aws-sdk-forecastservice 1.1.0 → 1.6.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +5 -5
- data/lib/aws-sdk-forecastservice.rb +7 -4
- data/lib/aws-sdk-forecastservice/client.rb +380 -233
- data/lib/aws-sdk-forecastservice/client_api.rb +29 -0
- data/lib/aws-sdk-forecastservice/errors.rb +28 -6
- data/lib/aws-sdk-forecastservice/resource.rb +1 -0
- data/lib/aws-sdk-forecastservice/types.rb +458 -274
- metadata +5 -5
@@ -80,6 +80,8 @@ module Aws::ForecastService
|
|
80
80
|
ForecastExportJobSummary = Shapes::StructureShape.new(name: 'ForecastExportJobSummary')
|
81
81
|
ForecastExportJobs = Shapes::ListShape.new(name: 'ForecastExportJobs')
|
82
82
|
ForecastSummary = Shapes::StructureShape.new(name: 'ForecastSummary')
|
83
|
+
ForecastType = Shapes::StringShape.new(name: 'ForecastType')
|
84
|
+
ForecastTypes = Shapes::ListShape.new(name: 'ForecastTypes')
|
83
85
|
Forecasts = Shapes::ListShape.new(name: 'Forecasts')
|
84
86
|
Frequency = Shapes::StringShape.new(name: 'Frequency')
|
85
87
|
GetAccuracyMetricsRequest = Shapes::StructureShape.new(name: 'GetAccuracyMetricsRequest')
|
@@ -114,6 +116,9 @@ module Aws::ForecastService
|
|
114
116
|
ParameterRanges = Shapes::StructureShape.new(name: 'ParameterRanges')
|
115
117
|
ParameterValue = Shapes::StringShape.new(name: 'ParameterValue')
|
116
118
|
PredictorEvaluationResults = Shapes::ListShape.new(name: 'PredictorEvaluationResults')
|
119
|
+
PredictorExecution = Shapes::StructureShape.new(name: 'PredictorExecution')
|
120
|
+
PredictorExecutionDetails = Shapes::StructureShape.new(name: 'PredictorExecutionDetails')
|
121
|
+
PredictorExecutions = Shapes::ListShape.new(name: 'PredictorExecutions')
|
117
122
|
PredictorSummary = Shapes::StructureShape.new(name: 'PredictorSummary')
|
118
123
|
Predictors = Shapes::ListShape.new(name: 'Predictors')
|
119
124
|
ResourceAlreadyExistsException = Shapes::StructureShape.new(name: 'ResourceAlreadyExistsException')
|
@@ -130,6 +135,8 @@ module Aws::ForecastService
|
|
130
135
|
String = Shapes::StringShape.new(name: 'String')
|
131
136
|
SupplementaryFeature = Shapes::StructureShape.new(name: 'SupplementaryFeature')
|
132
137
|
SupplementaryFeatures = Shapes::ListShape.new(name: 'SupplementaryFeatures')
|
138
|
+
TestWindowDetails = Shapes::ListShape.new(name: 'TestWindowDetails')
|
139
|
+
TestWindowSummary = Shapes::StructureShape.new(name: 'TestWindowSummary')
|
133
140
|
TestWindows = Shapes::ListShape.new(name: 'TestWindows')
|
134
141
|
Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
|
135
142
|
TimestampFormat = Shapes::StringShape.new(name: 'TimestampFormat')
|
@@ -196,6 +203,7 @@ module Aws::ForecastService
|
|
196
203
|
|
197
204
|
CreateForecastRequest.add_member(:forecast_name, Shapes::ShapeRef.new(shape: Name, required: true, location_name: "ForecastName"))
|
198
205
|
CreateForecastRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
|
206
|
+
CreateForecastRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
199
207
|
CreateForecastRequest.struct_class = Types::CreateForecastRequest
|
200
208
|
|
201
209
|
CreateForecastResponse.add_member(:forecast_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "ForecastArn"))
|
@@ -331,6 +339,7 @@ module Aws::ForecastService
|
|
331
339
|
|
332
340
|
DescribeForecastResponse.add_member(:forecast_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "ForecastArn"))
|
333
341
|
DescribeForecastResponse.add_member(:forecast_name, Shapes::ShapeRef.new(shape: Name, location_name: "ForecastName"))
|
342
|
+
DescribeForecastResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
334
343
|
DescribeForecastResponse.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
|
335
344
|
DescribeForecastResponse.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "DatasetGroupArn"))
|
336
345
|
DescribeForecastResponse.add_member(:status, Shapes::ShapeRef.new(shape: String, location_name: "Status"))
|
@@ -354,6 +363,7 @@ module Aws::ForecastService
|
|
354
363
|
DescribePredictorResponse.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, location_name: "InputDataConfig"))
|
355
364
|
DescribePredictorResponse.add_member(:featurization_config, Shapes::ShapeRef.new(shape: FeaturizationConfig, location_name: "FeaturizationConfig"))
|
356
365
|
DescribePredictorResponse.add_member(:encryption_config, Shapes::ShapeRef.new(shape: EncryptionConfig, location_name: "EncryptionConfig"))
|
366
|
+
DescribePredictorResponse.add_member(:predictor_execution_details, Shapes::ShapeRef.new(shape: PredictorExecutionDetails, location_name: "PredictorExecutionDetails"))
|
357
367
|
DescribePredictorResponse.add_member(:dataset_import_job_arns, Shapes::ShapeRef.new(shape: ArnList, location_name: "DatasetImportJobArns"))
|
358
368
|
DescribePredictorResponse.add_member(:auto_ml_algorithm_arns, Shapes::ShapeRef.new(shape: ArnList, location_name: "AutoMLAlgorithmArns"))
|
359
369
|
DescribePredictorResponse.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "Status"))
|
@@ -427,6 +437,8 @@ module Aws::ForecastService
|
|
427
437
|
ForecastSummary.add_member(:last_modification_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModificationTime"))
|
428
438
|
ForecastSummary.struct_class = Types::ForecastSummary
|
429
439
|
|
440
|
+
ForecastTypes.member = Shapes::ShapeRef.new(shape: ForecastType)
|
441
|
+
|
430
442
|
Forecasts.member = Shapes::ShapeRef.new(shape: ForecastSummary)
|
431
443
|
|
432
444
|
GetAccuracyMetricsRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
|
@@ -522,6 +534,15 @@ module Aws::ForecastService
|
|
522
534
|
|
523
535
|
PredictorEvaluationResults.member = Shapes::ShapeRef.new(shape: EvaluationResult)
|
524
536
|
|
537
|
+
PredictorExecution.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "AlgorithmArn"))
|
538
|
+
PredictorExecution.add_member(:test_windows, Shapes::ShapeRef.new(shape: TestWindowDetails, location_name: "TestWindows"))
|
539
|
+
PredictorExecution.struct_class = Types::PredictorExecution
|
540
|
+
|
541
|
+
PredictorExecutionDetails.add_member(:predictor_executions, Shapes::ShapeRef.new(shape: PredictorExecutions, location_name: "PredictorExecutions"))
|
542
|
+
PredictorExecutionDetails.struct_class = Types::PredictorExecutionDetails
|
543
|
+
|
544
|
+
PredictorExecutions.member = Shapes::ShapeRef.new(shape: PredictorExecution)
|
545
|
+
|
525
546
|
PredictorSummary.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
|
526
547
|
PredictorSummary.add_member(:predictor_name, Shapes::ShapeRef.new(shape: Name, location_name: "PredictorName"))
|
527
548
|
PredictorSummary.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "DatasetGroupArn"))
|
@@ -572,6 +593,14 @@ module Aws::ForecastService
|
|
572
593
|
|
573
594
|
SupplementaryFeatures.member = Shapes::ShapeRef.new(shape: SupplementaryFeature)
|
574
595
|
|
596
|
+
TestWindowDetails.member = Shapes::ShapeRef.new(shape: TestWindowSummary)
|
597
|
+
|
598
|
+
TestWindowSummary.add_member(:test_window_start, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TestWindowStart"))
|
599
|
+
TestWindowSummary.add_member(:test_window_end, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TestWindowEnd"))
|
600
|
+
TestWindowSummary.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "Status"))
|
601
|
+
TestWindowSummary.add_member(:message, Shapes::ShapeRef.new(shape: ErrorMessage, location_name: "Message"))
|
602
|
+
TestWindowSummary.struct_class = Types::TestWindowSummary
|
603
|
+
|
575
604
|
TestWindows.member = Shapes::ShapeRef.new(shape: WindowSummary)
|
576
605
|
|
577
606
|
TrainingParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
|
@@ -6,6 +6,34 @@
|
|
6
6
|
# WARNING ABOUT GENERATED CODE
|
7
7
|
|
8
8
|
module Aws::ForecastService
|
9
|
+
|
10
|
+
# When ForecastService returns an error response, the Ruby SDK constructs and raises an error.
|
11
|
+
# These errors all extend Aws::ForecastService::Errors::ServiceError < {Aws::Errors::ServiceError}
|
12
|
+
#
|
13
|
+
# You can rescue all ForecastService errors using ServiceError:
|
14
|
+
#
|
15
|
+
# begin
|
16
|
+
# # do stuff
|
17
|
+
# rescue Aws::ForecastService::Errors::ServiceError
|
18
|
+
# # rescues all ForecastService API errors
|
19
|
+
# end
|
20
|
+
#
|
21
|
+
#
|
22
|
+
# ## Request Context
|
23
|
+
# ServiceError objects have a {Aws::Errors::ServiceError#context #context} method that returns
|
24
|
+
# information about the request that generated the error.
|
25
|
+
# See {Seahorse::Client::RequestContext} for more information.
|
26
|
+
#
|
27
|
+
# ## Error Classes
|
28
|
+
# * {InvalidInputException}
|
29
|
+
# * {InvalidNextTokenException}
|
30
|
+
# * {LimitExceededException}
|
31
|
+
# * {ResourceAlreadyExistsException}
|
32
|
+
# * {ResourceInUseException}
|
33
|
+
# * {ResourceNotFoundException}
|
34
|
+
#
|
35
|
+
# Additionally, error classes are dynamically generated for service errors based on the error code
|
36
|
+
# if they are not defined above.
|
9
37
|
module Errors
|
10
38
|
|
11
39
|
extend Aws::Errors::DynamicErrors
|
@@ -23,7 +51,6 @@ module Aws::ForecastService
|
|
23
51
|
def message
|
24
52
|
@message || @data[:message]
|
25
53
|
end
|
26
|
-
|
27
54
|
end
|
28
55
|
|
29
56
|
class InvalidNextTokenException < ServiceError
|
@@ -39,7 +66,6 @@ module Aws::ForecastService
|
|
39
66
|
def message
|
40
67
|
@message || @data[:message]
|
41
68
|
end
|
42
|
-
|
43
69
|
end
|
44
70
|
|
45
71
|
class LimitExceededException < ServiceError
|
@@ -55,7 +81,6 @@ module Aws::ForecastService
|
|
55
81
|
def message
|
56
82
|
@message || @data[:message]
|
57
83
|
end
|
58
|
-
|
59
84
|
end
|
60
85
|
|
61
86
|
class ResourceAlreadyExistsException < ServiceError
|
@@ -71,7 +96,6 @@ module Aws::ForecastService
|
|
71
96
|
def message
|
72
97
|
@message || @data[:message]
|
73
98
|
end
|
74
|
-
|
75
99
|
end
|
76
100
|
|
77
101
|
class ResourceInUseException < ServiceError
|
@@ -87,7 +111,6 @@ module Aws::ForecastService
|
|
87
111
|
def message
|
88
112
|
@message || @data[:message]
|
89
113
|
end
|
90
|
-
|
91
114
|
end
|
92
115
|
|
93
116
|
class ResourceNotFoundException < ServiceError
|
@@ -103,7 +126,6 @@ module Aws::ForecastService
|
|
103
126
|
def message
|
104
127
|
@message || @data[:message]
|
105
128
|
end
|
106
|
-
|
107
129
|
end
|
108
130
|
|
109
131
|
end
|
@@ -62,9 +62,7 @@ module Aws::ForecastService
|
|
62
62
|
#
|
63
63
|
# @!attribute [rw] scaling_type
|
64
64
|
# The scale that hyperparameter tuning uses to search the
|
65
|
-
# hyperparameter range.
|
66
|
-
# hyperparameter scale, see [Hyperparameter Scaling][1]. One of the
|
67
|
-
# following values:
|
65
|
+
# hyperparameter range. Valid values:
|
68
66
|
#
|
69
67
|
# Auto
|
70
68
|
#
|
@@ -81,17 +79,20 @@ module Aws::ForecastService
|
|
81
79
|
# : Hyperparameter tuning searches the values in the hyperparameter
|
82
80
|
# range by using a logarithmic scale.
|
83
81
|
#
|
84
|
-
# Logarithmic scaling works only for ranges that have
|
85
|
-
#
|
82
|
+
# Logarithmic scaling works only for ranges that have values greater
|
83
|
+
# than 0.
|
86
84
|
#
|
87
85
|
# ReverseLogarithmic
|
88
86
|
#
|
89
|
-
# :
|
87
|
+
# : hyperparameter tuning searches the values in the hyperparameter
|
90
88
|
# range by using a reverse logarithmic scale.
|
91
89
|
#
|
92
90
|
# Reverse logarithmic scaling works only for ranges that are
|
93
91
|
# entirely within the range 0 <= x < 1.0.
|
94
92
|
#
|
93
|
+
# For information about choosing a hyperparameter scale, see
|
94
|
+
# [Hyperparameter Scaling][1]. One of the following values:
|
95
|
+
#
|
95
96
|
#
|
96
97
|
#
|
97
98
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
|
@@ -121,13 +122,16 @@ module Aws::ForecastService
|
|
121
122
|
# @return [String]
|
122
123
|
#
|
123
124
|
# @!attribute [rw] domain
|
124
|
-
# The domain associated with the dataset group.
|
125
|
-
#
|
126
|
-
#
|
127
|
-
#
|
128
|
-
#
|
129
|
-
#
|
130
|
-
#
|
125
|
+
# The domain associated with the dataset group. When you add a dataset
|
126
|
+
# to a dataset group, this value and the value specified for the
|
127
|
+
# `Domain` parameter of the CreateDataset operation must match.
|
128
|
+
#
|
129
|
+
# The `Domain` and `DatasetType` that you choose determine the fields
|
130
|
+
# that must be present in training data that you import to a dataset.
|
131
|
+
# For example, if you choose the `RETAIL` domain and
|
132
|
+
# `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
|
133
|
+
# that `item_id`, `timestamp`, and `demand` fields are present in your
|
134
|
+
# data. For more information, see howitworks-datasets-groups.
|
131
135
|
# @return [String]
|
132
136
|
#
|
133
137
|
# @!attribute [rw] dataset_arns
|
@@ -172,10 +176,10 @@ module Aws::ForecastService
|
|
172
176
|
# }
|
173
177
|
#
|
174
178
|
# @!attribute [rw] dataset_import_job_name
|
175
|
-
# The name for the dataset import job.
|
176
|
-
#
|
177
|
-
# `ResourceAlreadyExistsException`
|
178
|
-
#
|
179
|
+
# The name for the dataset import job. We recommend including the
|
180
|
+
# current timestamp in the name, for example, `20190721DatasetImport`.
|
181
|
+
# This can help you avoid getting a `ResourceAlreadyExistsException`
|
182
|
+
# exception.
|
179
183
|
# @return [String]
|
180
184
|
#
|
181
185
|
# @!attribute [rw] dataset_arn
|
@@ -186,22 +190,32 @@ module Aws::ForecastService
|
|
186
190
|
# @!attribute [rw] data_source
|
187
191
|
# The location of the training data to import and an AWS Identity and
|
188
192
|
# Access Management (IAM) role that Amazon Forecast can assume to
|
189
|
-
# access the data.
|
193
|
+
# access the data. The training data must be stored in an Amazon S3
|
194
|
+
# bucket.
|
195
|
+
#
|
196
|
+
# If encryption is used, `DataSource` must include an AWS Key
|
197
|
+
# Management Service (KMS) key and the IAM role must allow Amazon
|
198
|
+
# Forecast permission to access the key. The KMS key and IAM role must
|
199
|
+
# match those specified in the `EncryptionConfig` parameter of the
|
200
|
+
# CreateDataset operation.
|
190
201
|
# @return [Types::DataSource]
|
191
202
|
#
|
192
203
|
# @!attribute [rw] timestamp_format
|
193
|
-
# The format of timestamps in the dataset.
|
194
|
-
#
|
195
|
-
# created.
|
204
|
+
# The format of timestamps in the dataset. The format that you specify
|
205
|
+
# depends on the `DataFrequency` specified when the dataset was
|
206
|
+
# created. The following formats are supported
|
196
207
|
#
|
197
208
|
# * "yyyy-MM-dd"
|
198
209
|
#
|
199
|
-
# For data frequencies: Y, M, W, and D
|
210
|
+
# For the following data frequencies: Y, M, W, and D
|
200
211
|
#
|
201
212
|
# * "yyyy-MM-dd HH:mm:ss"
|
202
213
|
#
|
203
|
-
# For data frequencies: H, 30min, 15min, and 1min; and
|
204
|
-
# for: Y, M, W, and D
|
214
|
+
# For the following data frequencies: H, 30min, 15min, and 1min; and
|
215
|
+
# optionally, for: Y, M, W, and D
|
216
|
+
#
|
217
|
+
# If the format isn't specified, Amazon Forecast expects the format
|
218
|
+
# to be "yyyy-MM-dd HH:mm:ss".
|
205
219
|
# @return [String]
|
206
220
|
#
|
207
221
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetImportJobRequest AWS API Documentation
|
@@ -252,13 +266,16 @@ module Aws::ForecastService
|
|
252
266
|
# @return [String]
|
253
267
|
#
|
254
268
|
# @!attribute [rw] domain
|
255
|
-
# The domain associated with the dataset.
|
256
|
-
#
|
257
|
-
#
|
258
|
-
#
|
259
|
-
#
|
260
|
-
#
|
261
|
-
#
|
269
|
+
# The domain associated with the dataset. When you add a dataset to a
|
270
|
+
# dataset group, this value and the value specified for the `Domain`
|
271
|
+
# parameter of the CreateDatasetGroup operation must match.
|
272
|
+
#
|
273
|
+
# The `Domain` and `DatasetType` that you choose determine the fields
|
274
|
+
# that must be present in the training data that you import to the
|
275
|
+
# dataset. For example, if you choose the `RETAIL` domain and
|
276
|
+
# `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
|
277
|
+
# `item_id`, `timestamp`, and `demand` fields to be present in your
|
278
|
+
# data. For more information, see howitworks-datasets-groups.
|
262
279
|
# @return [String]
|
263
280
|
#
|
264
281
|
# @!attribute [rw] dataset_type
|
@@ -266,7 +283,8 @@ module Aws::ForecastService
|
|
266
283
|
# @return [String]
|
267
284
|
#
|
268
285
|
# @!attribute [rw] data_frequency
|
269
|
-
# The frequency of data collection.
|
286
|
+
# The frequency of data collection. This parameter is required for
|
287
|
+
# RELATED\_TIME\_SERIES datasets.
|
270
288
|
#
|
271
289
|
# Valid intervals are Y (Year), M (Month), W (Week), D (Day), H
|
272
290
|
# (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes),
|
@@ -336,9 +354,14 @@ module Aws::ForecastService
|
|
336
354
|
# @return [String]
|
337
355
|
#
|
338
356
|
# @!attribute [rw] destination
|
339
|
-
# The
|
340
|
-
# and
|
341
|
-
#
|
357
|
+
# The location where you want to save the forecast and an AWS Identity
|
358
|
+
# and Access Management (IAM) role that Amazon Forecast can assume to
|
359
|
+
# access the location. The forecast must be exported to an Amazon S3
|
360
|
+
# bucket.
|
361
|
+
#
|
362
|
+
# If encryption is used, `Destination` must include an AWS Key
|
363
|
+
# Management Service (KMS) key. The IAM role must allow Amazon
|
364
|
+
# Forecast permission to access the key.
|
342
365
|
# @return [Types::DataDestination]
|
343
366
|
#
|
344
367
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastExportJobRequest AWS API Documentation
|
@@ -367,10 +390,11 @@ module Aws::ForecastService
|
|
367
390
|
# {
|
368
391
|
# forecast_name: "Name", # required
|
369
392
|
# predictor_arn: "Arn", # required
|
393
|
+
# forecast_types: ["ForecastType"],
|
370
394
|
# }
|
371
395
|
#
|
372
396
|
# @!attribute [rw] forecast_name
|
373
|
-
#
|
397
|
+
# A name for the forecast.
|
374
398
|
# @return [String]
|
375
399
|
#
|
376
400
|
# @!attribute [rw] predictor_arn
|
@@ -378,11 +402,21 @@ module Aws::ForecastService
|
|
378
402
|
# the forecast.
|
379
403
|
# @return [String]
|
380
404
|
#
|
405
|
+
# @!attribute [rw] forecast_types
|
406
|
+
# The quantiles at which probabilistic forecasts are generated. You
|
407
|
+
# can specify up to 5 quantiles per forecast. Accepted values include
|
408
|
+
# `0.01 to 0.99` (increments of .01 only) and `mean`. The mean
|
409
|
+
# forecast is different from the median (0.50) when the distribution
|
410
|
+
# is not symmetric (e.g. Beta, Negative Binomial). The default value
|
411
|
+
# is `["0.1", "0.5", "0.9"]`.
|
412
|
+
# @return [Array<String>]
|
413
|
+
#
|
381
414
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastRequest AWS API Documentation
|
382
415
|
#
|
383
416
|
class CreateForecastRequest < Struct.new(
|
384
417
|
:forecast_name,
|
385
|
-
:predictor_arn
|
418
|
+
:predictor_arn,
|
419
|
+
:forecast_types)
|
386
420
|
include Aws::Structure
|
387
421
|
end
|
388
422
|
|
@@ -479,13 +513,13 @@ module Aws::ForecastService
|
|
479
513
|
# The Amazon Resource Name (ARN) of the algorithm to use for model
|
480
514
|
# training. Required if `PerformAutoML` is not set to `true`.
|
481
515
|
#
|
482
|
-
# **Supported algorithms
|
516
|
+
# **Supported algorithms:**
|
483
517
|
#
|
484
518
|
# * `arn:aws:forecast:::algorithm/ARIMA`
|
485
519
|
#
|
486
520
|
# * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
|
487
521
|
#
|
488
|
-
#
|
522
|
+
# Supports hyperparameter optimization (HPO)
|
489
523
|
#
|
490
524
|
# * `arn:aws:forecast:::algorithm/ETS`
|
491
525
|
#
|
@@ -502,32 +536,41 @@ module Aws::ForecastService
|
|
502
536
|
# (using the `DataFrequency` parameter of the CreateDataset operation)
|
503
537
|
# and set the forecast horizon to 10, the model returns predictions
|
504
538
|
# for 10 days.
|
539
|
+
#
|
540
|
+
# The maximum forecast horizon is the lesser of 500 time-steps or 1/3
|
541
|
+
# of the TARGET\_TIME\_SERIES dataset length.
|
505
542
|
# @return [Integer]
|
506
543
|
#
|
507
544
|
# @!attribute [rw] perform_auto_ml
|
508
|
-
# Whether to perform AutoML.
|
509
|
-
#
|
545
|
+
# Whether to perform AutoML. When Amazon Forecast performs AutoML, it
|
546
|
+
# evaluates the algorithms it provides and chooses the best algorithm
|
547
|
+
# and configuration for your training dataset.
|
548
|
+
#
|
549
|
+
# The default value is `false`. In this case, you are required to
|
550
|
+
# specify an algorithm.
|
510
551
|
#
|
511
|
-
#
|
512
|
-
#
|
513
|
-
#
|
514
|
-
#
|
552
|
+
# Set `PerformAutoML` to `true` to have Amazon Forecast perform
|
553
|
+
# AutoML. This is a good option if you aren't sure which algorithm is
|
554
|
+
# suitable for your training data. In this case, `PerformHPO` must be
|
555
|
+
# false.
|
515
556
|
# @return [Boolean]
|
516
557
|
#
|
517
558
|
# @!attribute [rw] perform_hpo
|
518
559
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
519
560
|
# optimal hyperparameter values for your training data. The process of
|
520
|
-
# performing HPO is known as a hyperparameter tuning job.
|
561
|
+
# performing HPO is known as running a hyperparameter tuning job.
|
521
562
|
#
|
522
563
|
# The default value is `false`. In this case, Amazon Forecast uses
|
523
564
|
# default hyperparameter values from the chosen algorithm.
|
524
565
|
#
|
525
|
-
# To override the default values, set `PerformHPO` to `true` and
|
526
|
-
# supply the HyperParameterTuningJobConfig object. The
|
527
|
-
# specifies
|
528
|
-
# the valid range for each
|
566
|
+
# To override the default values, set `PerformHPO` to `true` and,
|
567
|
+
# optionally, supply the HyperParameterTuningJobConfig object. The
|
568
|
+
# tuning job specifies a metric to optimize, which hyperparameters
|
569
|
+
# participate in tuning, and the valid range for each tunable
|
570
|
+
# hyperparameter. In this case, you are required to specify an
|
571
|
+
# algorithm and `PerformAutoML` must be false.
|
529
572
|
#
|
530
|
-
# The following
|
573
|
+
# The following algorithm supports HPO:
|
531
574
|
#
|
532
575
|
# * DeepAR+
|
533
576
|
#
|
@@ -535,9 +578,10 @@ module Aws::ForecastService
|
|
535
578
|
# @return [Boolean]
|
536
579
|
#
|
537
580
|
# @!attribute [rw] training_parameters
|
538
|
-
# The
|
539
|
-
#
|
540
|
-
# algorithms
|
581
|
+
# The hyperparameters to override for model training. The
|
582
|
+
# hyperparameters that you can override are listed in the individual
|
583
|
+
# algorithms. For the list of supported algorithms, see
|
584
|
+
# aws-forecast-choosing-recipes.
|
541
585
|
# @return [Hash<String,String>]
|
542
586
|
#
|
543
587
|
# @!attribute [rw] evaluation_parameters
|
@@ -554,6 +598,9 @@ module Aws::ForecastService
|
|
554
598
|
# The individual algorithms specify which hyperparameters support
|
555
599
|
# hyperparameter optimization (HPO). For more information, see
|
556
600
|
# aws-forecast-choosing-recipes.
|
601
|
+
#
|
602
|
+
# If you included the `HPOConfig` object, you must set `PerformHPO` to
|
603
|
+
# true.
|
557
604
|
# @return [Types::HyperParameterTuningJobConfig]
|
558
605
|
#
|
559
606
|
# @!attribute [rw] input_data_config
|
@@ -599,9 +646,10 @@ module Aws::ForecastService
|
|
599
646
|
include Aws::Structure
|
600
647
|
end
|
601
648
|
|
602
|
-
# The destination
|
603
|
-
#
|
604
|
-
#
|
649
|
+
# The destination for an exported forecast, an AWS Identity and Access
|
650
|
+
# Management (IAM) role that allows Amazon Forecast to access the
|
651
|
+
# location and, optionally, an AWS Key Management Service (KMS) key.
|
652
|
+
# This object is submitted in the CreateForecastExportJob request.
|
605
653
|
#
|
606
654
|
# @note When making an API call, you may pass DataDestination
|
607
655
|
# data as a hash:
|
@@ -626,8 +674,10 @@ module Aws::ForecastService
|
|
626
674
|
include Aws::Structure
|
627
675
|
end
|
628
676
|
|
629
|
-
# The source of your training data
|
630
|
-
#
|
677
|
+
# The source of your training data, an AWS Identity and Access
|
678
|
+
# Management (IAM) role that allows Amazon Forecast to access the data
|
679
|
+
# and, optionally, an AWS Key Management Service (KMS) key. This object
|
680
|
+
# is submitted in the CreateDatasetImportJob request.
|
631
681
|
#
|
632
682
|
# @note When making an API call, you may pass DataSource
|
633
683
|
# data as a hash:
|
@@ -655,7 +705,7 @@ module Aws::ForecastService
|
|
655
705
|
|
656
706
|
# Provides a summary of the dataset group properties used in the
|
657
707
|
# ListDatasetGroups operation. To get the complete set of properties,
|
658
|
-
# call the DescribeDatasetGroup operation, and provide the
|
708
|
+
# call the DescribeDatasetGroup operation, and provide the
|
659
709
|
# `DatasetGroupArn`.
|
660
710
|
#
|
661
711
|
# @!attribute [rw] dataset_group_arn
|
@@ -667,13 +717,14 @@ module Aws::ForecastService
|
|
667
717
|
# @return [String]
|
668
718
|
#
|
669
719
|
# @!attribute [rw] creation_time
|
670
|
-
# When the
|
720
|
+
# When the dataset group was created.
|
671
721
|
# @return [Time]
|
672
722
|
#
|
673
723
|
# @!attribute [rw] last_modification_time
|
674
724
|
# When the dataset group was created or last updated from a call to
|
675
725
|
# the UpdateDatasetGroup operation. While the dataset group is being
|
676
|
-
# updated, `LastModificationTime` is the current
|
726
|
+
# updated, `LastModificationTime` is the current time of the
|
727
|
+
# `ListDatasetGroups` call.
|
677
728
|
# @return [Time]
|
678
729
|
#
|
679
730
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetGroupSummary AWS API Documentation
|
@@ -689,7 +740,7 @@ module Aws::ForecastService
|
|
689
740
|
# Provides a summary of the dataset import job properties used in the
|
690
741
|
# ListDatasetImportJobs operation. To get the complete set of
|
691
742
|
# properties, call the DescribeDatasetImportJob operation, and provide
|
692
|
-
# the
|
743
|
+
# the `DatasetImportJobArn`.
|
693
744
|
#
|
694
745
|
# @!attribute [rw] dataset_import_job_arn
|
695
746
|
# The Amazon Resource Name (ARN) of the dataset import job.
|
@@ -700,8 +751,13 @@ module Aws::ForecastService
|
|
700
751
|
# @return [String]
|
701
752
|
#
|
702
753
|
# @!attribute [rw] data_source
|
703
|
-
# The location of the
|
704
|
-
#
|
754
|
+
# The location of the training data to import and an AWS Identity and
|
755
|
+
# Access Management (IAM) role that Amazon Forecast can assume to
|
756
|
+
# access the data. The training data must be stored in an Amazon S3
|
757
|
+
# bucket.
|
758
|
+
#
|
759
|
+
# If encryption is used, `DataSource` includes an AWS Key Management
|
760
|
+
# Service (KMS) key.
|
705
761
|
# @return [Types::DataSource]
|
706
762
|
#
|
707
763
|
# @!attribute [rw] status
|
@@ -726,13 +782,14 @@ module Aws::ForecastService
|
|
726
782
|
# @return [Time]
|
727
783
|
#
|
728
784
|
# @!attribute [rw] last_modification_time
|
729
|
-
#
|
785
|
+
# The last time that the dataset was modified. The time depends on the
|
786
|
+
# status of the job, as follows:
|
730
787
|
#
|
731
|
-
# * `CREATE_PENDING` - same as `CreationTime
|
788
|
+
# * `CREATE_PENDING` - The same time as `CreationTime`.
|
732
789
|
#
|
733
|
-
# * `CREATE_IN_PROGRESS` -
|
790
|
+
# * `CREATE_IN_PROGRESS` - The current timestamp.
|
734
791
|
#
|
735
|
-
# * `ACTIVE` or `CREATE_FAILED` -
|
792
|
+
# * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
|
736
793
|
# @return [Time]
|
737
794
|
#
|
738
795
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetImportJobSummary AWS API Documentation
|
@@ -750,7 +807,7 @@ module Aws::ForecastService
|
|
750
807
|
|
751
808
|
# Provides a summary of the dataset properties used in the ListDatasets
|
752
809
|
# operation. To get the complete set of properties, call the
|
753
|
-
# DescribeDataset operation, and provide the
|
810
|
+
# DescribeDataset operation, and provide the `DatasetArn`.
|
754
811
|
#
|
755
812
|
# @!attribute [rw] dataset_arn
|
756
813
|
# The Amazon Resource Name (ARN) of the dataset.
|
@@ -773,11 +830,11 @@ module Aws::ForecastService
|
|
773
830
|
# @return [Time]
|
774
831
|
#
|
775
832
|
# @!attribute [rw] last_modification_time
|
776
|
-
# When
|
777
|
-
# `CreationTime`.
|
778
|
-
# `LastModificationTime` is
|
779
|
-
#
|
780
|
-
# is the
|
833
|
+
# When you create a dataset, `LastModificationTime` is the same as
|
834
|
+
# `CreationTime`. While data is being imported to the dataset,
|
835
|
+
# `LastModificationTime` is the current time of the `ListDatasets`
|
836
|
+
# call. After a CreateDatasetImportJob operation has finished,
|
837
|
+
# `LastModificationTime` is when the import job completed or failed.
|
781
838
|
# @return [Time]
|
782
839
|
#
|
783
840
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetSummary AWS API Documentation
|
@@ -932,13 +989,7 @@ module Aws::ForecastService
|
|
932
989
|
# @return [Array<String>]
|
933
990
|
#
|
934
991
|
# @!attribute [rw] domain
|
935
|
-
# The domain associated with the dataset group.
|
936
|
-
# `DatasetType` that you choose determine the fields that must be
|
937
|
-
# present in the training data that you import to the dataset. For
|
938
|
-
# example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES`
|
939
|
-
# as the `DatasetType`, Amazon Forecast requires `item_id`,
|
940
|
-
# `timestamp`, and `demand` fields to be present in your data. For
|
941
|
-
# more information, see howitworks-datasets-groups.
|
992
|
+
# The domain associated with the dataset group.
|
942
993
|
# @return [String]
|
943
994
|
#
|
944
995
|
# @!attribute [rw] status
|
@@ -952,11 +1003,11 @@ module Aws::ForecastService
|
|
952
1003
|
#
|
953
1004
|
# * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
|
954
1005
|
#
|
955
|
-
# The `UPDATE` states apply when the UpdateDatasetGroup
|
956
|
-
#
|
1006
|
+
# The `UPDATE` states apply when you call the UpdateDatasetGroup
|
1007
|
+
# operation.
|
957
1008
|
#
|
958
|
-
# <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before
|
959
|
-
#
|
1009
|
+
# <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before you can
|
1010
|
+
# use the dataset group to create a predictor.
|
960
1011
|
#
|
961
1012
|
# </note>
|
962
1013
|
# @return [String]
|
@@ -968,7 +1019,8 @@ module Aws::ForecastService
|
|
968
1019
|
# @!attribute [rw] last_modification_time
|
969
1020
|
# When the dataset group was created or last updated from a call to
|
970
1021
|
# the UpdateDatasetGroup operation. While the dataset group is being
|
971
|
-
# updated, `LastModificationTime` is the current
|
1022
|
+
# updated, `LastModificationTime` is the current time of the
|
1023
|
+
# `DescribeDatasetGroup` call.
|
972
1024
|
# @return [Time]
|
973
1025
|
#
|
974
1026
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetGroupResponse AWS API Documentation
|
@@ -1016,23 +1068,27 @@ module Aws::ForecastService
|
|
1016
1068
|
# @return [String]
|
1017
1069
|
#
|
1018
1070
|
# @!attribute [rw] timestamp_format
|
1019
|
-
# The format of timestamps in the dataset.
|
1020
|
-
#
|
1021
|
-
# created.
|
1071
|
+
# The format of timestamps in the dataset. The format that you specify
|
1072
|
+
# depends on the `DataFrequency` specified when the dataset was
|
1073
|
+
# created. The following formats are supported
|
1022
1074
|
#
|
1023
1075
|
# * "yyyy-MM-dd"
|
1024
1076
|
#
|
1025
|
-
# For data frequencies: Y, M, W, and D
|
1077
|
+
# For the following data frequencies: Y, M, W, and D
|
1026
1078
|
#
|
1027
1079
|
# * "yyyy-MM-dd HH:mm:ss"
|
1028
1080
|
#
|
1029
|
-
# For data frequencies: H, 30min, 15min, and 1min; and
|
1030
|
-
# for: Y, M, W, and D
|
1081
|
+
# For the following data frequencies: H, 30min, 15min, and 1min; and
|
1082
|
+
# optionally, for: Y, M, W, and D
|
1031
1083
|
# @return [String]
|
1032
1084
|
#
|
1033
1085
|
# @!attribute [rw] data_source
|
1034
|
-
# The location of the training data to import
|
1035
|
-
#
|
1086
|
+
# The location of the training data to import and an AWS Identity and
|
1087
|
+
# Access Management (IAM) role that Amazon Forecast can assume to
|
1088
|
+
# access the data.
|
1089
|
+
#
|
1090
|
+
# If encryption is used, `DataSource` includes an AWS Key Management
|
1091
|
+
# Service (KMS) key.
|
1036
1092
|
# @return [Types::DataSource]
|
1037
1093
|
#
|
1038
1094
|
# @!attribute [rw] field_statistics
|
@@ -1040,8 +1096,8 @@ module Aws::ForecastService
|
|
1040
1096
|
# @return [Hash<String,Types::Statistics>]
|
1041
1097
|
#
|
1042
1098
|
# @!attribute [rw] data_size
|
1043
|
-
# The size of the dataset in gigabytes (GB) after
|
1044
|
-
#
|
1099
|
+
# The size of the dataset in gigabytes (GB) after the import job has
|
1100
|
+
# finished.
|
1045
1101
|
# @return [Float]
|
1046
1102
|
#
|
1047
1103
|
# @!attribute [rw] status
|
@@ -1066,13 +1122,14 @@ module Aws::ForecastService
|
|
1066
1122
|
# @return [Time]
|
1067
1123
|
#
|
1068
1124
|
# @!attribute [rw] last_modification_time
|
1069
|
-
#
|
1125
|
+
# The last time that the dataset was modified. The time depends on the
|
1126
|
+
# status of the job, as follows:
|
1070
1127
|
#
|
1071
|
-
# * `CREATE_PENDING` - same as `CreationTime
|
1128
|
+
# * `CREATE_PENDING` - The same time as `CreationTime`.
|
1072
1129
|
#
|
1073
|
-
# * `CREATE_IN_PROGRESS` -
|
1130
|
+
# * `CREATE_IN_PROGRESS` - The current timestamp.
|
1074
1131
|
#
|
1075
|
-
# * `ACTIVE` or `CREATE_FAILED` -
|
1132
|
+
# * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
|
1076
1133
|
# @return [Time]
|
1077
1134
|
#
|
1078
1135
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetImportJobResponse AWS API Documentation
|
@@ -1119,7 +1176,7 @@ module Aws::ForecastService
|
|
1119
1176
|
# @return [String]
|
1120
1177
|
#
|
1121
1178
|
# @!attribute [rw] domain
|
1122
|
-
# The dataset
|
1179
|
+
# The domain associated with the dataset.
|
1123
1180
|
# @return [String]
|
1124
1181
|
#
|
1125
1182
|
# @!attribute [rw] dataset_type
|
@@ -1142,7 +1199,7 @@ module Aws::ForecastService
|
|
1142
1199
|
# @return [Types::Schema]
|
1143
1200
|
#
|
1144
1201
|
# @!attribute [rw] encryption_config
|
1145
|
-
#
|
1202
|
+
# The AWS Key Management Service (KMS) key and the AWS Identity and
|
1146
1203
|
# Access Management (IAM) role that Amazon Forecast can assume to
|
1147
1204
|
# access the key.
|
1148
1205
|
# @return [Types::EncryptionConfig]
|
@@ -1159,10 +1216,10 @@ module Aws::ForecastService
|
|
1159
1216
|
# * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
|
1160
1217
|
#
|
1161
1218
|
# The `UPDATE` states apply while data is imported to the dataset from
|
1162
|
-
# a call to the CreateDatasetImportJob operation
|
1163
|
-
#
|
1164
|
-
#
|
1165
|
-
#
|
1219
|
+
# a call to the CreateDatasetImportJob operation and reflect the
|
1220
|
+
# status of the dataset import job. For example, when the import job
|
1221
|
+
# status is `CREATE_IN_PROGRESS`, the status of the dataset is
|
1222
|
+
# `UPDATE_IN_PROGRESS`.
|
1166
1223
|
#
|
1167
1224
|
# <note markdown="1"> The `Status` of the dataset must be `ACTIVE` before you can import
|
1168
1225
|
# training data.
|
@@ -1175,11 +1232,11 @@ module Aws::ForecastService
|
|
1175
1232
|
# @return [Time]
|
1176
1233
|
#
|
1177
1234
|
# @!attribute [rw] last_modification_time
|
1178
|
-
# When
|
1179
|
-
# `CreationTime`.
|
1180
|
-
# `LastModificationTime` is
|
1181
|
-
#
|
1182
|
-
# is the
|
1235
|
+
# When you create a dataset, `LastModificationTime` is the same as
|
1236
|
+
# `CreationTime`. While data is being imported to the dataset,
|
1237
|
+
# `LastModificationTime` is the current time of the `DescribeDataset`
|
1238
|
+
# call. After a CreateDatasetImportJob operation has finished,
|
1239
|
+
# `LastModificationTime` is when the import job completed or failed.
|
1183
1240
|
# @return [Time]
|
1184
1241
|
#
|
1185
1242
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetResponse AWS API Documentation
|
@@ -1229,7 +1286,8 @@ module Aws::ForecastService
|
|
1229
1286
|
# @return [String]
|
1230
1287
|
#
|
1231
1288
|
# @!attribute [rw] destination
|
1232
|
-
# The path to the
|
1289
|
+
# The path to the Amazon Simple Storage Service (Amazon S3) bucket
|
1290
|
+
# where the forecast is exported.
|
1233
1291
|
# @return [Types::DataDestination]
|
1234
1292
|
#
|
1235
1293
|
# @!attribute [rw] message
|
@@ -1237,7 +1295,7 @@ module Aws::ForecastService
|
|
1237
1295
|
# @return [String]
|
1238
1296
|
#
|
1239
1297
|
# @!attribute [rw] status
|
1240
|
-
# The status of the forecast export job.
|
1298
|
+
# The status of the forecast export job. States include:
|
1241
1299
|
#
|
1242
1300
|
# * `ACTIVE`
|
1243
1301
|
#
|
@@ -1246,7 +1304,7 @@ module Aws::ForecastService
|
|
1246
1304
|
# * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED`
|
1247
1305
|
#
|
1248
1306
|
# <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
|
1249
|
-
# can access the forecast in your
|
1307
|
+
# can access the forecast in your S3 bucket.
|
1250
1308
|
#
|
1251
1309
|
# </note>
|
1252
1310
|
# @return [String]
|
@@ -1292,13 +1350,17 @@ module Aws::ForecastService
|
|
1292
1350
|
end
|
1293
1351
|
|
1294
1352
|
# @!attribute [rw] forecast_arn
|
1295
|
-
# The
|
1353
|
+
# The forecast ARN as specified in the request.
|
1296
1354
|
# @return [String]
|
1297
1355
|
#
|
1298
1356
|
# @!attribute [rw] forecast_name
|
1299
1357
|
# The name of the forecast.
|
1300
1358
|
# @return [String]
|
1301
1359
|
#
|
1360
|
+
# @!attribute [rw] forecast_types
|
1361
|
+
# The quantiles at which proababilistic forecasts were generated.
|
1362
|
+
# @return [Array<String>]
|
1363
|
+
#
|
1302
1364
|
# @!attribute [rw] predictor_arn
|
1303
1365
|
# The ARN of the predictor used to generate the forecast.
|
1304
1366
|
# @return [String]
|
@@ -1344,6 +1406,7 @@ module Aws::ForecastService
|
|
1344
1406
|
class DescribeForecastResponse < Struct.new(
|
1345
1407
|
:forecast_arn,
|
1346
1408
|
:forecast_name,
|
1409
|
+
:forecast_types,
|
1347
1410
|
:predictor_arn,
|
1348
1411
|
:dataset_group_arn,
|
1349
1412
|
:status,
|
@@ -1395,13 +1458,16 @@ module Aws::ForecastService
|
|
1395
1458
|
# @return [Boolean]
|
1396
1459
|
#
|
1397
1460
|
# @!attribute [rw] perform_hpo
|
1398
|
-
# Whether the predictor is set to perform
|
1461
|
+
# Whether the predictor is set to perform hyperparameter optimization
|
1462
|
+
# (HPO).
|
1399
1463
|
# @return [Boolean]
|
1400
1464
|
#
|
1401
1465
|
# @!attribute [rw] training_parameters
|
1402
|
-
# The training parameters
|
1403
|
-
#
|
1404
|
-
# algorithms
|
1466
|
+
# The default training parameters or overrides selected during model
|
1467
|
+
# training. If using the AutoML algorithm or if HPO is turned on while
|
1468
|
+
# using the DeepAR+ algorithms, the optimized values for the chosen
|
1469
|
+
# hyperparameters are returned. For more information, see
|
1470
|
+
# aws-forecast-choosing-recipes.
|
1405
1471
|
# @return [Hash<String,String>]
|
1406
1472
|
#
|
1407
1473
|
# @!attribute [rw] evaluation_parameters
|
@@ -1431,9 +1497,15 @@ module Aws::ForecastService
|
|
1431
1497
|
# access the key.
|
1432
1498
|
# @return [Types::EncryptionConfig]
|
1433
1499
|
#
|
1500
|
+
# @!attribute [rw] predictor_execution_details
|
1501
|
+
# Details on the the status and results of the backtests performed to
|
1502
|
+
# evaluate the accuracy of the predictor. You specify the number of
|
1503
|
+
# backtests to perform when you call the operation.
|
1504
|
+
# @return [Types::PredictorExecutionDetails]
|
1505
|
+
#
|
1434
1506
|
# @!attribute [rw] dataset_import_job_arns
|
1435
|
-
# An array of ARNs of the dataset import jobs used to import
|
1436
|
-
# data for the predictor.
|
1507
|
+
# An array of the ARNs of the dataset import jobs used to import
|
1508
|
+
# training data for the predictor.
|
1437
1509
|
# @return [Array<String>]
|
1438
1510
|
#
|
1439
1511
|
# @!attribute [rw] auto_ml_algorithm_arns
|
@@ -1451,8 +1523,8 @@ module Aws::ForecastService
|
|
1451
1523
|
#
|
1452
1524
|
# * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
|
1453
1525
|
#
|
1454
|
-
# <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before
|
1455
|
-
# predictor to create a forecast.
|
1526
|
+
# <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before you can use
|
1527
|
+
# the predictor to create a forecast.
|
1456
1528
|
#
|
1457
1529
|
# </note>
|
1458
1530
|
# @return [String]
|
@@ -1466,10 +1538,11 @@ module Aws::ForecastService
|
|
1466
1538
|
# @return [Time]
|
1467
1539
|
#
|
1468
1540
|
# @!attribute [rw] last_modification_time
|
1469
|
-
# Initially, the same as `CreationTime` (status is
|
1470
|
-
#
|
1471
|
-
# `CREATE_IN_PROGRESS`), and when training
|
1472
|
-
# to `ACTIVE`) or fails (
|
1541
|
+
# Initially, the same as `CreationTime` (when the status is
|
1542
|
+
# `CREATE_PENDING`). This value is updated when training starts (when
|
1543
|
+
# the status changes to `CREATE_IN_PROGRESS`), and when training has
|
1544
|
+
# completed (when the status changes to `ACTIVE`) or fails (when the
|
1545
|
+
# status changes to `CREATE_FAILED`).
|
1473
1546
|
# @return [Time]
|
1474
1547
|
#
|
1475
1548
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictorResponse AWS API Documentation
|
@@ -1487,6 +1560,7 @@ module Aws::ForecastService
|
|
1487
1560
|
:input_data_config,
|
1488
1561
|
:featurization_config,
|
1489
1562
|
:encryption_config,
|
1563
|
+
:predictor_execution_details,
|
1490
1564
|
:dataset_import_job_arns,
|
1491
1565
|
:auto_ml_algorithm_arns,
|
1492
1566
|
:status,
|
@@ -1498,7 +1572,7 @@ module Aws::ForecastService
|
|
1498
1572
|
|
1499
1573
|
# An AWS Key Management Service (KMS) key and an AWS Identity and Access
|
1500
1574
|
# Management (IAM) role that Amazon Forecast can assume to access the
|
1501
|
-
# key.
|
1575
|
+
# key. You can specify this optional object in the CreateDataset and
|
1502
1576
|
# CreatePredictor requests.
|
1503
1577
|
#
|
1504
1578
|
# @note When making an API call, you may pass EncryptionConfig
|
@@ -1510,17 +1584,16 @@ module Aws::ForecastService
|
|
1510
1584
|
# }
|
1511
1585
|
#
|
1512
1586
|
# @!attribute [rw] role_arn
|
1513
|
-
# The ARN of the
|
1514
|
-
#
|
1587
|
+
# The ARN of the IAM role that Amazon Forecast can assume to access
|
1588
|
+
# the AWS KMS key.
|
1515
1589
|
#
|
1516
|
-
#
|
1517
|
-
#
|
1518
|
-
#
|
1590
|
+
# Passing a role across AWS accounts is not allowed. If you pass a
|
1591
|
+
# role that isn't in your account, you get an `InvalidInputException`
|
1592
|
+
# error.
|
1519
1593
|
# @return [String]
|
1520
1594
|
#
|
1521
1595
|
# @!attribute [rw] kms_key_arn
|
1522
|
-
# The Amazon Resource Name (ARN) of
|
1523
|
-
# (KMS) key.
|
1596
|
+
# The Amazon Resource Name (ARN) of the KMS key.
|
1524
1597
|
# @return [String]
|
1525
1598
|
#
|
1526
1599
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EncryptionConfig AWS API Documentation
|
@@ -1533,18 +1606,8 @@ module Aws::ForecastService
|
|
1533
1606
|
|
1534
1607
|
# Parameters that define how to split a dataset into training data and
|
1535
1608
|
# testing data, and the number of iterations to perform. These
|
1536
|
-
# parameters are specified in the predefined algorithms
|
1537
|
-
#
|
1538
|
-
#
|
1539
|
-
# For example, suppose that you have a dataset with data collection
|
1540
|
-
# frequency set to every day and you have 200 days worth of data (that
|
1541
|
-
# is, 200 data points). Now suppose that you set the
|
1542
|
-
# `NumberOfBacktestWindows` to 2 and the `BackTestWindowOffset`
|
1543
|
-
# parameter to 20. The algorithm splits the data twice. The first time,
|
1544
|
-
# the algorithm trains the model using the first 180 data points and
|
1545
|
-
# uses the last 20 data points for evaluation. The second time, the
|
1546
|
-
# algorithm trains the model using the first 160 data points and uses
|
1547
|
-
# the last 40 data points for evaluation.
|
1609
|
+
# parameters are specified in the predefined algorithms but you can
|
1610
|
+
# override them in the CreatePredictor request.
|
1548
1611
|
#
|
1549
1612
|
# @note When making an API call, you may pass EvaluationParameters
|
1550
1613
|
# data as a hash:
|
@@ -1555,14 +1618,21 @@ module Aws::ForecastService
|
|
1555
1618
|
# }
|
1556
1619
|
#
|
1557
1620
|
# @!attribute [rw] number_of_backtest_windows
|
1558
|
-
# The number of times to split the input data. The default is 1.
|
1559
|
-
#
|
1621
|
+
# The number of times to split the input data. The default is 1. Valid
|
1622
|
+
# values are 1 through 5.
|
1560
1623
|
# @return [Integer]
|
1561
1624
|
#
|
1562
1625
|
# @!attribute [rw] back_test_window_offset
|
1563
1626
|
# The point from the end of the dataset where you want to split the
|
1564
|
-
# data for model training and evaluation.
|
1565
|
-
# the number of data points.
|
1627
|
+
# data for model training and testing (evaluation). Specify the value
|
1628
|
+
# as the number of data points. The default is the value of the
|
1629
|
+
# forecast horizon. `BackTestWindowOffset` can be used to mimic a past
|
1630
|
+
# virtual forecast start date. This value must be greater than or
|
1631
|
+
# equal to the forecast horizon and less than half of the
|
1632
|
+
# TARGET\_TIME\_SERIES dataset length.
|
1633
|
+
#
|
1634
|
+
# `ForecastHorizon` <= `BackTestWindowOffset` < 1/2 *
|
1635
|
+
# TARGET\_TIME\_SERIES dataset length
|
1566
1636
|
# @return [Integer]
|
1567
1637
|
#
|
1568
1638
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EvaluationParameters AWS API Documentation
|
@@ -1630,17 +1700,16 @@ module Aws::ForecastService
|
|
1630
1700
|
# }
|
1631
1701
|
#
|
1632
1702
|
# @!attribute [rw] attribute_name
|
1633
|
-
# The name of the schema attribute
|
1634
|
-
# featurized.
|
1635
|
-
#
|
1636
|
-
#
|
1637
|
-
#
|
1703
|
+
# The name of the schema attribute that specifies the data field to be
|
1704
|
+
# featurized. Only the `target` field of the `TARGET_TIME_SERIES`
|
1705
|
+
# dataset type is supported. For example, for the `RETAIL` domain, the
|
1706
|
+
# target is `demand`, and for the `CUSTOM` domain, the target is
|
1707
|
+
# `target_value`.
|
1638
1708
|
# @return [String]
|
1639
1709
|
#
|
1640
1710
|
# @!attribute [rw] featurization_pipeline
|
1641
|
-
# An array `FeaturizationMethod`
|
1642
|
-
# transformation
|
1643
|
-
# limited to one.
|
1711
|
+
# An array of one `FeaturizationMethod` object that specifies the
|
1712
|
+
# feature transformation method.
|
1644
1713
|
# @return [Array<Types::FeaturizationMethod>]
|
1645
1714
|
#
|
1646
1715
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Featurization AWS API Documentation
|
@@ -1658,9 +1727,10 @@ module Aws::ForecastService
|
|
1658
1727
|
#
|
1659
1728
|
# You define featurization using the `FeaturizationConfig` object. You
|
1660
1729
|
# specify an array of transformations, one for each field that you want
|
1661
|
-
# to featurize. You then include the `FeaturizationConfig` in
|
1662
|
-
# `CreatePredictor` request. Amazon Forecast applies the
|
1663
|
-
# to the `TARGET_TIME_SERIES` dataset before model
|
1730
|
+
# to featurize. You then include the `FeaturizationConfig` object in
|
1731
|
+
# your `CreatePredictor` request. Amazon Forecast applies the
|
1732
|
+
# featurization to the `TARGET_TIME_SERIES` dataset before model
|
1733
|
+
# training.
|
1664
1734
|
#
|
1665
1735
|
# You can create multiple featurization configurations. For example, you
|
1666
1736
|
# might call the `CreatePredictor` operation twice by specifying
|
@@ -1694,6 +1764,12 @@ module Aws::ForecastService
|
|
1694
1764
|
# (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes),
|
1695
1765
|
# 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates
|
1696
1766
|
# every year and "5min" indicates every five minutes.
|
1767
|
+
#
|
1768
|
+
# The frequency must be greater than or equal to the
|
1769
|
+
# TARGET\_TIME\_SERIES dataset frequency.
|
1770
|
+
#
|
1771
|
+
# When a RELATED\_TIME\_SERIES dataset is provided, the frequency must
|
1772
|
+
# be equal to the RELATED\_TIME\_SERIES dataset frequency.
|
1697
1773
|
# @return [String]
|
1698
1774
|
#
|
1699
1775
|
# @!attribute [rw] forecast_dimensions
|
@@ -1704,12 +1780,17 @@ module Aws::ForecastService
|
|
1704
1780
|
# sales across all of your stores, and your dataset contains a
|
1705
1781
|
# `store_id` field. If you want the sales forecast for each item by
|
1706
1782
|
# store, you would specify `store_id` as the dimension.
|
1783
|
+
#
|
1784
|
+
# All forecast dimensions specified in the `TARGET_TIME_SERIES`
|
1785
|
+
# dataset don't need to be specified in the `CreatePredictor`
|
1786
|
+
# request. All forecast dimensions specified in the
|
1787
|
+
# `RELATED_TIME_SERIES` dataset must be specified in the
|
1788
|
+
# `CreatePredictor` request.
|
1707
1789
|
# @return [Array<String>]
|
1708
1790
|
#
|
1709
1791
|
# @!attribute [rw] featurizations
|
1710
1792
|
# An array of featurization (transformation) information for the
|
1711
|
-
# fields of a dataset.
|
1712
|
-
# supported.
|
1793
|
+
# fields of a dataset. Only a single featurization is supported.
|
1713
1794
|
# @return [Array<Types::Featurization>]
|
1714
1795
|
#
|
1715
1796
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/FeaturizationConfig AWS API Documentation
|
@@ -1721,12 +1802,14 @@ module Aws::ForecastService
|
|
1721
1802
|
include Aws::Structure
|
1722
1803
|
end
|
1723
1804
|
|
1724
|
-
# Provides information about
|
1805
|
+
# Provides information about the method that featurizes (transforms) a
|
1725
1806
|
# dataset field. The method is part of the `FeaturizationPipeline` of
|
1726
|
-
# the Featurization object. If
|
1727
|
-
#
|
1807
|
+
# the Featurization object. If you don't specify
|
1808
|
+
# `FeaturizationMethodParameters`, Amazon Forecast uses default
|
1809
|
+
# parameters.
|
1728
1810
|
#
|
1729
|
-
#
|
1811
|
+
# The following is an example of how you specify a `FeaturizationMethod`
|
1812
|
+
# object.
|
1730
1813
|
#
|
1731
1814
|
# `\{`
|
1732
1815
|
#
|
@@ -1748,14 +1831,14 @@ module Aws::ForecastService
|
|
1748
1831
|
# }
|
1749
1832
|
#
|
1750
1833
|
# @!attribute [rw] featurization_method_name
|
1751
|
-
# The name of the method.
|
1752
|
-
#
|
1834
|
+
# The name of the method. The "filling" method is the only supported
|
1835
|
+
# method.
|
1753
1836
|
# @return [String]
|
1754
1837
|
#
|
1755
1838
|
# @!attribute [rw] featurization_method_parameters
|
1756
|
-
# The method parameters (key-value pairs). Specify these to
|
1757
|
-
# the default values. The following list shows the parameters
|
1758
|
-
# their valid values. Bold signifies the default value.
|
1839
|
+
# The method parameters (key-value pairs). Specify these parameters to
|
1840
|
+
# override the default values. The following list shows the parameters
|
1841
|
+
# and their valid values. Bold signifies the default value.
|
1759
1842
|
#
|
1760
1843
|
# * `aggregation`\: **sum**, `avg`, `first`, `min`, `max`
|
1761
1844
|
#
|
@@ -1776,9 +1859,9 @@ module Aws::ForecastService
|
|
1776
1859
|
|
1777
1860
|
# Describes a filter for choosing a subset of objects. Each filter
|
1778
1861
|
# consists of a condition and a match statement. The condition is either
|
1779
|
-
# `IS` or `IS_NOT`, which specifies whether to include or exclude
|
1780
|
-
#
|
1781
|
-
#
|
1862
|
+
# `IS` or `IS_NOT`, which specifies whether to include or exclude the
|
1863
|
+
# objects that match the statement, respectively. The match statement
|
1864
|
+
# consists of a key and a value.
|
1782
1865
|
#
|
1783
1866
|
# @note When making an API call, you may pass Filter
|
1784
1867
|
# data as a hash:
|
@@ -1794,11 +1877,13 @@ module Aws::ForecastService
|
|
1794
1877
|
# @return [String]
|
1795
1878
|
#
|
1796
1879
|
# @!attribute [rw] value
|
1797
|
-
#
|
1880
|
+
# The value to match.
|
1798
1881
|
# @return [String]
|
1799
1882
|
#
|
1800
1883
|
# @!attribute [rw] condition
|
1801
|
-
# The condition to apply.
|
1884
|
+
# The condition to apply. To include the objects that match the
|
1885
|
+
# statement, specify `IS`. To exclude matching objects, specify
|
1886
|
+
# `IS_NOT`.
|
1802
1887
|
# @return [String]
|
1803
1888
|
#
|
1804
1889
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Filter AWS API Documentation
|
@@ -1824,11 +1909,12 @@ module Aws::ForecastService
|
|
1824
1909
|
# @return [String]
|
1825
1910
|
#
|
1826
1911
|
# @!attribute [rw] destination
|
1827
|
-
# The path to the
|
1912
|
+
# The path to the Amazon Simple Storage Service (Amazon S3) bucket
|
1913
|
+
# where the forecast is exported.
|
1828
1914
|
# @return [Types::DataDestination]
|
1829
1915
|
#
|
1830
1916
|
# @!attribute [rw] status
|
1831
|
-
# The status of the forecast export job.
|
1917
|
+
# The status of the forecast export job. States include:
|
1832
1918
|
#
|
1833
1919
|
# * `ACTIVE`
|
1834
1920
|
#
|
@@ -1837,7 +1923,7 @@ module Aws::ForecastService
|
|
1837
1923
|
# * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED`
|
1838
1924
|
#
|
1839
1925
|
# <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
|
1840
|
-
# can access the forecast in your
|
1926
|
+
# can access the forecast in your S3 bucket.
|
1841
1927
|
#
|
1842
1928
|
# </note>
|
1843
1929
|
# @return [String]
|
@@ -1869,7 +1955,8 @@ module Aws::ForecastService
|
|
1869
1955
|
|
1870
1956
|
# Provides a summary of the forecast properties used in the
|
1871
1957
|
# ListForecasts operation. To get the complete set of properties, call
|
1872
|
-
# the DescribeForecast operation, and provide the
|
1958
|
+
# the DescribeForecast operation, and provide the `ForecastArn` that is
|
1959
|
+
# listed in the summary.
|
1873
1960
|
#
|
1874
1961
|
# @!attribute [rw] forecast_arn
|
1875
1962
|
# The ARN of the forecast.
|
@@ -1962,19 +2049,20 @@ module Aws::ForecastService
|
|
1962
2049
|
include Aws::Structure
|
1963
2050
|
end
|
1964
2051
|
|
1965
|
-
# Configuration information for a hyperparameter tuning job.
|
1966
|
-
#
|
2052
|
+
# Configuration information for a hyperparameter tuning job. You specify
|
2053
|
+
# this object in the CreatePredictor request.
|
1967
2054
|
#
|
1968
|
-
# A hyperparameter is a parameter that governs the model training
|
1969
|
-
# process
|
1970
|
-
#
|
1971
|
-
# hyperparameters
|
2055
|
+
# A *hyperparameter* is a parameter that governs the model training
|
2056
|
+
# process. You set hyperparameters before training starts, unlike model
|
2057
|
+
# parameters, which are determined during training. The values of the
|
2058
|
+
# hyperparameters effect which values are chosen for the model
|
2059
|
+
# parameters.
|
1972
2060
|
#
|
1973
|
-
#
|
1974
|
-
#
|
1975
|
-
#
|
1976
|
-
# hyperparameter values. The optimum set of values
|
1977
|
-
# algorithm, the training data, and the
|
2061
|
+
# In a *hyperparameter tuning job*, Amazon Forecast chooses the set of
|
2062
|
+
# hyperparameter values that optimize a specified metric. Forecast
|
2063
|
+
# accomplishes this by running many training jobs over a range of
|
2064
|
+
# hyperparameter values. The optimum set of values depends on the
|
2065
|
+
# algorithm, the training data, and the specified metric objective.
|
1978
2066
|
#
|
1979
2067
|
# @note When making an API call, you may pass HyperParameterTuningJobConfig
|
1980
2068
|
# data as a hash:
|
@@ -2018,7 +2106,7 @@ module Aws::ForecastService
|
|
2018
2106
|
end
|
2019
2107
|
|
2020
2108
|
# The data used to train a predictor. The data includes a dataset group
|
2021
|
-
# and any supplementary features.
|
2109
|
+
# and any supplementary features. You specify this object in the
|
2022
2110
|
# CreatePredictor request.
|
2023
2111
|
#
|
2024
2112
|
# @note When making an API call, you may pass InputDataConfig
|
@@ -2039,8 +2127,8 @@ module Aws::ForecastService
|
|
2039
2127
|
# @return [String]
|
2040
2128
|
#
|
2041
2129
|
# @!attribute [rw] supplementary_features
|
2042
|
-
# An array of supplementary features.
|
2043
|
-
#
|
2130
|
+
# An array of supplementary features. The only supported feature is a
|
2131
|
+
# holiday calendar.
|
2044
2132
|
# @return [Array<Types::SupplementaryFeature>]
|
2045
2133
|
#
|
2046
2134
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/InputDataConfig AWS API Documentation
|
@@ -2078,9 +2166,7 @@ module Aws::ForecastService
|
|
2078
2166
|
#
|
2079
2167
|
# @!attribute [rw] scaling_type
|
2080
2168
|
# The scale that hyperparameter tuning uses to search the
|
2081
|
-
# hyperparameter range.
|
2082
|
-
# hyperparameter scale, see [Hyperparameter Scaling][1]. One of the
|
2083
|
-
# following values:
|
2169
|
+
# hyperparameter range. Valid values:
|
2084
2170
|
#
|
2085
2171
|
# Auto
|
2086
2172
|
#
|
@@ -2097,8 +2183,8 @@ module Aws::ForecastService
|
|
2097
2183
|
# : Hyperparameter tuning searches the values in the hyperparameter
|
2098
2184
|
# range by using a logarithmic scale.
|
2099
2185
|
#
|
2100
|
-
# Logarithmic scaling works only for ranges that have
|
2101
|
-
#
|
2186
|
+
# Logarithmic scaling works only for ranges that have values greater
|
2187
|
+
# than 0.
|
2102
2188
|
#
|
2103
2189
|
# ReverseLogarithmic
|
2104
2190
|
#
|
@@ -2107,6 +2193,9 @@ module Aws::ForecastService
|
|
2107
2193
|
# Reverse logarithmic scaling works only for ranges that are
|
2108
2194
|
# entirely within the range 0 <= x < 1.0.
|
2109
2195
|
#
|
2196
|
+
# For information about choosing a hyperparameter scale, see
|
2197
|
+
# [Hyperparameter Scaling][1]. One of the following values:
|
2198
|
+
#
|
2110
2199
|
#
|
2111
2200
|
#
|
2112
2201
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
|
@@ -2147,7 +2236,7 @@ module Aws::ForecastService
|
|
2147
2236
|
include Aws::Structure
|
2148
2237
|
end
|
2149
2238
|
|
2150
|
-
# The limit on the number of
|
2239
|
+
# The limit on the number of resources per account has been exceeded.
|
2151
2240
|
#
|
2152
2241
|
# @!attribute [rw] message
|
2153
2242
|
# @return [String]
|
@@ -2230,22 +2319,26 @@ module Aws::ForecastService
|
|
2230
2319
|
# @!attribute [rw] filters
|
2231
2320
|
# An array of filters. For each filter, you provide a condition and a
|
2232
2321
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
2233
|
-
# specifies whether to include or exclude
|
2234
|
-
#
|
2235
|
-
#
|
2236
|
-
#
|
2322
|
+
# specifies whether to include or exclude the datasets that match the
|
2323
|
+
# statement from the list, respectively. The match statement consists
|
2324
|
+
# of a key and a value.
|
2325
|
+
#
|
2326
|
+
# **Filter properties**
|
2237
2327
|
#
|
2238
|
-
# * `Condition` - `IS`
|
2328
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
2329
|
+
# `IS_NOT`. To include the datasets that match the statement,
|
2330
|
+
# specify `IS`. To exclude matching datasets, specify `IS_NOT`.
|
2239
2331
|
#
|
2240
|
-
# * `Key` -
|
2332
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
2333
|
+
# `DatasetArn` and `Status`.
|
2241
2334
|
#
|
2242
|
-
# * `Value` -
|
2335
|
+
# * `Value` - The value to match.
|
2243
2336
|
#
|
2244
|
-
# For example, to list all dataset import jobs
|
2245
|
-
#
|
2337
|
+
# For example, to list all dataset import jobs whose status is ACTIVE,
|
2338
|
+
# you specify the following filter:
|
2246
2339
|
#
|
2247
|
-
# `"Filters": [ \{ "Condition": "IS", "Key": "
|
2248
|
-
# "
|
2340
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value":
|
2341
|
+
# "ACTIVE" \} ]`
|
2249
2342
|
# @return [Array<Types::Filter>]
|
2250
2343
|
#
|
2251
2344
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetImportJobsRequest AWS API Documentation
|
@@ -2346,22 +2439,28 @@ module Aws::ForecastService
|
|
2346
2439
|
# @!attribute [rw] filters
|
2347
2440
|
# An array of filters. For each filter, you provide a condition and a
|
2348
2441
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
2349
|
-
# specifies whether to include or exclude
|
2350
|
-
#
|
2351
|
-
# consists of a key and a value.
|
2352
|
-
# valid key, which filters on the `ForecastExportJobName` property.
|
2442
|
+
# specifies whether to include or exclude the forecast export jobs
|
2443
|
+
# that match the statement from the list, respectively. The match
|
2444
|
+
# statement consists of a key and a value.
|
2353
2445
|
#
|
2354
|
-
#
|
2446
|
+
# **Filter properties**
|
2355
2447
|
#
|
2356
|
-
# * `
|
2448
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
2449
|
+
# `IS_NOT`. To include the forecast export jobs that match the
|
2450
|
+
# statement, specify `IS`. To exclude matching forecast export jobs,
|
2451
|
+
# specify `IS_NOT`.
|
2357
2452
|
#
|
2358
|
-
# * `
|
2453
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
2454
|
+
# `ForecastArn` and `Status`.
|
2359
2455
|
#
|
2360
|
-
#
|
2361
|
-
# *my\_forecast\_export\_job*, you would specify:
|
2456
|
+
# * `Value` - The value to match.
|
2362
2457
|
#
|
2363
|
-
#
|
2364
|
-
#
|
2458
|
+
# For example, to list all jobs that export a forecast named
|
2459
|
+
# *electricityforecast*, specify the following filter:
|
2460
|
+
#
|
2461
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "ForecastArn", "Value":
|
2462
|
+
# "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast"
|
2463
|
+
# \} ]`
|
2365
2464
|
# @return [Array<Types::Filter>]
|
2366
2465
|
#
|
2367
2466
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastExportJobsRequest AWS API Documentation
|
@@ -2418,22 +2517,26 @@ module Aws::ForecastService
|
|
2418
2517
|
# @!attribute [rw] filters
|
2419
2518
|
# An array of filters. For each filter, you provide a condition and a
|
2420
2519
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
2421
|
-
# specifies whether to include or exclude
|
2422
|
-
#
|
2423
|
-
#
|
2424
|
-
#
|
2520
|
+
# specifies whether to include or exclude the forecasts that match the
|
2521
|
+
# statement from the list, respectively. The match statement consists
|
2522
|
+
# of a key and a value.
|
2523
|
+
#
|
2524
|
+
# **Filter properties**
|
2425
2525
|
#
|
2426
|
-
# * `Condition` - `IS`
|
2526
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
2527
|
+
# `IS_NOT`. To include the forecasts that match the statement,
|
2528
|
+
# specify `IS`. To exclude matching forecasts, specify `IS_NOT`.
|
2427
2529
|
#
|
2428
|
-
# * `Key` -
|
2530
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
2531
|
+
# `DatasetGroupArn`, `PredictorArn`, and `Status`.
|
2429
2532
|
#
|
2430
|
-
# * `Value` -
|
2533
|
+
# * `Value` - The value to match.
|
2431
2534
|
#
|
2432
|
-
# For example, to list all forecasts
|
2433
|
-
# specify:
|
2535
|
+
# For example, to list all forecasts whose status is not ACTIVE, you
|
2536
|
+
# would specify:
|
2434
2537
|
#
|
2435
|
-
# `"Filters": [ \{ "Condition": "
|
2436
|
-
# "
|
2538
|
+
# `"Filters": [ \{ "Condition": "IS_NOT", "Key": "Status", "Value":
|
2539
|
+
# "ACTIVE" \} ]`
|
2437
2540
|
# @return [Array<Types::Filter>]
|
2438
2541
|
#
|
2439
2542
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastsRequest AWS API Documentation
|
@@ -2490,22 +2593,26 @@ module Aws::ForecastService
|
|
2490
2593
|
# @!attribute [rw] filters
|
2491
2594
|
# An array of filters. For each filter, you provide a condition and a
|
2492
2595
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
2493
|
-
# specifies whether to include or exclude
|
2494
|
-
#
|
2495
|
-
# consists of a key and a value.
|
2496
|
-
# valid key, which filters on the `PredictorName` property.
|
2596
|
+
# specifies whether to include or exclude the predictors that match
|
2597
|
+
# the statement from the list, respectively. The match statement
|
2598
|
+
# consists of a key and a value.
|
2497
2599
|
#
|
2498
|
-
#
|
2600
|
+
# **Filter properties**
|
2499
2601
|
#
|
2500
|
-
# * `
|
2602
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
2603
|
+
# `IS_NOT`. To include the predictors that match the statement,
|
2604
|
+
# specify `IS`. To exclude matching predictors, specify `IS_NOT`.
|
2501
2605
|
#
|
2502
|
-
# * `
|
2606
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
2607
|
+
# `DatasetGroupArn` and `Status`.
|
2503
2608
|
#
|
2504
|
-
#
|
2505
|
-
# specify:
|
2609
|
+
# * `Value` - The value to match.
|
2506
2610
|
#
|
2507
|
-
#
|
2508
|
-
#
|
2611
|
+
# For example, to list all predictors whose status is ACTIVE, you
|
2612
|
+
# would specify:
|
2613
|
+
#
|
2614
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value":
|
2615
|
+
# "ACTIVE" \} ]`
|
2509
2616
|
# @return [Array<Types::Filter>]
|
2510
2617
|
#
|
2511
2618
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListPredictorsRequest AWS API Documentation
|
@@ -2534,8 +2641,8 @@ module Aws::ForecastService
|
|
2534
2641
|
include Aws::Structure
|
2535
2642
|
end
|
2536
2643
|
|
2537
|
-
# Provides metrics used to evaluate the performance of a
|
2538
|
-
# object is part of the WindowSummary object.
|
2644
|
+
# Provides metrics that are used to evaluate the performance of a
|
2645
|
+
# predictor. This object is part of the WindowSummary object.
|
2539
2646
|
#
|
2540
2647
|
# @!attribute [rw] rmse
|
2541
2648
|
# The root mean square error (RMSE).
|
@@ -2610,7 +2717,47 @@ module Aws::ForecastService
|
|
2610
2717
|
include Aws::Structure
|
2611
2718
|
end
|
2612
2719
|
|
2613
|
-
#
|
2720
|
+
# The algorithm used to perform a backtest and the status of those
|
2721
|
+
# tests.
|
2722
|
+
#
|
2723
|
+
# @!attribute [rw] algorithm_arn
|
2724
|
+
# The ARN of the algorithm used to test the predictor.
|
2725
|
+
# @return [String]
|
2726
|
+
#
|
2727
|
+
# @!attribute [rw] test_windows
|
2728
|
+
# An array of test windows used to evaluate the algorithm. The
|
2729
|
+
# `NumberOfBacktestWindows` from the object determines the number of
|
2730
|
+
# windows in the array.
|
2731
|
+
# @return [Array<Types::TestWindowSummary>]
|
2732
|
+
#
|
2733
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecution AWS API Documentation
|
2734
|
+
#
|
2735
|
+
class PredictorExecution < Struct.new(
|
2736
|
+
:algorithm_arn,
|
2737
|
+
:test_windows)
|
2738
|
+
include Aws::Structure
|
2739
|
+
end
|
2740
|
+
|
2741
|
+
# Contains details on the backtests performed to evaluate the accuracy
|
2742
|
+
# of the predictor. The tests are returned in descending order of
|
2743
|
+
# accuracy, with the most accurate backtest appearing first. You specify
|
2744
|
+
# the number of backtests to perform when you call the operation.
|
2745
|
+
#
|
2746
|
+
# @!attribute [rw] predictor_executions
|
2747
|
+
# An array of the backtests performed to evaluate the accuracy of the
|
2748
|
+
# predictor against a particular algorithm. The
|
2749
|
+
# `NumberOfBacktestWindows` from the object determines the number of
|
2750
|
+
# windows in the array.
|
2751
|
+
# @return [Array<Types::PredictorExecution>]
|
2752
|
+
#
|
2753
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecutionDetails AWS API Documentation
|
2754
|
+
#
|
2755
|
+
class PredictorExecutionDetails < Struct.new(
|
2756
|
+
:predictor_executions)
|
2757
|
+
include Aws::Structure
|
2758
|
+
end
|
2759
|
+
|
2760
|
+
# Provides a summary of the predictor properties that are used in the
|
2614
2761
|
# ListPredictors operation. To get the complete set of properties, call
|
2615
2762
|
# the DescribePredictor operation, and provide the listed
|
2616
2763
|
# `PredictorArn`.
|
@@ -2639,8 +2786,8 @@ module Aws::ForecastService
|
|
2639
2786
|
#
|
2640
2787
|
# * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
|
2641
2788
|
#
|
2642
|
-
# <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before
|
2643
|
-
# predictor to create a forecast.
|
2789
|
+
# <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before you can use
|
2790
|
+
# the predictor to create a forecast.
|
2644
2791
|
#
|
2645
2792
|
# </note>
|
2646
2793
|
# @return [String]
|
@@ -2673,8 +2820,8 @@ module Aws::ForecastService
|
|
2673
2820
|
include Aws::Structure
|
2674
2821
|
end
|
2675
2822
|
|
2676
|
-
# There is already a resource with
|
2677
|
-
#
|
2823
|
+
# There is already a resource with this name. Try again with a different
|
2824
|
+
# name.
|
2678
2825
|
#
|
2679
2826
|
# @!attribute [rw] message
|
2680
2827
|
# @return [String]
|
@@ -2714,8 +2861,10 @@ module Aws::ForecastService
|
|
2714
2861
|
# The path to the file(s) in an Amazon Simple Storage Service (Amazon
|
2715
2862
|
# S3) bucket, and an AWS Identity and Access Management (IAM) role that
|
2716
2863
|
# Amazon Forecast can assume to access the file(s). Optionally, includes
|
2717
|
-
# an AWS Key Management Service (KMS) key. This object is
|
2718
|
-
#
|
2864
|
+
# an AWS Key Management Service (KMS) key. This object is part of the
|
2865
|
+
# DataSource object that is submitted in the CreateDatasetImportJob
|
2866
|
+
# request, and part of the DataDestination object that is submitted in
|
2867
|
+
# the CreateForecastExportJob request.
|
2719
2868
|
#
|
2720
2869
|
# @note When making an API call, you may pass S3Config
|
2721
2870
|
# data as a hash:
|
@@ -2733,12 +2882,13 @@ module Aws::ForecastService
|
|
2733
2882
|
#
|
2734
2883
|
# @!attribute [rw] role_arn
|
2735
2884
|
# The ARN of the AWS Identity and Access Management (IAM) role that
|
2736
|
-
# Amazon Forecast can assume to access the Amazon S3 bucket or
|
2737
|
-
#
|
2885
|
+
# Amazon Forecast can assume to access the Amazon S3 bucket or files.
|
2886
|
+
# If you provide a value for the `KMSKeyArn` key, the role must allow
|
2887
|
+
# access to the key.
|
2738
2888
|
#
|
2739
|
-
#
|
2740
|
-
#
|
2741
|
-
#
|
2889
|
+
# Passing a role across AWS accounts is not allowed. If you pass a
|
2890
|
+
# role that isn't in your account, you get an `InvalidInputException`
|
2891
|
+
# error.
|
2742
2892
|
# @return [String]
|
2743
2893
|
#
|
2744
2894
|
# @!attribute [rw] kms_key_arn
|
@@ -2755,7 +2905,7 @@ module Aws::ForecastService
|
|
2755
2905
|
include Aws::Structure
|
2756
2906
|
end
|
2757
2907
|
|
2758
|
-
# Defines the fields of a dataset.
|
2908
|
+
# Defines the fields of a dataset. You specify this object in the
|
2759
2909
|
# CreateDataset request.
|
2760
2910
|
#
|
2761
2911
|
# @note When making an API call, you may pass Schema
|
@@ -2782,7 +2932,7 @@ module Aws::ForecastService
|
|
2782
2932
|
include Aws::Structure
|
2783
2933
|
end
|
2784
2934
|
|
2785
|
-
# An attribute of a schema, which defines a field
|
2935
|
+
# An attribute of a schema, which defines a dataset field. A schema
|
2786
2936
|
# attribute is required for every field in a dataset. The Schema object
|
2787
2937
|
# contains an array of `SchemaAttribute` objects.
|
2788
2938
|
#
|
@@ -2810,8 +2960,8 @@ module Aws::ForecastService
|
|
2810
2960
|
include Aws::Structure
|
2811
2961
|
end
|
2812
2962
|
|
2813
|
-
# Provides statistics for each data field imported to an Amazon
|
2814
|
-
# dataset with the CreateDatasetImportJob operation.
|
2963
|
+
# Provides statistics for each data field imported into to an Amazon
|
2964
|
+
# Forecast dataset with the CreateDatasetImportJob operation.
|
2815
2965
|
#
|
2816
2966
|
# @!attribute [rw] count
|
2817
2967
|
# The number of values in the field.
|
@@ -2862,10 +3012,10 @@ module Aws::ForecastService
|
|
2862
3012
|
# Describes a supplementary feature of a dataset group. This object is
|
2863
3013
|
# part of the InputDataConfig object.
|
2864
3014
|
#
|
2865
|
-
#
|
2866
|
-
#
|
2867
|
-
# the calendar. For the calendar data, see
|
2868
|
-
#
|
3015
|
+
# The only supported feature is a holiday calendar. If you use the
|
3016
|
+
# calendar, all data in the datasets should belong to the same country
|
3017
|
+
# as the calendar. For the holiday calendar data, see the [Jollyday][1]
|
3018
|
+
# web site.
|
2869
3019
|
#
|
2870
3020
|
#
|
2871
3021
|
#
|
@@ -2905,6 +3055,41 @@ module Aws::ForecastService
|
|
2905
3055
|
include Aws::Structure
|
2906
3056
|
end
|
2907
3057
|
|
3058
|
+
# The status, start time, and end time of a backtest, as well as a
|
3059
|
+
# failure reason if applicable.
|
3060
|
+
#
|
3061
|
+
# @!attribute [rw] test_window_start
|
3062
|
+
# The time at which the test began.
|
3063
|
+
# @return [Time]
|
3064
|
+
#
|
3065
|
+
# @!attribute [rw] test_window_end
|
3066
|
+
# The time at which the test ended.
|
3067
|
+
# @return [Time]
|
3068
|
+
#
|
3069
|
+
# @!attribute [rw] status
|
3070
|
+
# The status of the test. Possible status values are:
|
3071
|
+
#
|
3072
|
+
# * `ACTIVE`
|
3073
|
+
#
|
3074
|
+
# * `CREATE_IN_PROGRESS`
|
3075
|
+
#
|
3076
|
+
# * `CREATE_FAILED`
|
3077
|
+
# @return [String]
|
3078
|
+
#
|
3079
|
+
# @!attribute [rw] message
|
3080
|
+
# If the test failed, the reason why it failed.
|
3081
|
+
# @return [String]
|
3082
|
+
#
|
3083
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/TestWindowSummary AWS API Documentation
|
3084
|
+
#
|
3085
|
+
class TestWindowSummary < Struct.new(
|
3086
|
+
:test_window_start,
|
3087
|
+
:test_window_end,
|
3088
|
+
:status,
|
3089
|
+
:message)
|
3090
|
+
include Aws::Structure
|
3091
|
+
end
|
3092
|
+
|
2908
3093
|
# @note When making an API call, you may pass UpdateDatasetGroupRequest
|
2909
3094
|
# data as a hash:
|
2910
3095
|
#
|
@@ -2918,8 +3103,8 @@ module Aws::ForecastService
|
|
2918
3103
|
# @return [String]
|
2919
3104
|
#
|
2920
3105
|
# @!attribute [rw] dataset_arns
|
2921
|
-
# An array of Amazon Resource Names (ARNs) of the datasets to add
|
2922
|
-
# the dataset group.
|
3106
|
+
# An array of the Amazon Resource Names (ARNs) of the datasets to add
|
3107
|
+
# to the dataset group.
|
2923
3108
|
# @return [Array<String>]
|
2924
3109
|
#
|
2925
3110
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/UpdateDatasetGroupRequest AWS API Documentation
|
@@ -2945,8 +3130,8 @@ module Aws::ForecastService
|
|
2945
3130
|
# @return [Float]
|
2946
3131
|
#
|
2947
3132
|
# @!attribute [rw] loss_value
|
2948
|
-
# The difference between the predicted value and actual value over
|
2949
|
-
# quantile, weighted (normalized) by dividing by the sum over all
|
3133
|
+
# The difference between the predicted value and the actual value over
|
3134
|
+
# the quantile, weighted (normalized) by dividing by the sum over all
|
2950
3135
|
# quantiles.
|
2951
3136
|
# @return [Float]
|
2952
3137
|
#
|
@@ -2987,7 +3172,6 @@ module Aws::ForecastService
|
|
2987
3172
|
#
|
2988
3173
|
# @!attribute [rw] metrics
|
2989
3174
|
# Provides metrics used to evaluate the performance of a predictor.
|
2990
|
-
# This object is part of the WindowSummary object.
|
2991
3175
|
# @return [Types::Metrics]
|
2992
3176
|
#
|
2993
3177
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/WindowSummary AWS API Documentation
|