aws-sdk-forecastservice 1.0.0 → 1.5.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -80,6 +80,8 @@ module Aws::ForecastService
80
80
  ForecastExportJobSummary = Shapes::StructureShape.new(name: 'ForecastExportJobSummary')
81
81
  ForecastExportJobs = Shapes::ListShape.new(name: 'ForecastExportJobs')
82
82
  ForecastSummary = Shapes::StructureShape.new(name: 'ForecastSummary')
83
+ ForecastType = Shapes::StringShape.new(name: 'ForecastType')
84
+ ForecastTypes = Shapes::ListShape.new(name: 'ForecastTypes')
83
85
  Forecasts = Shapes::ListShape.new(name: 'Forecasts')
84
86
  Frequency = Shapes::StringShape.new(name: 'Frequency')
85
87
  GetAccuracyMetricsRequest = Shapes::StructureShape.new(name: 'GetAccuracyMetricsRequest')
@@ -114,6 +116,9 @@ module Aws::ForecastService
114
116
  ParameterRanges = Shapes::StructureShape.new(name: 'ParameterRanges')
115
117
  ParameterValue = Shapes::StringShape.new(name: 'ParameterValue')
116
118
  PredictorEvaluationResults = Shapes::ListShape.new(name: 'PredictorEvaluationResults')
119
+ PredictorExecution = Shapes::StructureShape.new(name: 'PredictorExecution')
120
+ PredictorExecutionDetails = Shapes::StructureShape.new(name: 'PredictorExecutionDetails')
121
+ PredictorExecutions = Shapes::ListShape.new(name: 'PredictorExecutions')
117
122
  PredictorSummary = Shapes::StructureShape.new(name: 'PredictorSummary')
118
123
  Predictors = Shapes::ListShape.new(name: 'Predictors')
119
124
  ResourceAlreadyExistsException = Shapes::StructureShape.new(name: 'ResourceAlreadyExistsException')
@@ -130,6 +135,8 @@ module Aws::ForecastService
130
135
  String = Shapes::StringShape.new(name: 'String')
131
136
  SupplementaryFeature = Shapes::StructureShape.new(name: 'SupplementaryFeature')
132
137
  SupplementaryFeatures = Shapes::ListShape.new(name: 'SupplementaryFeatures')
138
+ TestWindowDetails = Shapes::ListShape.new(name: 'TestWindowDetails')
139
+ TestWindowSummary = Shapes::StructureShape.new(name: 'TestWindowSummary')
133
140
  TestWindows = Shapes::ListShape.new(name: 'TestWindows')
134
141
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
135
142
  TimestampFormat = Shapes::StringShape.new(name: 'TimestampFormat')
@@ -196,6 +203,7 @@ module Aws::ForecastService
196
203
 
197
204
  CreateForecastRequest.add_member(:forecast_name, Shapes::ShapeRef.new(shape: Name, required: true, location_name: "ForecastName"))
198
205
  CreateForecastRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
206
+ CreateForecastRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
199
207
  CreateForecastRequest.struct_class = Types::CreateForecastRequest
200
208
 
201
209
  CreateForecastResponse.add_member(:forecast_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "ForecastArn"))
@@ -331,6 +339,7 @@ module Aws::ForecastService
331
339
 
332
340
  DescribeForecastResponse.add_member(:forecast_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "ForecastArn"))
333
341
  DescribeForecastResponse.add_member(:forecast_name, Shapes::ShapeRef.new(shape: Name, location_name: "ForecastName"))
342
+ DescribeForecastResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
334
343
  DescribeForecastResponse.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
335
344
  DescribeForecastResponse.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "DatasetGroupArn"))
336
345
  DescribeForecastResponse.add_member(:status, Shapes::ShapeRef.new(shape: String, location_name: "Status"))
@@ -354,6 +363,7 @@ module Aws::ForecastService
354
363
  DescribePredictorResponse.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, location_name: "InputDataConfig"))
355
364
  DescribePredictorResponse.add_member(:featurization_config, Shapes::ShapeRef.new(shape: FeaturizationConfig, location_name: "FeaturizationConfig"))
356
365
  DescribePredictorResponse.add_member(:encryption_config, Shapes::ShapeRef.new(shape: EncryptionConfig, location_name: "EncryptionConfig"))
366
+ DescribePredictorResponse.add_member(:predictor_execution_details, Shapes::ShapeRef.new(shape: PredictorExecutionDetails, location_name: "PredictorExecutionDetails"))
357
367
  DescribePredictorResponse.add_member(:dataset_import_job_arns, Shapes::ShapeRef.new(shape: ArnList, location_name: "DatasetImportJobArns"))
358
368
  DescribePredictorResponse.add_member(:auto_ml_algorithm_arns, Shapes::ShapeRef.new(shape: ArnList, location_name: "AutoMLAlgorithmArns"))
359
369
  DescribePredictorResponse.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "Status"))
@@ -427,6 +437,8 @@ module Aws::ForecastService
427
437
  ForecastSummary.add_member(:last_modification_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModificationTime"))
428
438
  ForecastSummary.struct_class = Types::ForecastSummary
429
439
 
440
+ ForecastTypes.member = Shapes::ShapeRef.new(shape: ForecastType)
441
+
430
442
  Forecasts.member = Shapes::ShapeRef.new(shape: ForecastSummary)
431
443
 
432
444
  GetAccuracyMetricsRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
@@ -522,6 +534,15 @@ module Aws::ForecastService
522
534
 
523
535
  PredictorEvaluationResults.member = Shapes::ShapeRef.new(shape: EvaluationResult)
524
536
 
537
+ PredictorExecution.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "AlgorithmArn"))
538
+ PredictorExecution.add_member(:test_windows, Shapes::ShapeRef.new(shape: TestWindowDetails, location_name: "TestWindows"))
539
+ PredictorExecution.struct_class = Types::PredictorExecution
540
+
541
+ PredictorExecutionDetails.add_member(:predictor_executions, Shapes::ShapeRef.new(shape: PredictorExecutions, location_name: "PredictorExecutions"))
542
+ PredictorExecutionDetails.struct_class = Types::PredictorExecutionDetails
543
+
544
+ PredictorExecutions.member = Shapes::ShapeRef.new(shape: PredictorExecution)
545
+
525
546
  PredictorSummary.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
526
547
  PredictorSummary.add_member(:predictor_name, Shapes::ShapeRef.new(shape: Name, location_name: "PredictorName"))
527
548
  PredictorSummary.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "DatasetGroupArn"))
@@ -572,6 +593,14 @@ module Aws::ForecastService
572
593
 
573
594
  SupplementaryFeatures.member = Shapes::ShapeRef.new(shape: SupplementaryFeature)
574
595
 
596
+ TestWindowDetails.member = Shapes::ShapeRef.new(shape: TestWindowSummary)
597
+
598
+ TestWindowSummary.add_member(:test_window_start, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TestWindowStart"))
599
+ TestWindowSummary.add_member(:test_window_end, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TestWindowEnd"))
600
+ TestWindowSummary.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "Status"))
601
+ TestWindowSummary.add_member(:message, Shapes::ShapeRef.new(shape: ErrorMessage, location_name: "Message"))
602
+ TestWindowSummary.struct_class = Types::TestWindowSummary
603
+
575
604
  TestWindows.member = Shapes::ShapeRef.new(shape: WindowSummary)
576
605
 
577
606
  TrainingParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
@@ -6,6 +6,34 @@
6
6
  # WARNING ABOUT GENERATED CODE
7
7
 
8
8
  module Aws::ForecastService
9
+
10
+ # When ForecastService returns an error response, the Ruby SDK constructs and raises an error.
11
+ # These errors all extend Aws::ForecastService::Errors::ServiceError < {Aws::Errors::ServiceError}
12
+ #
13
+ # You can rescue all ForecastService errors using ServiceError:
14
+ #
15
+ # begin
16
+ # # do stuff
17
+ # rescue Aws::ForecastService::Errors::ServiceError
18
+ # # rescues all ForecastService API errors
19
+ # end
20
+ #
21
+ #
22
+ # ## Request Context
23
+ # ServiceError objects have a {Aws::Errors::ServiceError#context #context} method that returns
24
+ # information about the request that generated the error.
25
+ # See {Seahorse::Client::RequestContext} for more information.
26
+ #
27
+ # ## Error Classes
28
+ # * {InvalidInputException}
29
+ # * {InvalidNextTokenException}
30
+ # * {LimitExceededException}
31
+ # * {ResourceAlreadyExistsException}
32
+ # * {ResourceInUseException}
33
+ # * {ResourceNotFoundException}
34
+ #
35
+ # Additionally, error classes are dynamically generated for service errors based on the error code
36
+ # if they are not defined above.
9
37
  module Errors
10
38
 
11
39
  extend Aws::Errors::DynamicErrors
@@ -23,7 +51,6 @@ module Aws::ForecastService
23
51
  def message
24
52
  @message || @data[:message]
25
53
  end
26
-
27
54
  end
28
55
 
29
56
  class InvalidNextTokenException < ServiceError
@@ -39,7 +66,6 @@ module Aws::ForecastService
39
66
  def message
40
67
  @message || @data[:message]
41
68
  end
42
-
43
69
  end
44
70
 
45
71
  class LimitExceededException < ServiceError
@@ -55,7 +81,6 @@ module Aws::ForecastService
55
81
  def message
56
82
  @message || @data[:message]
57
83
  end
58
-
59
84
  end
60
85
 
61
86
  class ResourceAlreadyExistsException < ServiceError
@@ -71,7 +96,6 @@ module Aws::ForecastService
71
96
  def message
72
97
  @message || @data[:message]
73
98
  end
74
-
75
99
  end
76
100
 
77
101
  class ResourceInUseException < ServiceError
@@ -87,7 +111,6 @@ module Aws::ForecastService
87
111
  def message
88
112
  @message || @data[:message]
89
113
  end
90
-
91
114
  end
92
115
 
93
116
  class ResourceNotFoundException < ServiceError
@@ -103,7 +126,6 @@ module Aws::ForecastService
103
126
  def message
104
127
  @message || @data[:message]
105
128
  end
106
-
107
129
  end
108
130
 
109
131
  end
@@ -6,6 +6,7 @@
6
6
  # WARNING ABOUT GENERATED CODE
7
7
 
8
8
  module Aws::ForecastService
9
+
9
10
  class Resource
10
11
 
11
12
  # @param options ({})
@@ -62,9 +62,7 @@ module Aws::ForecastService
62
62
  #
63
63
  # @!attribute [rw] scaling_type
64
64
  # The scale that hyperparameter tuning uses to search the
65
- # hyperparameter range. For information about choosing a
66
- # hyperparameter scale, see [Hyperparameter Scaling][1]. One of the
67
- # following values:
65
+ # hyperparameter range. Valid values:
68
66
  #
69
67
  # Auto
70
68
  #
@@ -81,17 +79,20 @@ module Aws::ForecastService
81
79
  # : Hyperparameter tuning searches the values in the hyperparameter
82
80
  # range by using a logarithmic scale.
83
81
  #
84
- # Logarithmic scaling works only for ranges that have only values
85
- # greater than 0.
82
+ # Logarithmic scaling works only for ranges that have values greater
83
+ # than 0.
86
84
  #
87
85
  # ReverseLogarithmic
88
86
  #
89
- # : Hyperparemeter tuning searches the values in the hyperparameter
87
+ # : hyperparameter tuning searches the values in the hyperparameter
90
88
  # range by using a reverse logarithmic scale.
91
89
  #
92
90
  # Reverse logarithmic scaling works only for ranges that are
93
91
  # entirely within the range 0 &lt;= x &lt; 1.0.
94
92
  #
93
+ # For information about choosing a hyperparameter scale, see
94
+ # [Hyperparameter Scaling][1]. One of the following values:
95
+ #
95
96
  #
96
97
  #
97
98
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
@@ -121,13 +122,16 @@ module Aws::ForecastService
121
122
  # @return [String]
122
123
  #
123
124
  # @!attribute [rw] domain
124
- # The domain associated with the dataset group. The `Domain` and
125
- # `DatasetType` that you choose determine the fields that must be
126
- # present in the training data that you import to the dataset. For
127
- # example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES`
128
- # as the `DatasetType`, Amazon Forecast requires `item_id`,
129
- # `timestamp`, and `demand` fields to be present in your data. For
130
- # more information, see howitworks-datasets-groups.
125
+ # The domain associated with the dataset group. When you add a dataset
126
+ # to a dataset group, this value and the value specified for the
127
+ # `Domain` parameter of the CreateDataset operation must match.
128
+ #
129
+ # The `Domain` and `DatasetType` that you choose determine the fields
130
+ # that must be present in training data that you import to a dataset.
131
+ # For example, if you choose the `RETAIL` domain and
132
+ # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
133
+ # that `item_id`, `timestamp`, and `demand` fields are present in your
134
+ # data. For more information, see howitworks-datasets-groups.
131
135
  # @return [String]
132
136
  #
133
137
  # @!attribute [rw] dataset_arns
@@ -172,10 +176,10 @@ module Aws::ForecastService
172
176
  # }
173
177
  #
174
178
  # @!attribute [rw] dataset_import_job_name
175
- # The name for the dataset import job. It is recommended to include
176
- # the current timestamp in the name to guard against getting a
177
- # `ResourceAlreadyExistsException` exception, for example,
178
- # `20190721DatasetImport`.
179
+ # The name for the dataset import job. We recommend including the
180
+ # current timestamp in the name, for example, `20190721DatasetImport`.
181
+ # This can help you avoid getting a `ResourceAlreadyExistsException`
182
+ # exception.
179
183
  # @return [String]
180
184
  #
181
185
  # @!attribute [rw] dataset_arn
@@ -186,22 +190,32 @@ module Aws::ForecastService
186
190
  # @!attribute [rw] data_source
187
191
  # The location of the training data to import and an AWS Identity and
188
192
  # Access Management (IAM) role that Amazon Forecast can assume to
189
- # access the data.
193
+ # access the data. The training data must be stored in an Amazon S3
194
+ # bucket.
195
+ #
196
+ # If encryption is used, `DataSource` must include an AWS Key
197
+ # Management Service (KMS) key and the IAM role must allow Amazon
198
+ # Forecast permission to access the key. The KMS key and IAM role must
199
+ # match those specified in the `EncryptionConfig` parameter of the
200
+ # CreateDataset operation.
190
201
  # @return [Types::DataSource]
191
202
  #
192
203
  # @!attribute [rw] timestamp_format
193
- # The format of timestamps in the dataset. Two formats are supported,
194
- # dependent on the `DataFrequency` specified when the dataset was
195
- # created.
204
+ # The format of timestamps in the dataset. The format that you specify
205
+ # depends on the `DataFrequency` specified when the dataset was
206
+ # created. The following formats are supported
196
207
  #
197
208
  # * "yyyy-MM-dd"
198
209
  #
199
- # For data frequencies: Y, M, W, and D
210
+ # For the following data frequencies: Y, M, W, and D
200
211
  #
201
212
  # * "yyyy-MM-dd HH:mm:ss"
202
213
  #
203
- # For data frequencies: H, 30min, 15min, and 1min; and optionally,
204
- # for: Y, M, W, and D
214
+ # For the following data frequencies: H, 30min, 15min, and 1min; and
215
+ # optionally, for: Y, M, W, and D
216
+ #
217
+ # If the format isn't specified, Amazon Forecast expects the format
218
+ # to be "yyyy-MM-dd HH:mm:ss".
205
219
  # @return [String]
206
220
  #
207
221
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetImportJobRequest AWS API Documentation
@@ -252,13 +266,16 @@ module Aws::ForecastService
252
266
  # @return [String]
253
267
  #
254
268
  # @!attribute [rw] domain
255
- # The domain associated with the dataset. The `Domain` and
256
- # `DatasetType` that you choose determine the fields that must be
257
- # present in the training data that you import to the dataset. For
258
- # example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES`
259
- # as the `DatasetType`, Amazon Forecast requires `item_id`,
260
- # `timestamp`, and `demand` fields to be present in your data. For
261
- # more information, see howitworks-datasets-groups.
269
+ # The domain associated with the dataset. When you add a dataset to a
270
+ # dataset group, this value and the value specified for the `Domain`
271
+ # parameter of the CreateDatasetGroup operation must match.
272
+ #
273
+ # The `Domain` and `DatasetType` that you choose determine the fields
274
+ # that must be present in the training data that you import to the
275
+ # dataset. For example, if you choose the `RETAIL` domain and
276
+ # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
277
+ # `item_id`, `timestamp`, and `demand` fields to be present in your
278
+ # data. For more information, see howitworks-datasets-groups.
262
279
  # @return [String]
263
280
  #
264
281
  # @!attribute [rw] dataset_type
@@ -266,7 +283,8 @@ module Aws::ForecastService
266
283
  # @return [String]
267
284
  #
268
285
  # @!attribute [rw] data_frequency
269
- # The frequency of data collection.
286
+ # The frequency of data collection. This parameter is required for
287
+ # RELATED\_TIME\_SERIES datasets.
270
288
  #
271
289
  # Valid intervals are Y (Year), M (Month), W (Week), D (Day), H
272
290
  # (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes),
@@ -336,9 +354,14 @@ module Aws::ForecastService
336
354
  # @return [String]
337
355
  #
338
356
  # @!attribute [rw] destination
339
- # The path to the Amazon S3 bucket where you want to save the forecast
340
- # and an AWS Identity and Access Management (IAM) role that Amazon
341
- # Forecast can assume to access the bucket.
357
+ # The location where you want to save the forecast and an AWS Identity
358
+ # and Access Management (IAM) role that Amazon Forecast can assume to
359
+ # access the location. The forecast must be exported to an Amazon S3
360
+ # bucket.
361
+ #
362
+ # If encryption is used, `Destination` must include an AWS Key
363
+ # Management Service (KMS) key. The IAM role must allow Amazon
364
+ # Forecast permission to access the key.
342
365
  # @return [Types::DataDestination]
343
366
  #
344
367
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastExportJobRequest AWS API Documentation
@@ -367,10 +390,11 @@ module Aws::ForecastService
367
390
  # {
368
391
  # forecast_name: "Name", # required
369
392
  # predictor_arn: "Arn", # required
393
+ # forecast_types: ["ForecastType"],
370
394
  # }
371
395
  #
372
396
  # @!attribute [rw] forecast_name
373
- # The name for the forecast.
397
+ # A name for the forecast.
374
398
  # @return [String]
375
399
  #
376
400
  # @!attribute [rw] predictor_arn
@@ -378,11 +402,21 @@ module Aws::ForecastService
378
402
  # the forecast.
379
403
  # @return [String]
380
404
  #
405
+ # @!attribute [rw] forecast_types
406
+ # The quantiles at which probabilistic forecasts are generated. You
407
+ # can specify up to 5 quantiles per forecast. Accepted values include
408
+ # `0.01 to 0.99` (increments of .01 only) and `mean`. The mean
409
+ # forecast is different from the median (0.50) when the distribution
410
+ # is not symmetric (e.g. Beta, Negative Binomial). The default value
411
+ # is `["0.1", "0.5", "0.9"]`.
412
+ # @return [Array<String>]
413
+ #
381
414
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastRequest AWS API Documentation
382
415
  #
383
416
  class CreateForecastRequest < Struct.new(
384
417
  :forecast_name,
385
- :predictor_arn)
418
+ :predictor_arn,
419
+ :forecast_types)
386
420
  include Aws::Structure
387
421
  end
388
422
 
@@ -479,13 +513,13 @@ module Aws::ForecastService
479
513
  # The Amazon Resource Name (ARN) of the algorithm to use for model
480
514
  # training. Required if `PerformAutoML` is not set to `true`.
481
515
  #
482
- # **Supported algorithms**
516
+ # **Supported algorithms:**
483
517
  #
484
518
  # * `arn:aws:forecast:::algorithm/ARIMA`
485
519
  #
486
520
  # * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
487
521
  #
488
- # `- supports hyperparameter optimization (HPO)`
522
+ # Supports hyperparameter optimization (HPO)
489
523
  #
490
524
  # * `arn:aws:forecast:::algorithm/ETS`
491
525
  #
@@ -502,32 +536,41 @@ module Aws::ForecastService
502
536
  # (using the `DataFrequency` parameter of the CreateDataset operation)
503
537
  # and set the forecast horizon to 10, the model returns predictions
504
538
  # for 10 days.
539
+ #
540
+ # The maximum forecast horizon is the lesser of 500 time-steps or 1/3
541
+ # of the TARGET\_TIME\_SERIES dataset length.
505
542
  # @return [Integer]
506
543
  #
507
544
  # @!attribute [rw] perform_auto_ml
508
- # Whether to perform AutoML. The default value is `false`. In this
509
- # case, you are required to specify an algorithm.
545
+ # Whether to perform AutoML. When Amazon Forecast performs AutoML, it
546
+ # evaluates the algorithms it provides and chooses the best algorithm
547
+ # and configuration for your training dataset.
548
+ #
549
+ # The default value is `false`. In this case, you are required to
550
+ # specify an algorithm.
510
551
  #
511
- # If you want Amazon Forecast to evaluate the algorithms it provides
512
- # and choose the best algorithm and configuration for your training
513
- # dataset, set `PerformAutoML` to `true`. This is a good option if you
514
- # aren't sure which algorithm is suitable for your application.
552
+ # Set `PerformAutoML` to `true` to have Amazon Forecast perform
553
+ # AutoML. This is a good option if you aren't sure which algorithm is
554
+ # suitable for your training data. In this case, `PerformHPO` must be
555
+ # false.
515
556
  # @return [Boolean]
516
557
  #
517
558
  # @!attribute [rw] perform_hpo
518
559
  # Whether to perform hyperparameter optimization (HPO). HPO finds
519
560
  # optimal hyperparameter values for your training data. The process of
520
- # performing HPO is known as a hyperparameter tuning job.
561
+ # performing HPO is known as running a hyperparameter tuning job.
521
562
  #
522
563
  # The default value is `false`. In this case, Amazon Forecast uses
523
564
  # default hyperparameter values from the chosen algorithm.
524
565
  #
525
- # To override the default values, set `PerformHPO` to `true` and
526
- # supply the HyperParameterTuningJobConfig object. The tuning job
527
- # specifies an objective metric, the hyperparameters to optimize, and
528
- # the valid range for each hyperparameter.
566
+ # To override the default values, set `PerformHPO` to `true` and,
567
+ # optionally, supply the HyperParameterTuningJobConfig object. The
568
+ # tuning job specifies a metric to optimize, which hyperparameters
569
+ # participate in tuning, and the valid range for each tunable
570
+ # hyperparameter. In this case, you are required to specify an
571
+ # algorithm and `PerformAutoML` must be false.
529
572
  #
530
- # The following algorithms support HPO:
573
+ # The following algorithm supports HPO:
531
574
  #
532
575
  # * DeepAR+
533
576
  #
@@ -535,9 +578,10 @@ module Aws::ForecastService
535
578
  # @return [Boolean]
536
579
  #
537
580
  # @!attribute [rw] training_parameters
538
- # The training parameters to override for model training. The
539
- # parameters that you can override are listed in the individual
540
- # algorithms in aws-forecast-choosing-recipes.
581
+ # The hyperparameters to override for model training. The
582
+ # hyperparameters that you can override are listed in the individual
583
+ # algorithms. For the list of supported algorithms, see
584
+ # aws-forecast-choosing-recipes.
541
585
  # @return [Hash<String,String>]
542
586
  #
543
587
  # @!attribute [rw] evaluation_parameters
@@ -554,6 +598,9 @@ module Aws::ForecastService
554
598
  # The individual algorithms specify which hyperparameters support
555
599
  # hyperparameter optimization (HPO). For more information, see
556
600
  # aws-forecast-choosing-recipes.
601
+ #
602
+ # If you included the `HPOConfig` object, you must set `PerformHPO` to
603
+ # true.
557
604
  # @return [Types::HyperParameterTuningJobConfig]
558
605
  #
559
606
  # @!attribute [rw] input_data_config
@@ -599,9 +646,10 @@ module Aws::ForecastService
599
646
  include Aws::Structure
600
647
  end
601
648
 
602
- # The destination of an exported forecast and credentials to access the
603
- # location. This object is submitted in the CreateForecastExportJob
604
- # request.
649
+ # The destination for an exported forecast, an AWS Identity and Access
650
+ # Management (IAM) role that allows Amazon Forecast to access the
651
+ # location and, optionally, an AWS Key Management Service (KMS) key.
652
+ # This object is submitted in the CreateForecastExportJob request.
605
653
  #
606
654
  # @note When making an API call, you may pass DataDestination
607
655
  # data as a hash:
@@ -626,8 +674,10 @@ module Aws::ForecastService
626
674
  include Aws::Structure
627
675
  end
628
676
 
629
- # The source of your training data and credentials to access the data.
630
- # This object is submitted in the CreateDatasetImportJob request.
677
+ # The source of your training data, an AWS Identity and Access
678
+ # Management (IAM) role that allows Amazon Forecast to access the data
679
+ # and, optionally, an AWS Key Management Service (KMS) key. This object
680
+ # is submitted in the CreateDatasetImportJob request.
631
681
  #
632
682
  # @note When making an API call, you may pass DataSource
633
683
  # data as a hash:
@@ -655,7 +705,7 @@ module Aws::ForecastService
655
705
 
656
706
  # Provides a summary of the dataset group properties used in the
657
707
  # ListDatasetGroups operation. To get the complete set of properties,
658
- # call the DescribeDatasetGroup operation, and provide the listed
708
+ # call the DescribeDatasetGroup operation, and provide the
659
709
  # `DatasetGroupArn`.
660
710
  #
661
711
  # @!attribute [rw] dataset_group_arn
@@ -667,13 +717,14 @@ module Aws::ForecastService
667
717
  # @return [String]
668
718
  #
669
719
  # @!attribute [rw] creation_time
670
- # When the datase group was created.
720
+ # When the dataset group was created.
671
721
  # @return [Time]
672
722
  #
673
723
  # @!attribute [rw] last_modification_time
674
724
  # When the dataset group was created or last updated from a call to
675
725
  # the UpdateDatasetGroup operation. While the dataset group is being
676
- # updated, `LastModificationTime` is the current query time.
726
+ # updated, `LastModificationTime` is the current time of the
727
+ # `ListDatasetGroups` call.
677
728
  # @return [Time]
678
729
  #
679
730
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetGroupSummary AWS API Documentation
@@ -689,7 +740,7 @@ module Aws::ForecastService
689
740
  # Provides a summary of the dataset import job properties used in the
690
741
  # ListDatasetImportJobs operation. To get the complete set of
691
742
  # properties, call the DescribeDatasetImportJob operation, and provide
692
- # the listed `DatasetImportJobArn`.
743
+ # the `DatasetImportJobArn`.
693
744
  #
694
745
  # @!attribute [rw] dataset_import_job_arn
695
746
  # The Amazon Resource Name (ARN) of the dataset import job.
@@ -700,8 +751,13 @@ module Aws::ForecastService
700
751
  # @return [String]
701
752
  #
702
753
  # @!attribute [rw] data_source
703
- # The location of the Amazon S3 bucket that contains the training
704
- # data.
754
+ # The location of the training data to import and an AWS Identity and
755
+ # Access Management (IAM) role that Amazon Forecast can assume to
756
+ # access the data. The training data must be stored in an Amazon S3
757
+ # bucket.
758
+ #
759
+ # If encryption is used, `DataSource` includes an AWS Key Management
760
+ # Service (KMS) key.
705
761
  # @return [Types::DataSource]
706
762
  #
707
763
  # @!attribute [rw] status
@@ -726,13 +782,14 @@ module Aws::ForecastService
726
782
  # @return [Time]
727
783
  #
728
784
  # @!attribute [rw] last_modification_time
729
- # Dependent on the status as follows:
785
+ # The last time that the dataset was modified. The time depends on the
786
+ # status of the job, as follows:
730
787
  #
731
- # * `CREATE_PENDING` - same as `CreationTime`
788
+ # * `CREATE_PENDING` - The same time as `CreationTime`.
732
789
  #
733
- # * `CREATE_IN_PROGRESS` - the current timestamp
790
+ # * `CREATE_IN_PROGRESS` - The current timestamp.
734
791
  #
735
- # * `ACTIVE` or `CREATE_FAILED` - when the job finished or failed
792
+ # * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
736
793
  # @return [Time]
737
794
  #
738
795
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetImportJobSummary AWS API Documentation
@@ -750,7 +807,7 @@ module Aws::ForecastService
750
807
 
751
808
  # Provides a summary of the dataset properties used in the ListDatasets
752
809
  # operation. To get the complete set of properties, call the
753
- # DescribeDataset operation, and provide the listed `DatasetArn`.
810
+ # DescribeDataset operation, and provide the `DatasetArn`.
754
811
  #
755
812
  # @!attribute [rw] dataset_arn
756
813
  # The Amazon Resource Name (ARN) of the dataset.
@@ -773,11 +830,11 @@ module Aws::ForecastService
773
830
  # @return [Time]
774
831
  #
775
832
  # @!attribute [rw] last_modification_time
776
- # When the dataset is created, `LastModificationTime` is the same as
777
- # `CreationTime`. After a CreateDatasetImportJob operation is called,
778
- # `LastModificationTime` is when the import job finished or failed.
779
- # While data is being imported to the dataset, `LastModificationTime`
780
- # is the current query time.
833
+ # When you create a dataset, `LastModificationTime` is the same as
834
+ # `CreationTime`. While data is being imported to the dataset,
835
+ # `LastModificationTime` is the current time of the `ListDatasets`
836
+ # call. After a CreateDatasetImportJob operation has finished,
837
+ # `LastModificationTime` is when the import job completed or failed.
781
838
  # @return [Time]
782
839
  #
783
840
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetSummary AWS API Documentation
@@ -932,13 +989,7 @@ module Aws::ForecastService
932
989
  # @return [Array<String>]
933
990
  #
934
991
  # @!attribute [rw] domain
935
- # The domain associated with the dataset group. The `Domain` and
936
- # `DatasetType` that you choose determine the fields that must be
937
- # present in the training data that you import to the dataset. For
938
- # example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES`
939
- # as the `DatasetType`, Amazon Forecast requires `item_id`,
940
- # `timestamp`, and `demand` fields to be present in your data. For
941
- # more information, see howitworks-datasets-groups.
992
+ # The domain associated with the dataset group.
942
993
  # @return [String]
943
994
  #
944
995
  # @!attribute [rw] status
@@ -952,11 +1003,11 @@ module Aws::ForecastService
952
1003
  #
953
1004
  # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
954
1005
  #
955
- # The `UPDATE` states apply when the UpdateDatasetGroup operation is
956
- # called.
1006
+ # The `UPDATE` states apply when you call the UpdateDatasetGroup
1007
+ # operation.
957
1008
  #
958
- # <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before creating a
959
- # predictor using the dataset group.
1009
+ # <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before you can
1010
+ # use the dataset group to create a predictor.
960
1011
  #
961
1012
  # </note>
962
1013
  # @return [String]
@@ -968,7 +1019,8 @@ module Aws::ForecastService
968
1019
  # @!attribute [rw] last_modification_time
969
1020
  # When the dataset group was created or last updated from a call to
970
1021
  # the UpdateDatasetGroup operation. While the dataset group is being
971
- # updated, `LastModificationTime` is the current query time.
1022
+ # updated, `LastModificationTime` is the current time of the
1023
+ # `DescribeDatasetGroup` call.
972
1024
  # @return [Time]
973
1025
  #
974
1026
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetGroupResponse AWS API Documentation
@@ -1016,23 +1068,27 @@ module Aws::ForecastService
1016
1068
  # @return [String]
1017
1069
  #
1018
1070
  # @!attribute [rw] timestamp_format
1019
- # The format of timestamps in the dataset. Two formats are supported
1020
- # dependent on the `DataFrequency` specified when the dataset was
1021
- # created.
1071
+ # The format of timestamps in the dataset. The format that you specify
1072
+ # depends on the `DataFrequency` specified when the dataset was
1073
+ # created. The following formats are supported
1022
1074
  #
1023
1075
  # * "yyyy-MM-dd"
1024
1076
  #
1025
- # For data frequencies: Y, M, W, and D
1077
+ # For the following data frequencies: Y, M, W, and D
1026
1078
  #
1027
1079
  # * "yyyy-MM-dd HH:mm:ss"
1028
1080
  #
1029
- # For data frequencies: H, 30min, 15min, and 1min; and optionally,
1030
- # for: Y, M, W, and D
1081
+ # For the following data frequencies: H, 30min, 15min, and 1min; and
1082
+ # optionally, for: Y, M, W, and D
1031
1083
  # @return [String]
1032
1084
  #
1033
1085
  # @!attribute [rw] data_source
1034
- # The location of the training data to import. The training data must
1035
- # be stored in an Amazon S3 bucket.
1086
+ # The location of the training data to import and an AWS Identity and
1087
+ # Access Management (IAM) role that Amazon Forecast can assume to
1088
+ # access the data.
1089
+ #
1090
+ # If encryption is used, `DataSource` includes an AWS Key Management
1091
+ # Service (KMS) key.
1036
1092
  # @return [Types::DataSource]
1037
1093
  #
1038
1094
  # @!attribute [rw] field_statistics
@@ -1040,8 +1096,8 @@ module Aws::ForecastService
1040
1096
  # @return [Hash<String,Types::Statistics>]
1041
1097
  #
1042
1098
  # @!attribute [rw] data_size
1043
- # The size of the dataset in gigabytes (GB) after completion of the
1044
- # import job.
1099
+ # The size of the dataset in gigabytes (GB) after the import job has
1100
+ # finished.
1045
1101
  # @return [Float]
1046
1102
  #
1047
1103
  # @!attribute [rw] status
@@ -1066,13 +1122,14 @@ module Aws::ForecastService
1066
1122
  # @return [Time]
1067
1123
  #
1068
1124
  # @!attribute [rw] last_modification_time
1069
- # Dependent on the status as follows:
1125
+ # The last time that the dataset was modified. The time depends on the
1126
+ # status of the job, as follows:
1070
1127
  #
1071
- # * `CREATE_PENDING` - same as `CreationTime`
1128
+ # * `CREATE_PENDING` - The same time as `CreationTime`.
1072
1129
  #
1073
- # * `CREATE_IN_PROGRESS` - the current timestamp
1130
+ # * `CREATE_IN_PROGRESS` - The current timestamp.
1074
1131
  #
1075
- # * `ACTIVE` or `CREATE_FAILED` - when the job finished or failed
1132
+ # * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
1076
1133
  # @return [Time]
1077
1134
  #
1078
1135
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetImportJobResponse AWS API Documentation
@@ -1119,7 +1176,7 @@ module Aws::ForecastService
1119
1176
  # @return [String]
1120
1177
  #
1121
1178
  # @!attribute [rw] domain
1122
- # The dataset domain.
1179
+ # The domain associated with the dataset.
1123
1180
  # @return [String]
1124
1181
  #
1125
1182
  # @!attribute [rw] dataset_type
@@ -1142,7 +1199,7 @@ module Aws::ForecastService
1142
1199
  # @return [Types::Schema]
1143
1200
  #
1144
1201
  # @!attribute [rw] encryption_config
1145
- # An AWS Key Management Service (KMS) key and the AWS Identity and
1202
+ # The AWS Key Management Service (KMS) key and the AWS Identity and
1146
1203
  # Access Management (IAM) role that Amazon Forecast can assume to
1147
1204
  # access the key.
1148
1205
  # @return [Types::EncryptionConfig]
@@ -1159,10 +1216,10 @@ module Aws::ForecastService
1159
1216
  # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
1160
1217
  #
1161
1218
  # The `UPDATE` states apply while data is imported to the dataset from
1162
- # a call to the CreateDatasetImportJob operation. During this time,
1163
- # the status reflects the status of the dataset import job. For
1164
- # example, when the import job status is `CREATE_IN_PROGRESS`, the
1165
- # status of the dataset is `UPDATE_IN_PROGRESS`.
1219
+ # a call to the CreateDatasetImportJob operation and reflect the
1220
+ # status of the dataset import job. For example, when the import job
1221
+ # status is `CREATE_IN_PROGRESS`, the status of the dataset is
1222
+ # `UPDATE_IN_PROGRESS`.
1166
1223
  #
1167
1224
  # <note markdown="1"> The `Status` of the dataset must be `ACTIVE` before you can import
1168
1225
  # training data.
@@ -1175,11 +1232,11 @@ module Aws::ForecastService
1175
1232
  # @return [Time]
1176
1233
  #
1177
1234
  # @!attribute [rw] last_modification_time
1178
- # When the dataset is created, `LastModificationTime` is the same as
1179
- # `CreationTime`. After a CreateDatasetImportJob operation is called,
1180
- # `LastModificationTime` is when the import job finished or failed.
1181
- # While data is being imported to the dataset, `LastModificationTime`
1182
- # is the current query time.
1235
+ # When you create a dataset, `LastModificationTime` is the same as
1236
+ # `CreationTime`. While data is being imported to the dataset,
1237
+ # `LastModificationTime` is the current time of the `DescribeDataset`
1238
+ # call. After a CreateDatasetImportJob operation has finished,
1239
+ # `LastModificationTime` is when the import job completed or failed.
1183
1240
  # @return [Time]
1184
1241
  #
1185
1242
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetResponse AWS API Documentation
@@ -1229,7 +1286,8 @@ module Aws::ForecastService
1229
1286
  # @return [String]
1230
1287
  #
1231
1288
  # @!attribute [rw] destination
1232
- # The path to the AWS S3 bucket where the forecast is exported.
1289
+ # The path to the Amazon Simple Storage Service (Amazon S3) bucket
1290
+ # where the forecast is exported.
1233
1291
  # @return [Types::DataDestination]
1234
1292
  #
1235
1293
  # @!attribute [rw] message
@@ -1237,7 +1295,7 @@ module Aws::ForecastService
1237
1295
  # @return [String]
1238
1296
  #
1239
1297
  # @!attribute [rw] status
1240
- # The status of the forecast export job. One of the following states:
1298
+ # The status of the forecast export job. States include:
1241
1299
  #
1242
1300
  # * `ACTIVE`
1243
1301
  #
@@ -1246,7 +1304,7 @@ module Aws::ForecastService
1246
1304
  # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED`
1247
1305
  #
1248
1306
  # <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
1249
- # can access the forecast in your Amazon S3 bucket.
1307
+ # can access the forecast in your S3 bucket.
1250
1308
  #
1251
1309
  # </note>
1252
1310
  # @return [String]
@@ -1292,13 +1350,17 @@ module Aws::ForecastService
1292
1350
  end
1293
1351
 
1294
1352
  # @!attribute [rw] forecast_arn
1295
- # The same forecast ARN as given in the request.
1353
+ # The forecast ARN as specified in the request.
1296
1354
  # @return [String]
1297
1355
  #
1298
1356
  # @!attribute [rw] forecast_name
1299
1357
  # The name of the forecast.
1300
1358
  # @return [String]
1301
1359
  #
1360
+ # @!attribute [rw] forecast_types
1361
+ # The quantiles at which proababilistic forecasts were generated.
1362
+ # @return [Array<String>]
1363
+ #
1302
1364
  # @!attribute [rw] predictor_arn
1303
1365
  # The ARN of the predictor used to generate the forecast.
1304
1366
  # @return [String]
@@ -1344,6 +1406,7 @@ module Aws::ForecastService
1344
1406
  class DescribeForecastResponse < Struct.new(
1345
1407
  :forecast_arn,
1346
1408
  :forecast_name,
1409
+ :forecast_types,
1347
1410
  :predictor_arn,
1348
1411
  :dataset_group_arn,
1349
1412
  :status,
@@ -1395,13 +1458,16 @@ module Aws::ForecastService
1395
1458
  # @return [Boolean]
1396
1459
  #
1397
1460
  # @!attribute [rw] perform_hpo
1398
- # Whether the predictor is set to perform HPO.
1461
+ # Whether the predictor is set to perform hyperparameter optimization
1462
+ # (HPO).
1399
1463
  # @return [Boolean]
1400
1464
  #
1401
1465
  # @!attribute [rw] training_parameters
1402
- # The training parameters to override for model training. The
1403
- # parameters that you can override are listed in the individual
1404
- # algorithms in aws-forecast-choosing-recipes.
1466
+ # The default training parameters or overrides selected during model
1467
+ # training. If using the AutoML algorithm or if HPO is turned on while
1468
+ # using the DeepAR+ algorithms, the optimized values for the chosen
1469
+ # hyperparameters are returned. For more information, see
1470
+ # aws-forecast-choosing-recipes.
1405
1471
  # @return [Hash<String,String>]
1406
1472
  #
1407
1473
  # @!attribute [rw] evaluation_parameters
@@ -1431,9 +1497,15 @@ module Aws::ForecastService
1431
1497
  # access the key.
1432
1498
  # @return [Types::EncryptionConfig]
1433
1499
  #
1500
+ # @!attribute [rw] predictor_execution_details
1501
+ # Details on the the status and results of the backtests performed to
1502
+ # evaluate the accuracy of the predictor. You specify the number of
1503
+ # backtests to perform when you call the operation.
1504
+ # @return [Types::PredictorExecutionDetails]
1505
+ #
1434
1506
  # @!attribute [rw] dataset_import_job_arns
1435
- # An array of ARNs of the dataset import jobs used to import training
1436
- # data for the predictor.
1507
+ # An array of the ARNs of the dataset import jobs used to import
1508
+ # training data for the predictor.
1437
1509
  # @return [Array<String>]
1438
1510
  #
1439
1511
  # @!attribute [rw] auto_ml_algorithm_arns
@@ -1451,8 +1523,8 @@ module Aws::ForecastService
1451
1523
  #
1452
1524
  # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
1453
1525
  #
1454
- # <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before using the
1455
- # predictor to create a forecast.
1526
+ # <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before you can use
1527
+ # the predictor to create a forecast.
1456
1528
  #
1457
1529
  # </note>
1458
1530
  # @return [String]
@@ -1466,10 +1538,11 @@ module Aws::ForecastService
1466
1538
  # @return [Time]
1467
1539
  #
1468
1540
  # @!attribute [rw] last_modification_time
1469
- # Initially, the same as `CreationTime` (status is `CREATE_PENDING`).
1470
- # Updated when training starts (status changed to
1471
- # `CREATE_IN_PROGRESS`), and when training is complete (status changed
1472
- # to `ACTIVE`) or fails (status changed to `CREATE_FAILED`).
1541
+ # Initially, the same as `CreationTime` (when the status is
1542
+ # `CREATE_PENDING`). This value is updated when training starts (when
1543
+ # the status changes to `CREATE_IN_PROGRESS`), and when training has
1544
+ # completed (when the status changes to `ACTIVE`) or fails (when the
1545
+ # status changes to `CREATE_FAILED`).
1473
1546
  # @return [Time]
1474
1547
  #
1475
1548
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictorResponse AWS API Documentation
@@ -1487,6 +1560,7 @@ module Aws::ForecastService
1487
1560
  :input_data_config,
1488
1561
  :featurization_config,
1489
1562
  :encryption_config,
1563
+ :predictor_execution_details,
1490
1564
  :dataset_import_job_arns,
1491
1565
  :auto_ml_algorithm_arns,
1492
1566
  :status,
@@ -1498,7 +1572,7 @@ module Aws::ForecastService
1498
1572
 
1499
1573
  # An AWS Key Management Service (KMS) key and an AWS Identity and Access
1500
1574
  # Management (IAM) role that Amazon Forecast can assume to access the
1501
- # key. This object is optionally submitted in the CreateDataset and
1575
+ # key. You can specify this optional object in the CreateDataset and
1502
1576
  # CreatePredictor requests.
1503
1577
  #
1504
1578
  # @note When making an API call, you may pass EncryptionConfig
@@ -1510,17 +1584,16 @@ module Aws::ForecastService
1510
1584
  # }
1511
1585
  #
1512
1586
  # @!attribute [rw] role_arn
1513
- # The ARN of the AWS Identity and Access Management (IAM) role that
1514
- # Amazon Forecast can assume to access the AWS KMS key.
1587
+ # The ARN of the IAM role that Amazon Forecast can assume to access
1588
+ # the AWS KMS key.
1515
1589
  #
1516
- # Cross-account pass role is not allowed. If you pass a role that
1517
- # doesn't belong to your account, an `InvalidInputException` is
1518
- # thrown.
1590
+ # Passing a role across AWS accounts is not allowed. If you pass a
1591
+ # role that isn't in your account, you get an `InvalidInputException`
1592
+ # error.
1519
1593
  # @return [String]
1520
1594
  #
1521
1595
  # @!attribute [rw] kms_key_arn
1522
- # The Amazon Resource Name (ARN) of an AWS Key Management Service
1523
- # (KMS) key.
1596
+ # The Amazon Resource Name (ARN) of the KMS key.
1524
1597
  # @return [String]
1525
1598
  #
1526
1599
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EncryptionConfig AWS API Documentation
@@ -1533,18 +1606,8 @@ module Aws::ForecastService
1533
1606
 
1534
1607
  # Parameters that define how to split a dataset into training data and
1535
1608
  # testing data, and the number of iterations to perform. These
1536
- # parameters are specified in the predefined algorithms and can be
1537
- # overridden in the CreatePredictor request.
1538
- #
1539
- # For example, suppose that you have a dataset with data collection
1540
- # frequency set to every day and you have 200 days worth of data (that
1541
- # is, 200 data points). Now suppose that you set the
1542
- # `NumberOfBacktestWindows` to 2 and the `BackTestWindowOffset`
1543
- # parameter to 20. The algorithm splits the data twice. The first time,
1544
- # the algorithm trains the model using the first 180 data points and
1545
- # uses the last 20 data points for evaluation. The second time, the
1546
- # algorithm trains the model using the first 160 data points and uses
1547
- # the last 40 data points for evaluation.
1609
+ # parameters are specified in the predefined algorithms but you can
1610
+ # override them in the CreatePredictor request.
1548
1611
  #
1549
1612
  # @note When making an API call, you may pass EvaluationParameters
1550
1613
  # data as a hash:
@@ -1555,14 +1618,21 @@ module Aws::ForecastService
1555
1618
  # }
1556
1619
  #
1557
1620
  # @!attribute [rw] number_of_backtest_windows
1558
- # The number of times to split the input data. The default is 1. The
1559
- # range is 1 through 5.
1621
+ # The number of times to split the input data. The default is 1. Valid
1622
+ # values are 1 through 5.
1560
1623
  # @return [Integer]
1561
1624
  #
1562
1625
  # @!attribute [rw] back_test_window_offset
1563
1626
  # The point from the end of the dataset where you want to split the
1564
- # data for model training and evaluation. The value is specified as
1565
- # the number of data points.
1627
+ # data for model training and testing (evaluation). Specify the value
1628
+ # as the number of data points. The default is the value of the
1629
+ # forecast horizon. `BackTestWindowOffset` can be used to mimic a past
1630
+ # virtual forecast start date. This value must be greater than or
1631
+ # equal to the forecast horizon and less than half of the
1632
+ # TARGET\_TIME\_SERIES dataset length.
1633
+ #
1634
+ # `ForecastHorizon` &lt;= `BackTestWindowOffset` &lt; 1/2 *
1635
+ # TARGET\_TIME\_SERIES dataset length
1566
1636
  # @return [Integer]
1567
1637
  #
1568
1638
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EvaluationParameters AWS API Documentation
@@ -1630,17 +1700,16 @@ module Aws::ForecastService
1630
1700
  # }
1631
1701
  #
1632
1702
  # @!attribute [rw] attribute_name
1633
- # The name of the schema attribute specifying the data field to be
1634
- # featurized. In this release, only the `target` field of the
1635
- # `TARGET_TIME_SERIES` dataset type is supported. For example, for the
1636
- # `RETAIL` domain, the target is `demand`, and for the `CUSTOM`
1637
- # domain, the target is `target_value`.
1703
+ # The name of the schema attribute that specifies the data field to be
1704
+ # featurized. Only the `target` field of the `TARGET_TIME_SERIES`
1705
+ # dataset type is supported. For example, for the `RETAIL` domain, the
1706
+ # target is `demand`, and for the `CUSTOM` domain, the target is
1707
+ # `target_value`.
1638
1708
  # @return [String]
1639
1709
  #
1640
1710
  # @!attribute [rw] featurization_pipeline
1641
- # An array `FeaturizationMethod` objects that specifies the feature
1642
- # transformation methods. For this release, the number of methods is
1643
- # limited to one.
1711
+ # An array of one `FeaturizationMethod` object that specifies the
1712
+ # feature transformation method.
1644
1713
  # @return [Array<Types::FeaturizationMethod>]
1645
1714
  #
1646
1715
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Featurization AWS API Documentation
@@ -1658,9 +1727,10 @@ module Aws::ForecastService
1658
1727
  #
1659
1728
  # You define featurization using the `FeaturizationConfig` object. You
1660
1729
  # specify an array of transformations, one for each field that you want
1661
- # to featurize. You then include the `FeaturizationConfig` in your
1662
- # `CreatePredictor` request. Amazon Forecast applies the featurization
1663
- # to the `TARGET_TIME_SERIES` dataset before model training.
1730
+ # to featurize. You then include the `FeaturizationConfig` object in
1731
+ # your `CreatePredictor` request. Amazon Forecast applies the
1732
+ # featurization to the `TARGET_TIME_SERIES` dataset before model
1733
+ # training.
1664
1734
  #
1665
1735
  # You can create multiple featurization configurations. For example, you
1666
1736
  # might call the `CreatePredictor` operation twice by specifying
@@ -1694,6 +1764,12 @@ module Aws::ForecastService
1694
1764
  # (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes),
1695
1765
  # 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates
1696
1766
  # every year and "5min" indicates every five minutes.
1767
+ #
1768
+ # The frequency must be greater than or equal to the
1769
+ # TARGET\_TIME\_SERIES dataset frequency.
1770
+ #
1771
+ # When a RELATED\_TIME\_SERIES dataset is provided, the frequency must
1772
+ # be equal to the RELATED\_TIME\_SERIES dataset frequency.
1697
1773
  # @return [String]
1698
1774
  #
1699
1775
  # @!attribute [rw] forecast_dimensions
@@ -1704,12 +1780,17 @@ module Aws::ForecastService
1704
1780
  # sales across all of your stores, and your dataset contains a
1705
1781
  # `store_id` field. If you want the sales forecast for each item by
1706
1782
  # store, you would specify `store_id` as the dimension.
1783
+ #
1784
+ # All forecast dimensions specified in the `TARGET_TIME_SERIES`
1785
+ # dataset don't need to be specified in the `CreatePredictor`
1786
+ # request. All forecast dimensions specified in the
1787
+ # `RELATED_TIME_SERIES` dataset must be specified in the
1788
+ # `CreatePredictor` request.
1707
1789
  # @return [Array<String>]
1708
1790
  #
1709
1791
  # @!attribute [rw] featurizations
1710
1792
  # An array of featurization (transformation) information for the
1711
- # fields of a dataset. In this release, only a single featurization is
1712
- # supported.
1793
+ # fields of a dataset. Only a single featurization is supported.
1713
1794
  # @return [Array<Types::Featurization>]
1714
1795
  #
1715
1796
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/FeaturizationConfig AWS API Documentation
@@ -1721,12 +1802,14 @@ module Aws::ForecastService
1721
1802
  include Aws::Structure
1722
1803
  end
1723
1804
 
1724
- # Provides information about a method that featurizes (transforms) a
1805
+ # Provides information about the method that featurizes (transforms) a
1725
1806
  # dataset field. The method is part of the `FeaturizationPipeline` of
1726
- # the Featurization object. If `FeaturizationMethodParameters` isn't
1727
- # specified, Amazon Forecast uses default parameters.
1807
+ # the Featurization object. If you don't specify
1808
+ # `FeaturizationMethodParameters`, Amazon Forecast uses default
1809
+ # parameters.
1728
1810
  #
1729
- # For example:
1811
+ # The following is an example of how you specify a `FeaturizationMethod`
1812
+ # object.
1730
1813
  #
1731
1814
  # `\{`
1732
1815
  #
@@ -1748,14 +1831,14 @@ module Aws::ForecastService
1748
1831
  # }
1749
1832
  #
1750
1833
  # @!attribute [rw] featurization_method_name
1751
- # The name of the method. In this release, "filling" is the only
1752
- # supported method.
1834
+ # The name of the method. The "filling" method is the only supported
1835
+ # method.
1753
1836
  # @return [String]
1754
1837
  #
1755
1838
  # @!attribute [rw] featurization_method_parameters
1756
- # The method parameters (key-value pairs). Specify these to override
1757
- # the default values. The following list shows the parameters and
1758
- # their valid values. Bold signifies the default value.
1839
+ # The method parameters (key-value pairs). Specify these parameters to
1840
+ # override the default values. The following list shows the parameters
1841
+ # and their valid values. Bold signifies the default value.
1759
1842
  #
1760
1843
  # * `aggregation`\: **sum**, `avg`, `first`, `min`, `max`
1761
1844
  #
@@ -1776,9 +1859,9 @@ module Aws::ForecastService
1776
1859
 
1777
1860
  # Describes a filter for choosing a subset of objects. Each filter
1778
1861
  # consists of a condition and a match statement. The condition is either
1779
- # `IS` or `IS_NOT`, which specifies whether to include or exclude,
1780
- # respectively, the objects that match the statement. The match
1781
- # statement consists of a key and a value.
1862
+ # `IS` or `IS_NOT`, which specifies whether to include or exclude the
1863
+ # objects that match the statement, respectively. The match statement
1864
+ # consists of a key and a value.
1782
1865
  #
1783
1866
  # @note When making an API call, you may pass Filter
1784
1867
  # data as a hash:
@@ -1794,11 +1877,13 @@ module Aws::ForecastService
1794
1877
  # @return [String]
1795
1878
  #
1796
1879
  # @!attribute [rw] value
1797
- # A valid value for `Key`.
1880
+ # The value to match.
1798
1881
  # @return [String]
1799
1882
  #
1800
1883
  # @!attribute [rw] condition
1801
- # The condition to apply.
1884
+ # The condition to apply. To include the objects that match the
1885
+ # statement, specify `IS`. To exclude matching objects, specify
1886
+ # `IS_NOT`.
1802
1887
  # @return [String]
1803
1888
  #
1804
1889
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Filter AWS API Documentation
@@ -1824,11 +1909,12 @@ module Aws::ForecastService
1824
1909
  # @return [String]
1825
1910
  #
1826
1911
  # @!attribute [rw] destination
1827
- # The path to the S3 bucket where the forecast is stored.
1912
+ # The path to the Amazon Simple Storage Service (Amazon S3) bucket
1913
+ # where the forecast is exported.
1828
1914
  # @return [Types::DataDestination]
1829
1915
  #
1830
1916
  # @!attribute [rw] status
1831
- # The status of the forecast export job. One of the following states:
1917
+ # The status of the forecast export job. States include:
1832
1918
  #
1833
1919
  # * `ACTIVE`
1834
1920
  #
@@ -1837,7 +1923,7 @@ module Aws::ForecastService
1837
1923
  # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED`
1838
1924
  #
1839
1925
  # <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
1840
- # can access the forecast in your Amazon S3 bucket.
1926
+ # can access the forecast in your S3 bucket.
1841
1927
  #
1842
1928
  # </note>
1843
1929
  # @return [String]
@@ -1869,7 +1955,8 @@ module Aws::ForecastService
1869
1955
 
1870
1956
  # Provides a summary of the forecast properties used in the
1871
1957
  # ListForecasts operation. To get the complete set of properties, call
1872
- # the DescribeForecast operation, and provide the listed `ForecastArn`.
1958
+ # the DescribeForecast operation, and provide the `ForecastArn` that is
1959
+ # listed in the summary.
1873
1960
  #
1874
1961
  # @!attribute [rw] forecast_arn
1875
1962
  # The ARN of the forecast.
@@ -1962,19 +2049,20 @@ module Aws::ForecastService
1962
2049
  include Aws::Structure
1963
2050
  end
1964
2051
 
1965
- # Configuration information for a hyperparameter tuning job. This object
1966
- # is specified in the CreatePredictor request.
2052
+ # Configuration information for a hyperparameter tuning job. You specify
2053
+ # this object in the CreatePredictor request.
1967
2054
  #
1968
- # A hyperparameter is a parameter that governs the model training
1969
- # process and is set before training starts. This is as opposed to a
1970
- # model parameter that is determined during training. The values of the
1971
- # hyperparameters have an effect on the chosen model parameters.
2055
+ # A *hyperparameter* is a parameter that governs the model training
2056
+ # process. You set hyperparameters before training starts, unlike model
2057
+ # parameters, which are determined during training. The values of the
2058
+ # hyperparameters effect which values are chosen for the model
2059
+ # parameters.
1972
2060
  #
1973
- # A hyperparameter tuning job is the process of choosing the optimum set
1974
- # of hyperparameter values that optimize a specified metric. This is
1975
- # accomplished by running many training jobs over a range of
1976
- # hyperparameter values. The optimum set of values is dependent on the
1977
- # algorithm, the training data, and the given metric objective.
2061
+ # In a *hyperparameter tuning job*, Amazon Forecast chooses the set of
2062
+ # hyperparameter values that optimize a specified metric. Forecast
2063
+ # accomplishes this by running many training jobs over a range of
2064
+ # hyperparameter values. The optimum set of values depends on the
2065
+ # algorithm, the training data, and the specified metric objective.
1978
2066
  #
1979
2067
  # @note When making an API call, you may pass HyperParameterTuningJobConfig
1980
2068
  # data as a hash:
@@ -2018,7 +2106,7 @@ module Aws::ForecastService
2018
2106
  end
2019
2107
 
2020
2108
  # The data used to train a predictor. The data includes a dataset group
2021
- # and any supplementary features. This object is specified in the
2109
+ # and any supplementary features. You specify this object in the
2022
2110
  # CreatePredictor request.
2023
2111
  #
2024
2112
  # @note When making an API call, you may pass InputDataConfig
@@ -2039,8 +2127,8 @@ module Aws::ForecastService
2039
2127
  # @return [String]
2040
2128
  #
2041
2129
  # @!attribute [rw] supplementary_features
2042
- # An array of supplementary features. For this release, the only
2043
- # supported feature is a holiday calendar.
2130
+ # An array of supplementary features. The only supported feature is a
2131
+ # holiday calendar.
2044
2132
  # @return [Array<Types::SupplementaryFeature>]
2045
2133
  #
2046
2134
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/InputDataConfig AWS API Documentation
@@ -2078,9 +2166,7 @@ module Aws::ForecastService
2078
2166
  #
2079
2167
  # @!attribute [rw] scaling_type
2080
2168
  # The scale that hyperparameter tuning uses to search the
2081
- # hyperparameter range. For information about choosing a
2082
- # hyperparameter scale, see [Hyperparameter Scaling][1]. One of the
2083
- # following values:
2169
+ # hyperparameter range. Valid values:
2084
2170
  #
2085
2171
  # Auto
2086
2172
  #
@@ -2097,8 +2183,8 @@ module Aws::ForecastService
2097
2183
  # : Hyperparameter tuning searches the values in the hyperparameter
2098
2184
  # range by using a logarithmic scale.
2099
2185
  #
2100
- # Logarithmic scaling works only for ranges that have only values
2101
- # greater than 0.
2186
+ # Logarithmic scaling works only for ranges that have values greater
2187
+ # than 0.
2102
2188
  #
2103
2189
  # ReverseLogarithmic
2104
2190
  #
@@ -2107,6 +2193,9 @@ module Aws::ForecastService
2107
2193
  # Reverse logarithmic scaling works only for ranges that are
2108
2194
  # entirely within the range 0 &lt;= x &lt; 1.0.
2109
2195
  #
2196
+ # For information about choosing a hyperparameter scale, see
2197
+ # [Hyperparameter Scaling][1]. One of the following values:
2198
+ #
2110
2199
  #
2111
2200
  #
2112
2201
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
@@ -2147,7 +2236,7 @@ module Aws::ForecastService
2147
2236
  include Aws::Structure
2148
2237
  end
2149
2238
 
2150
- # The limit on the number of requests per second has been exceeded.
2239
+ # The limit on the number of resources per account has been exceeded.
2151
2240
  #
2152
2241
  # @!attribute [rw] message
2153
2242
  # @return [String]
@@ -2230,22 +2319,26 @@ module Aws::ForecastService
2230
2319
  # @!attribute [rw] filters
2231
2320
  # An array of filters. For each filter, you provide a condition and a
2232
2321
  # match statement. The condition is either `IS` or `IS_NOT`, which
2233
- # specifies whether to include or exclude, respectively, from the
2234
- # list, the predictors that match the statement. The match statement
2235
- # consists of a key and a value. In this release, `Name` is the only
2236
- # valid key, which filters on the `DatasetImportJobName` property.
2322
+ # specifies whether to include or exclude the datasets that match the
2323
+ # statement from the list, respectively. The match statement consists
2324
+ # of a key and a value.
2325
+ #
2326
+ # **Filter properties**
2237
2327
  #
2238
- # * `Condition` - `IS` or `IS_NOT`
2328
+ # * `Condition` - The condition to apply. Valid values are `IS` and
2329
+ # `IS_NOT`. To include the datasets that match the statement,
2330
+ # specify `IS`. To exclude matching datasets, specify `IS_NOT`.
2239
2331
  #
2240
- # * `Key` - `Name`
2332
+ # * `Key` - The name of the parameter to filter on. Valid values are
2333
+ # `DatasetArn` and `Status`.
2241
2334
  #
2242
- # * `Value` - the value to match
2335
+ # * `Value` - The value to match.
2243
2336
  #
2244
- # For example, to list all dataset import jobs named
2245
- # *my\_dataset\_import\_job*, you would specify:
2337
+ # For example, to list all dataset import jobs whose status is ACTIVE,
2338
+ # you specify the following filter:
2246
2339
  #
2247
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
2248
- # "my_dataset_import_job" \} ]`
2340
+ # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value":
2341
+ # "ACTIVE" \} ]`
2249
2342
  # @return [Array<Types::Filter>]
2250
2343
  #
2251
2344
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetImportJobsRequest AWS API Documentation
@@ -2346,22 +2439,28 @@ module Aws::ForecastService
2346
2439
  # @!attribute [rw] filters
2347
2440
  # An array of filters. For each filter, you provide a condition and a
2348
2441
  # match statement. The condition is either `IS` or `IS_NOT`, which
2349
- # specifies whether to include or exclude, respectively, from the
2350
- # list, the predictors that match the statement. The match statement
2351
- # consists of a key and a value. In this release, `Name` is the only
2352
- # valid key, which filters on the `ForecastExportJobName` property.
2442
+ # specifies whether to include or exclude the forecast export jobs
2443
+ # that match the statement from the list, respectively. The match
2444
+ # statement consists of a key and a value.
2353
2445
  #
2354
- # * `Condition` - `IS` or `IS_NOT`
2446
+ # **Filter properties**
2355
2447
  #
2356
- # * `Key` - `Name`
2448
+ # * `Condition` - The condition to apply. Valid values are `IS` and
2449
+ # `IS_NOT`. To include the forecast export jobs that match the
2450
+ # statement, specify `IS`. To exclude matching forecast export jobs,
2451
+ # specify `IS_NOT`.
2357
2452
  #
2358
- # * `Value` - the value to match
2453
+ # * `Key` - The name of the parameter to filter on. Valid values are
2454
+ # `ForecastArn` and `Status`.
2359
2455
  #
2360
- # For example, to list all forecast export jobs named
2361
- # *my\_forecast\_export\_job*, you would specify:
2456
+ # * `Value` - The value to match.
2362
2457
  #
2363
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
2364
- # "my_forecast_export_job" \} ]`
2458
+ # For example, to list all jobs that export a forecast named
2459
+ # *electricityforecast*, specify the following filter:
2460
+ #
2461
+ # `"Filters": [ \{ "Condition": "IS", "Key": "ForecastArn", "Value":
2462
+ # "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast"
2463
+ # \} ]`
2365
2464
  # @return [Array<Types::Filter>]
2366
2465
  #
2367
2466
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastExportJobsRequest AWS API Documentation
@@ -2418,22 +2517,26 @@ module Aws::ForecastService
2418
2517
  # @!attribute [rw] filters
2419
2518
  # An array of filters. For each filter, you provide a condition and a
2420
2519
  # match statement. The condition is either `IS` or `IS_NOT`, which
2421
- # specifies whether to include or exclude, respectively, from the
2422
- # list, the predictors that match the statement. The match statement
2423
- # consists of a key and a value. In this release, `Name` is the only
2424
- # valid key, which filters on the `ForecastName` property.
2520
+ # specifies whether to include or exclude the forecasts that match the
2521
+ # statement from the list, respectively. The match statement consists
2522
+ # of a key and a value.
2523
+ #
2524
+ # **Filter properties**
2425
2525
  #
2426
- # * `Condition` - `IS` or `IS_NOT`
2526
+ # * `Condition` - The condition to apply. Valid values are `IS` and
2527
+ # `IS_NOT`. To include the forecasts that match the statement,
2528
+ # specify `IS`. To exclude matching forecasts, specify `IS_NOT`.
2427
2529
  #
2428
- # * `Key` - `Name`
2530
+ # * `Key` - The name of the parameter to filter on. Valid values are
2531
+ # `DatasetGroupArn`, `PredictorArn`, and `Status`.
2429
2532
  #
2430
- # * `Value` - the value to match
2533
+ # * `Value` - The value to match.
2431
2534
  #
2432
- # For example, to list all forecasts named *my\_forecast*, you would
2433
- # specify:
2535
+ # For example, to list all forecasts whose status is not ACTIVE, you
2536
+ # would specify:
2434
2537
  #
2435
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
2436
- # "my_forecast" \} ]`
2538
+ # `"Filters": [ \{ "Condition": "IS_NOT", "Key": "Status", "Value":
2539
+ # "ACTIVE" \} ]`
2437
2540
  # @return [Array<Types::Filter>]
2438
2541
  #
2439
2542
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastsRequest AWS API Documentation
@@ -2490,22 +2593,26 @@ module Aws::ForecastService
2490
2593
  # @!attribute [rw] filters
2491
2594
  # An array of filters. For each filter, you provide a condition and a
2492
2595
  # match statement. The condition is either `IS` or `IS_NOT`, which
2493
- # specifies whether to include or exclude, respectively, from the
2494
- # list, the predictors that match the statement. The match statement
2495
- # consists of a key and a value. In this release, `Name` is the only
2496
- # valid key, which filters on the `PredictorName` property.
2596
+ # specifies whether to include or exclude the predictors that match
2597
+ # the statement from the list, respectively. The match statement
2598
+ # consists of a key and a value.
2497
2599
  #
2498
- # * `Condition` - `IS` or `IS_NOT`
2600
+ # **Filter properties**
2499
2601
  #
2500
- # * `Key` - `Name`
2602
+ # * `Condition` - The condition to apply. Valid values are `IS` and
2603
+ # `IS_NOT`. To include the predictors that match the statement,
2604
+ # specify `IS`. To exclude matching predictors, specify `IS_NOT`.
2501
2605
  #
2502
- # * `Value` - the value to match
2606
+ # * `Key` - The name of the parameter to filter on. Valid values are
2607
+ # `DatasetGroupArn` and `Status`.
2503
2608
  #
2504
- # For example, to list all predictors named *my\_predictor*, you would
2505
- # specify:
2609
+ # * `Value` - The value to match.
2506
2610
  #
2507
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
2508
- # "my_predictor" \} ]`
2611
+ # For example, to list all predictors whose status is ACTIVE, you
2612
+ # would specify:
2613
+ #
2614
+ # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value":
2615
+ # "ACTIVE" \} ]`
2509
2616
  # @return [Array<Types::Filter>]
2510
2617
  #
2511
2618
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListPredictorsRequest AWS API Documentation
@@ -2534,8 +2641,8 @@ module Aws::ForecastService
2534
2641
  include Aws::Structure
2535
2642
  end
2536
2643
 
2537
- # Provides metrics used to evaluate the performance of a predictor. This
2538
- # object is part of the WindowSummary object.
2644
+ # Provides metrics that are used to evaluate the performance of a
2645
+ # predictor. This object is part of the WindowSummary object.
2539
2646
  #
2540
2647
  # @!attribute [rw] rmse
2541
2648
  # The root mean square error (RMSE).
@@ -2610,7 +2717,47 @@ module Aws::ForecastService
2610
2717
  include Aws::Structure
2611
2718
  end
2612
2719
 
2613
- # Provides a summary of the predictor properties used in the
2720
+ # The algorithm used to perform a backtest and the status of those
2721
+ # tests.
2722
+ #
2723
+ # @!attribute [rw] algorithm_arn
2724
+ # The ARN of the algorithm used to test the predictor.
2725
+ # @return [String]
2726
+ #
2727
+ # @!attribute [rw] test_windows
2728
+ # An array of test windows used to evaluate the algorithm. The
2729
+ # `NumberOfBacktestWindows` from the object determines the number of
2730
+ # windows in the array.
2731
+ # @return [Array<Types::TestWindowSummary>]
2732
+ #
2733
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecution AWS API Documentation
2734
+ #
2735
+ class PredictorExecution < Struct.new(
2736
+ :algorithm_arn,
2737
+ :test_windows)
2738
+ include Aws::Structure
2739
+ end
2740
+
2741
+ # Contains details on the backtests performed to evaluate the accuracy
2742
+ # of the predictor. The tests are returned in descending order of
2743
+ # accuracy, with the most accurate backtest appearing first. You specify
2744
+ # the number of backtests to perform when you call the operation.
2745
+ #
2746
+ # @!attribute [rw] predictor_executions
2747
+ # An array of the backtests performed to evaluate the accuracy of the
2748
+ # predictor against a particular algorithm. The
2749
+ # `NumberOfBacktestWindows` from the object determines the number of
2750
+ # windows in the array.
2751
+ # @return [Array<Types::PredictorExecution>]
2752
+ #
2753
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecutionDetails AWS API Documentation
2754
+ #
2755
+ class PredictorExecutionDetails < Struct.new(
2756
+ :predictor_executions)
2757
+ include Aws::Structure
2758
+ end
2759
+
2760
+ # Provides a summary of the predictor properties that are used in the
2614
2761
  # ListPredictors operation. To get the complete set of properties, call
2615
2762
  # the DescribePredictor operation, and provide the listed
2616
2763
  # `PredictorArn`.
@@ -2639,8 +2786,8 @@ module Aws::ForecastService
2639
2786
  #
2640
2787
  # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
2641
2788
  #
2642
- # <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before using the
2643
- # predictor to create a forecast.
2789
+ # <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before you can use
2790
+ # the predictor to create a forecast.
2644
2791
  #
2645
2792
  # </note>
2646
2793
  # @return [String]
@@ -2673,8 +2820,8 @@ module Aws::ForecastService
2673
2820
  include Aws::Structure
2674
2821
  end
2675
2822
 
2676
- # There is already a resource with that Amazon Resource Name (ARN). Try
2677
- # again with a different ARN.
2823
+ # There is already a resource with this name. Try again with a different
2824
+ # name.
2678
2825
  #
2679
2826
  # @!attribute [rw] message
2680
2827
  # @return [String]
@@ -2714,8 +2861,10 @@ module Aws::ForecastService
2714
2861
  # The path to the file(s) in an Amazon Simple Storage Service (Amazon
2715
2862
  # S3) bucket, and an AWS Identity and Access Management (IAM) role that
2716
2863
  # Amazon Forecast can assume to access the file(s). Optionally, includes
2717
- # an AWS Key Management Service (KMS) key. This object is submitted in
2718
- # the CreateDatasetImportJob and CreateForecastExportJob requests.
2864
+ # an AWS Key Management Service (KMS) key. This object is part of the
2865
+ # DataSource object that is submitted in the CreateDatasetImportJob
2866
+ # request, and part of the DataDestination object that is submitted in
2867
+ # the CreateForecastExportJob request.
2719
2868
  #
2720
2869
  # @note When making an API call, you may pass S3Config
2721
2870
  # data as a hash:
@@ -2733,12 +2882,13 @@ module Aws::ForecastService
2733
2882
  #
2734
2883
  # @!attribute [rw] role_arn
2735
2884
  # The ARN of the AWS Identity and Access Management (IAM) role that
2736
- # Amazon Forecast can assume to access the Amazon S3 bucket or
2737
- # file(s).
2885
+ # Amazon Forecast can assume to access the Amazon S3 bucket or files.
2886
+ # If you provide a value for the `KMSKeyArn` key, the role must allow
2887
+ # access to the key.
2738
2888
  #
2739
- # Cross-account pass role is not allowed. If you pass a role that
2740
- # doesn't belong to your account, an `InvalidInputException` is
2741
- # thrown.
2889
+ # Passing a role across AWS accounts is not allowed. If you pass a
2890
+ # role that isn't in your account, you get an `InvalidInputException`
2891
+ # error.
2742
2892
  # @return [String]
2743
2893
  #
2744
2894
  # @!attribute [rw] kms_key_arn
@@ -2755,7 +2905,7 @@ module Aws::ForecastService
2755
2905
  include Aws::Structure
2756
2906
  end
2757
2907
 
2758
- # Defines the fields of a dataset. This object is specified in the
2908
+ # Defines the fields of a dataset. You specify this object in the
2759
2909
  # CreateDataset request.
2760
2910
  #
2761
2911
  # @note When making an API call, you may pass Schema
@@ -2782,7 +2932,7 @@ module Aws::ForecastService
2782
2932
  include Aws::Structure
2783
2933
  end
2784
2934
 
2785
- # An attribute of a schema, which defines a field of a dataset. A schema
2935
+ # An attribute of a schema, which defines a dataset field. A schema
2786
2936
  # attribute is required for every field in a dataset. The Schema object
2787
2937
  # contains an array of `SchemaAttribute` objects.
2788
2938
  #
@@ -2810,8 +2960,8 @@ module Aws::ForecastService
2810
2960
  include Aws::Structure
2811
2961
  end
2812
2962
 
2813
- # Provides statistics for each data field imported to an Amazon Forecast
2814
- # dataset with the CreateDatasetImportJob operation.
2963
+ # Provides statistics for each data field imported into to an Amazon
2964
+ # Forecast dataset with the CreateDatasetImportJob operation.
2815
2965
  #
2816
2966
  # @!attribute [rw] count
2817
2967
  # The number of values in the field.
@@ -2862,10 +3012,10 @@ module Aws::ForecastService
2862
3012
  # Describes a supplementary feature of a dataset group. This object is
2863
3013
  # part of the InputDataConfig object.
2864
3014
  #
2865
- # For this release, the only supported feature is a holiday calendar. If
2866
- # the calendar is used, all data should belong to the same country as
2867
- # the calendar. For the calendar data, see
2868
- # [http://jollyday.sourceforge.net/data.html][1].
3015
+ # The only supported feature is a holiday calendar. If you use the
3016
+ # calendar, all data in the datasets should belong to the same country
3017
+ # as the calendar. For the holiday calendar data, see the [Jollyday][1]
3018
+ # web site.
2869
3019
  #
2870
3020
  #
2871
3021
  #
@@ -2905,6 +3055,41 @@ module Aws::ForecastService
2905
3055
  include Aws::Structure
2906
3056
  end
2907
3057
 
3058
+ # The status, start time, and end time of a backtest, as well as a
3059
+ # failure reason if applicable.
3060
+ #
3061
+ # @!attribute [rw] test_window_start
3062
+ # The time at which the test began.
3063
+ # @return [Time]
3064
+ #
3065
+ # @!attribute [rw] test_window_end
3066
+ # The time at which the test ended.
3067
+ # @return [Time]
3068
+ #
3069
+ # @!attribute [rw] status
3070
+ # The status of the test. Possible status values are:
3071
+ #
3072
+ # * `ACTIVE`
3073
+ #
3074
+ # * `CREATE_IN_PROGRESS`
3075
+ #
3076
+ # * `CREATE_FAILED`
3077
+ # @return [String]
3078
+ #
3079
+ # @!attribute [rw] message
3080
+ # If the test failed, the reason why it failed.
3081
+ # @return [String]
3082
+ #
3083
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/TestWindowSummary AWS API Documentation
3084
+ #
3085
+ class TestWindowSummary < Struct.new(
3086
+ :test_window_start,
3087
+ :test_window_end,
3088
+ :status,
3089
+ :message)
3090
+ include Aws::Structure
3091
+ end
3092
+
2908
3093
  # @note When making an API call, you may pass UpdateDatasetGroupRequest
2909
3094
  # data as a hash:
2910
3095
  #
@@ -2918,8 +3103,8 @@ module Aws::ForecastService
2918
3103
  # @return [String]
2919
3104
  #
2920
3105
  # @!attribute [rw] dataset_arns
2921
- # An array of Amazon Resource Names (ARNs) of the datasets to add to
2922
- # the dataset group.
3106
+ # An array of the Amazon Resource Names (ARNs) of the datasets to add
3107
+ # to the dataset group.
2923
3108
  # @return [Array<String>]
2924
3109
  #
2925
3110
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/UpdateDatasetGroupRequest AWS API Documentation
@@ -2945,8 +3130,8 @@ module Aws::ForecastService
2945
3130
  # @return [Float]
2946
3131
  #
2947
3132
  # @!attribute [rw] loss_value
2948
- # The difference between the predicted value and actual value over the
2949
- # quantile, weighted (normalized) by dividing by the sum over all
3133
+ # The difference between the predicted value and the actual value over
3134
+ # the quantile, weighted (normalized) by dividing by the sum over all
2950
3135
  # quantiles.
2951
3136
  # @return [Float]
2952
3137
  #
@@ -2987,7 +3172,6 @@ module Aws::ForecastService
2987
3172
  #
2988
3173
  # @!attribute [rw] metrics
2989
3174
  # Provides metrics used to evaluate the performance of a predictor.
2990
- # This object is part of the WindowSummary object.
2991
3175
  # @return [Types::Metrics]
2992
3176
  #
2993
3177
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/WindowSummary AWS API Documentation