aws-sdk-forecastservice 1.18.0 → 1.22.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d4505e2958ccef434b286bfde0776cd4c9a9b17db955a21f0ffb41c5ce0ca155
4
- data.tar.gz: 98f9c7dda74be1e2289140ea00deeb4101005b3217c8fd56b6826dd7fad2ad3c
3
+ metadata.gz: 00c3030d401f9d06d591a780f3c2d2a84aa6c10ab307c5f09d2247d56604a2b6
4
+ data.tar.gz: 0a01b3b3e21b05d0f96c5023dfd540adc2f0d335c58372a6900394a955c37899
5
5
  SHA512:
6
- metadata.gz: 62670e9857c74d051f7081f229c41dceb5d52d05deab619f40ccb274848aa175550a1ab56b2972d81ce8f4386eb26447fea63702a81ee59bab77cd3b75973960
7
- data.tar.gz: e846cafe6fecbd9aca11ef1ab8514d4e237d91b7cbd03519de2f363813da87679084e342708f4c604bdc76d1d77b750c35590f5892f1f37d77c49fcfe50fc1cf
6
+ metadata.gz: e77216a4cd8a2e9a8eb6c123e087fb82b936dd408026294504b35fa15d7a793c3b7ba23bb476460a6df5f67b81421000043839f3a127067efd43f5c0158b84b7
7
+ data.tar.gz: d99cf5bfaf53c2ce2aae1302f50d4c12cda059a3064448e6d2707e8e4ed708fc4b32a3939c13498aaea710f38e54897ad2112c486084b814761c35791f6e5ca5
data/CHANGELOG.md CHANGED
@@ -1,6 +1,26 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.22.0 (2021-07-28)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
9
+ 1.21.0 (2021-06-03)
10
+ ------------------
11
+
12
+ * Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
13
+
14
+ 1.20.0 (2021-05-21)
15
+ ------------------
16
+
17
+ * Feature - Updated attribute statistics in DescribeDatasetImportJob response to support Long values
18
+
19
+ 1.19.0 (2021-04-30)
20
+ ------------------
21
+
22
+ * Feature - Added new DeleteResourceTree operation that helps in deleting all the child resources of a given resource including the given resource.
23
+
4
24
  1.18.0 (2021-04-22)
5
25
  ------------------
6
26
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.18.0
1
+ 1.22.0
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
48
48
  # @!group service
49
49
  module Aws::ForecastService
50
50
 
51
- GEM_VERSION = '1.18.0'
51
+ GEM_VERSION = '1.22.0'
52
52
 
53
53
  end
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
1077
1077
  # This is a good option if you aren't sure which algorithm is suitable
1078
1078
  # for your training data. In this case, `PerformHPO` must be false.
1079
1079
  #
1080
+ # @option params [String] :auto_ml_override_strategy
1081
+ # Used to overide the default AutoML strategy, which is to optimize
1082
+ # predictor accuracy. To apply an AutoML strategy that minimizes
1083
+ # training time, use `LatencyOptimized`.
1084
+ #
1085
+ # This parameter is only valid for predictors trained using AutoML.
1086
+ #
1080
1087
  # @option params [Boolean] :perform_hpo
1081
1088
  # Whether to perform hyperparameter optimization (HPO). HPO finds
1082
1089
  # optimal hyperparameter values for your training data. The process of
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
1176
1183
  # forecast_horizon: 1, # required
1177
1184
  # forecast_types: ["ForecastType"],
1178
1185
  # perform_auto_ml: false,
1186
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
1179
1187
  # perform_hpo: false,
1180
1188
  # training_parameters: {
1181
1189
  # "ParameterKey" => "ParameterValue",
@@ -1545,6 +1553,53 @@ module Aws::ForecastService
1545
1553
  req.send_request(options)
1546
1554
  end
1547
1555
 
1556
+ # Deletes an entire resource tree. This operation will delete the parent
1557
+ # resource and its child resources.
1558
+ #
1559
+ # Child resources are resources that were created from another resource.
1560
+ # For example, when a forecast is generated from a predictor, the
1561
+ # forecast is the child resource and the predictor is the parent
1562
+ # resource.
1563
+ #
1564
+ # Amazon Forecast resources possess the following parent-child resource
1565
+ # hierarchies:
1566
+ #
1567
+ # * **Dataset**\: dataset import jobs
1568
+ #
1569
+ # * **Dataset Group**\: predictors, predictor backtest export jobs,
1570
+ # forecasts, forecast export jobs
1571
+ #
1572
+ # * **Predictor**\: predictor backtest export jobs, forecasts, forecast
1573
+ # export jobs
1574
+ #
1575
+ # * **Forecast**\: forecast export jobs
1576
+ #
1577
+ # <note markdown="1"> `DeleteResourceTree` will only delete Amazon Forecast resources, and
1578
+ # will not delete datasets or exported files stored in Amazon S3.
1579
+ #
1580
+ # </note>
1581
+ #
1582
+ # @option params [required, String] :resource_arn
1583
+ # The Amazon Resource Name (ARN) of the parent resource to delete. All
1584
+ # child resources of the parent resource will also be deleted.
1585
+ #
1586
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
1587
+ #
1588
+ # @example Request syntax with placeholder values
1589
+ #
1590
+ # resp = client.delete_resource_tree({
1591
+ # resource_arn: "Arn", # required
1592
+ # })
1593
+ #
1594
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteResourceTree AWS API Documentation
1595
+ #
1596
+ # @overload delete_resource_tree(params = {})
1597
+ # @param [Hash] params ({})
1598
+ def delete_resource_tree(params = {}, options = {})
1599
+ req = build_request(:delete_resource_tree, params)
1600
+ req.send_request(options)
1601
+ end
1602
+
1548
1603
  # Describes an Amazon Forecast dataset created using the CreateDataset
1549
1604
  # operation.
1550
1605
  #
@@ -1726,6 +1781,10 @@ module Aws::ForecastService
1726
1781
  # resp.field_statistics["String"].max #=> String
1727
1782
  # resp.field_statistics["String"].avg #=> Float
1728
1783
  # resp.field_statistics["String"].stddev #=> Float
1784
+ # resp.field_statistics["String"].count_long #=> Integer
1785
+ # resp.field_statistics["String"].count_distinct_long #=> Integer
1786
+ # resp.field_statistics["String"].count_null_long #=> Integer
1787
+ # resp.field_statistics["String"].count_nan_long #=> Integer
1729
1788
  # resp.data_size #=> Float
1730
1789
  # resp.status #=> String
1731
1790
  # resp.message #=> String
@@ -1891,6 +1950,7 @@ module Aws::ForecastService
1891
1950
  # * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
1892
1951
  # * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array&lt;String&gt;
1893
1952
  # * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
1953
+ # * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
1894
1954
  # * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
1895
1955
  # * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash&lt;String,String&gt;
1896
1956
  # * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
@@ -1922,6 +1982,7 @@ module Aws::ForecastService
1922
1982
  # resp.forecast_types #=> Array
1923
1983
  # resp.forecast_types[0] #=> String
1924
1984
  # resp.perform_auto_ml #=> Boolean
1985
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
1925
1986
  # resp.perform_hpo #=> Boolean
1926
1987
  # resp.training_parameters #=> Hash
1927
1988
  # resp.training_parameters["ParameterKey"] #=> String
@@ -2073,6 +2134,7 @@ module Aws::ForecastService
2073
2134
  # @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2074
2135
  #
2075
2136
  # * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array&lt;Types::EvaluationResult&gt;
2137
+ # * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
2076
2138
  #
2077
2139
  # @example Request syntax with placeholder values
2078
2140
  #
@@ -2097,6 +2159,7 @@ module Aws::ForecastService
2097
2159
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
2098
2160
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
2099
2161
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
2162
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
2100
2163
  #
2101
2164
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
2102
2165
  #
@@ -2824,7 +2887,7 @@ module Aws::ForecastService
2824
2887
  params: params,
2825
2888
  config: config)
2826
2889
  context[:gem_name] = 'aws-sdk-forecastservice'
2827
- context[:gem_version] = '1.18.0'
2890
+ context[:gem_version] = '1.22.0'
2828
2891
  Seahorse::Client::Request.new(handlers, context)
2829
2892
  end
2830
2893
 
@@ -16,6 +16,7 @@ module Aws::ForecastService
16
16
  Arn = Shapes::StringShape.new(name: 'Arn')
17
17
  ArnList = Shapes::ListShape.new(name: 'ArnList')
18
18
  AttributeType = Shapes::StringShape.new(name: 'AttributeType')
19
+ AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
19
20
  Boolean = Shapes::BooleanShape.new(name: 'Boolean')
20
21
  CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
21
22
  CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
@@ -51,6 +52,7 @@ module Aws::ForecastService
51
52
  DeleteForecastRequest = Shapes::StructureShape.new(name: 'DeleteForecastRequest')
52
53
  DeletePredictorBacktestExportJobRequest = Shapes::StructureShape.new(name: 'DeletePredictorBacktestExportJobRequest')
53
54
  DeletePredictorRequest = Shapes::StructureShape.new(name: 'DeletePredictorRequest')
55
+ DeleteResourceTreeRequest = Shapes::StructureShape.new(name: 'DeleteResourceTreeRequest')
54
56
  DescribeDatasetGroupRequest = Shapes::StructureShape.new(name: 'DescribeDatasetGroupRequest')
55
57
  DescribeDatasetGroupResponse = Shapes::StructureShape.new(name: 'DescribeDatasetGroupResponse')
56
58
  DescribeDatasetImportJobRequest = Shapes::StructureShape.new(name: 'DescribeDatasetImportJobRequest')
@@ -260,6 +262,7 @@ module Aws::ForecastService
260
262
  CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
261
263
  CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
262
264
  CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
265
+ CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
263
266
  CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
264
267
  CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
265
268
  CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -329,6 +332,9 @@ module Aws::ForecastService
329
332
  DeletePredictorRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
330
333
  DeletePredictorRequest.struct_class = Types::DeletePredictorRequest
331
334
 
335
+ DeleteResourceTreeRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "ResourceArn"))
336
+ DeleteResourceTreeRequest.struct_class = Types::DeleteResourceTreeRequest
337
+
332
338
  DescribeDatasetGroupRequest.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "DatasetGroupArn"))
333
339
  DescribeDatasetGroupRequest.struct_class = Types::DescribeDatasetGroupRequest
334
340
 
@@ -426,6 +432,7 @@ module Aws::ForecastService
426
432
  DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
427
433
  DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
428
434
  DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
435
+ DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
429
436
  DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
430
437
  DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
431
438
  DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -523,6 +530,7 @@ module Aws::ForecastService
523
530
  GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
524
531
 
525
532
  GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
533
+ GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
526
534
  GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
527
535
 
528
536
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -690,6 +698,10 @@ module Aws::ForecastService
690
698
  Statistics.add_member(:max, Shapes::ShapeRef.new(shape: String, location_name: "Max"))
691
699
  Statistics.add_member(:avg, Shapes::ShapeRef.new(shape: Double, location_name: "Avg"))
692
700
  Statistics.add_member(:stddev, Shapes::ShapeRef.new(shape: Double, location_name: "Stddev"))
701
+ Statistics.add_member(:count_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountLong"))
702
+ Statistics.add_member(:count_distinct_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountDistinctLong"))
703
+ Statistics.add_member(:count_null_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNullLong"))
704
+ Statistics.add_member(:count_nan_long, Shapes::ShapeRef.new(shape: Long, location_name: "CountNanLong"))
693
705
  Statistics.struct_class = Types::Statistics
694
706
 
695
707
  StopResourceRequest.add_member(:resource_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "ResourceArn"))
@@ -940,6 +952,17 @@ module Aws::ForecastService
940
952
  o.errors << Shapes::ShapeRef.new(shape: ResourceInUseException)
941
953
  end)
942
954
 
955
+ api.add_operation(:delete_resource_tree, Seahorse::Model::Operation.new.tap do |o|
956
+ o.name = "DeleteResourceTree"
957
+ o.http_method = "POST"
958
+ o.http_request_uri = "/"
959
+ o.input = Shapes::ShapeRef.new(shape: DeleteResourceTreeRequest)
960
+ o.output = Shapes::ShapeRef.new(shape: Shapes::StructureShape.new(struct_class: Aws::EmptyStructure))
961
+ o.errors << Shapes::ShapeRef.new(shape: InvalidInputException)
962
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFoundException)
963
+ o.errors << Shapes::ShapeRef.new(shape: ResourceInUseException)
964
+ end)
965
+
943
966
  api.add_operation(:describe_dataset, Seahorse::Model::Operation.new.tap do |o|
944
967
  o.name = "DescribeDataset"
945
968
  o.http_method = "POST"
@@ -782,6 +782,7 @@ module Aws::ForecastService
782
782
  # forecast_horizon: 1, # required
783
783
  # forecast_types: ["ForecastType"],
784
784
  # perform_auto_ml: false,
785
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
785
786
  # perform_hpo: false,
786
787
  # training_parameters: {
787
788
  # "ParameterKey" => "ParameterValue",
@@ -913,6 +914,14 @@ module Aws::ForecastService
913
914
  # false.
914
915
  # @return [Boolean]
915
916
  #
917
+ # @!attribute [rw] auto_ml_override_strategy
918
+ # Used to overide the default AutoML strategy, which is to optimize
919
+ # predictor accuracy. To apply an AutoML strategy that minimizes
920
+ # training time, use `LatencyOptimized`.
921
+ #
922
+ # This parameter is only valid for predictors trained using AutoML.
923
+ # @return [String]
924
+ #
916
925
  # @!attribute [rw] perform_hpo
917
926
  # Whether to perform hyperparameter optimization (HPO). HPO finds
918
927
  # optimal hyperparameter values for your training data. The process of
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
1017
1026
  :forecast_horizon,
1018
1027
  :forecast_types,
1019
1028
  :perform_auto_ml,
1029
+ :auto_ml_override_strategy,
1020
1030
  :perform_hpo,
1021
1031
  :training_parameters,
1022
1032
  :evaluation_parameters,
@@ -1385,6 +1395,26 @@ module Aws::ForecastService
1385
1395
  include Aws::Structure
1386
1396
  end
1387
1397
 
1398
+ # @note When making an API call, you may pass DeleteResourceTreeRequest
1399
+ # data as a hash:
1400
+ #
1401
+ # {
1402
+ # resource_arn: "Arn", # required
1403
+ # }
1404
+ #
1405
+ # @!attribute [rw] resource_arn
1406
+ # The Amazon Resource Name (ARN) of the parent resource to delete. All
1407
+ # child resources of the parent resource will also be deleted.
1408
+ # @return [String]
1409
+ #
1410
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteResourceTreeRequest AWS API Documentation
1411
+ #
1412
+ class DeleteResourceTreeRequest < Struct.new(
1413
+ :resource_arn)
1414
+ SENSITIVE = []
1415
+ include Aws::Structure
1416
+ end
1417
+
1388
1418
  # @note When making an API call, you may pass DescribeDatasetGroupRequest
1389
1419
  # data as a hash:
1390
1420
  #
@@ -1537,8 +1567,8 @@ module Aws::ForecastService
1537
1567
  # @return [Types::DataSource]
1538
1568
  #
1539
1569
  # @!attribute [rw] estimated_time_remaining_in_minutes
1540
- # The estimated time in minutes for the dataset import job to
1541
- # complete.
1570
+ # The estimated time remaining in minutes for the dataset import job
1571
+ # to complete.
1542
1572
  # @return [Integer]
1543
1573
  #
1544
1574
  # @!attribute [rw] field_statistics
@@ -1847,7 +1877,8 @@ module Aws::ForecastService
1847
1877
  # @return [String]
1848
1878
  #
1849
1879
  # @!attribute [rw] estimated_time_remaining_in_minutes
1850
- # The estimated time in minutes for the forecast job to complete.
1880
+ # The estimated time remaining in minutes for the forecast job to
1881
+ # complete.
1851
1882
  # @return [Integer]
1852
1883
  #
1853
1884
  # @!attribute [rw] status
@@ -2043,6 +2074,14 @@ module Aws::ForecastService
2043
2074
  # Whether the predictor is set to perform AutoML.
2044
2075
  # @return [Boolean]
2045
2076
  #
2077
+ # @!attribute [rw] auto_ml_override_strategy
2078
+ # The AutoML strategy used to train the predictor. Unless
2079
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2080
+ # predictor accuracy.
2081
+ #
2082
+ # This parameter is only valid for predictors trained using AutoML.
2083
+ # @return [String]
2084
+ #
2046
2085
  # @!attribute [rw] perform_hpo
2047
2086
  # Whether the predictor is set to perform hyperparameter optimization
2048
2087
  # (HPO).
@@ -2089,8 +2128,8 @@ module Aws::ForecastService
2089
2128
  # @return [Types::PredictorExecutionDetails]
2090
2129
  #
2091
2130
  # @!attribute [rw] estimated_time_remaining_in_minutes
2092
- # The estimated time in minutes for the predictor training job to
2093
- # complete.
2131
+ # The estimated time remaining in minutes for the predictor training
2132
+ # job to complete.
2094
2133
  # @return [Integer]
2095
2134
  #
2096
2135
  # @!attribute [rw] dataset_import_job_arns
@@ -2151,6 +2190,7 @@ module Aws::ForecastService
2151
2190
  :forecast_horizon,
2152
2191
  :forecast_types,
2153
2192
  :perform_auto_ml,
2193
+ :auto_ml_override_strategy,
2154
2194
  :perform_hpo,
2155
2195
  :training_parameters,
2156
2196
  :evaluation_parameters,
@@ -2719,10 +2759,19 @@ module Aws::ForecastService
2719
2759
  # An array of results from evaluating the predictor.
2720
2760
  # @return [Array<Types::EvaluationResult>]
2721
2761
  #
2762
+ # @!attribute [rw] auto_ml_override_strategy
2763
+ # The AutoML strategy used to train the predictor. Unless
2764
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2765
+ # predictor accuracy.
2766
+ #
2767
+ # This parameter is only valid for predictors trained using AutoML.
2768
+ # @return [String]
2769
+ #
2722
2770
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
2723
2771
  #
2724
2772
  class GetAccuracyMetricsResponse < Struct.new(
2725
- :predictor_evaluation_results)
2773
+ :predictor_evaluation_results,
2774
+ :auto_ml_override_strategy)
2726
2775
  SENSITIVE = []
2727
2776
  include Aws::Structure
2728
2777
  end
@@ -3863,19 +3912,23 @@ module Aws::ForecastService
3863
3912
  # Forecast dataset with the CreateDatasetImportJob operation.
3864
3913
  #
3865
3914
  # @!attribute [rw] count
3866
- # The number of values in the field.
3915
+ # The number of values in the field. If the response value is -1,
3916
+ # refer to `CountLong`.
3867
3917
  # @return [Integer]
3868
3918
  #
3869
3919
  # @!attribute [rw] count_distinct
3870
- # The number of distinct values in the field.
3920
+ # The number of distinct values in the field. If the response value is
3921
+ # -1, refer to `CountDistinctLong`.
3871
3922
  # @return [Integer]
3872
3923
  #
3873
3924
  # @!attribute [rw] count_null
3874
- # The number of null values in the field.
3925
+ # The number of null values in the field. If the response value is -1,
3926
+ # refer to `CountNullLong`.
3875
3927
  # @return [Integer]
3876
3928
  #
3877
3929
  # @!attribute [rw] count_nan
3878
- # The number of NAN (not a number) values in the field.
3930
+ # The number of NAN (not a number) values in the field. If the
3931
+ # response value is -1, refer to `CountNanLong`.
3879
3932
  # @return [Integer]
3880
3933
  #
3881
3934
  # @!attribute [rw] min
@@ -3894,6 +3947,28 @@ module Aws::ForecastService
3894
3947
  # For a numeric field, the standard deviation.
3895
3948
  # @return [Float]
3896
3949
  #
3950
+ # @!attribute [rw] count_long
3951
+ # The number of values in the field. `CountLong` is used instead of
3952
+ # `Count` if the value is greater than 2,147,483,647.
3953
+ # @return [Integer]
3954
+ #
3955
+ # @!attribute [rw] count_distinct_long
3956
+ # The number of distinct values in the field. `CountDistinctLong` is
3957
+ # used instead of `CountDistinct` if the value is greater than
3958
+ # 2,147,483,647.
3959
+ # @return [Integer]
3960
+ #
3961
+ # @!attribute [rw] count_null_long
3962
+ # The number of null values in the field. `CountNullLong` is used
3963
+ # instead of `CountNull` if the value is greater than 2,147,483,647.
3964
+ # @return [Integer]
3965
+ #
3966
+ # @!attribute [rw] count_nan_long
3967
+ # The number of NAN (not a number) values in the field. `CountNanLong`
3968
+ # is used instead of `CountNan` if the value is greater than
3969
+ # 2,147,483,647.
3970
+ # @return [Integer]
3971
+ #
3897
3972
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Statistics AWS API Documentation
3898
3973
  #
3899
3974
  class Statistics < Struct.new(
@@ -3904,7 +3979,11 @@ module Aws::ForecastService
3904
3979
  :min,
3905
3980
  :max,
3906
3981
  :avg,
3907
- :stddev)
3982
+ :stddev,
3983
+ :count_long,
3984
+ :count_distinct_long,
3985
+ :count_null_long,
3986
+ :count_nan_long)
3908
3987
  SENSITIVE = []
3909
3988
  include Aws::Structure
3910
3989
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-forecastservice
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.18.0
4
+ version: 1.22.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-04-22 00:00:00.000000000 Z
11
+ date: 2021-07-28 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.112.0
22
+ version: 3.118.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.112.0
32
+ version: 3.118.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement
@@ -83,8 +83,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
83
83
  - !ruby/object:Gem::Version
84
84
  version: '0'
85
85
  requirements: []
86
- rubyforge_project:
87
- rubygems_version: 2.7.6.3
86
+ rubygems_version: 3.1.6
88
87
  signing_key:
89
88
  specification_version: 4
90
89
  summary: AWS SDK for Ruby - Amazon Forecast Service