arn')
17
17
  ArnList = Shapes::ListShape.new(name: 'ArnList')
18
18
  AttributeType = Shapes::StringShape.new(name: 'AttributeType')
19
+ AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
19
20
  Boolean = Shapes::BooleanShape.new(name: 'Boolean')
20
21
  CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
21
22
  CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
@@ -51,6 +52,7 @@ module Aws::ForecastService
51
52
  DeleteForecastRequest = Shapes::StructureShape.new(name: 'DeleteForecastRequest')
52
53
  DeletePredictorBacktestExportJobRequest = Shapes::StructureShape.new(name: 'DeletePredictorBacktestExportJobRequest')
53
54
  DeletePredictorRequest = Shapes::StructureShape.new(name: 'DeletePredictorRequest')
55
+ DeleteResourceTreeRequest = Shapes::StructureShape.new(name: 'DeleteResourceTreeRequest')
54
56
  DescribeDatasetGroupRequest = Shapes::StructureShape.new(name: 'DescribeDatasetGroupRequest')
55
57
  DescribeDatasetGroupResponse = Shapes::StructureShape.new(name: 'DescribeDatasetGroupResponse')
56
58
  DescribeDatasetImportJobRequest = Shapes::StructureShape.new(name: 'DescribeDatasetImportJobRequest')
@@ -260,6 +262,7 @@ module Aws::ForecastService
260
262
  CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
261
263
  CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
262
264
  CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
265
+ CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
263
266
  CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
264
267
  CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
265
268
  CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -329,6 +332,9 @@ module Aws::ForecastService
329
332
  DeletePredictorRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
330
333
  DeletePredictorRequest.struct_class = Types::DeletePredictorRequest
331
334
 
335
+ DeleteResourceTreeRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "ResourceArn"))
336
+ DeleteResourceTreeRequest.struct_class = Types::DeleteResourceTreeRequest
337
+
332
338
  DescribeDatasetGroupRequest.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "DatasetGroupArn"))
333
339
  DescribeDatasetGroupRequest.struct_class = Types::DescribeDatasetGroupRequest
334
340
 
@@ -426,6 +432,7 @@ module Aws::ForecastService
426
432
  DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
427
433
  DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
428
434
  DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
435
+ DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
429
436
  DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
430
437
  DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
431
438
  DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -523,6 +530,7 @@ module Aws::ForecastService
523
530
  GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
524
531
 
525
532
  GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
533
+ GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
526
534
  GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
527
535
 
528
536
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -690,6 +698,10 @@ module Aws::ForecastService
690
698
  Statistics.add_member(:max, Shapes::ShapeRef.new(shape: String, location_name: "Max"))
691
699
  Statistics.add_member(:avg, Shapes::ShapeRef.new(shape: Double, location_name: "Avg"))
692
700
  Statistics.add_member(:stddev, Shapes::ShapeRef.new(shape: Double, location_name: "Stddev"))
701
+ Statistics.add_member(:count_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountLong"))
702
+ Statistics.add_member(:count_distinct_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountDistinctLong"))
703
+ Statistics.add_member(:count_null_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNullLong"))
704
+ Statistics.add_member(:count_nan_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNanLong"))
693
705
  Statistics.struct_class = Types::Statistics
694
706
 
695
707
  StopResourceRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "ResourceArn"))
@@ -940,6 +952,17 @@ module Aws::ForecastService
940
952
  o.errors << Shapes::ShapeRef.new(shape: ResourceInUseException)
941
953
  end)
942
954
 
955
+ api.add_operation(:delete_resource_tree, Seahorse::Model::Operation.new.tap do |o|
956
+ o.name = "DeleteResourceTree"
957
+ o.http_method = "POST"
958
+ o.http_request_uri = "/"
959
+ o.input = Shapes::ShapeRef.new(shape: DeleteResourceTreeRequest)
960
+ o.output = Shapes::ShapeRef.new(shape: Shapes::StructureShape.new(struct_class: Aws::EmptyStructure))
961
+ o.errors << Shapes::ShapeRef.new(shape: InvalidInputException)
962
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFoundException)
963
+ o.errors << Shapes::ShapeRef.new(shape: ResourceInUseException)
964
+ end)
965
+
943
966
  api.add_operation(:describe_dataset, Seahorse::Model::Operation.new.tap do |o|
944
967
  o.name = "DescribeDataset"
945
968
  o.http_method = "POST"
@@ -782,6 +782,7 @@ module Aws::ForecastService
782
782
  # forecast_horizon: 1, # required
783
783
  # forecast_types: ["ForecastType"],
784
784
  # perform_auto_ml: false,
785
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
785
786
  # perform_hpo: false,
786
787
  # training_parameters: {
787
788
  # "ParameterKey" => "ParameterValue",
@@ -913,6 +914,14 @@ module Aws::ForecastService
913
914
  # false.
914
915
  # @return [Boolean]
915
916
  #
917
+ # @!attribute [rw] auto_ml_override_strategy
918
+ # Used to overide the default AutoML strategy, which is to optimize
919
+ # predictor accuracy. To apply an AutoML strategy that minimizes
920
+ # training time, use `LatencyOptimized`.
921
+ #
922
+ # This parameter is only valid for predictors trained using AutoML.
923
+ # @return [String]
924
+ #
916
925
  # @!attribute [rw] perform_hpo
917
926
  # Whether to perform hyperparameter optimization (HPO). HPO finds
918
927
  # optimal hyperparameter values for your training data. The process of
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
1017
1026
  :forecast_horizon,
1018
1027
  :forecast_types,
1019
1028
  :perform_auto_ml,
1029
+ :auto_ml_override_strategy,
1020
1030
  :perform_hpo,
1021
1031
  :training_parameters,
1022
1032
  :evaluation_parameters,
@@ -1385,6 +1395,26 @@ module Aws::ForecastService
1385
1395
  include Aws::Structure
1386
1396
  end
1387
1397
 
1398
+ # @note When making an API call, you may pass DeleteResourceTreeRequest
1399
+ # data as a hash:
1400
+ #
1401
+ # {
1402
+ # resource_arn: "Arn", # required
1403
+ # }
1404
+ #
1405
+ # @!attribute [rw] resource_arn
1406
+ # The Amazon Resource Name (ARN) of the parent resource to delete. All
1407
+ # child resources of the parent resource will also be deleted.
1408
+ # @return [String]
1409
+ #
1410
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteResourceTreeRequest AWS API Documentation
1411
+ #
1412
+ class DeleteResourceTreeRequest < Struct.new(
1413
+ :resource_arn)
1414
+ SENSITIVE = []
1415
+ include Aws::Structure
1416
+ end
1417
+
1388
1418
  # @note When making an API call, you may pass DescribeDatasetGroupRequest
1389
1419
  # data as a hash:
1390
1420
  #
@@ -1537,8 +1567,8 @@ module Aws::ForecastService
1537
1567
  # @return [Types::DataSource]
1538
1568
  #
1539
1569
  # @!attribute [rw] estimated_time_remaining_in_minutes
1540
- # The estimated time in minutes for the dataset import job to
1541
- # complete.
1570
+ # The estimated time remaining in minutes for the dataset import job
1571
+ # to complete.
1542
1572
  # @return [Integer]
1543
1573
  #
1544
1574
  # @!attribute [rw] field_statistics
@@ -1847,7 +1877,8 @@ module Aws::ForecastService
1847
1877
  # @return [String]
1848
1878
  #
1849
1879
  # @!attribute [rw] estimated_time_remaining_in_minutes
1850
- # The estimated time in minutes for the forecast job to complete.
1880
+ # The estimated time remaining in minutes for the forecast job to
1881
+ # complete.
1851
1882
  # @return [Integer]
1852
1883
  #
1853
1884
  # @!attribute [rw] status
@@ -2043,6 +2074,14 @@ module Aws::ForecastService
2043
2074
  # Whether the predictor is set to perform AutoML.
2044
2075
  # @return [Boolean]
2045
2076
  #
2077
+ # @!attribute [rw] auto_ml_override_strategy
2078
+ # The AutoML strategy used to train the predictor. Unless
2079
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2080
+ # predictor accuracy.
2081
+ #
2082
+ # This parameter is only valid for predictors trained using AutoML.
2083
+ # @return [String]
2084
+ #
2046
2085
  # @!attribute [rw] perform_hpo
2047
2086
  # Whether the predictor is set to perform hyperparameter optimization
2048
2087
  # (HPO).
@@ -2089,8 +2128,8 @@ module Aws::ForecastService
2089
2128
  # @return [Types::PredictorExecutionDetails]
2090
2129
  #
2091
2130
  # @!attribute [rw] estimated_time_remaining_in_minutes
2092
- # The estimated time in minutes for the predictor training job to
2093
- # complete.
2131
+ # The estimated time remaining in minutes for the predictor training
2132
+ # job to complete.
2094
2133
  # @return [Integer]
2095
2134
  #
2096
2135
  # @!attribute [rw] dataset_import_job_arns
@@ -2151,6 +2190,7 @@ module Aws::ForecastService
2151
2190
  :forecast_horizon,
2152
2191
  :forecast_types,
2153
2192
  :perform_auto_ml,
2193
+ :auto_ml_override_strategy,
2154
2194
  :perform_hpo,
2155
2195
  :training_parameters,
2156
2196
  :evaluation_parameters,
@@ -2719,10 +2759,19 @@ module Aws::ForecastService
2719
2759
  # An array of results from evaluating the predictor.
2720
2760
  # @return [Array<Types::EvaluationResult>]
2721
2761
  #
2762
+ # @!attribute [rw] auto_ml_override_strategy
2763
+ # The AutoML strategy used to train the predictor. Unless
2764
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2765
+ # predictor accuracy.
2766
+ #
2767
+ # This parameter is only valid for predictors trained using AutoML.
2768
+ # @return [String]
2769
+ #
2722
2770
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
2723
2771
  #
2724
2772
  class GetAccuracyMetricsResponse < Struct.new(
2725
- :predictor_evaluation_results)
2773
+ :predictor_evaluation_results,
2774
+ :auto_ml_override_strategy)
2726
2775
  SENSITIVE = []
2727
2776
  include Aws::Structure
2728
2777
  end
@@ -3863,19 +3912,23 @@ module Aws::ForecastService
3863
3912
  # Forecast dataset with the CreateDatasetImportJob operation.
3864
3913
  #
3865
3914
  # @!attribute [rw] count
3866
- # The number of values in the field.
3915
+ # The number of values in the field. If the response value is -1,
3916
+ # refer to `CountLong`.
3867
3917
  # @return [Integer]
3868
3918
  #
3869
3919
  # @!attribute [rw] count_distinct
3870
- # The number of distinct values in the field.
3920
+ # The number of distinct values in the field. If the response value is
3921
+ # -1, refer to `CountDistinctLong`.
3871
3922
  # @return [Integer]
3872
3923
  #
3873
3924
  # @!attribute [rw] count_null
3874
- # The number of null values in the field.
3925
+ # The number of null values in the field. If the response value is -1,
3926
+ # refer to `CountNullLong`.
3875
3927
  # @return [Integer]
3876
3928
  #
3877
3929
  # @!attribute [rw] count_nan
3878
- # The number of NAN (not a number) values in the field.
3930
+ # The number of NAN (not a number) values in the field. If the
3931
+ # response value is -1, refer to `CountNanLong`.
3879
3932
  # @return [Integer]
3880
3933
  #
3881
3934
  # @!attribute [rw] min
@@ -3894,6 +3947,28 @@ module Aws::ForecastService
3894
3947
  # For a numeric field, the standard deviation.
3895
3948
  # @return [Float]
3896
3949
  #
3950
+ # @!attribute [rw] count_long
3951
+ # The number of values in the field. `CountLong` is used instead of
3952
+ # `Count` if the value is greater than 2,147,483,647.
3953
+ # @return [Integer]
3954
+ #
3955
+ # @!attribute [rw] count_distinct_long
3956
+ # The number of distinct values in the field. `CountDistinctLong` is
3957
+ # used instead of `CountDistinct` if the value is greater than
3958
+ # 2,147,483,647.
3959
+ # @return [Integer]
3960
+ #
3961
+ # @!attribute [rw] count_null_long
3962
+ # The number of null values in the field. `CountNullLong` is used
3963
+ # instead of `CountNull` if the value is greater than 2,147,483,647.
3964
+ # @return [Integer]
3965
+ #
3966
+ # @!attribute [rw] count_nan_long
3967
+ # The number of NAN (not a number) values in the field. `CountNanLong`
3968
+ # is used instead of `CountNan` if the value is greater than
3969
+ # 2,147,483,647.
3970
+ # @return [Integer]
3971
+ #
3897
3972
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Statistics AWS API Documentation
3898
3973
  #
3899
3974
  class Statistics < Struct.new(
@@ -3904,7 +3979,11 @@ module Aws::ForecastService
3904
3979
  :min,
3905
3980
  :max,
3906
3981
  :avg,
3907
- :stddev)
3982
+ :stddev,
3983
+ :count_long,
3984
+ :count_distinct_long,
3985
+ :count_null_long,
3986
+ :count_nan_long)
3908
3987
  SENSITIVE = []
3909
3988
  include Aws::Structure
3910
3989
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-forecastservice
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.18.0
4
+ version: 1.22.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-04-22 00:00:00.000000000 Z
11
+ date: 2021-07-28 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.112.0
22
+ version: 3.118.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.112.0
32
+ version: 3.118.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement
@@ -83,8 +83,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
83
83
  - !ruby/object:Gem::Version
84
84
  version: '0'
85
85
  requirements: []
86
- rubyforge_project:
87
- rubygems_version: 2.7.6.3
86
+ rubygems_version: 3.1.6
88
87
  signing_key:
89
88
  specification_version: 4
90
89
  summary: AWS SDK for Ruby - Amazon Forecast Service