aws-sdk-forecastservice 1.0.0 → 1.5.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -80,6 +80,8 @@ module Aws::ForecastService
80
80
  ForecastExportJobSummary = Shapes::StructureShape.new(name: 'ForecastExportJobSummary')
81
81
  ForecastExportJobs = Shapes::ListShape.new(name: 'ForecastExportJobs')
82
82
  ForecastSummary = Shapes::StructureShape.new(name: 'ForecastSummary')
83
+ ForecastType = Shapes::StringShape.new(name: 'ForecastType')
84
+ ForecastTypes = Shapes::ListShape.new(name: 'ForecastTypes')
83
85
  Forecasts = Shapes::ListShape.new(name: 'Forecasts')
84
86
  Frequency = Shapes::StringShape.new(name: 'Frequency')
85
87
  GetAccuracyMetricsRequest = Shapes::StructureShape.new(name: 'GetAccuracyMetricsRequest')
@@ -114,6 +116,9 @@ module Aws::ForecastService
114
116
  ParameterRanges = Shapes::StructureShape.new(name: 'ParameterRanges')
115
117
  ParameterValue = Shapes::StringShape.new(name: 'ParameterValue')
116
118
  PredictorEvaluationResults = Shapes::ListShape.new(name: 'PredictorEvaluationResults')
119
+ PredictorExecution = Shapes::StructureShape.new(name: 'PredictorExecution')
120
+ PredictorExecutionDetails = Shapes::StructureShape.new(name: 'PredictorExecutionDetails')
121
+ PredictorExecutions = Shapes::ListShape.new(name: 'PredictorExecutions')
117
122
  PredictorSummary = Shapes::StructureShape.new(name: 'PredictorSummary')
118
123
  Predictors = Shapes::ListShape.new(name: 'Predictors')
119
124
  ResourceAlreadyExistsException = Shapes::StructureShape.new(name: 'ResourceAlreadyExistsException')
@@ -130,6 +135,8 @@ module Aws::ForecastService
130
135
  String = Shapes::StringShape.new(name: 'String')
131
136
  SupplementaryFeature = Shapes::StructureShape.new(name: 'SupplementaryFeature')
132
137
  SupplementaryFeatures = Shapes::ListShape.new(name: 'SupplementaryFeatures')
138
+ TestWindowDetails = Shapes::ListShape.new(name: 'TestWindowDetails')
139
+ TestWindowSummary = Shapes::StructureShape.new(name: 'TestWindowSummary')
133
140
  TestWindows = Shapes::ListShape.new(name: 'TestWindows')
134
141
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
135
142
  TimestampFormat = Shapes::StringShape.new(name: 'TimestampFormat')
@@ -196,6 +203,7 @@ module Aws::ForecastService
196
203
 
197
204
  CreateForecastRequest.add_member(:forecast_name, Shapes::ShapeRef.new(shape: Name, required: true, location_name: "ForecastName"))
198
205
  CreateForecastRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
206
+ CreateForecastRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
199
207
  CreateForecastRequest.struct_class = Types::CreateForecastRequest
200
208
 
201
209
  CreateForecastResponse.add_member(:forecast_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "ForecastArn"))
@@ -331,6 +339,7 @@ module Aws::ForecastService
331
339
 
332
340
  DescribeForecastResponse.add_member(:forecast_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "ForecastArn"))
333
341
  DescribeForecastResponse.add_member(:forecast_name, Shapes::ShapeRef.new(shape: Name, location_name: "ForecastName"))
342
+ DescribeForecastResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
334
343
  DescribeForecastResponse.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
335
344
  DescribeForecastResponse.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "DatasetGroupArn"))
336
345
  DescribeForecastResponse.add_member(:status, Shapes::ShapeRef.new(shape: String, location_name: "Status"))
@@ -354,6 +363,7 @@ module Aws::ForecastService
354
363
  DescribePredictorResponse.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, location_name: "InputDataConfig"))
355
364
  DescribePredictorResponse.add_member(:featurization_config, Shapes::ShapeRef.new(shape: FeaturizationConfig, location_name: "FeaturizationConfig"))
356
365
  DescribePredictorResponse.add_member(:encryption_config, Shapes::ShapeRef.new(shape: EncryptionConfig, location_name: "EncryptionConfig"))
366
+ DescribePredictorResponse.add_member(:predictor_execution_details, Shapes::ShapeRef.new(shape: PredictorExecutionDetails, location_name: "PredictorExecutionDetails"))
357
367
  DescribePredictorResponse.add_member(:dataset_import_job_arns, Shapes::ShapeRef.new(shape: ArnList, location_name: "DatasetImportJobArns"))
358
368
  DescribePredictorResponse.add_member(:auto_ml_algorithm_arns, Shapes::ShapeRef.new(shape: ArnList, location_name: "AutoMLAlgorithmArns"))
359
369
  DescribePredictorResponse.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "Status"))
@@ -427,6 +437,8 @@ module Aws::ForecastService
427
437
  ForecastSummary.add_member(:last_modification_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModificationTime"))
428
438
  ForecastSummary.struct_class = Types::ForecastSummary
429
439
 
440
+ ForecastTypes.member = Shapes::ShapeRef.new(shape: ForecastType)
441
+
430
442
  Forecasts.member = Shapes::ShapeRef.new(shape: ForecastSummary)
431
443
 
432
444
  GetAccuracyMetricsRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
@@ -522,6 +534,15 @@ module Aws::ForecastService
522
534
 
523
535
  PredictorEvaluationResults.member = Shapes::ShapeRef.new(shape: EvaluationResult)
524
536
 
537
+ PredictorExecution.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "AlgorithmArn"))
538
+ PredictorExecution.add_member(:test_windows, Shapes::ShapeRef.new(shape: TestWindowDetails, location_name: "TestWindows"))
539
+ PredictorExecution.struct_class = Types::PredictorExecution
540
+
541
+ PredictorExecutionDetails.add_member(:predictor_executions, Shapes::ShapeRef.new(shape: PredictorExecutions, location_name: "PredictorExecutions"))
542
+ PredictorExecutionDetails.struct_class = Types::PredictorExecutionDetails
543
+
544
+ PredictorExecutions.member = Shapes::ShapeRef.new(shape: PredictorExecution)
545
+
525
546
  PredictorSummary.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
526
547
  PredictorSummary.add_member(:predictor_name, Shapes::ShapeRef.new(shape: Name, location_name: "PredictorName"))
527
548
  PredictorSummary.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "DatasetGroupArn"))
@@ -572,6 +593,14 @@ module Aws::ForecastService
572
593
 
573
594
  SupplementaryFeatures.member = Shapes::ShapeRef.new(shape: SupplementaryFeature)
574
595
 
596
+ TestWindowDetails.member = Shapes::ShapeRef.new(shape: TestWindowSummary)
597
+
598
+ TestWindowSummary.add_member(:test_window_start, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TestWindowStart"))
599
+ TestWindowSummary.add_member(:test_window_end, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TestWindowEnd"))
600
+ TestWindowSummary.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "Status"))
601
+ TestWindowSummary.add_member(:message, Shapes::ShapeRef.new(shape: ErrorMessage, location_name: "Message"))
602
+ TestWindowSummary.struct_class = Types::TestWindowSummary
603
+
575
604
  TestWindows.member = Shapes::ShapeRef.new(shape: WindowSummary)
576
605
 
577
606
  TrainingParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
@@ -6,6 +6,34 @@
6
6
  # WARNING ABOUT GENERATED CODE
7
7
 
8
8
  module Aws::ForecastService
9
+
10
+ # When ForecastService returns an error response, the Ruby SDK constructs and raises an error.
11
+ # These errors all extend Aws::ForecastService::Errors::ServiceError < {Aws::Errors::ServiceError}
12
+ #
13
+ # You can rescue all ForecastService errors using ServiceError:
14
+ #
15
+ # begin
16
+ # # do stuff
17
+ # rescue Aws::ForecastService::Errors::ServiceError
18
+ # # rescues all ForecastService API errors
19
+ # end
20
+ #
21
+ #
22
+ # ## Request Context
23
+ # ServiceError objects have a {Aws::Errors::ServiceError#context #context} method that returns
24
+ # information about the request that generated the error.
25
+ # See {Seahorse::Client::RequestContext} for more information.
26
+ #
27
+ # ## Error Classes
28
+ # * {InvalidInputException}
29
+ # * {InvalidNextTokenException}
30
+ # * {LimitExceededException}
31
+ # * {ResourceAlreadyExistsException}
32
+ # * {ResourceInUseException}
33
+ # * {ResourceNotFoundException}
34
+ #
35
+ # Additionally, error classes are dynamically generated for service errors based on the error code
36
+ # if they are not defined above.
9
37
  module Errors
10
38
 
11
39
  extend Aws::Errors::DynamicErrors
@@ -23,7 +51,6 @@ module Aws::ForecastService
23
51
  def message
24
52
  @message || @data[:message]
25
53
  end
26
-
27
54
  end
28
55
 
29
56
  class InvalidNextTokenException < ServiceError
@@ -39,7 +66,6 @@ module Aws::ForecastService
39
66
  def message
40
67
  @message || @data[:message]
41
68
  end
42
-
43
69
  end
44
70
 
45
71
  class LimitExceededException < ServiceError
@@ -55,7 +81,6 @@ module Aws::ForecastService
55
81
  def message
56
82
  @message || @data[:message]
57
83
  end
58
-
59
84
  end
60
85
 
61
86
  class ResourceAlreadyExistsException < ServiceError
@@ -71,7 +96,6 @@ module Aws::ForecastService
71
96
  def message
72
97
  @message || @data[:message]
73
98
  end
74
-
75
99
  end
76
100
 
77
101
  class ResourceInUseException < ServiceError
@@ -87,7 +111,6 @@ module Aws::ForecastService
87
111
  def message
88
112
  @message || @data[:message]
89
113
  end
90
-
91
114
  end
92
115
 
93
116
  class ResourceNotFoundException < ServiceError
@@ -103,7 +126,6 @@ module Aws::ForecastService
103
126
  def message
104
127
  @message || @data[:message]
105
128
  end
106
-
107
129
  end
108
130
 
109
131
  end
@@ -6,6 +6,7 @@
6
6
  # WARNING ABOUT GENERATED CODE
7
7
 
8
8
  module Aws::ForecastService
9
+
9
10
  class Resource
10
11
 
11
12
  # @param options ({})
@@ -62,9 +62,7 @@ module Aws::ForecastService
62
62
  #
63
63
  # @!attribute [rw] scaling_type
64
64
  # The scale that hyperparameter tuning uses to search the
65
- # hyperparameter range. For information about choosing a
66
- # hyperparameter scale, see [Hyperparameter Scaling][1]. One of the
67
- # following values:
65
+ # hyperparameter range. Valid values:
68
66
  #
69
67
  # Auto
70
68
  #
@@ -81,17 +79,20 @@ module Aws::ForecastService
81
79
  # : Hyperparameter tuning searches the values in the hyperparameter
82
80
  # range by using a logarithmic scale.
83
81
  #
84
- # Logarithmic scaling works only for ranges that have only values
85
- # greater than 0.
82
+ # Logarithmic scaling works only for ranges that have values greater
83
+ # than 0.
86
84
  #
87
85
  # ReverseLogarithmic
88
86
  #
89
- # : Hyperparemeter tuning searches the values in the hyperparameter
87
+ # : hyperparameter tuning searches the values in the hyperparameter
90
88
  # range by using a reverse logarithmic scale.
91
89
  #
92
90
  # Reverse logarithmic scaling works only for ranges that are
93
91
  # entirely within the range 0 &lt;= x &lt; 1.0.
94
92
  #
93
+ # For information about choosing a hyperparameter scale, see
94
+ # [Hyperparameter Scaling][1]. One of the following values:
95
+ #
95
96
  #
96
97
  #
97
98
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
@@ -121,13 +122,16 @@ module Aws::ForecastService
121
122
  # @return [String]
122
123
  #
123
124
  # @!attribute [rw] domain
124
- # The domain associated with the dataset group. The `Domain` and
125
- # `DatasetType` that you choose determine the fields that must be
126
- # present in the training data that you import to the dataset. For
127
- # example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES`
128
- # as the `DatasetType`, Amazon Forecast requires `item_id`,
129
- # `timestamp`, and `demand` fields to be present in your data. For
130
- # more information, see howitworks-datasets-groups.
125
+ # The domain associated with the dataset group. When you add a dataset
126
+ # to a dataset group, this value and the value specified for the
127
+ # `Domain` parameter of the CreateDataset operation must match.
128
+ #
129
+ # The `Domain` and `DatasetType` that you choose determine the fields
130
+ # that must be present in training data that you import to a dataset.
131
+ # For example, if you choose the `RETAIL` domain and
132
+ # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
133
+ # that `item_id`, `timestamp`, and `demand` fields are present in your
134
+ # data. For more information, see howitworks-datasets-groups.
131
135
  # @return [String]
132
136
  #
133
137
  # @!attribute [rw] dataset_arns
@@ -172,10 +176,10 @@ module Aws::ForecastService
172
176
  # }
173
177
  #
174
178
  # @!attribute [rw] dataset_import_job_name
175
- # The name for the dataset import job. It is recommended to include
176
- # the current timestamp in the name to guard against getting a
177
- # `ResourceAlreadyExistsException` exception, for example,
178
- # `20190721DatasetImport`.
179
+ # The name for the dataset import job. We recommend including the
180
+ # current timestamp in the name, for example, `20190721DatasetImport`.
181
+ # This can help you avoid getting a `ResourceAlreadyExistsException`
182
+ # exception.
179
183
  # @return [String]
180
184
  #
181
185
  # @!attribute [rw] dataset_arn
@@ -186,22 +190,32 @@ module Aws::ForecastService
186
190
  # @!attribute [rw] data_source
187
191
  # The location of the training data to import and an AWS Identity and
188
192
  # Access Management (IAM) role that Amazon Forecast can assume to
189
- # access the data.
193
+ # access the data. The training data must be stored in an Amazon S3
194
+ # bucket.
195
+ #
196
+ # If encryption is used, `DataSource` must include an AWS Key
197
+ # Management Service (KMS) key and the IAM role must allow Amazon
198
+ # Forecast permission to access the key. The KMS key and IAM role must
199
+ # match those specified in the `EncryptionConfig` parameter of the
200
+ # CreateDataset operation.
190
201
  # @return [Types::DataSource]
191
202
  #
192
203
  # @!attribute [rw] timestamp_format
193
- # The format of timestamps in the dataset. Two formats are supported,
194
- # dependent on the `DataFrequency` specified when the dataset was
195
- # created.
204
+ # The format of timestamps in the dataset. The format that you specify
205
+ # depends on the `DataFrequency` specified when the dataset was
206
+ # created. The following formats are supported
196
207
  #
197
208
  # * "yyyy-MM-dd"
198
209
  #
199
- # For data frequencies: Y, M, W, and D
210
+ # For the following data frequencies: Y, M, W, and D
200
211
  #
201
212
  # * "yyyy-MM-dd HH:mm:ss"
202
213
  #
203
- # For data frequencies: H, 30min, 15min, and 1min; and optionally,
204
- # for: Y, M, W, and D
214
+ # For the following data frequencies: H, 30min, 15min, and 1min; and
215
+ # optionally, for: Y, M, W, and D
216
+ #
217
+ # If the format isn't specified, Amazon Forecast expects the format
218
+ # to be "yyyy-MM-dd HH:mm:ss".
205
219
  # @return [String]
206
220
  #
207
221
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetImportJobRequest AWS API Documentation
@@ -252,13 +266,16 @@ module Aws::ForecastService
252
266
  # @return [String]
253
267
  #
254
268
  # @!attribute [rw] domain
255
- # The domain associated with the dataset. The `Domain` and
256
- # `DatasetType` that you choose determine the fields that must be
257
- # present in the training data that you import to the dataset. For
258
- # example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES`
259
- # as the `DatasetType`, Amazon Forecast requires `item_id`,
260
- # `timestamp`, and `demand` fields to be present in your data. For
261
- # more information, see howitworks-datasets-groups.
269
+ # The domain associated with the dataset. When you add a dataset to a
270
+ # dataset group, this value and the value specified for the `Domain`
271
+ # parameter of the CreateDatasetGroup operation must match.
272
+ #
273
+ # The `Domain` and `DatasetType` that you choose determine the fields
274
+ # that must be present in the training data that you import to the
275
+ # dataset. For example, if you choose the `RETAIL` domain and
276
+ # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
277
+ # `item_id`, `timestamp`, and `demand` fields to be present in your
278
+ # data. For more information, see howitworks-datasets-groups.
262
279
  # @return [String]
263
280
  #
264
281
  # @!attribute [rw] dataset_type
@@ -266,7 +283,8 @@ module Aws::ForecastService
266
283
  # @return [String]
267
284
  #
268
285
  # @!attribute [rw] data_frequency
269
- # The frequency of data collection.
286
+ # The frequency of data collection. This parameter is required for
287
+ # RELATED\_TIME\_SERIES datasets.
270
288
  #
271
289
  # Valid intervals are Y (Year), M (Month), W (Week), D (Day), H
272
290
  # (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes),
@@ -336,9 +354,14 @@ module Aws::ForecastService
336
354
  # @return [String]
337
355
  #
338
356
  # @!attribute [rw] destination
339
- # The path to the Amazon S3 bucket where you want to save the forecast
340
- # and an AWS Identity and Access Management (IAM) role that Amazon
341
- # Forecast can assume to access the bucket.
357
+ # The location where you want to save the forecast and an AWS Identity
358
+ # and Access Management (IAM) role that Amazon Forecast can assume to
359
+ # access the location. The forecast must be exported to an Amazon S3
360
+ # bucket.
361
+ #
362
+ # If encryption is used, `Destination` must include an AWS Key
363
+ # Management Service (KMS) key. The IAM role must allow Amazon
364
+ # Forecast permission to access the key.
342
365
  # @return [Types::DataDestination]
343
366
  #
344
367
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastExportJobRequest AWS API Documentation
@@ -367,10 +390,11 @@ module Aws::ForecastService
367
390
  # {
368
391
  # forecast_name: "Name", # required
369
392
  # predictor_arn: "Arn", # required
393
+ # forecast_types: ["ForecastType"],
370
394
  # }
371
395
  #
372
396
  # @!attribute [rw] forecast_name
373
- # The name for the forecast.
397
+ # A name for the forecast.
374
398
  # @return [String]
375
399
  #
376
400
  # @!attribute [rw] predictor_arn
@@ -378,11 +402,21 @@ module Aws::ForecastService
378
402
  # the forecast.
379
403
  # @return [String]
380
404
  #
405
+ # @!attribute [rw] forecast_types
406
+ # The quantiles at which probabilistic forecasts are generated. You
407
+ # can specify up to 5 quantiles per forecast. Accepted values include
408
+ # `0.01 to 0.99` (increments of .01 only) and `mean`. The mean
409
+ # forecast is different from the median (0.50) when the distribution
410
+ # is not symmetric (e.g. Beta, Negative Binomial). The default value
411
+ # is `["0.1", "0.5", "0.9"]`.
412
+ # @return [Array<String>]
413
+ #
381
414
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastRequest AWS API Documentation
382
415
  #
383
416
  class CreateForecastRequest < Struct.new(
384
417
  :forecast_name,
385
- :predictor_arn)
418
+ :predictor_arn,
419
+ :forecast_types)
386
420
  include Aws::Structure
387
421
  end
388
422
 
@@ -479,13 +513,13 @@ module Aws::ForecastService
479
513
  # The Amazon Resource Name (ARN) of the algorithm to use for model
480
514
  # training. Required if `PerformAutoML` is not set to `true`.
481
515
  #
482
- # **Supported algorithms**
516
+ # **Supported algorithms:**
483
517
  #
484
518
  # * `arn:aws:forecast:::algorithm/ARIMA`
485
519
  #
486
520
  # * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
487
521
  #
488
- # `- supports hyperparameter optimization (HPO)`
522
+ # Supports hyperparameter optimization (HPO)
489
523
  #
490
524
  # * `arn:aws:forecast:::algorithm/ETS`
491
525
  #
@@ -502,32 +536,41 @@ module Aws::ForecastService
502
536
  # (using the `DataFrequency` parameter of the CreateDataset operation)
503
537
  # and set the forecast horizon to 10, the model returns predictions
504
538
  # for 10 days.
539
+ #
540
+ # The maximum forecast horizon is the lesser of 500 time-steps or 1/3
541
+ # of the TARGET\_TIME\_SERIES dataset length.
505
542
  # @return [Integer]
506
543
  #
507
544
  # @!attribute [rw] perform_auto_ml
508
- # Whether to perform AutoML. The default value is `false`. In this
509
- # case, you are required to specify an algorithm.
545
+ # Whether to perform AutoML. When Amazon Forecast performs AutoML, it
546
+ # evaluates the algorithms it provides and chooses the best algorithm
547
+ # and configuration for your training dataset.
548
+ #
549
+ # The default value is `false`. In this case, you are required to
550
+ # specify an algorithm.
510
551
  #
511
- # If you want Amazon Forecast to evaluate the algorithms it provides
512
- # and choose the best algorithm and configuration for your training
513
- # dataset, set `PerformAutoML` to `true`. This is a good option if you
514
- # aren't sure which algorithm is suitable for your application.
552
+ # Set `PerformAutoML` to `true` to have Amazon Forecast perform
553
+ # AutoML. This is a good option if you aren't sure which algorithm is
554
+ # suitable for your training data. In this case, `PerformHPO` must be
555
+ # false.
515
556
  # @return [Boolean]
516
557
  #
517
558
  # @!attribute [rw] perform_hpo
518
559
  # Whether to perform hyperparameter optimization (HPO). HPO finds
519
560
  # optimal hyperparameter values for your training data. The process of
520
- # performing HPO is known as a hyperparameter tuning job.
561
+ # performing HPO is known as running a hyperparameter tuning job.
521
562
  #
522
563
  # The default value is `false`. In this case, Amazon Forecast uses
523
564
  # default hyperparameter values from the chosen algorithm.
524
565
  #
525
- # To override the default values, set `PerformHPO` to `true` and
526
- # supply the HyperParameterTuningJobConfig object. The tuning job
527
- # specifies an objective metric, the hyperparameters to optimize, and
528
- # the valid range for each hyperparameter.
566
+ # To override the default values, set `PerformHPO` to `true` and,
567
+ # optionally, supply the HyperParameterTuningJobConfig object. The
568
+ # tuning job specifies a metric to optimize, which hyperparameters
569
+ # participate in tuning, and the valid range for each tunable
570
+ # hyperparameter. In this case, you are required to specify an
571
+ # algorithm and `PerformAutoML` must be false.
529
572
  #
530
- # The following algorithms support HPO:
573
+ # The following algorithm supports HPO:
531
574
  #
532
575
  # * DeepAR+
533
576
  #
@@ -535,9 +578,10 @@ module Aws::ForecastService
535
578
  # @return [Boolean]
536
579
  #
537
580
  # @!attribute [rw] training_parameters
538
- # The training parameters to override for model training. The
539
- # parameters that you can override are listed in the individual
540
- # algorithms in aws-forecast-choosing-recipes.
581
+ # The hyperparameters to override for model training. The
582
+ # hyperparameters that you can override are listed in the individual
583
+ # algorithms. For the list of supported algorithms, see
584
+ # aws-forecast-choosing-recipes.
541
585
  # @return [Hash<String,String>]
542
586
  #
543
587
  # @!attribute [rw] evaluation_parameters
@@ -554,6 +598,9 @@ module Aws::ForecastService
554
598
  # The individual algorithms specify which hyperparameters support
555
599
  # hyperparameter optimization (HPO). For more information, see
556
600
  # aws-forecast-choosing-recipes.
601
+ #
602
+ # If you included the `HPOConfig` object, you must set `PerformHPO` to
603
+ # true.
557
604
  # @return [Types::HyperParameterTuningJobConfig]
558
605
  #
559
606
  # @!attribute [rw] input_data_config
@@ -599,9 +646,10 @@ module Aws::ForecastService
599
646
  include Aws::Structure
600
647
  end
601
648
 
602
- # The destination of an exported forecast and credentials to access the
603
- # location. This object is submitted in the CreateForecastExportJob
604
- # request.
649
+ # The destination for an exported forecast, an AWS Identity and Access
650
+ # Management (IAM) role that allows Amazon Forecast to access the
651
+ # location and, optionally, an AWS Key Management Service (KMS) key.
652
+ # This object is submitted in the CreateForecastExportJob request.
605
653
  #
606
654
  # @note When making an API call, you may pass DataDestination
607
655
  # data as a hash:
@@ -626,8 +674,10 @@ module Aws::ForecastService
626
674
  include Aws::Structure
627
675
  end
628
676
 
629
- # The source of your training data and credentials to access the data.
630
- # This object is submitted in the CreateDatasetImportJob request.
677
+ # The source of your training data, an AWS Identity and Access
678
+ # Management (IAM) role that allows Amazon Forecast to access the data
679
+ # and, optionally, an AWS Key Management Service (KMS) key. This object
680
+ # is submitted in the CreateDatasetImportJob request.
631
681
  #
632
682
  # @note When making an API call, you may pass DataSource
633
683
  # data as a hash:
@@ -655,7 +705,7 @@ module Aws::ForecastService
655
705
 
656
706
  # Provides a summary of the dataset group properties used in the
657
707
  # ListDatasetGroups operation. To get the complete set of properties,
658
- # call the DescribeDatasetGroup operation, and provide the listed
708
+ # call the DescribeDatasetGroup operation, and provide the
659
709
  # `DatasetGroupArn`.
660
710
  #
661
711
  # @!attribute [rw] dataset_group_arn
@@ -667,13 +717,14 @@ module Aws::ForecastService
667
717
  # @return [String]
668
718
  #
669
719
  # @!attribute [rw] creation_time
670
- # When the datase group was created.
720
+ # When the dataset group was created.
671
721
  # @return [Time]
672
722
  #
673
723
  # @!attribute [rw] last_modification_time
674
724
  # When the dataset group was created or last updated from a call to
675
725
  # the UpdateDatasetGroup operation. While the dataset group is being
676
- # updated, `LastModificationTime` is the current query time.
726
+ # updated, `LastModificationTime` is the current time of the
727
+ # `ListDatasetGroups` call.
677
728
  # @return [Time]
678
729
  #
679
730
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetGroupSummary AWS API Documentation
@@ -689,7 +740,7 @@ module Aws::ForecastService
689
740
  # Provides a summary of the dataset import job properties used in the
690
741
  # ListDatasetImportJobs operation. To get the complete set of
691
742
  # properties, call the DescribeDatasetImportJob operation, and provide
692
- # the listed `DatasetImportJobArn`.
743
+ # the `DatasetImportJobArn`.
693
744
  #
694
745
  # @!attribute [rw] dataset_import_job_arn
695
746
  # The Amazon Resource Name (ARN) of the dataset import job.
@@ -700,8 +751,13 @@ module Aws::ForecastService
700
751
  # @return [String]
701
752
  #
702
753
  # @!attribute [rw] data_source
703
- # The location of the Amazon S3 bucket that contains the training
704
- # data.
754
+ # The location of the training data to import and an AWS Identity and
755
+ # Access Management (IAM) role that Amazon Forecast can assume to
756
+ # access the data. The training data must be stored in an Amazon S3
757
+ # bucket.
758
+ #
759
+ # If encryption is used, `DataSource` includes an AWS Key Management
760
+ # Service (KMS) key.
705
761
  # @return [Types::DataSource]
706
762
  #
707
763
  # @!attribute [rw] status
@@ -726,13 +782,14 @@ module Aws::ForecastService
726
782
  # @return [Time]
727
783
  #
728
784
  # @!attribute [rw] last_modification_time
729
- # Dependent on the status as follows:
785
+ # The last time that the dataset was modified. The time depends on the
786
+ # status of the job, as follows:
730
787
  #
731
- # * `CREATE_PENDING` - same as `CreationTime`
788
+ # * `CREATE_PENDING` - The same time as `CreationTime`.
732
789
  #
733
- # * `CREATE_IN_PROGRESS` - the current timestamp
790
+ # * `CREATE_IN_PROGRESS` - The current timestamp.
734
791
  #
735
- # * `ACTIVE` or `CREATE_FAILED` - when the job finished or failed
792
+ # * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
736
793
  # @return [Time]
737
794
  #
738
795
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetImportJobSummary AWS API Documentation
@@ -750,7 +807,7 @@ module Aws::ForecastService
750
807
 
751
808
  # Provides a summary of the dataset properties used in the ListDatasets
752
809
  # operation. To get the complete set of properties, call the
753
- # DescribeDataset operation, and provide the listed `DatasetArn`.
810
+ # DescribeDataset operation, and provide the `DatasetArn`.
754
811
  #
755
812
  # @!attribute [rw] dataset_arn
756
813
  # The Amazon Resource Name (ARN) of the dataset.
@@ -773,11 +830,11 @@ module Aws::ForecastService
773
830
  # @return [Time]
774
831
  #
775
832
  # @!attribute [rw] last_modification_time
776
- # When the dataset is created, `LastModificationTime` is the same as
777
- # `CreationTime`. After a CreateDatasetImportJob operation is called,
778
- # `LastModificationTime` is when the import job finished or failed.
779
- # While data is being imported to the dataset, `LastModificationTime`
780
- # is the current query time.
833
+ # When you create a dataset, `LastModificationTime` is the same as
834
+ # `CreationTime`. While data is being imported to the dataset,
835
+ # `LastModificationTime` is the current time of the `ListDatasets`
836
+ # call. After a CreateDatasetImportJob operation has finished,
837
+ # `LastModificationTime` is when the import job completed or failed.
781
838
  # @return [Time]
782
839
  #
783
840
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetSummary AWS API Documentation
@@ -932,13 +989,7 @@ module Aws::ForecastService
932
989
  # @return [Array<String>]
933
990
  #
934
991
  # @!attribute [rw] domain
935
- # The domain associated with the dataset group. The `Domain` and
936
- # `DatasetType` that you choose determine the fields that must be
937
- # present in the training data that you import to the dataset. For
938
- # example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES`
939
- # as the `DatasetType`, Amazon Forecast requires `item_id`,
940
- # `timestamp`, and `demand` fields to be present in your data. For
941
- # more information, see howitworks-datasets-groups.
992
+ # The domain associated with the dataset group.
942
993
  # @return [String]
943
994
  #
944
995
  # @!attribute [rw] status
@@ -952,11 +1003,11 @@ module Aws::ForecastService
952
1003
  #
953
1004
  # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
954
1005
  #
955
- # The `UPDATE` states apply when the UpdateDatasetGroup operation is
956
- # called.
1006
+ # The `UPDATE` states apply when you call the UpdateDatasetGroup
1007
+ # operation.
957
1008
  #
958
- # <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before creating a
959
- # predictor using the dataset group.
1009
+ # <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before you can
1010
+ # use the dataset group to create a predictor.
960
1011
  #
961
1012
  # </note>
962
1013
  # @return [String]
@@ -968,7 +1019,8 @@ module Aws::ForecastService
968
1019
  # @!attribute [rw] last_modification_time
969
1020
  # When the dataset group was created or last updated from a call to
970
1021
  # the UpdateDatasetGroup operation. While the dataset group is being
971
- # updated, `LastModificationTime` is the current query time.
1022
+ # updated, `LastModificationTime` is the current time of the
1023
+ # `DescribeDatasetGroup` call.
972
1024
  # @return [Time]
973
1025
  #
974
1026
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetGroupResponse AWS API Documentation
@@ -1016,23 +1068,27 @@ module Aws::ForecastService
1016
1068
  # @return [String]
1017
1069
  #
1018
1070
  # @!attribute [rw] timestamp_format
1019
- # The format of timestamps in the dataset. Two formats are supported
1020
- # dependent on the `DataFrequency` specified when the dataset was
1021
- # created.
1071
+ # The format of timestamps in the dataset. The format that you specify
1072
+ # depends on the `DataFrequency` specified when the dataset was
1073
+ # created. The following formats are supported
1022
1074
  #
1023
1075
  # * "yyyy-MM-dd"
1024
1076
  #
1025
- # For data frequencies: Y, M, W, and D
1077
+ # For the following data frequencies: Y, M, W, and D
1026
1078
  #
1027
1079
  # * "yyyy-MM-dd HH:mm:ss"
1028
1080
  #
1029
- # For data frequencies: H, 30min, 15min, and 1min; and optionally,
1030
- # for: Y, M, W, and D
1081
+ # For the following data frequencies: H, 30min, 15min, and 1min; and
1082
+ # optionally, for: Y, M, W, and D
1031
1083
  # @return [String]
1032
1084
  #
1033
1085
  # @!attribute [rw] data_source
1034
- # The location of the training data to import. The training data must
1035
- # be stored in an Amazon S3 bucket.
1086
+ # The location of the training data to import and an AWS Identity and
1087
+ # Access Management (IAM) role that Amazon Forecast can assume to
1088
+ # access the data.
1089
+ #
1090
+ # If encryption is used, `DataSource` includes an AWS Key Management
1091
+ # Service (KMS) key.
1036
1092
  # @return [Types::DataSource]
1037
1093
  #
1038
1094
  # @!attribute [rw] field_statistics
@@ -1040,8 +1096,8 @@ module Aws::ForecastService
1040
1096
  # @return [Hash<String,Types::Statistics>]
1041
1097
  #
1042
1098
  # @!attribute [rw] data_size
1043
- # The size of the dataset in gigabytes (GB) after completion of the
1044
- # import job.
1099
+ # The size of the dataset in gigabytes (GB) after the import job has
1100
+ # finished.
1045
1101
  # @return [Float]
1046
1102
  #
1047
1103
  # @!attribute [rw] status
@@ -1066,13 +1122,14 @@ module Aws::ForecastService
1066
1122
  # @return [Time]
1067
1123
  #
1068
1124
  # @!attribute [rw] last_modification_time
1069
- # Dependent on the status as follows:
1125
+ # The last time that the dataset was modified. The time depends on the
1126
+ # status of the job, as follows:
1070
1127
  #
1071
- # * `CREATE_PENDING` - same as `CreationTime`
1128
+ # * `CREATE_PENDING` - The same time as `CreationTime`.
1072
1129
  #
1073
- # * `CREATE_IN_PROGRESS` - the current timestamp
1130
+ # * `CREATE_IN_PROGRESS` - The current timestamp.
1074
1131
  #
1075
- # * `ACTIVE` or `CREATE_FAILED` - when the job finished or failed
1132
+ # * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
1076
1133
  # @return [Time]
1077
1134
  #
1078
1135
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetImportJobResponse AWS API Documentation
@@ -1119,7 +1176,7 @@ module Aws::ForecastService
1119
1176
  # @return [String]
1120
1177
  #
1121
1178
  # @!attribute [rw] domain
1122
- # The dataset domain.
1179
+ # The domain associated with the dataset.
1123
1180
  # @return [String]
1124
1181
  #
1125
1182
  # @!attribute [rw] dataset_type
@@ -1142,7 +1199,7 @@ module Aws::ForecastService
1142
1199
  # @return [Types::Schema]
1143
1200
  #
1144
1201
  # @!attribute [rw] encryption_config
1145
- # An AWS Key Management Service (KMS) key and the AWS Identity and
1202
+ # The AWS Key Management Service (KMS) key and the AWS Identity and
1146
1203
  # Access Management (IAM) role that Amazon Forecast can assume to
1147
1204
  # access the key.
1148
1205
  # @return [Types::EncryptionConfig]
@@ -1159,10 +1216,10 @@ module Aws::ForecastService
1159
1216
  # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
1160
1217
  #
1161
1218
  # The `UPDATE` states apply while data is imported to the dataset from
1162
- # a call to the CreateDatasetImportJob operation. During this time,
1163
- # the status reflects the status of the dataset import job. For
1164
- # example, when the import job status is `CREATE_IN_PROGRESS`, the
1165
- # status of the dataset is `UPDATE_IN_PROGRESS`.
1219
+ # a call to the CreateDatasetImportJob operation and reflect the
1220
+ # status of the dataset import job. For example, when the import job
1221
+ # status is `CREATE_IN_PROGRESS`, the status of the dataset is
1222
+ # `UPDATE_IN_PROGRESS`.
1166
1223
  #
1167
1224
  # <note markdown="1"> The `Status` of the dataset must be `ACTIVE` before you can import
1168
1225
  # training data.
@@ -1175,11 +1232,11 @@ module Aws::ForecastService
1175
1232
  # @return [Time]
1176
1233
  #
1177
1234
  # @!attribute [rw] last_modification_time
1178
- # When the dataset is created, `LastModificationTime` is the same as
1179
- # `CreationTime`. After a CreateDatasetImportJob operation is called,
1180
- # `LastModificationTime` is when the import job finished or failed.
1181
- # While data is being imported to the dataset, `LastModificationTime`
1182
- # is the current query time.
1235
+ # When you create a dataset, `LastModificationTime` is the same as
1236
+ # `CreationTime`. While data is being imported to the dataset,
1237
+ # `LastModificationTime` is the current time of the `DescribeDataset`
1238
+ # call. After a CreateDatasetImportJob operation has finished,
1239
+ # `LastModificationTime` is when the import job completed or failed.
1183
1240
  # @return [Time]
1184
1241
  #
1185
1242
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetResponse AWS API Documentation
@@ -1229,7 +1286,8 @@ module Aws::ForecastService
1229
1286
  # @return [String]
1230
1287
  #
1231
1288
  # @!attribute [rw] destination
1232
- # The path to the AWS S3 bucket where the forecast is exported.
1289
+ # The path to the Amazon Simple Storage Service (Amazon S3) bucket
1290
+ # where the forecast is exported.
1233
1291
  # @return [Types::DataDestination]
1234
1292
  #
1235
1293
  # @!attribute [rw] message
@@ -1237,7 +1295,7 @@ module Aws::ForecastService
1237
1295
  # @return [String]
1238
1296
  #
1239
1297
  # @!attribute [rw] status
1240
- # The status of the forecast export job. One of the following states:
1298
+ # The status of the forecast export job. States include:
1241
1299
  #
1242
1300
  # * `ACTIVE`
1243
1301
  #
@@ -1246,7 +1304,7 @@ module Aws::ForecastService
1246
1304
  # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED`
1247
1305
  #
1248
1306
  # <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
1249
- # can access the forecast in your Amazon S3 bucket.
1307
+ # can access the forecast in your S3 bucket.
1250
1308
  #
1251
1309
  # </note>
1252
1310
  # @return [String]
@@ -1292,13 +1350,17 @@ module Aws::ForecastService
1292
1350
  end
1293
1351
 
1294
1352
  # @!attribute [rw] forecast_arn
1295
- # The same forecast ARN as given in the request.
1353
+ # The forecast ARN as specified in the request.
1296
1354
  # @return [String]
1297
1355
  #
1298
1356
  # @!attribute [rw] forecast_name
1299
1357
  # The name of the forecast.
1300
1358
  # @return [String]
1301
1359
  #
1360
+ # @!attribute [rw] forecast_types
1361
+ # The quantiles at which proababilistic forecasts were generated.
1362
+ # @return [Array<String>]
1363
+ #
1302
1364
  # @!attribute [rw] predictor_arn
1303
1365
  # The ARN of the predictor used to generate the forecast.
1304
1366
  # @return [String]
@@ -1344,6 +1406,7 @@ module Aws::ForecastService
1344
1406
  class DescribeForecastResponse < Struct.new(
1345
1407
  :forecast_arn,
1346
1408
  :forecast_name,
1409
+ :forecast_types,
1347
1410
  :predictor_arn,
1348
1411
  :dataset_group_arn,
1349
1412
  :status,
@@ -1395,13 +1458,16 @@ module Aws::ForecastService
1395
1458
  # @return [Boolean]
1396
1459
  #
1397
1460
  # @!attribute [rw] perform_hpo
1398
- # Whether the predictor is set to perform HPO.
1461
+ # Whether the predictor is set to perform hyperparameter optimization
1462
+ # (HPO).
1399
1463
  # @return [Boolean]
1400
1464
  #
1401
1465
  # @!attribute [rw] training_parameters
1402
- # The training parameters to override for model training. The
1403
- # parameters that you can override are listed in the individual
1404
- # algorithms in aws-forecast-choosing-recipes.
1466
+ # The default training parameters or overrides selected during model
1467
+ # training. If using the AutoML algorithm or if HPO is turned on while
1468
+ # using the DeepAR+ algorithms, the optimized values for the chosen
1469
+ # hyperparameters are returned. For more information, see
1470
+ # aws-forecast-choosing-recipes.
1405
1471
  # @return [Hash<String,String>]
1406
1472
  #
1407
1473
  # @!attribute [rw] evaluation_parameters
@@ -1431,9 +1497,15 @@ module Aws::ForecastService
1431
1497
  # access the key.
1432
1498
  # @return [Types::EncryptionConfig]
1433
1499
  #
1500
+ # @!attribute [rw] predictor_execution_details
1501
+ # Details on the the status and results of the backtests performed to
1502
+ # evaluate the accuracy of the predictor. You specify the number of
1503
+ # backtests to perform when you call the operation.
1504
+ # @return [Types::PredictorExecutionDetails]
1505
+ #
1434
1506
  # @!attribute [rw] dataset_import_job_arns
1435
- # An array of ARNs of the dataset import jobs used to import training
1436
- # data for the predictor.
1507
+ # An array of the ARNs of the dataset import jobs used to import
1508
+ # training data for the predictor.
1437
1509
  # @return [Array<String>]
1438
1510
  #
1439
1511
  # @!attribute [rw] auto_ml_algorithm_arns
@@ -1451,8 +1523,8 @@ module Aws::ForecastService
1451
1523
  #
1452
1524
  # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
1453
1525
  #
1454
- # <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before using the
1455
- # predictor to create a forecast.
1526
+ # <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before you can use
1527
+ # the predictor to create a forecast.
1456
1528
  #
1457
1529
  # </note>
1458
1530
  # @return [String]
@@ -1466,10 +1538,11 @@ module Aws::ForecastService
1466
1538
  # @return [Time]
1467
1539
  #
1468
1540
  # @!attribute [rw] last_modification_time
1469
- # Initially, the same as `CreationTime` (status is `CREATE_PENDING`).
1470
- # Updated when training starts (status changed to
1471
- # `CREATE_IN_PROGRESS`), and when training is complete (status changed
1472
- # to `ACTIVE`) or fails (status changed to `CREATE_FAILED`).
1541
+ # Initially, the same as `CreationTime` (when the status is
1542
+ # `CREATE_PENDING`). This value is updated when training starts (when
1543
+ # the status changes to `CREATE_IN_PROGRESS`), and when training has
1544
+ # completed (when the status changes to `ACTIVE`) or fails (when the
1545
+ # status changes to `CREATE_FAILED`).
1473
1546
  # @return [Time]
1474
1547
  #
1475
1548
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictorResponse AWS API Documentation
@@ -1487,6 +1560,7 @@ module Aws::ForecastService
1487
1560
  :input_data_config,
1488
1561
  :featurization_config,
1489
1562
  :encryption_config,
1563
+ :predictor_execution_details,
1490
1564
  :dataset_import_job_arns,
1491
1565
  :auto_ml_algorithm_arns,
1492
1566
  :status,
@@ -1498,7 +1572,7 @@ module Aws::ForecastService
1498
1572
 
1499
1573
  # An AWS Key Management Service (KMS) key and an AWS Identity and Access
1500
1574
  # Management (IAM) role that Amazon Forecast can assume to access the
1501
- # key. This object is optionally submitted in the CreateDataset and
1575
+ # key. You can specify this optional object in the CreateDataset and
1502
1576
  # CreatePredictor requests.
1503
1577
  #
1504
1578
  # @note When making an API call, you may pass EncryptionConfig
@@ -1510,17 +1584,16 @@ module Aws::ForecastService
1510
1584
  # }
1511
1585
  #
1512
1586
  # @!attribute [rw] role_arn
1513
- # The ARN of the AWS Identity and Access Management (IAM) role that
1514
- # Amazon Forecast can assume to access the AWS KMS key.
1587
+ # The ARN of the IAM role that Amazon Forecast can assume to access
1588
+ # the AWS KMS key.
1515
1589
  #
1516
- # Cross-account pass role is not allowed. If you pass a role that
1517
- # doesn't belong to your account, an `InvalidInputException` is
1518
- # thrown.
1590
+ # Passing a role across AWS accounts is not allowed. If you pass a
1591
+ # role that isn't in your account, you get an `InvalidInputException`
1592
+ # error.
1519
1593
  # @return [String]
1520
1594
  #
1521
1595
  # @!attribute [rw] kms_key_arn
1522
- # The Amazon Resource Name (ARN) of an AWS Key Management Service
1523
- # (KMS) key.
1596
+ # The Amazon Resource Name (ARN) of the KMS key.
1524
1597
  # @return [String]
1525
1598
  #
1526
1599
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EncryptionConfig AWS API Documentation
@@ -1533,18 +1606,8 @@ module Aws::ForecastService
1533
1606
 
1534
1607
  # Parameters that define how to split a dataset into training data and
1535
1608
  # testing data, and the number of iterations to perform. These
1536
- # parameters are specified in the predefined algorithms and can be
1537
- # overridden in the CreatePredictor request.
1538
- #
1539
- # For example, suppose that you have a dataset with data collection
1540
- # frequency set to every day and you have 200 days worth of data (that
1541
- # is, 200 data points). Now suppose that you set the
1542
- # `NumberOfBacktestWindows` to 2 and the `BackTestWindowOffset`
1543
- # parameter to 20. The algorithm splits the data twice. The first time,
1544
- # the algorithm trains the model using the first 180 data points and
1545
- # uses the last 20 data points for evaluation. The second time, the
1546
- # algorithm trains the model using the first 160 data points and uses
1547
- # the last 40 data points for evaluation.
1609
+ # parameters are specified in the predefined algorithms but you can
1610
+ # override them in the CreatePredictor request.
1548
1611
  #
1549
1612
  # @note When making an API call, you may pass EvaluationParameters
1550
1613
  # data as a hash:
@@ -1555,14 +1618,21 @@ module Aws::ForecastService
1555
1618
  # }
1556
1619
  #
1557
1620
  # @!attribute [rw] number_of_backtest_windows
1558
- # The number of times to split the input data. The default is 1. The
1559
- # range is 1 through 5.
1621
+ # The number of times to split the input data. The default is 1. Valid
1622
+ # values are 1 through 5.
1560
1623
  # @return [Integer]
1561
1624
  #
1562
1625
  # @!attribute [rw] back_test_window_offset
1563
1626
  # The point from the end of the dataset where you want to split the
1564
- # data for model training and evaluation. The value is specified as
1565
- # the number of data points.
1627
+ # data for model training and testing (evaluation). Specify the value
1628
+ # as the number of data points. The default is the value of the
1629
+ # forecast horizon. `BackTestWindowOffset` can be used to mimic a past
1630
+ # virtual forecast start date. This value must be greater than or
1631
+ # equal to the forecast horizon and less than half of the
1632
+ # TARGET\_TIME\_SERIES dataset length.
1633
+ #
1634
+ # `ForecastHorizon` &lt;= `BackTestWindowOffset` &lt; 1/2 *
1635
+ # TARGET\_TIME\_SERIES dataset length
1566
1636
  # @return [Integer]
1567
1637
  #
1568
1638
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EvaluationParameters AWS API Documentation
@@ -1630,17 +1700,16 @@ module Aws::ForecastService
1630
1700
  # }
1631
1701
  #
1632
1702
  # @!attribute [rw] attribute_name
1633
- # The name of the schema attribute specifying the data field to be
1634
- # featurized. In this release, only the `target` field of the
1635
- # `TARGET_TIME_SERIES` dataset type is supported. For example, for the
1636
- # `RETAIL` domain, the target is `demand`, and for the `CUSTOM`
1637
- # domain, the target is `target_value`.
1703
+ # The name of the schema attribute that specifies the data field to be
1704
+ # featurized. Only the `target` field of the `TARGET_TIME_SERIES`
1705
+ # dataset type is supported. For example, for the `RETAIL` domain, the
1706
+ # target is `demand`, and for the `CUSTOM` domain, the target is
1707
+ # `target_value`.
1638
1708
  # @return [String]
1639
1709
  #
1640
1710
  # @!attribute [rw] featurization_pipeline
1641
- # An array `FeaturizationMethod` objects that specifies the feature
1642
- # transformation methods. For this release, the number of methods is
1643
- # limited to one.
1711
+ # An array of one `FeaturizationMethod` object that specifies the
1712
+ # feature transformation method.
1644
1713
  # @return [Array<Types::FeaturizationMethod>]
1645
1714
  #
1646
1715
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Featurization AWS API Documentation
@@ -1658,9 +1727,10 @@ module Aws::ForecastService
1658
1727
  #
1659
1728
  # You define featurization using the `FeaturizationConfig` object. You
1660
1729
  # specify an array of transformations, one for each field that you want
1661
- # to featurize. You then include the `FeaturizationConfig` in your
1662
- # `CreatePredictor` request. Amazon Forecast applies the featurization
1663
- # to the `TARGET_TIME_SERIES` dataset before model training.
1730
+ # to featurize. You then include the `FeaturizationConfig` object in
1731
+ # your `CreatePredictor` request. Amazon Forecast applies the
1732
+ # featurization to the `TARGET_TIME_SERIES` dataset before model
1733
+ # training.
1664
1734
  #
1665
1735
  # You can create multiple featurization configurations. For example, you
1666
1736
  # might call the `CreatePredictor` operation twice by specifying
@@ -1694,6 +1764,12 @@ module Aws::ForecastService
1694
1764
  # (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes),
1695
1765
  # 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates
1696
1766
  # every year and "5min" indicates every five minutes.
1767
+ #
1768
+ # The frequency must be greater than or equal to the
1769
+ # TARGET\_TIME\_SERIES dataset frequency.
1770
+ #
1771
+ # When a RELATED\_TIME\_SERIES dataset is provided, the frequency must
1772
+ # be equal to the RELATED\_TIME\_SERIES dataset frequency.
1697
1773
  # @return [String]
1698
1774
  #
1699
1775
  # @!attribute [rw] forecast_dimensions
@@ -1704,12 +1780,17 @@ module Aws::ForecastService
1704
1780
  # sales across all of your stores, and your dataset contains a
1705
1781
  # `store_id` field. If you want the sales forecast for each item by
1706
1782
  # store, you would specify `store_id` as the dimension.
1783
+ #
1784
+ # All forecast dimensions specified in the `TARGET_TIME_SERIES`
1785
+ # dataset don't need to be specified in the `CreatePredictor`
1786
+ # request. All forecast dimensions specified in the
1787
+ # `RELATED_TIME_SERIES` dataset must be specified in the
1788
+ # `CreatePredictor` request.
1707
1789
  # @return [Array<String>]
1708
1790
  #
1709
1791
  # @!attribute [rw] featurizations
1710
1792
  # An array of featurization (transformation) information for the
1711
- # fields of a dataset. In this release, only a single featurization is
1712
- # supported.
1793
+ # fields of a dataset. Only a single featurization is supported.
1713
1794
  # @return [Array<Types::Featurization>]
1714
1795
  #
1715
1796
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/FeaturizationConfig AWS API Documentation
@@ -1721,12 +1802,14 @@ module Aws::ForecastService
1721
1802
  include Aws::Structure
1722
1803
  end
1723
1804
 
1724
- # Provides information about a method that featurizes (transforms) a
1805
+ # Provides information about the method that featurizes (transforms) a
1725
1806
  # dataset field. The method is part of the `FeaturizationPipeline` of
1726
- # the Featurization object. If `FeaturizationMethodParameters` isn't
1727
- # specified, Amazon Forecast uses default parameters.
1807
+ # the Featurization object. If you don't specify
1808
+ # `FeaturizationMethodParameters`, Amazon Forecast uses default
1809
+ # parameters.
1728
1810
  #
1729
- # For example:
1811
+ # The following is an example of how you specify a `FeaturizationMethod`
1812
+ # object.
1730
1813
  #
1731
1814
  # `\{`
1732
1815
  #
@@ -1748,14 +1831,14 @@ module Aws::ForecastService
1748
1831
  # }
1749
1832
  #
1750
1833
  # @!attribute [rw] featurization_method_name
1751
- # The name of the method. In this release, "filling" is the only
1752
- # supported method.
1834
+ # The name of the method. The "filling" method is the only supported
1835
+ # method.
1753
1836
  # @return [String]
1754
1837
  #
1755
1838
  # @!attribute [rw] featurization_method_parameters
1756
- # The method parameters (key-value pairs). Specify these to override
1757
- # the default values. The following list shows the parameters and
1758
- # their valid values. Bold signifies the default value.
1839
+ # The method parameters (key-value pairs). Specify these parameters to
1840
+ # override the default values. The following list shows the parameters
1841
+ # and their valid values. Bold signifies the default value.
1759
1842
  #
1760
1843
  # * `aggregation`\: **sum**, `avg`, `first`, `min`, `max`
1761
1844
  #
@@ -1776,9 +1859,9 @@ module Aws::ForecastService
1776
1859
 
1777
1860
  # Describes a filter for choosing a subset of objects. Each filter
1778
1861
  # consists of a condition and a match statement. The condition is either
1779
- # `IS` or `IS_NOT`, which specifies whether to include or exclude,
1780
- # respectively, the objects that match the statement. The match
1781
- # statement consists of a key and a value.
1862
+ # `IS` or `IS_NOT`, which specifies whether to include or exclude the
1863
+ # objects that match the statement, respectively. The match statement
1864
+ # consists of a key and a value.
1782
1865
  #
1783
1866
  # @note When making an API call, you may pass Filter
1784
1867
  # data as a hash:
@@ -1794,11 +1877,13 @@ module Aws::ForecastService
1794
1877
  # @return [String]
1795
1878
  #
1796
1879
  # @!attribute [rw] value
1797
- # A valid value for `Key`.
1880
+ # The value to match.
1798
1881
  # @return [String]
1799
1882
  #
1800
1883
  # @!attribute [rw] condition
1801
- # The condition to apply.
1884
+ # The condition to apply. To include the objects that match the
1885
+ # statement, specify `IS`. To exclude matching objects, specify
1886
+ # `IS_NOT`.
1802
1887
  # @return [String]
1803
1888
  #
1804
1889
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Filter AWS API Documentation
@@ -1824,11 +1909,12 @@ module Aws::ForecastService
1824
1909
  # @return [String]
1825
1910
  #
1826
1911
  # @!attribute [rw] destination
1827
- # The path to the S3 bucket where the forecast is stored.
1912
+ # The path to the Amazon Simple Storage Service (Amazon S3) bucket
1913
+ # where the forecast is exported.
1828
1914
  # @return [Types::DataDestination]
1829
1915
  #
1830
1916
  # @!attribute [rw] status
1831
- # The status of the forecast export job. One of the following states:
1917
+ # The status of the forecast export job. States include:
1832
1918
  #
1833
1919
  # * `ACTIVE`
1834
1920
  #
@@ -1837,7 +1923,7 @@ module Aws::ForecastService
1837
1923
  # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED`
1838
1924
  #
1839
1925
  # <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
1840
- # can access the forecast in your Amazon S3 bucket.
1926
+ # can access the forecast in your S3 bucket.
1841
1927
  #
1842
1928
  # </note>
1843
1929
  # @return [String]
@@ -1869,7 +1955,8 @@ module Aws::ForecastService
1869
1955
 
1870
1956
  # Provides a summary of the forecast properties used in the
1871
1957
  # ListForecasts operation. To get the complete set of properties, call
1872
- # the DescribeForecast operation, and provide the listed `ForecastArn`.
1958
+ # the DescribeForecast operation, and provide the `ForecastArn` that is
1959
+ # listed in the summary.
1873
1960
  #
1874
1961
  # @!attribute [rw] forecast_arn
1875
1962
  # The ARN of the forecast.
@@ -1962,19 +2049,20 @@ module Aws::ForecastService
1962
2049
  include Aws::Structure
1963
2050
  end
1964
2051
 
1965
- # Configuration information for a hyperparameter tuning job. This object
1966
- # is specified in the CreatePredictor request.
2052
+ # Configuration information for a hyperparameter tuning job. You specify
2053
+ # this object in the CreatePredictor request.
1967
2054
  #
1968
- # A hyperparameter is a parameter that governs the model training
1969
- # process and is set before training starts. This is as opposed to a
1970
- # model parameter that is determined during training. The values of the
1971
- # hyperparameters have an effect on the chosen model parameters.
2055
+ # A *hyperparameter* is a parameter that governs the model training
2056
+ # process. You set hyperparameters before training starts, unlike model
2057
+ # parameters, which are determined during training. The values of the
2058
+ # hyperparameters effect which values are chosen for the model
2059
+ # parameters.
1972
2060
  #
1973
- # A hyperparameter tuning job is the process of choosing the optimum set
1974
- # of hyperparameter values that optimize a specified metric. This is
1975
- # accomplished by running many training jobs over a range of
1976
- # hyperparameter values. The optimum set of values is dependent on the
1977
- # algorithm, the training data, and the given metric objective.
2061
+ # In a *hyperparameter tuning job*, Amazon Forecast chooses the set of
2062
+ # hyperparameter values that optimize a specified metric. Forecast
2063
+ # accomplishes this by running many training jobs over a range of
2064
+ # hyperparameter values. The optimum set of values depends on the
2065
+ # algorithm, the training data, and the specified metric objective.
1978
2066
  #
1979
2067
  # @note When making an API call, you may pass HyperParameterTuningJobConfig
1980
2068
  # data as a hash:
@@ -2018,7 +2106,7 @@ module Aws::ForecastService
2018
2106
  end
2019
2107
 
2020
2108
  # The data used to train a predictor. The data includes a dataset group
2021
- # and any supplementary features. This object is specified in the
2109
+ # and any supplementary features. You specify this object in the
2022
2110
  # CreatePredictor request.
2023
2111
  #
2024
2112
  # @note When making an API call, you may pass InputDataConfig
@@ -2039,8 +2127,8 @@ module Aws::ForecastService
2039
2127
  # @return [String]
2040
2128
  #
2041
2129
  # @!attribute [rw] supplementary_features
2042
- # An array of supplementary features. For this release, the only
2043
- # supported feature is a holiday calendar.
2130
+ # An array of supplementary features. The only supported feature is a
2131
+ # holiday calendar.
2044
2132
  # @return [Array<Types::SupplementaryFeature>]
2045
2133
  #
2046
2134
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/InputDataConfig AWS API Documentation
@@ -2078,9 +2166,7 @@ module Aws::ForecastService
2078
2166
  #
2079
2167
  # @!attribute [rw] scaling_type
2080
2168
  # The scale that hyperparameter tuning uses to search the
2081
- # hyperparameter range. For information about choosing a
2082
- # hyperparameter scale, see [Hyperparameter Scaling][1]. One of the
2083
- # following values:
2169
+ # hyperparameter range. Valid values:
2084
2170
  #
2085
2171
  # Auto
2086
2172
  #
@@ -2097,8 +2183,8 @@ module Aws::ForecastService
2097
2183
  # : Hyperparameter tuning searches the values in the hyperparameter
2098
2184
  # range by using a logarithmic scale.
2099
2185
  #
2100
- # Logarithmic scaling works only for ranges that have only values
2101
- # greater than 0.
2186
+ # Logarithmic scaling works only for ranges that have values greater
2187
+ # than 0.
2102
2188
  #
2103
2189
  # ReverseLogarithmic
2104
2190
  #
@@ -2107,6 +2193,9 @@ module Aws::ForecastService
2107
2193
  # Reverse logarithmic scaling works only for ranges that are
2108
2194
  # entirely within the range 0 &lt;= x &lt; 1.0.
2109
2195
  #
2196
+ # For information about choosing a hyperparameter scale, see
2197
+ # [Hyperparameter Scaling][1]. One of the following values:
2198
+ #
2110
2199
  #
2111
2200
  #
2112
2201
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
@@ -2147,7 +2236,7 @@ module Aws::ForecastService
2147
2236
  include Aws::Structure
2148
2237
  end
2149
2238
 
2150
- # The limit on the number of requests per second has been exceeded.
2239
+ # The limit on the number of resources per account has been exceeded.
2151
2240
  #
2152
2241
  # @!attribute [rw] message
2153
2242
  # @return [String]
@@ -2230,22 +2319,26 @@ module Aws::ForecastService
2230
2319
  # @!attribute [rw] filters
2231
2320
  # An array of filters. For each filter, you provide a condition and a
2232
2321
  # match statement. The condition is either `IS` or `IS_NOT`, which
2233
- # specifies whether to include or exclude, respectively, from the
2234
- # list, the predictors that match the statement. The match statement
2235
- # consists of a key and a value. In this release, `Name` is the only
2236
- # valid key, which filters on the `DatasetImportJobName` property.
2322
+ # specifies whether to include or exclude the datasets that match the
2323
+ # statement from the list, respectively. The match statement consists
2324
+ # of a key and a value.
2325
+ #
2326
+ # **Filter properties**
2237
2327
  #
2238
- # * `Condition` - `IS` or `IS_NOT`
2328
+ # * `Condition` - The condition to apply. Valid values are `IS` and
2329
+ # `IS_NOT`. To include the datasets that match the statement,
2330
+ # specify `IS`. To exclude matching datasets, specify `IS_NOT`.
2239
2331
  #
2240
- # * `Key` - `Name`
2332
+ # * `Key` - The name of the parameter to filter on. Valid values are
2333
+ # `DatasetArn` and `Status`.
2241
2334
  #
2242
- # * `Value` - the value to match
2335
+ # * `Value` - The value to match.
2243
2336
  #
2244
- # For example, to list all dataset import jobs named
2245
- # *my\_dataset\_import\_job*, you would specify:
2337
+ # For example, to list all dataset import jobs whose status is ACTIVE,
2338
+ # you specify the following filter:
2246
2339
  #
2247
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
2248
- # "my_dataset_import_job" \} ]`
2340
+ # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value":
2341
+ # "ACTIVE" \} ]`
2249
2342
  # @return [Array<Types::Filter>]
2250
2343
  #
2251
2344
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetImportJobsRequest AWS API Documentation
@@ -2346,22 +2439,28 @@ module Aws::ForecastService
2346
2439
  # @!attribute [rw] filters
2347
2440
  # An array of filters. For each filter, you provide a condition and a
2348
2441
  # match statement. The condition is either `IS` or `IS_NOT`, which
2349
- # specifies whether to include or exclude, respectively, from the
2350
- # list, the predictors that match the statement. The match statement
2351
- # consists of a key and a value. In this release, `Name` is the only
2352
- # valid key, which filters on the `ForecastExportJobName` property.
2442
+ # specifies whether to include or exclude the forecast export jobs
2443
+ # that match the statement from the list, respectively. The match
2444
+ # statement consists of a key and a value.
2353
2445
  #
2354
- # * `Condition` - `IS` or `IS_NOT`
2446
+ # **Filter properties**
2355
2447
  #
2356
- # * `Key` - `Name`
2448
+ # * `Condition` - The condition to apply. Valid values are `IS` and
2449
+ # `IS_NOT`. To include the forecast export jobs that match the
2450
+ # statement, specify `IS`. To exclude matching forecast export jobs,
2451
+ # specify `IS_NOT`.
2357
2452
  #
2358
- # * `Value` - the value to match
2453
+ # * `Key` - The name of the parameter to filter on. Valid values are
2454
+ # `ForecastArn` and `Status`.
2359
2455
  #
2360
- # For example, to list all forecast export jobs named
2361
- # *my\_forecast\_export\_job*, you would specify:
2456
+ # * `Value` - The value to match.
2362
2457
  #
2363
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
2364
- # "my_forecast_export_job" \} ]`
2458
+ # For example, to list all jobs that export a forecast named
2459
+ # *electricityforecast*, specify the following filter:
2460
+ #
2461
+ # `"Filters": [ \{ "Condition": "IS", "Key": "ForecastArn", "Value":
2462
+ # "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast"
2463
+ # \} ]`
2365
2464
  # @return [Array<Types::Filter>]
2366
2465
  #
2367
2466
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastExportJobsRequest AWS API Documentation
@@ -2418,22 +2517,26 @@ module Aws::ForecastService
2418
2517
  # @!attribute [rw] filters
2419
2518
  # An array of filters. For each filter, you provide a condition and a
2420
2519
  # match statement. The condition is either `IS` or `IS_NOT`, which
2421
- # specifies whether to include or exclude, respectively, from the
2422
- # list, the predictors that match the statement. The match statement
2423
- # consists of a key and a value. In this release, `Name` is the only
2424
- # valid key, which filters on the `ForecastName` property.
2520
+ # specifies whether to include or exclude the forecasts that match the
2521
+ # statement from the list, respectively. The match statement consists
2522
+ # of a key and a value.
2523
+ #
2524
+ # **Filter properties**
2425
2525
  #
2426
- # * `Condition` - `IS` or `IS_NOT`
2526
+ # * `Condition` - The condition to apply. Valid values are `IS` and
2527
+ # `IS_NOT`. To include the forecasts that match the statement,
2528
+ # specify `IS`. To exclude matching forecasts, specify `IS_NOT`.
2427
2529
  #
2428
- # * `Key` - `Name`
2530
+ # * `Key` - The name of the parameter to filter on. Valid values are
2531
+ # `DatasetGroupArn`, `PredictorArn`, and `Status`.
2429
2532
  #
2430
- # * `Value` - the value to match
2533
+ # * `Value` - The value to match.
2431
2534
  #
2432
- # For example, to list all forecasts named *my\_forecast*, you would
2433
- # specify:
2535
+ # For example, to list all forecasts whose status is not ACTIVE, you
2536
+ # would specify:
2434
2537
  #
2435
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
2436
- # "my_forecast" \} ]`
2538
+ # `"Filters": [ \{ "Condition": "IS_NOT", "Key": "Status", "Value":
2539
+ # "ACTIVE" \} ]`
2437
2540
  # @return [Array<Types::Filter>]
2438
2541
  #
2439
2542
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastsRequest AWS API Documentation
@@ -2490,22 +2593,26 @@ module Aws::ForecastService
2490
2593
  # @!attribute [rw] filters
2491
2594
  # An array of filters. For each filter, you provide a condition and a
2492
2595
  # match statement. The condition is either `IS` or `IS_NOT`, which
2493
- # specifies whether to include or exclude, respectively, from the
2494
- # list, the predictors that match the statement. The match statement
2495
- # consists of a key and a value. In this release, `Name` is the only
2496
- # valid key, which filters on the `PredictorName` property.
2596
+ # specifies whether to include or exclude the predictors that match
2597
+ # the statement from the list, respectively. The match statement
2598
+ # consists of a key and a value.
2497
2599
  #
2498
- # * `Condition` - `IS` or `IS_NOT`
2600
+ # **Filter properties**
2499
2601
  #
2500
- # * `Key` - `Name`
2602
+ # * `Condition` - The condition to apply. Valid values are `IS` and
2603
+ # `IS_NOT`. To include the predictors that match the statement,
2604
+ # specify `IS`. To exclude matching predictors, specify `IS_NOT`.
2501
2605
  #
2502
- # * `Value` - the value to match
2606
+ # * `Key` - The name of the parameter to filter on. Valid values are
2607
+ # `DatasetGroupArn` and `Status`.
2503
2608
  #
2504
- # For example, to list all predictors named *my\_predictor*, you would
2505
- # specify:
2609
+ # * `Value` - The value to match.
2506
2610
  #
2507
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
2508
- # "my_predictor" \} ]`
2611
+ # For example, to list all predictors whose status is ACTIVE, you
2612
+ # would specify:
2613
+ #
2614
+ # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value":
2615
+ # "ACTIVE" \} ]`
2509
2616
  # @return [Array<Types::Filter>]
2510
2617
  #
2511
2618
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListPredictorsRequest AWS API Documentation
@@ -2534,8 +2641,8 @@ module Aws::ForecastService
2534
2641
  include Aws::Structure
2535
2642
  end
2536
2643
 
2537
- # Provides metrics used to evaluate the performance of a predictor. This
2538
- # object is part of the WindowSummary object.
2644
+ # Provides metrics that are used to evaluate the performance of a
2645
+ # predictor. This object is part of the WindowSummary object.
2539
2646
  #
2540
2647
  # @!attribute [rw] rmse
2541
2648
  # The root mean square error (RMSE).
@@ -2610,7 +2717,47 @@ module Aws::ForecastService
2610
2717
  include Aws::Structure
2611
2718
  end
2612
2719
 
2613
- # Provides a summary of the predictor properties used in the
2720
+ # The algorithm used to perform a backtest and the status of those
2721
+ # tests.
2722
+ #
2723
+ # @!attribute [rw] algorithm_arn
2724
+ # The ARN of the algorithm used to test the predictor.
2725
+ # @return [String]
2726
+ #
2727
+ # @!attribute [rw] test_windows
2728
+ # An array of test windows used to evaluate the algorithm. The
2729
+ # `NumberOfBacktestWindows` from the object determines the number of
2730
+ # windows in the array.
2731
+ # @return [Array<Types::TestWindowSummary>]
2732
+ #
2733
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecution AWS API Documentation
2734
+ #
2735
+ class PredictorExecution < Struct.new(
2736
+ :algorithm_arn,
2737
+ :test_windows)
2738
+ include Aws::Structure
2739
+ end
2740
+
2741
+ # Contains details on the backtests performed to evaluate the accuracy
2742
+ # of the predictor. The tests are returned in descending order of
2743
+ # accuracy, with the most accurate backtest appearing first. You specify
2744
+ # the number of backtests to perform when you call the operation.
2745
+ #
2746
+ # @!attribute [rw] predictor_executions
2747
+ # An array of the backtests performed to evaluate the accuracy of the
2748
+ # predictor against a particular algorithm. The
2749
+ # `NumberOfBacktestWindows` from the object determines the number of
2750
+ # windows in the array.
2751
+ # @return [Array<Types::PredictorExecution>]
2752
+ #
2753
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecutionDetails AWS API Documentation
2754
+ #
2755
+ class PredictorExecutionDetails < Struct.new(
2756
+ :predictor_executions)
2757
+ include Aws::Structure
2758
+ end
2759
+
2760
+ # Provides a summary of the predictor properties that are used in the
2614
2761
  # ListPredictors operation. To get the complete set of properties, call
2615
2762
  # the DescribePredictor operation, and provide the listed
2616
2763
  # `PredictorArn`.
@@ -2639,8 +2786,8 @@ module Aws::ForecastService
2639
2786
  #
2640
2787
  # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
2641
2788
  #
2642
- # <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before using the
2643
- # predictor to create a forecast.
2789
+ # <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before you can use
2790
+ # the predictor to create a forecast.
2644
2791
  #
2645
2792
  # </note>
2646
2793
  # @return [String]
@@ -2673,8 +2820,8 @@ module Aws::ForecastService
2673
2820
  include Aws::Structure
2674
2821
  end
2675
2822
 
2676
- # There is already a resource with that Amazon Resource Name (ARN). Try
2677
- # again with a different ARN.
2823
+ # There is already a resource with this name. Try again with a different
2824
+ # name.
2678
2825
  #
2679
2826
  # @!attribute [rw] message
2680
2827
  # @return [String]
@@ -2714,8 +2861,10 @@ module Aws::ForecastService
2714
2861
  # The path to the file(s) in an Amazon Simple Storage Service (Amazon
2715
2862
  # S3) bucket, and an AWS Identity and Access Management (IAM) role that
2716
2863
  # Amazon Forecast can assume to access the file(s). Optionally, includes
2717
- # an AWS Key Management Service (KMS) key. This object is submitted in
2718
- # the CreateDatasetImportJob and CreateForecastExportJob requests.
2864
+ # an AWS Key Management Service (KMS) key. This object is part of the
2865
+ # DataSource object that is submitted in the CreateDatasetImportJob
2866
+ # request, and part of the DataDestination object that is submitted in
2867
+ # the CreateForecastExportJob request.
2719
2868
  #
2720
2869
  # @note When making an API call, you may pass S3Config
2721
2870
  # data as a hash:
@@ -2733,12 +2882,13 @@ module Aws::ForecastService
2733
2882
  #
2734
2883
  # @!attribute [rw] role_arn
2735
2884
  # The ARN of the AWS Identity and Access Management (IAM) role that
2736
- # Amazon Forecast can assume to access the Amazon S3 bucket or
2737
- # file(s).
2885
+ # Amazon Forecast can assume to access the Amazon S3 bucket or files.
2886
+ # If you provide a value for the `KMSKeyArn` key, the role must allow
2887
+ # access to the key.
2738
2888
  #
2739
- # Cross-account pass role is not allowed. If you pass a role that
2740
- # doesn't belong to your account, an `InvalidInputException` is
2741
- # thrown.
2889
+ # Passing a role across AWS accounts is not allowed. If you pass a
2890
+ # role that isn't in your account, you get an `InvalidInputException`
2891
+ # error.
2742
2892
  # @return [String]
2743
2893
  #
2744
2894
  # @!attribute [rw] kms_key_arn
@@ -2755,7 +2905,7 @@ module Aws::ForecastService
2755
2905
  include Aws::Structure
2756
2906
  end
2757
2907
 
2758
- # Defines the fields of a dataset. This object is specified in the
2908
+ # Defines the fields of a dataset. You specify this object in the
2759
2909
  # CreateDataset request.
2760
2910
  #
2761
2911
  # @note When making an API call, you may pass Schema
@@ -2782,7 +2932,7 @@ module Aws::ForecastService
2782
2932
  include Aws::Structure
2783
2933
  end
2784
2934
 
2785
- # An attribute of a schema, which defines a field of a dataset. A schema
2935
+ # An attribute of a schema, which defines a dataset field. A schema
2786
2936
  # attribute is required for every field in a dataset. The Schema object
2787
2937
  # contains an array of `SchemaAttribute` objects.
2788
2938
  #
@@ -2810,8 +2960,8 @@ module Aws::ForecastService
2810
2960
  include Aws::Structure
2811
2961
  end
2812
2962
 
2813
- # Provides statistics for each data field imported to an Amazon Forecast
2814
- # dataset with the CreateDatasetImportJob operation.
2963
+ # Provides statistics for each data field imported into to an Amazon
2964
+ # Forecast dataset with the CreateDatasetImportJob operation.
2815
2965
  #
2816
2966
  # @!attribute [rw] count
2817
2967
  # The number of values in the field.
@@ -2862,10 +3012,10 @@ module Aws::ForecastService
2862
3012
  # Describes a supplementary feature of a dataset group. This object is
2863
3013
  # part of the InputDataConfig object.
2864
3014
  #
2865
- # For this release, the only supported feature is a holiday calendar. If
2866
- # the calendar is used, all data should belong to the same country as
2867
- # the calendar. For the calendar data, see
2868
- # [http://jollyday.sourceforge.net/data.html][1].
3015
+ # The only supported feature is a holiday calendar. If you use the
3016
+ # calendar, all data in the datasets should belong to the same country
3017
+ # as the calendar. For the holiday calendar data, see the [Jollyday][1]
3018
+ # web site.
2869
3019
  #
2870
3020
  #
2871
3021
  #
@@ -2905,6 +3055,41 @@ module Aws::ForecastService
2905
3055
  include Aws::Structure
2906
3056
  end
2907
3057
 
3058
+ # The status, start time, and end time of a backtest, as well as a
3059
+ # failure reason if applicable.
3060
+ #
3061
+ # @!attribute [rw] test_window_start
3062
+ # The time at which the test began.
3063
+ # @return [Time]
3064
+ #
3065
+ # @!attribute [rw] test_window_end
3066
+ # The time at which the test ended.
3067
+ # @return [Time]
3068
+ #
3069
+ # @!attribute [rw] status
3070
+ # The status of the test. Possible status values are:
3071
+ #
3072
+ # * `ACTIVE`
3073
+ #
3074
+ # * `CREATE_IN_PROGRESS`
3075
+ #
3076
+ # * `CREATE_FAILED`
3077
+ # @return [String]
3078
+ #
3079
+ # @!attribute [rw] message
3080
+ # If the test failed, the reason why it failed.
3081
+ # @return [String]
3082
+ #
3083
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/TestWindowSummary AWS API Documentation
3084
+ #
3085
+ class TestWindowSummary < Struct.new(
3086
+ :test_window_start,
3087
+ :test_window_end,
3088
+ :status,
3089
+ :message)
3090
+ include Aws::Structure
3091
+ end
3092
+
2908
3093
  # @note When making an API call, you may pass UpdateDatasetGroupRequest
2909
3094
  # data as a hash:
2910
3095
  #
@@ -2918,8 +3103,8 @@ module Aws::ForecastService
2918
3103
  # @return [String]
2919
3104
  #
2920
3105
  # @!attribute [rw] dataset_arns
2921
- # An array of Amazon Resource Names (ARNs) of the datasets to add to
2922
- # the dataset group.
3106
+ # An array of the Amazon Resource Names (ARNs) of the datasets to add
3107
+ # to the dataset group.
2923
3108
  # @return [Array<String>]
2924
3109
  #
2925
3110
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/UpdateDatasetGroupRequest AWS API Documentation
@@ -2945,8 +3130,8 @@ module Aws::ForecastService
2945
3130
  # @return [Float]
2946
3131
  #
2947
3132
  # @!attribute [rw] loss_value
2948
- # The difference between the predicted value and actual value over the
2949
- # quantile, weighted (normalized) by dividing by the sum over all
3133
+ # The difference between the predicted value and the actual value over
3134
+ # the quantile, weighted (normalized) by dividing by the sum over all
2950
3135
  # quantiles.
2951
3136
  # @return [Float]
2952
3137
  #
@@ -2987,7 +3172,6 @@ module Aws::ForecastService
2987
3172
  #
2988
3173
  # @!attribute [rw] metrics
2989
3174
  # Provides metrics used to evaluate the performance of a predictor.
2990
- # This object is part of the WindowSummary object.
2991
3175
  # @return [Types::Metrics]
2992
3176
  #
2993
3177
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/WindowSummary AWS API Documentation