aws-sdk-forecastservice 1.0.0 → 1.5.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +5 -5
- data/lib/aws-sdk-forecastservice.rb +7 -4
- data/lib/aws-sdk-forecastservice/client.rb +378 -233
- data/lib/aws-sdk-forecastservice/client_api.rb +29 -0
- data/lib/aws-sdk-forecastservice/errors.rb +28 -6
- data/lib/aws-sdk-forecastservice/resource.rb +1 -0
- data/lib/aws-sdk-forecastservice/types.rb +458 -274
- metadata +5 -5
@@ -80,6 +80,8 @@ module Aws::ForecastService
|
|
80
80
|
ForecastExportJobSummary = Shapes::StructureShape.new(name: 'ForecastExportJobSummary')
|
81
81
|
ForecastExportJobs = Shapes::ListShape.new(name: 'ForecastExportJobs')
|
82
82
|
ForecastSummary = Shapes::StructureShape.new(name: 'ForecastSummary')
|
83
|
+
ForecastType = Shapes::StringShape.new(name: 'ForecastType')
|
84
|
+
ForecastTypes = Shapes::ListShape.new(name: 'ForecastTypes')
|
83
85
|
Forecasts = Shapes::ListShape.new(name: 'Forecasts')
|
84
86
|
Frequency = Shapes::StringShape.new(name: 'Frequency')
|
85
87
|
GetAccuracyMetricsRequest = Shapes::StructureShape.new(name: 'GetAccuracyMetricsRequest')
|
@@ -114,6 +116,9 @@ module Aws::ForecastService
|
|
114
116
|
ParameterRanges = Shapes::StructureShape.new(name: 'ParameterRanges')
|
115
117
|
ParameterValue = Shapes::StringShape.new(name: 'ParameterValue')
|
116
118
|
PredictorEvaluationResults = Shapes::ListShape.new(name: 'PredictorEvaluationResults')
|
119
|
+
PredictorExecution = Shapes::StructureShape.new(name: 'PredictorExecution')
|
120
|
+
PredictorExecutionDetails = Shapes::StructureShape.new(name: 'PredictorExecutionDetails')
|
121
|
+
PredictorExecutions = Shapes::ListShape.new(name: 'PredictorExecutions')
|
117
122
|
PredictorSummary = Shapes::StructureShape.new(name: 'PredictorSummary')
|
118
123
|
Predictors = Shapes::ListShape.new(name: 'Predictors')
|
119
124
|
ResourceAlreadyExistsException = Shapes::StructureShape.new(name: 'ResourceAlreadyExistsException')
|
@@ -130,6 +135,8 @@ module Aws::ForecastService
|
|
130
135
|
String = Shapes::StringShape.new(name: 'String')
|
131
136
|
SupplementaryFeature = Shapes::StructureShape.new(name: 'SupplementaryFeature')
|
132
137
|
SupplementaryFeatures = Shapes::ListShape.new(name: 'SupplementaryFeatures')
|
138
|
+
TestWindowDetails = Shapes::ListShape.new(name: 'TestWindowDetails')
|
139
|
+
TestWindowSummary = Shapes::StructureShape.new(name: 'TestWindowSummary')
|
133
140
|
TestWindows = Shapes::ListShape.new(name: 'TestWindows')
|
134
141
|
Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
|
135
142
|
TimestampFormat = Shapes::StringShape.new(name: 'TimestampFormat')
|
@@ -196,6 +203,7 @@ module Aws::ForecastService
|
|
196
203
|
|
197
204
|
CreateForecastRequest.add_member(:forecast_name, Shapes::ShapeRef.new(shape: Name, required: true, location_name: "ForecastName"))
|
198
205
|
CreateForecastRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
|
206
|
+
CreateForecastRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
199
207
|
CreateForecastRequest.struct_class = Types::CreateForecastRequest
|
200
208
|
|
201
209
|
CreateForecastResponse.add_member(:forecast_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "ForecastArn"))
|
@@ -331,6 +339,7 @@ module Aws::ForecastService
|
|
331
339
|
|
332
340
|
DescribeForecastResponse.add_member(:forecast_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "ForecastArn"))
|
333
341
|
DescribeForecastResponse.add_member(:forecast_name, Shapes::ShapeRef.new(shape: Name, location_name: "ForecastName"))
|
342
|
+
DescribeForecastResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
334
343
|
DescribeForecastResponse.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
|
335
344
|
DescribeForecastResponse.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "DatasetGroupArn"))
|
336
345
|
DescribeForecastResponse.add_member(:status, Shapes::ShapeRef.new(shape: String, location_name: "Status"))
|
@@ -354,6 +363,7 @@ module Aws::ForecastService
|
|
354
363
|
DescribePredictorResponse.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, location_name: "InputDataConfig"))
|
355
364
|
DescribePredictorResponse.add_member(:featurization_config, Shapes::ShapeRef.new(shape: FeaturizationConfig, location_name: "FeaturizationConfig"))
|
356
365
|
DescribePredictorResponse.add_member(:encryption_config, Shapes::ShapeRef.new(shape: EncryptionConfig, location_name: "EncryptionConfig"))
|
366
|
+
DescribePredictorResponse.add_member(:predictor_execution_details, Shapes::ShapeRef.new(shape: PredictorExecutionDetails, location_name: "PredictorExecutionDetails"))
|
357
367
|
DescribePredictorResponse.add_member(:dataset_import_job_arns, Shapes::ShapeRef.new(shape: ArnList, location_name: "DatasetImportJobArns"))
|
358
368
|
DescribePredictorResponse.add_member(:auto_ml_algorithm_arns, Shapes::ShapeRef.new(shape: ArnList, location_name: "AutoMLAlgorithmArns"))
|
359
369
|
DescribePredictorResponse.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "Status"))
|
@@ -427,6 +437,8 @@ module Aws::ForecastService
|
|
427
437
|
ForecastSummary.add_member(:last_modification_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModificationTime"))
|
428
438
|
ForecastSummary.struct_class = Types::ForecastSummary
|
429
439
|
|
440
|
+
ForecastTypes.member = Shapes::ShapeRef.new(shape: ForecastType)
|
441
|
+
|
430
442
|
Forecasts.member = Shapes::ShapeRef.new(shape: ForecastSummary)
|
431
443
|
|
432
444
|
GetAccuracyMetricsRequest.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "PredictorArn"))
|
@@ -522,6 +534,15 @@ module Aws::ForecastService
|
|
522
534
|
|
523
535
|
PredictorEvaluationResults.member = Shapes::ShapeRef.new(shape: EvaluationResult)
|
524
536
|
|
537
|
+
PredictorExecution.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "AlgorithmArn"))
|
538
|
+
PredictorExecution.add_member(:test_windows, Shapes::ShapeRef.new(shape: TestWindowDetails, location_name: "TestWindows"))
|
539
|
+
PredictorExecution.struct_class = Types::PredictorExecution
|
540
|
+
|
541
|
+
PredictorExecutionDetails.add_member(:predictor_executions, Shapes::ShapeRef.new(shape: PredictorExecutions, location_name: "PredictorExecutions"))
|
542
|
+
PredictorExecutionDetails.struct_class = Types::PredictorExecutionDetails
|
543
|
+
|
544
|
+
PredictorExecutions.member = Shapes::ShapeRef.new(shape: PredictorExecution)
|
545
|
+
|
525
546
|
PredictorSummary.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
|
526
547
|
PredictorSummary.add_member(:predictor_name, Shapes::ShapeRef.new(shape: Name, location_name: "PredictorName"))
|
527
548
|
PredictorSummary.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "DatasetGroupArn"))
|
@@ -572,6 +593,14 @@ module Aws::ForecastService
|
|
572
593
|
|
573
594
|
SupplementaryFeatures.member = Shapes::ShapeRef.new(shape: SupplementaryFeature)
|
574
595
|
|
596
|
+
TestWindowDetails.member = Shapes::ShapeRef.new(shape: TestWindowSummary)
|
597
|
+
|
598
|
+
TestWindowSummary.add_member(:test_window_start, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TestWindowStart"))
|
599
|
+
TestWindowSummary.add_member(:test_window_end, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TestWindowEnd"))
|
600
|
+
TestWindowSummary.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "Status"))
|
601
|
+
TestWindowSummary.add_member(:message, Shapes::ShapeRef.new(shape: ErrorMessage, location_name: "Message"))
|
602
|
+
TestWindowSummary.struct_class = Types::TestWindowSummary
|
603
|
+
|
575
604
|
TestWindows.member = Shapes::ShapeRef.new(shape: WindowSummary)
|
576
605
|
|
577
606
|
TrainingParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
|
@@ -6,6 +6,34 @@
|
|
6
6
|
# WARNING ABOUT GENERATED CODE
|
7
7
|
|
8
8
|
module Aws::ForecastService
|
9
|
+
|
10
|
+
# When ForecastService returns an error response, the Ruby SDK constructs and raises an error.
|
11
|
+
# These errors all extend Aws::ForecastService::Errors::ServiceError < {Aws::Errors::ServiceError}
|
12
|
+
#
|
13
|
+
# You can rescue all ForecastService errors using ServiceError:
|
14
|
+
#
|
15
|
+
# begin
|
16
|
+
# # do stuff
|
17
|
+
# rescue Aws::ForecastService::Errors::ServiceError
|
18
|
+
# # rescues all ForecastService API errors
|
19
|
+
# end
|
20
|
+
#
|
21
|
+
#
|
22
|
+
# ## Request Context
|
23
|
+
# ServiceError objects have a {Aws::Errors::ServiceError#context #context} method that returns
|
24
|
+
# information about the request that generated the error.
|
25
|
+
# See {Seahorse::Client::RequestContext} for more information.
|
26
|
+
#
|
27
|
+
# ## Error Classes
|
28
|
+
# * {InvalidInputException}
|
29
|
+
# * {InvalidNextTokenException}
|
30
|
+
# * {LimitExceededException}
|
31
|
+
# * {ResourceAlreadyExistsException}
|
32
|
+
# * {ResourceInUseException}
|
33
|
+
# * {ResourceNotFoundException}
|
34
|
+
#
|
35
|
+
# Additionally, error classes are dynamically generated for service errors based on the error code
|
36
|
+
# if they are not defined above.
|
9
37
|
module Errors
|
10
38
|
|
11
39
|
extend Aws::Errors::DynamicErrors
|
@@ -23,7 +51,6 @@ module Aws::ForecastService
|
|
23
51
|
def message
|
24
52
|
@message || @data[:message]
|
25
53
|
end
|
26
|
-
|
27
54
|
end
|
28
55
|
|
29
56
|
class InvalidNextTokenException < ServiceError
|
@@ -39,7 +66,6 @@ module Aws::ForecastService
|
|
39
66
|
def message
|
40
67
|
@message || @data[:message]
|
41
68
|
end
|
42
|
-
|
43
69
|
end
|
44
70
|
|
45
71
|
class LimitExceededException < ServiceError
|
@@ -55,7 +81,6 @@ module Aws::ForecastService
|
|
55
81
|
def message
|
56
82
|
@message || @data[:message]
|
57
83
|
end
|
58
|
-
|
59
84
|
end
|
60
85
|
|
61
86
|
class ResourceAlreadyExistsException < ServiceError
|
@@ -71,7 +96,6 @@ module Aws::ForecastService
|
|
71
96
|
def message
|
72
97
|
@message || @data[:message]
|
73
98
|
end
|
74
|
-
|
75
99
|
end
|
76
100
|
|
77
101
|
class ResourceInUseException < ServiceError
|
@@ -87,7 +111,6 @@ module Aws::ForecastService
|
|
87
111
|
def message
|
88
112
|
@message || @data[:message]
|
89
113
|
end
|
90
|
-
|
91
114
|
end
|
92
115
|
|
93
116
|
class ResourceNotFoundException < ServiceError
|
@@ -103,7 +126,6 @@ module Aws::ForecastService
|
|
103
126
|
def message
|
104
127
|
@message || @data[:message]
|
105
128
|
end
|
106
|
-
|
107
129
|
end
|
108
130
|
|
109
131
|
end
|
@@ -62,9 +62,7 @@ module Aws::ForecastService
|
|
62
62
|
#
|
63
63
|
# @!attribute [rw] scaling_type
|
64
64
|
# The scale that hyperparameter tuning uses to search the
|
65
|
-
# hyperparameter range.
|
66
|
-
# hyperparameter scale, see [Hyperparameter Scaling][1]. One of the
|
67
|
-
# following values:
|
65
|
+
# hyperparameter range. Valid values:
|
68
66
|
#
|
69
67
|
# Auto
|
70
68
|
#
|
@@ -81,17 +79,20 @@ module Aws::ForecastService
|
|
81
79
|
# : Hyperparameter tuning searches the values in the hyperparameter
|
82
80
|
# range by using a logarithmic scale.
|
83
81
|
#
|
84
|
-
# Logarithmic scaling works only for ranges that have
|
85
|
-
#
|
82
|
+
# Logarithmic scaling works only for ranges that have values greater
|
83
|
+
# than 0.
|
86
84
|
#
|
87
85
|
# ReverseLogarithmic
|
88
86
|
#
|
89
|
-
# :
|
87
|
+
# : hyperparameter tuning searches the values in the hyperparameter
|
90
88
|
# range by using a reverse logarithmic scale.
|
91
89
|
#
|
92
90
|
# Reverse logarithmic scaling works only for ranges that are
|
93
91
|
# entirely within the range 0 <= x < 1.0.
|
94
92
|
#
|
93
|
+
# For information about choosing a hyperparameter scale, see
|
94
|
+
# [Hyperparameter Scaling][1]. One of the following values:
|
95
|
+
#
|
95
96
|
#
|
96
97
|
#
|
97
98
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
|
@@ -121,13 +122,16 @@ module Aws::ForecastService
|
|
121
122
|
# @return [String]
|
122
123
|
#
|
123
124
|
# @!attribute [rw] domain
|
124
|
-
# The domain associated with the dataset group.
|
125
|
-
#
|
126
|
-
#
|
127
|
-
#
|
128
|
-
#
|
129
|
-
#
|
130
|
-
#
|
125
|
+
# The domain associated with the dataset group. When you add a dataset
|
126
|
+
# to a dataset group, this value and the value specified for the
|
127
|
+
# `Domain` parameter of the CreateDataset operation must match.
|
128
|
+
#
|
129
|
+
# The `Domain` and `DatasetType` that you choose determine the fields
|
130
|
+
# that must be present in training data that you import to a dataset.
|
131
|
+
# For example, if you choose the `RETAIL` domain and
|
132
|
+
# `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
|
133
|
+
# that `item_id`, `timestamp`, and `demand` fields are present in your
|
134
|
+
# data. For more information, see howitworks-datasets-groups.
|
131
135
|
# @return [String]
|
132
136
|
#
|
133
137
|
# @!attribute [rw] dataset_arns
|
@@ -172,10 +176,10 @@ module Aws::ForecastService
|
|
172
176
|
# }
|
173
177
|
#
|
174
178
|
# @!attribute [rw] dataset_import_job_name
|
175
|
-
# The name for the dataset import job.
|
176
|
-
#
|
177
|
-
# `ResourceAlreadyExistsException`
|
178
|
-
#
|
179
|
+
# The name for the dataset import job. We recommend including the
|
180
|
+
# current timestamp in the name, for example, `20190721DatasetImport`.
|
181
|
+
# This can help you avoid getting a `ResourceAlreadyExistsException`
|
182
|
+
# exception.
|
179
183
|
# @return [String]
|
180
184
|
#
|
181
185
|
# @!attribute [rw] dataset_arn
|
@@ -186,22 +190,32 @@ module Aws::ForecastService
|
|
186
190
|
# @!attribute [rw] data_source
|
187
191
|
# The location of the training data to import and an AWS Identity and
|
188
192
|
# Access Management (IAM) role that Amazon Forecast can assume to
|
189
|
-
# access the data.
|
193
|
+
# access the data. The training data must be stored in an Amazon S3
|
194
|
+
# bucket.
|
195
|
+
#
|
196
|
+
# If encryption is used, `DataSource` must include an AWS Key
|
197
|
+
# Management Service (KMS) key and the IAM role must allow Amazon
|
198
|
+
# Forecast permission to access the key. The KMS key and IAM role must
|
199
|
+
# match those specified in the `EncryptionConfig` parameter of the
|
200
|
+
# CreateDataset operation.
|
190
201
|
# @return [Types::DataSource]
|
191
202
|
#
|
192
203
|
# @!attribute [rw] timestamp_format
|
193
|
-
# The format of timestamps in the dataset.
|
194
|
-
#
|
195
|
-
# created.
|
204
|
+
# The format of timestamps in the dataset. The format that you specify
|
205
|
+
# depends on the `DataFrequency` specified when the dataset was
|
206
|
+
# created. The following formats are supported
|
196
207
|
#
|
197
208
|
# * "yyyy-MM-dd"
|
198
209
|
#
|
199
|
-
# For data frequencies: Y, M, W, and D
|
210
|
+
# For the following data frequencies: Y, M, W, and D
|
200
211
|
#
|
201
212
|
# * "yyyy-MM-dd HH:mm:ss"
|
202
213
|
#
|
203
|
-
# For data frequencies: H, 30min, 15min, and 1min; and
|
204
|
-
# for: Y, M, W, and D
|
214
|
+
# For the following data frequencies: H, 30min, 15min, and 1min; and
|
215
|
+
# optionally, for: Y, M, W, and D
|
216
|
+
#
|
217
|
+
# If the format isn't specified, Amazon Forecast expects the format
|
218
|
+
# to be "yyyy-MM-dd HH:mm:ss".
|
205
219
|
# @return [String]
|
206
220
|
#
|
207
221
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetImportJobRequest AWS API Documentation
|
@@ -252,13 +266,16 @@ module Aws::ForecastService
|
|
252
266
|
# @return [String]
|
253
267
|
#
|
254
268
|
# @!attribute [rw] domain
|
255
|
-
# The domain associated with the dataset.
|
256
|
-
#
|
257
|
-
#
|
258
|
-
#
|
259
|
-
#
|
260
|
-
#
|
261
|
-
#
|
269
|
+
# The domain associated with the dataset. When you add a dataset to a
|
270
|
+
# dataset group, this value and the value specified for the `Domain`
|
271
|
+
# parameter of the CreateDatasetGroup operation must match.
|
272
|
+
#
|
273
|
+
# The `Domain` and `DatasetType` that you choose determine the fields
|
274
|
+
# that must be present in the training data that you import to the
|
275
|
+
# dataset. For example, if you choose the `RETAIL` domain and
|
276
|
+
# `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
|
277
|
+
# `item_id`, `timestamp`, and `demand` fields to be present in your
|
278
|
+
# data. For more information, see howitworks-datasets-groups.
|
262
279
|
# @return [String]
|
263
280
|
#
|
264
281
|
# @!attribute [rw] dataset_type
|
@@ -266,7 +283,8 @@ module Aws::ForecastService
|
|
266
283
|
# @return [String]
|
267
284
|
#
|
268
285
|
# @!attribute [rw] data_frequency
|
269
|
-
# The frequency of data collection.
|
286
|
+
# The frequency of data collection. This parameter is required for
|
287
|
+
# RELATED\_TIME\_SERIES datasets.
|
270
288
|
#
|
271
289
|
# Valid intervals are Y (Year), M (Month), W (Week), D (Day), H
|
272
290
|
# (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes),
|
@@ -336,9 +354,14 @@ module Aws::ForecastService
|
|
336
354
|
# @return [String]
|
337
355
|
#
|
338
356
|
# @!attribute [rw] destination
|
339
|
-
# The
|
340
|
-
# and
|
341
|
-
#
|
357
|
+
# The location where you want to save the forecast and an AWS Identity
|
358
|
+
# and Access Management (IAM) role that Amazon Forecast can assume to
|
359
|
+
# access the location. The forecast must be exported to an Amazon S3
|
360
|
+
# bucket.
|
361
|
+
#
|
362
|
+
# If encryption is used, `Destination` must include an AWS Key
|
363
|
+
# Management Service (KMS) key. The IAM role must allow Amazon
|
364
|
+
# Forecast permission to access the key.
|
342
365
|
# @return [Types::DataDestination]
|
343
366
|
#
|
344
367
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastExportJobRequest AWS API Documentation
|
@@ -367,10 +390,11 @@ module Aws::ForecastService
|
|
367
390
|
# {
|
368
391
|
# forecast_name: "Name", # required
|
369
392
|
# predictor_arn: "Arn", # required
|
393
|
+
# forecast_types: ["ForecastType"],
|
370
394
|
# }
|
371
395
|
#
|
372
396
|
# @!attribute [rw] forecast_name
|
373
|
-
#
|
397
|
+
# A name for the forecast.
|
374
398
|
# @return [String]
|
375
399
|
#
|
376
400
|
# @!attribute [rw] predictor_arn
|
@@ -378,11 +402,21 @@ module Aws::ForecastService
|
|
378
402
|
# the forecast.
|
379
403
|
# @return [String]
|
380
404
|
#
|
405
|
+
# @!attribute [rw] forecast_types
|
406
|
+
# The quantiles at which probabilistic forecasts are generated. You
|
407
|
+
# can specify up to 5 quantiles per forecast. Accepted values include
|
408
|
+
# `0.01 to 0.99` (increments of .01 only) and `mean`. The mean
|
409
|
+
# forecast is different from the median (0.50) when the distribution
|
410
|
+
# is not symmetric (e.g. Beta, Negative Binomial). The default value
|
411
|
+
# is `["0.1", "0.5", "0.9"]`.
|
412
|
+
# @return [Array<String>]
|
413
|
+
#
|
381
414
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastRequest AWS API Documentation
|
382
415
|
#
|
383
416
|
class CreateForecastRequest < Struct.new(
|
384
417
|
:forecast_name,
|
385
|
-
:predictor_arn
|
418
|
+
:predictor_arn,
|
419
|
+
:forecast_types)
|
386
420
|
include Aws::Structure
|
387
421
|
end
|
388
422
|
|
@@ -479,13 +513,13 @@ module Aws::ForecastService
|
|
479
513
|
# The Amazon Resource Name (ARN) of the algorithm to use for model
|
480
514
|
# training. Required if `PerformAutoML` is not set to `true`.
|
481
515
|
#
|
482
|
-
# **Supported algorithms
|
516
|
+
# **Supported algorithms:**
|
483
517
|
#
|
484
518
|
# * `arn:aws:forecast:::algorithm/ARIMA`
|
485
519
|
#
|
486
520
|
# * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
|
487
521
|
#
|
488
|
-
#
|
522
|
+
# Supports hyperparameter optimization (HPO)
|
489
523
|
#
|
490
524
|
# * `arn:aws:forecast:::algorithm/ETS`
|
491
525
|
#
|
@@ -502,32 +536,41 @@ module Aws::ForecastService
|
|
502
536
|
# (using the `DataFrequency` parameter of the CreateDataset operation)
|
503
537
|
# and set the forecast horizon to 10, the model returns predictions
|
504
538
|
# for 10 days.
|
539
|
+
#
|
540
|
+
# The maximum forecast horizon is the lesser of 500 time-steps or 1/3
|
541
|
+
# of the TARGET\_TIME\_SERIES dataset length.
|
505
542
|
# @return [Integer]
|
506
543
|
#
|
507
544
|
# @!attribute [rw] perform_auto_ml
|
508
|
-
# Whether to perform AutoML.
|
509
|
-
#
|
545
|
+
# Whether to perform AutoML. When Amazon Forecast performs AutoML, it
|
546
|
+
# evaluates the algorithms it provides and chooses the best algorithm
|
547
|
+
# and configuration for your training dataset.
|
548
|
+
#
|
549
|
+
# The default value is `false`. In this case, you are required to
|
550
|
+
# specify an algorithm.
|
510
551
|
#
|
511
|
-
#
|
512
|
-
#
|
513
|
-
#
|
514
|
-
#
|
552
|
+
# Set `PerformAutoML` to `true` to have Amazon Forecast perform
|
553
|
+
# AutoML. This is a good option if you aren't sure which algorithm is
|
554
|
+
# suitable for your training data. In this case, `PerformHPO` must be
|
555
|
+
# false.
|
515
556
|
# @return [Boolean]
|
516
557
|
#
|
517
558
|
# @!attribute [rw] perform_hpo
|
518
559
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
519
560
|
# optimal hyperparameter values for your training data. The process of
|
520
|
-
# performing HPO is known as a hyperparameter tuning job.
|
561
|
+
# performing HPO is known as running a hyperparameter tuning job.
|
521
562
|
#
|
522
563
|
# The default value is `false`. In this case, Amazon Forecast uses
|
523
564
|
# default hyperparameter values from the chosen algorithm.
|
524
565
|
#
|
525
|
-
# To override the default values, set `PerformHPO` to `true` and
|
526
|
-
# supply the HyperParameterTuningJobConfig object. The
|
527
|
-
# specifies
|
528
|
-
# the valid range for each
|
566
|
+
# To override the default values, set `PerformHPO` to `true` and,
|
567
|
+
# optionally, supply the HyperParameterTuningJobConfig object. The
|
568
|
+
# tuning job specifies a metric to optimize, which hyperparameters
|
569
|
+
# participate in tuning, and the valid range for each tunable
|
570
|
+
# hyperparameter. In this case, you are required to specify an
|
571
|
+
# algorithm and `PerformAutoML` must be false.
|
529
572
|
#
|
530
|
-
# The following
|
573
|
+
# The following algorithm supports HPO:
|
531
574
|
#
|
532
575
|
# * DeepAR+
|
533
576
|
#
|
@@ -535,9 +578,10 @@ module Aws::ForecastService
|
|
535
578
|
# @return [Boolean]
|
536
579
|
#
|
537
580
|
# @!attribute [rw] training_parameters
|
538
|
-
# The
|
539
|
-
#
|
540
|
-
# algorithms
|
581
|
+
# The hyperparameters to override for model training. The
|
582
|
+
# hyperparameters that you can override are listed in the individual
|
583
|
+
# algorithms. For the list of supported algorithms, see
|
584
|
+
# aws-forecast-choosing-recipes.
|
541
585
|
# @return [Hash<String,String>]
|
542
586
|
#
|
543
587
|
# @!attribute [rw] evaluation_parameters
|
@@ -554,6 +598,9 @@ module Aws::ForecastService
|
|
554
598
|
# The individual algorithms specify which hyperparameters support
|
555
599
|
# hyperparameter optimization (HPO). For more information, see
|
556
600
|
# aws-forecast-choosing-recipes.
|
601
|
+
#
|
602
|
+
# If you included the `HPOConfig` object, you must set `PerformHPO` to
|
603
|
+
# true.
|
557
604
|
# @return [Types::HyperParameterTuningJobConfig]
|
558
605
|
#
|
559
606
|
# @!attribute [rw] input_data_config
|
@@ -599,9 +646,10 @@ module Aws::ForecastService
|
|
599
646
|
include Aws::Structure
|
600
647
|
end
|
601
648
|
|
602
|
-
# The destination
|
603
|
-
#
|
604
|
-
#
|
649
|
+
# The destination for an exported forecast, an AWS Identity and Access
|
650
|
+
# Management (IAM) role that allows Amazon Forecast to access the
|
651
|
+
# location and, optionally, an AWS Key Management Service (KMS) key.
|
652
|
+
# This object is submitted in the CreateForecastExportJob request.
|
605
653
|
#
|
606
654
|
# @note When making an API call, you may pass DataDestination
|
607
655
|
# data as a hash:
|
@@ -626,8 +674,10 @@ module Aws::ForecastService
|
|
626
674
|
include Aws::Structure
|
627
675
|
end
|
628
676
|
|
629
|
-
# The source of your training data
|
630
|
-
#
|
677
|
+
# The source of your training data, an AWS Identity and Access
|
678
|
+
# Management (IAM) role that allows Amazon Forecast to access the data
|
679
|
+
# and, optionally, an AWS Key Management Service (KMS) key. This object
|
680
|
+
# is submitted in the CreateDatasetImportJob request.
|
631
681
|
#
|
632
682
|
# @note When making an API call, you may pass DataSource
|
633
683
|
# data as a hash:
|
@@ -655,7 +705,7 @@ module Aws::ForecastService
|
|
655
705
|
|
656
706
|
# Provides a summary of the dataset group properties used in the
|
657
707
|
# ListDatasetGroups operation. To get the complete set of properties,
|
658
|
-
# call the DescribeDatasetGroup operation, and provide the
|
708
|
+
# call the DescribeDatasetGroup operation, and provide the
|
659
709
|
# `DatasetGroupArn`.
|
660
710
|
#
|
661
711
|
# @!attribute [rw] dataset_group_arn
|
@@ -667,13 +717,14 @@ module Aws::ForecastService
|
|
667
717
|
# @return [String]
|
668
718
|
#
|
669
719
|
# @!attribute [rw] creation_time
|
670
|
-
# When the
|
720
|
+
# When the dataset group was created.
|
671
721
|
# @return [Time]
|
672
722
|
#
|
673
723
|
# @!attribute [rw] last_modification_time
|
674
724
|
# When the dataset group was created or last updated from a call to
|
675
725
|
# the UpdateDatasetGroup operation. While the dataset group is being
|
676
|
-
# updated, `LastModificationTime` is the current
|
726
|
+
# updated, `LastModificationTime` is the current time of the
|
727
|
+
# `ListDatasetGroups` call.
|
677
728
|
# @return [Time]
|
678
729
|
#
|
679
730
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetGroupSummary AWS API Documentation
|
@@ -689,7 +740,7 @@ module Aws::ForecastService
|
|
689
740
|
# Provides a summary of the dataset import job properties used in the
|
690
741
|
# ListDatasetImportJobs operation. To get the complete set of
|
691
742
|
# properties, call the DescribeDatasetImportJob operation, and provide
|
692
|
-
# the
|
743
|
+
# the `DatasetImportJobArn`.
|
693
744
|
#
|
694
745
|
# @!attribute [rw] dataset_import_job_arn
|
695
746
|
# The Amazon Resource Name (ARN) of the dataset import job.
|
@@ -700,8 +751,13 @@ module Aws::ForecastService
|
|
700
751
|
# @return [String]
|
701
752
|
#
|
702
753
|
# @!attribute [rw] data_source
|
703
|
-
# The location of the
|
704
|
-
#
|
754
|
+
# The location of the training data to import and an AWS Identity and
|
755
|
+
# Access Management (IAM) role that Amazon Forecast can assume to
|
756
|
+
# access the data. The training data must be stored in an Amazon S3
|
757
|
+
# bucket.
|
758
|
+
#
|
759
|
+
# If encryption is used, `DataSource` includes an AWS Key Management
|
760
|
+
# Service (KMS) key.
|
705
761
|
# @return [Types::DataSource]
|
706
762
|
#
|
707
763
|
# @!attribute [rw] status
|
@@ -726,13 +782,14 @@ module Aws::ForecastService
|
|
726
782
|
# @return [Time]
|
727
783
|
#
|
728
784
|
# @!attribute [rw] last_modification_time
|
729
|
-
#
|
785
|
+
# The last time that the dataset was modified. The time depends on the
|
786
|
+
# status of the job, as follows:
|
730
787
|
#
|
731
|
-
# * `CREATE_PENDING` - same as `CreationTime
|
788
|
+
# * `CREATE_PENDING` - The same time as `CreationTime`.
|
732
789
|
#
|
733
|
-
# * `CREATE_IN_PROGRESS` -
|
790
|
+
# * `CREATE_IN_PROGRESS` - The current timestamp.
|
734
791
|
#
|
735
|
-
# * `ACTIVE` or `CREATE_FAILED` -
|
792
|
+
# * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
|
736
793
|
# @return [Time]
|
737
794
|
#
|
738
795
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetImportJobSummary AWS API Documentation
|
@@ -750,7 +807,7 @@ module Aws::ForecastService
|
|
750
807
|
|
751
808
|
# Provides a summary of the dataset properties used in the ListDatasets
|
752
809
|
# operation. To get the complete set of properties, call the
|
753
|
-
# DescribeDataset operation, and provide the
|
810
|
+
# DescribeDataset operation, and provide the `DatasetArn`.
|
754
811
|
#
|
755
812
|
# @!attribute [rw] dataset_arn
|
756
813
|
# The Amazon Resource Name (ARN) of the dataset.
|
@@ -773,11 +830,11 @@ module Aws::ForecastService
|
|
773
830
|
# @return [Time]
|
774
831
|
#
|
775
832
|
# @!attribute [rw] last_modification_time
|
776
|
-
# When
|
777
|
-
# `CreationTime`.
|
778
|
-
# `LastModificationTime` is
|
779
|
-
#
|
780
|
-
# is the
|
833
|
+
# When you create a dataset, `LastModificationTime` is the same as
|
834
|
+
# `CreationTime`. While data is being imported to the dataset,
|
835
|
+
# `LastModificationTime` is the current time of the `ListDatasets`
|
836
|
+
# call. After a CreateDatasetImportJob operation has finished,
|
837
|
+
# `LastModificationTime` is when the import job completed or failed.
|
781
838
|
# @return [Time]
|
782
839
|
#
|
783
840
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetSummary AWS API Documentation
|
@@ -932,13 +989,7 @@ module Aws::ForecastService
|
|
932
989
|
# @return [Array<String>]
|
933
990
|
#
|
934
991
|
# @!attribute [rw] domain
|
935
|
-
# The domain associated with the dataset group.
|
936
|
-
# `DatasetType` that you choose determine the fields that must be
|
937
|
-
# present in the training data that you import to the dataset. For
|
938
|
-
# example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES`
|
939
|
-
# as the `DatasetType`, Amazon Forecast requires `item_id`,
|
940
|
-
# `timestamp`, and `demand` fields to be present in your data. For
|
941
|
-
# more information, see howitworks-datasets-groups.
|
992
|
+
# The domain associated with the dataset group.
|
942
993
|
# @return [String]
|
943
994
|
#
|
944
995
|
# @!attribute [rw] status
|
@@ -952,11 +1003,11 @@ module Aws::ForecastService
|
|
952
1003
|
#
|
953
1004
|
# * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
|
954
1005
|
#
|
955
|
-
# The `UPDATE` states apply when the UpdateDatasetGroup
|
956
|
-
#
|
1006
|
+
# The `UPDATE` states apply when you call the UpdateDatasetGroup
|
1007
|
+
# operation.
|
957
1008
|
#
|
958
|
-
# <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before
|
959
|
-
#
|
1009
|
+
# <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before you can
|
1010
|
+
# use the dataset group to create a predictor.
|
960
1011
|
#
|
961
1012
|
# </note>
|
962
1013
|
# @return [String]
|
@@ -968,7 +1019,8 @@ module Aws::ForecastService
|
|
968
1019
|
# @!attribute [rw] last_modification_time
|
969
1020
|
# When the dataset group was created or last updated from a call to
|
970
1021
|
# the UpdateDatasetGroup operation. While the dataset group is being
|
971
|
-
# updated, `LastModificationTime` is the current
|
1022
|
+
# updated, `LastModificationTime` is the current time of the
|
1023
|
+
# `DescribeDatasetGroup` call.
|
972
1024
|
# @return [Time]
|
973
1025
|
#
|
974
1026
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetGroupResponse AWS API Documentation
|
@@ -1016,23 +1068,27 @@ module Aws::ForecastService
|
|
1016
1068
|
# @return [String]
|
1017
1069
|
#
|
1018
1070
|
# @!attribute [rw] timestamp_format
|
1019
|
-
# The format of timestamps in the dataset.
|
1020
|
-
#
|
1021
|
-
# created.
|
1071
|
+
# The format of timestamps in the dataset. The format that you specify
|
1072
|
+
# depends on the `DataFrequency` specified when the dataset was
|
1073
|
+
# created. The following formats are supported
|
1022
1074
|
#
|
1023
1075
|
# * "yyyy-MM-dd"
|
1024
1076
|
#
|
1025
|
-
# For data frequencies: Y, M, W, and D
|
1077
|
+
# For the following data frequencies: Y, M, W, and D
|
1026
1078
|
#
|
1027
1079
|
# * "yyyy-MM-dd HH:mm:ss"
|
1028
1080
|
#
|
1029
|
-
# For data frequencies: H, 30min, 15min, and 1min; and
|
1030
|
-
# for: Y, M, W, and D
|
1081
|
+
# For the following data frequencies: H, 30min, 15min, and 1min; and
|
1082
|
+
# optionally, for: Y, M, W, and D
|
1031
1083
|
# @return [String]
|
1032
1084
|
#
|
1033
1085
|
# @!attribute [rw] data_source
|
1034
|
-
# The location of the training data to import
|
1035
|
-
#
|
1086
|
+
# The location of the training data to import and an AWS Identity and
|
1087
|
+
# Access Management (IAM) role that Amazon Forecast can assume to
|
1088
|
+
# access the data.
|
1089
|
+
#
|
1090
|
+
# If encryption is used, `DataSource` includes an AWS Key Management
|
1091
|
+
# Service (KMS) key.
|
1036
1092
|
# @return [Types::DataSource]
|
1037
1093
|
#
|
1038
1094
|
# @!attribute [rw] field_statistics
|
@@ -1040,8 +1096,8 @@ module Aws::ForecastService
|
|
1040
1096
|
# @return [Hash<String,Types::Statistics>]
|
1041
1097
|
#
|
1042
1098
|
# @!attribute [rw] data_size
|
1043
|
-
# The size of the dataset in gigabytes (GB) after
|
1044
|
-
#
|
1099
|
+
# The size of the dataset in gigabytes (GB) after the import job has
|
1100
|
+
# finished.
|
1045
1101
|
# @return [Float]
|
1046
1102
|
#
|
1047
1103
|
# @!attribute [rw] status
|
@@ -1066,13 +1122,14 @@ module Aws::ForecastService
|
|
1066
1122
|
# @return [Time]
|
1067
1123
|
#
|
1068
1124
|
# @!attribute [rw] last_modification_time
|
1069
|
-
#
|
1125
|
+
# The last time that the dataset was modified. The time depends on the
|
1126
|
+
# status of the job, as follows:
|
1070
1127
|
#
|
1071
|
-
# * `CREATE_PENDING` - same as `CreationTime
|
1128
|
+
# * `CREATE_PENDING` - The same time as `CreationTime`.
|
1072
1129
|
#
|
1073
|
-
# * `CREATE_IN_PROGRESS` -
|
1130
|
+
# * `CREATE_IN_PROGRESS` - The current timestamp.
|
1074
1131
|
#
|
1075
|
-
# * `ACTIVE` or `CREATE_FAILED` -
|
1132
|
+
# * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
|
1076
1133
|
# @return [Time]
|
1077
1134
|
#
|
1078
1135
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetImportJobResponse AWS API Documentation
|
@@ -1119,7 +1176,7 @@ module Aws::ForecastService
|
|
1119
1176
|
# @return [String]
|
1120
1177
|
#
|
1121
1178
|
# @!attribute [rw] domain
|
1122
|
-
# The dataset
|
1179
|
+
# The domain associated with the dataset.
|
1123
1180
|
# @return [String]
|
1124
1181
|
#
|
1125
1182
|
# @!attribute [rw] dataset_type
|
@@ -1142,7 +1199,7 @@ module Aws::ForecastService
|
|
1142
1199
|
# @return [Types::Schema]
|
1143
1200
|
#
|
1144
1201
|
# @!attribute [rw] encryption_config
|
1145
|
-
#
|
1202
|
+
# The AWS Key Management Service (KMS) key and the AWS Identity and
|
1146
1203
|
# Access Management (IAM) role that Amazon Forecast can assume to
|
1147
1204
|
# access the key.
|
1148
1205
|
# @return [Types::EncryptionConfig]
|
@@ -1159,10 +1216,10 @@ module Aws::ForecastService
|
|
1159
1216
|
# * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
|
1160
1217
|
#
|
1161
1218
|
# The `UPDATE` states apply while data is imported to the dataset from
|
1162
|
-
# a call to the CreateDatasetImportJob operation
|
1163
|
-
#
|
1164
|
-
#
|
1165
|
-
#
|
1219
|
+
# a call to the CreateDatasetImportJob operation and reflect the
|
1220
|
+
# status of the dataset import job. For example, when the import job
|
1221
|
+
# status is `CREATE_IN_PROGRESS`, the status of the dataset is
|
1222
|
+
# `UPDATE_IN_PROGRESS`.
|
1166
1223
|
#
|
1167
1224
|
# <note markdown="1"> The `Status` of the dataset must be `ACTIVE` before you can import
|
1168
1225
|
# training data.
|
@@ -1175,11 +1232,11 @@ module Aws::ForecastService
|
|
1175
1232
|
# @return [Time]
|
1176
1233
|
#
|
1177
1234
|
# @!attribute [rw] last_modification_time
|
1178
|
-
# When
|
1179
|
-
# `CreationTime`.
|
1180
|
-
# `LastModificationTime` is
|
1181
|
-
#
|
1182
|
-
# is the
|
1235
|
+
# When you create a dataset, `LastModificationTime` is the same as
|
1236
|
+
# `CreationTime`. While data is being imported to the dataset,
|
1237
|
+
# `LastModificationTime` is the current time of the `DescribeDataset`
|
1238
|
+
# call. After a CreateDatasetImportJob operation has finished,
|
1239
|
+
# `LastModificationTime` is when the import job completed or failed.
|
1183
1240
|
# @return [Time]
|
1184
1241
|
#
|
1185
1242
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetResponse AWS API Documentation
|
@@ -1229,7 +1286,8 @@ module Aws::ForecastService
|
|
1229
1286
|
# @return [String]
|
1230
1287
|
#
|
1231
1288
|
# @!attribute [rw] destination
|
1232
|
-
# The path to the
|
1289
|
+
# The path to the Amazon Simple Storage Service (Amazon S3) bucket
|
1290
|
+
# where the forecast is exported.
|
1233
1291
|
# @return [Types::DataDestination]
|
1234
1292
|
#
|
1235
1293
|
# @!attribute [rw] message
|
@@ -1237,7 +1295,7 @@ module Aws::ForecastService
|
|
1237
1295
|
# @return [String]
|
1238
1296
|
#
|
1239
1297
|
# @!attribute [rw] status
|
1240
|
-
# The status of the forecast export job.
|
1298
|
+
# The status of the forecast export job. States include:
|
1241
1299
|
#
|
1242
1300
|
# * `ACTIVE`
|
1243
1301
|
#
|
@@ -1246,7 +1304,7 @@ module Aws::ForecastService
|
|
1246
1304
|
# * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED`
|
1247
1305
|
#
|
1248
1306
|
# <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
|
1249
|
-
# can access the forecast in your
|
1307
|
+
# can access the forecast in your S3 bucket.
|
1250
1308
|
#
|
1251
1309
|
# </note>
|
1252
1310
|
# @return [String]
|
@@ -1292,13 +1350,17 @@ module Aws::ForecastService
|
|
1292
1350
|
end
|
1293
1351
|
|
1294
1352
|
# @!attribute [rw] forecast_arn
|
1295
|
-
# The
|
1353
|
+
# The forecast ARN as specified in the request.
|
1296
1354
|
# @return [String]
|
1297
1355
|
#
|
1298
1356
|
# @!attribute [rw] forecast_name
|
1299
1357
|
# The name of the forecast.
|
1300
1358
|
# @return [String]
|
1301
1359
|
#
|
1360
|
+
# @!attribute [rw] forecast_types
|
1361
|
+
# The quantiles at which proababilistic forecasts were generated.
|
1362
|
+
# @return [Array<String>]
|
1363
|
+
#
|
1302
1364
|
# @!attribute [rw] predictor_arn
|
1303
1365
|
# The ARN of the predictor used to generate the forecast.
|
1304
1366
|
# @return [String]
|
@@ -1344,6 +1406,7 @@ module Aws::ForecastService
|
|
1344
1406
|
class DescribeForecastResponse < Struct.new(
|
1345
1407
|
:forecast_arn,
|
1346
1408
|
:forecast_name,
|
1409
|
+
:forecast_types,
|
1347
1410
|
:predictor_arn,
|
1348
1411
|
:dataset_group_arn,
|
1349
1412
|
:status,
|
@@ -1395,13 +1458,16 @@ module Aws::ForecastService
|
|
1395
1458
|
# @return [Boolean]
|
1396
1459
|
#
|
1397
1460
|
# @!attribute [rw] perform_hpo
|
1398
|
-
# Whether the predictor is set to perform
|
1461
|
+
# Whether the predictor is set to perform hyperparameter optimization
|
1462
|
+
# (HPO).
|
1399
1463
|
# @return [Boolean]
|
1400
1464
|
#
|
1401
1465
|
# @!attribute [rw] training_parameters
|
1402
|
-
# The training parameters
|
1403
|
-
#
|
1404
|
-
# algorithms
|
1466
|
+
# The default training parameters or overrides selected during model
|
1467
|
+
# training. If using the AutoML algorithm or if HPO is turned on while
|
1468
|
+
# using the DeepAR+ algorithms, the optimized values for the chosen
|
1469
|
+
# hyperparameters are returned. For more information, see
|
1470
|
+
# aws-forecast-choosing-recipes.
|
1405
1471
|
# @return [Hash<String,String>]
|
1406
1472
|
#
|
1407
1473
|
# @!attribute [rw] evaluation_parameters
|
@@ -1431,9 +1497,15 @@ module Aws::ForecastService
|
|
1431
1497
|
# access the key.
|
1432
1498
|
# @return [Types::EncryptionConfig]
|
1433
1499
|
#
|
1500
|
+
# @!attribute [rw] predictor_execution_details
|
1501
|
+
# Details on the the status and results of the backtests performed to
|
1502
|
+
# evaluate the accuracy of the predictor. You specify the number of
|
1503
|
+
# backtests to perform when you call the operation.
|
1504
|
+
# @return [Types::PredictorExecutionDetails]
|
1505
|
+
#
|
1434
1506
|
# @!attribute [rw] dataset_import_job_arns
|
1435
|
-
# An array of ARNs of the dataset import jobs used to import
|
1436
|
-
# data for the predictor.
|
1507
|
+
# An array of the ARNs of the dataset import jobs used to import
|
1508
|
+
# training data for the predictor.
|
1437
1509
|
# @return [Array<String>]
|
1438
1510
|
#
|
1439
1511
|
# @!attribute [rw] auto_ml_algorithm_arns
|
@@ -1451,8 +1523,8 @@ module Aws::ForecastService
|
|
1451
1523
|
#
|
1452
1524
|
# * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
|
1453
1525
|
#
|
1454
|
-
# <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before
|
1455
|
-
# predictor to create a forecast.
|
1526
|
+
# <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before you can use
|
1527
|
+
# the predictor to create a forecast.
|
1456
1528
|
#
|
1457
1529
|
# </note>
|
1458
1530
|
# @return [String]
|
@@ -1466,10 +1538,11 @@ module Aws::ForecastService
|
|
1466
1538
|
# @return [Time]
|
1467
1539
|
#
|
1468
1540
|
# @!attribute [rw] last_modification_time
|
1469
|
-
# Initially, the same as `CreationTime` (status is
|
1470
|
-
#
|
1471
|
-
# `CREATE_IN_PROGRESS`), and when training
|
1472
|
-
# to `ACTIVE`) or fails (
|
1541
|
+
# Initially, the same as `CreationTime` (when the status is
|
1542
|
+
# `CREATE_PENDING`). This value is updated when training starts (when
|
1543
|
+
# the status changes to `CREATE_IN_PROGRESS`), and when training has
|
1544
|
+
# completed (when the status changes to `ACTIVE`) or fails (when the
|
1545
|
+
# status changes to `CREATE_FAILED`).
|
1473
1546
|
# @return [Time]
|
1474
1547
|
#
|
1475
1548
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictorResponse AWS API Documentation
|
@@ -1487,6 +1560,7 @@ module Aws::ForecastService
|
|
1487
1560
|
:input_data_config,
|
1488
1561
|
:featurization_config,
|
1489
1562
|
:encryption_config,
|
1563
|
+
:predictor_execution_details,
|
1490
1564
|
:dataset_import_job_arns,
|
1491
1565
|
:auto_ml_algorithm_arns,
|
1492
1566
|
:status,
|
@@ -1498,7 +1572,7 @@ module Aws::ForecastService
|
|
1498
1572
|
|
1499
1573
|
# An AWS Key Management Service (KMS) key and an AWS Identity and Access
|
1500
1574
|
# Management (IAM) role that Amazon Forecast can assume to access the
|
1501
|
-
# key.
|
1575
|
+
# key. You can specify this optional object in the CreateDataset and
|
1502
1576
|
# CreatePredictor requests.
|
1503
1577
|
#
|
1504
1578
|
# @note When making an API call, you may pass EncryptionConfig
|
@@ -1510,17 +1584,16 @@ module Aws::ForecastService
|
|
1510
1584
|
# }
|
1511
1585
|
#
|
1512
1586
|
# @!attribute [rw] role_arn
|
1513
|
-
# The ARN of the
|
1514
|
-
#
|
1587
|
+
# The ARN of the IAM role that Amazon Forecast can assume to access
|
1588
|
+
# the AWS KMS key.
|
1515
1589
|
#
|
1516
|
-
#
|
1517
|
-
#
|
1518
|
-
#
|
1590
|
+
# Passing a role across AWS accounts is not allowed. If you pass a
|
1591
|
+
# role that isn't in your account, you get an `InvalidInputException`
|
1592
|
+
# error.
|
1519
1593
|
# @return [String]
|
1520
1594
|
#
|
1521
1595
|
# @!attribute [rw] kms_key_arn
|
1522
|
-
# The Amazon Resource Name (ARN) of
|
1523
|
-
# (KMS) key.
|
1596
|
+
# The Amazon Resource Name (ARN) of the KMS key.
|
1524
1597
|
# @return [String]
|
1525
1598
|
#
|
1526
1599
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EncryptionConfig AWS API Documentation
|
@@ -1533,18 +1606,8 @@ module Aws::ForecastService
|
|
1533
1606
|
|
1534
1607
|
# Parameters that define how to split a dataset into training data and
|
1535
1608
|
# testing data, and the number of iterations to perform. These
|
1536
|
-
# parameters are specified in the predefined algorithms
|
1537
|
-
#
|
1538
|
-
#
|
1539
|
-
# For example, suppose that you have a dataset with data collection
|
1540
|
-
# frequency set to every day and you have 200 days worth of data (that
|
1541
|
-
# is, 200 data points). Now suppose that you set the
|
1542
|
-
# `NumberOfBacktestWindows` to 2 and the `BackTestWindowOffset`
|
1543
|
-
# parameter to 20. The algorithm splits the data twice. The first time,
|
1544
|
-
# the algorithm trains the model using the first 180 data points and
|
1545
|
-
# uses the last 20 data points for evaluation. The second time, the
|
1546
|
-
# algorithm trains the model using the first 160 data points and uses
|
1547
|
-
# the last 40 data points for evaluation.
|
1609
|
+
# parameters are specified in the predefined algorithms but you can
|
1610
|
+
# override them in the CreatePredictor request.
|
1548
1611
|
#
|
1549
1612
|
# @note When making an API call, you may pass EvaluationParameters
|
1550
1613
|
# data as a hash:
|
@@ -1555,14 +1618,21 @@ module Aws::ForecastService
|
|
1555
1618
|
# }
|
1556
1619
|
#
|
1557
1620
|
# @!attribute [rw] number_of_backtest_windows
|
1558
|
-
# The number of times to split the input data. The default is 1.
|
1559
|
-
#
|
1621
|
+
# The number of times to split the input data. The default is 1. Valid
|
1622
|
+
# values are 1 through 5.
|
1560
1623
|
# @return [Integer]
|
1561
1624
|
#
|
1562
1625
|
# @!attribute [rw] back_test_window_offset
|
1563
1626
|
# The point from the end of the dataset where you want to split the
|
1564
|
-
# data for model training and evaluation.
|
1565
|
-
# the number of data points.
|
1627
|
+
# data for model training and testing (evaluation). Specify the value
|
1628
|
+
# as the number of data points. The default is the value of the
|
1629
|
+
# forecast horizon. `BackTestWindowOffset` can be used to mimic a past
|
1630
|
+
# virtual forecast start date. This value must be greater than or
|
1631
|
+
# equal to the forecast horizon and less than half of the
|
1632
|
+
# TARGET\_TIME\_SERIES dataset length.
|
1633
|
+
#
|
1634
|
+
# `ForecastHorizon` <= `BackTestWindowOffset` < 1/2 *
|
1635
|
+
# TARGET\_TIME\_SERIES dataset length
|
1566
1636
|
# @return [Integer]
|
1567
1637
|
#
|
1568
1638
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EvaluationParameters AWS API Documentation
|
@@ -1630,17 +1700,16 @@ module Aws::ForecastService
|
|
1630
1700
|
# }
|
1631
1701
|
#
|
1632
1702
|
# @!attribute [rw] attribute_name
|
1633
|
-
# The name of the schema attribute
|
1634
|
-
# featurized.
|
1635
|
-
#
|
1636
|
-
#
|
1637
|
-
#
|
1703
|
+
# The name of the schema attribute that specifies the data field to be
|
1704
|
+
# featurized. Only the `target` field of the `TARGET_TIME_SERIES`
|
1705
|
+
# dataset type is supported. For example, for the `RETAIL` domain, the
|
1706
|
+
# target is `demand`, and for the `CUSTOM` domain, the target is
|
1707
|
+
# `target_value`.
|
1638
1708
|
# @return [String]
|
1639
1709
|
#
|
1640
1710
|
# @!attribute [rw] featurization_pipeline
|
1641
|
-
# An array `FeaturizationMethod`
|
1642
|
-
# transformation
|
1643
|
-
# limited to one.
|
1711
|
+
# An array of one `FeaturizationMethod` object that specifies the
|
1712
|
+
# feature transformation method.
|
1644
1713
|
# @return [Array<Types::FeaturizationMethod>]
|
1645
1714
|
#
|
1646
1715
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Featurization AWS API Documentation
|
@@ -1658,9 +1727,10 @@ module Aws::ForecastService
|
|
1658
1727
|
#
|
1659
1728
|
# You define featurization using the `FeaturizationConfig` object. You
|
1660
1729
|
# specify an array of transformations, one for each field that you want
|
1661
|
-
# to featurize. You then include the `FeaturizationConfig` in
|
1662
|
-
# `CreatePredictor` request. Amazon Forecast applies the
|
1663
|
-
# to the `TARGET_TIME_SERIES` dataset before model
|
1730
|
+
# to featurize. You then include the `FeaturizationConfig` object in
|
1731
|
+
# your `CreatePredictor` request. Amazon Forecast applies the
|
1732
|
+
# featurization to the `TARGET_TIME_SERIES` dataset before model
|
1733
|
+
# training.
|
1664
1734
|
#
|
1665
1735
|
# You can create multiple featurization configurations. For example, you
|
1666
1736
|
# might call the `CreatePredictor` operation twice by specifying
|
@@ -1694,6 +1764,12 @@ module Aws::ForecastService
|
|
1694
1764
|
# (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes),
|
1695
1765
|
# 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates
|
1696
1766
|
# every year and "5min" indicates every five minutes.
|
1767
|
+
#
|
1768
|
+
# The frequency must be greater than or equal to the
|
1769
|
+
# TARGET\_TIME\_SERIES dataset frequency.
|
1770
|
+
#
|
1771
|
+
# When a RELATED\_TIME\_SERIES dataset is provided, the frequency must
|
1772
|
+
# be equal to the RELATED\_TIME\_SERIES dataset frequency.
|
1697
1773
|
# @return [String]
|
1698
1774
|
#
|
1699
1775
|
# @!attribute [rw] forecast_dimensions
|
@@ -1704,12 +1780,17 @@ module Aws::ForecastService
|
|
1704
1780
|
# sales across all of your stores, and your dataset contains a
|
1705
1781
|
# `store_id` field. If you want the sales forecast for each item by
|
1706
1782
|
# store, you would specify `store_id` as the dimension.
|
1783
|
+
#
|
1784
|
+
# All forecast dimensions specified in the `TARGET_TIME_SERIES`
|
1785
|
+
# dataset don't need to be specified in the `CreatePredictor`
|
1786
|
+
# request. All forecast dimensions specified in the
|
1787
|
+
# `RELATED_TIME_SERIES` dataset must be specified in the
|
1788
|
+
# `CreatePredictor` request.
|
1707
1789
|
# @return [Array<String>]
|
1708
1790
|
#
|
1709
1791
|
# @!attribute [rw] featurizations
|
1710
1792
|
# An array of featurization (transformation) information for the
|
1711
|
-
# fields of a dataset.
|
1712
|
-
# supported.
|
1793
|
+
# fields of a dataset. Only a single featurization is supported.
|
1713
1794
|
# @return [Array<Types::Featurization>]
|
1714
1795
|
#
|
1715
1796
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/FeaturizationConfig AWS API Documentation
|
@@ -1721,12 +1802,14 @@ module Aws::ForecastService
|
|
1721
1802
|
include Aws::Structure
|
1722
1803
|
end
|
1723
1804
|
|
1724
|
-
# Provides information about
|
1805
|
+
# Provides information about the method that featurizes (transforms) a
|
1725
1806
|
# dataset field. The method is part of the `FeaturizationPipeline` of
|
1726
|
-
# the Featurization object. If
|
1727
|
-
#
|
1807
|
+
# the Featurization object. If you don't specify
|
1808
|
+
# `FeaturizationMethodParameters`, Amazon Forecast uses default
|
1809
|
+
# parameters.
|
1728
1810
|
#
|
1729
|
-
#
|
1811
|
+
# The following is an example of how you specify a `FeaturizationMethod`
|
1812
|
+
# object.
|
1730
1813
|
#
|
1731
1814
|
# `\{`
|
1732
1815
|
#
|
@@ -1748,14 +1831,14 @@ module Aws::ForecastService
|
|
1748
1831
|
# }
|
1749
1832
|
#
|
1750
1833
|
# @!attribute [rw] featurization_method_name
|
1751
|
-
# The name of the method.
|
1752
|
-
#
|
1834
|
+
# The name of the method. The "filling" method is the only supported
|
1835
|
+
# method.
|
1753
1836
|
# @return [String]
|
1754
1837
|
#
|
1755
1838
|
# @!attribute [rw] featurization_method_parameters
|
1756
|
-
# The method parameters (key-value pairs). Specify these to
|
1757
|
-
# the default values. The following list shows the parameters
|
1758
|
-
# their valid values. Bold signifies the default value.
|
1839
|
+
# The method parameters (key-value pairs). Specify these parameters to
|
1840
|
+
# override the default values. The following list shows the parameters
|
1841
|
+
# and their valid values. Bold signifies the default value.
|
1759
1842
|
#
|
1760
1843
|
# * `aggregation`\: **sum**, `avg`, `first`, `min`, `max`
|
1761
1844
|
#
|
@@ -1776,9 +1859,9 @@ module Aws::ForecastService
|
|
1776
1859
|
|
1777
1860
|
# Describes a filter for choosing a subset of objects. Each filter
|
1778
1861
|
# consists of a condition and a match statement. The condition is either
|
1779
|
-
# `IS` or `IS_NOT`, which specifies whether to include or exclude
|
1780
|
-
#
|
1781
|
-
#
|
1862
|
+
# `IS` or `IS_NOT`, which specifies whether to include or exclude the
|
1863
|
+
# objects that match the statement, respectively. The match statement
|
1864
|
+
# consists of a key and a value.
|
1782
1865
|
#
|
1783
1866
|
# @note When making an API call, you may pass Filter
|
1784
1867
|
# data as a hash:
|
@@ -1794,11 +1877,13 @@ module Aws::ForecastService
|
|
1794
1877
|
# @return [String]
|
1795
1878
|
#
|
1796
1879
|
# @!attribute [rw] value
|
1797
|
-
#
|
1880
|
+
# The value to match.
|
1798
1881
|
# @return [String]
|
1799
1882
|
#
|
1800
1883
|
# @!attribute [rw] condition
|
1801
|
-
# The condition to apply.
|
1884
|
+
# The condition to apply. To include the objects that match the
|
1885
|
+
# statement, specify `IS`. To exclude matching objects, specify
|
1886
|
+
# `IS_NOT`.
|
1802
1887
|
# @return [String]
|
1803
1888
|
#
|
1804
1889
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Filter AWS API Documentation
|
@@ -1824,11 +1909,12 @@ module Aws::ForecastService
|
|
1824
1909
|
# @return [String]
|
1825
1910
|
#
|
1826
1911
|
# @!attribute [rw] destination
|
1827
|
-
# The path to the
|
1912
|
+
# The path to the Amazon Simple Storage Service (Amazon S3) bucket
|
1913
|
+
# where the forecast is exported.
|
1828
1914
|
# @return [Types::DataDestination]
|
1829
1915
|
#
|
1830
1916
|
# @!attribute [rw] status
|
1831
|
-
# The status of the forecast export job.
|
1917
|
+
# The status of the forecast export job. States include:
|
1832
1918
|
#
|
1833
1919
|
# * `ACTIVE`
|
1834
1920
|
#
|
@@ -1837,7 +1923,7 @@ module Aws::ForecastService
|
|
1837
1923
|
# * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED`
|
1838
1924
|
#
|
1839
1925
|
# <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
|
1840
|
-
# can access the forecast in your
|
1926
|
+
# can access the forecast in your S3 bucket.
|
1841
1927
|
#
|
1842
1928
|
# </note>
|
1843
1929
|
# @return [String]
|
@@ -1869,7 +1955,8 @@ module Aws::ForecastService
|
|
1869
1955
|
|
1870
1956
|
# Provides a summary of the forecast properties used in the
|
1871
1957
|
# ListForecasts operation. To get the complete set of properties, call
|
1872
|
-
# the DescribeForecast operation, and provide the
|
1958
|
+
# the DescribeForecast operation, and provide the `ForecastArn` that is
|
1959
|
+
# listed in the summary.
|
1873
1960
|
#
|
1874
1961
|
# @!attribute [rw] forecast_arn
|
1875
1962
|
# The ARN of the forecast.
|
@@ -1962,19 +2049,20 @@ module Aws::ForecastService
|
|
1962
2049
|
include Aws::Structure
|
1963
2050
|
end
|
1964
2051
|
|
1965
|
-
# Configuration information for a hyperparameter tuning job.
|
1966
|
-
#
|
2052
|
+
# Configuration information for a hyperparameter tuning job. You specify
|
2053
|
+
# this object in the CreatePredictor request.
|
1967
2054
|
#
|
1968
|
-
# A hyperparameter is a parameter that governs the model training
|
1969
|
-
# process
|
1970
|
-
#
|
1971
|
-
# hyperparameters
|
2055
|
+
# A *hyperparameter* is a parameter that governs the model training
|
2056
|
+
# process. You set hyperparameters before training starts, unlike model
|
2057
|
+
# parameters, which are determined during training. The values of the
|
2058
|
+
# hyperparameters effect which values are chosen for the model
|
2059
|
+
# parameters.
|
1972
2060
|
#
|
1973
|
-
#
|
1974
|
-
#
|
1975
|
-
#
|
1976
|
-
# hyperparameter values. The optimum set of values
|
1977
|
-
# algorithm, the training data, and the
|
2061
|
+
# In a *hyperparameter tuning job*, Amazon Forecast chooses the set of
|
2062
|
+
# hyperparameter values that optimize a specified metric. Forecast
|
2063
|
+
# accomplishes this by running many training jobs over a range of
|
2064
|
+
# hyperparameter values. The optimum set of values depends on the
|
2065
|
+
# algorithm, the training data, and the specified metric objective.
|
1978
2066
|
#
|
1979
2067
|
# @note When making an API call, you may pass HyperParameterTuningJobConfig
|
1980
2068
|
# data as a hash:
|
@@ -2018,7 +2106,7 @@ module Aws::ForecastService
|
|
2018
2106
|
end
|
2019
2107
|
|
2020
2108
|
# The data used to train a predictor. The data includes a dataset group
|
2021
|
-
# and any supplementary features.
|
2109
|
+
# and any supplementary features. You specify this object in the
|
2022
2110
|
# CreatePredictor request.
|
2023
2111
|
#
|
2024
2112
|
# @note When making an API call, you may pass InputDataConfig
|
@@ -2039,8 +2127,8 @@ module Aws::ForecastService
|
|
2039
2127
|
# @return [String]
|
2040
2128
|
#
|
2041
2129
|
# @!attribute [rw] supplementary_features
|
2042
|
-
# An array of supplementary features.
|
2043
|
-
#
|
2130
|
+
# An array of supplementary features. The only supported feature is a
|
2131
|
+
# holiday calendar.
|
2044
2132
|
# @return [Array<Types::SupplementaryFeature>]
|
2045
2133
|
#
|
2046
2134
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/InputDataConfig AWS API Documentation
|
@@ -2078,9 +2166,7 @@ module Aws::ForecastService
|
|
2078
2166
|
#
|
2079
2167
|
# @!attribute [rw] scaling_type
|
2080
2168
|
# The scale that hyperparameter tuning uses to search the
|
2081
|
-
# hyperparameter range.
|
2082
|
-
# hyperparameter scale, see [Hyperparameter Scaling][1]. One of the
|
2083
|
-
# following values:
|
2169
|
+
# hyperparameter range. Valid values:
|
2084
2170
|
#
|
2085
2171
|
# Auto
|
2086
2172
|
#
|
@@ -2097,8 +2183,8 @@ module Aws::ForecastService
|
|
2097
2183
|
# : Hyperparameter tuning searches the values in the hyperparameter
|
2098
2184
|
# range by using a logarithmic scale.
|
2099
2185
|
#
|
2100
|
-
# Logarithmic scaling works only for ranges that have
|
2101
|
-
#
|
2186
|
+
# Logarithmic scaling works only for ranges that have values greater
|
2187
|
+
# than 0.
|
2102
2188
|
#
|
2103
2189
|
# ReverseLogarithmic
|
2104
2190
|
#
|
@@ -2107,6 +2193,9 @@ module Aws::ForecastService
|
|
2107
2193
|
# Reverse logarithmic scaling works only for ranges that are
|
2108
2194
|
# entirely within the range 0 <= x < 1.0.
|
2109
2195
|
#
|
2196
|
+
# For information about choosing a hyperparameter scale, see
|
2197
|
+
# [Hyperparameter Scaling][1]. One of the following values:
|
2198
|
+
#
|
2110
2199
|
#
|
2111
2200
|
#
|
2112
2201
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
|
@@ -2147,7 +2236,7 @@ module Aws::ForecastService
|
|
2147
2236
|
include Aws::Structure
|
2148
2237
|
end
|
2149
2238
|
|
2150
|
-
# The limit on the number of
|
2239
|
+
# The limit on the number of resources per account has been exceeded.
|
2151
2240
|
#
|
2152
2241
|
# @!attribute [rw] message
|
2153
2242
|
# @return [String]
|
@@ -2230,22 +2319,26 @@ module Aws::ForecastService
|
|
2230
2319
|
# @!attribute [rw] filters
|
2231
2320
|
# An array of filters. For each filter, you provide a condition and a
|
2232
2321
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
2233
|
-
# specifies whether to include or exclude
|
2234
|
-
#
|
2235
|
-
#
|
2236
|
-
#
|
2322
|
+
# specifies whether to include or exclude the datasets that match the
|
2323
|
+
# statement from the list, respectively. The match statement consists
|
2324
|
+
# of a key and a value.
|
2325
|
+
#
|
2326
|
+
# **Filter properties**
|
2237
2327
|
#
|
2238
|
-
# * `Condition` - `IS`
|
2328
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
2329
|
+
# `IS_NOT`. To include the datasets that match the statement,
|
2330
|
+
# specify `IS`. To exclude matching datasets, specify `IS_NOT`.
|
2239
2331
|
#
|
2240
|
-
# * `Key` -
|
2332
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
2333
|
+
# `DatasetArn` and `Status`.
|
2241
2334
|
#
|
2242
|
-
# * `Value` -
|
2335
|
+
# * `Value` - The value to match.
|
2243
2336
|
#
|
2244
|
-
# For example, to list all dataset import jobs
|
2245
|
-
#
|
2337
|
+
# For example, to list all dataset import jobs whose status is ACTIVE,
|
2338
|
+
# you specify the following filter:
|
2246
2339
|
#
|
2247
|
-
# `"Filters": [ \{ "Condition": "IS", "Key": "
|
2248
|
-
# "
|
2340
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value":
|
2341
|
+
# "ACTIVE" \} ]`
|
2249
2342
|
# @return [Array<Types::Filter>]
|
2250
2343
|
#
|
2251
2344
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetImportJobsRequest AWS API Documentation
|
@@ -2346,22 +2439,28 @@ module Aws::ForecastService
|
|
2346
2439
|
# @!attribute [rw] filters
|
2347
2440
|
# An array of filters. For each filter, you provide a condition and a
|
2348
2441
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
2349
|
-
# specifies whether to include or exclude
|
2350
|
-
#
|
2351
|
-
# consists of a key and a value.
|
2352
|
-
# valid key, which filters on the `ForecastExportJobName` property.
|
2442
|
+
# specifies whether to include or exclude the forecast export jobs
|
2443
|
+
# that match the statement from the list, respectively. The match
|
2444
|
+
# statement consists of a key and a value.
|
2353
2445
|
#
|
2354
|
-
#
|
2446
|
+
# **Filter properties**
|
2355
2447
|
#
|
2356
|
-
# * `
|
2448
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
2449
|
+
# `IS_NOT`. To include the forecast export jobs that match the
|
2450
|
+
# statement, specify `IS`. To exclude matching forecast export jobs,
|
2451
|
+
# specify `IS_NOT`.
|
2357
2452
|
#
|
2358
|
-
# * `
|
2453
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
2454
|
+
# `ForecastArn` and `Status`.
|
2359
2455
|
#
|
2360
|
-
#
|
2361
|
-
# *my\_forecast\_export\_job*, you would specify:
|
2456
|
+
# * `Value` - The value to match.
|
2362
2457
|
#
|
2363
|
-
#
|
2364
|
-
#
|
2458
|
+
# For example, to list all jobs that export a forecast named
|
2459
|
+
# *electricityforecast*, specify the following filter:
|
2460
|
+
#
|
2461
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "ForecastArn", "Value":
|
2462
|
+
# "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast"
|
2463
|
+
# \} ]`
|
2365
2464
|
# @return [Array<Types::Filter>]
|
2366
2465
|
#
|
2367
2466
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastExportJobsRequest AWS API Documentation
|
@@ -2418,22 +2517,26 @@ module Aws::ForecastService
|
|
2418
2517
|
# @!attribute [rw] filters
|
2419
2518
|
# An array of filters. For each filter, you provide a condition and a
|
2420
2519
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
2421
|
-
# specifies whether to include or exclude
|
2422
|
-
#
|
2423
|
-
#
|
2424
|
-
#
|
2520
|
+
# specifies whether to include or exclude the forecasts that match the
|
2521
|
+
# statement from the list, respectively. The match statement consists
|
2522
|
+
# of a key and a value.
|
2523
|
+
#
|
2524
|
+
# **Filter properties**
|
2425
2525
|
#
|
2426
|
-
# * `Condition` - `IS`
|
2526
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
2527
|
+
# `IS_NOT`. To include the forecasts that match the statement,
|
2528
|
+
# specify `IS`. To exclude matching forecasts, specify `IS_NOT`.
|
2427
2529
|
#
|
2428
|
-
# * `Key` -
|
2530
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
2531
|
+
# `DatasetGroupArn`, `PredictorArn`, and `Status`.
|
2429
2532
|
#
|
2430
|
-
# * `Value` -
|
2533
|
+
# * `Value` - The value to match.
|
2431
2534
|
#
|
2432
|
-
# For example, to list all forecasts
|
2433
|
-
# specify:
|
2535
|
+
# For example, to list all forecasts whose status is not ACTIVE, you
|
2536
|
+
# would specify:
|
2434
2537
|
#
|
2435
|
-
# `"Filters": [ \{ "Condition": "
|
2436
|
-
# "
|
2538
|
+
# `"Filters": [ \{ "Condition": "IS_NOT", "Key": "Status", "Value":
|
2539
|
+
# "ACTIVE" \} ]`
|
2437
2540
|
# @return [Array<Types::Filter>]
|
2438
2541
|
#
|
2439
2542
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastsRequest AWS API Documentation
|
@@ -2490,22 +2593,26 @@ module Aws::ForecastService
|
|
2490
2593
|
# @!attribute [rw] filters
|
2491
2594
|
# An array of filters. For each filter, you provide a condition and a
|
2492
2595
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
2493
|
-
# specifies whether to include or exclude
|
2494
|
-
#
|
2495
|
-
# consists of a key and a value.
|
2496
|
-
# valid key, which filters on the `PredictorName` property.
|
2596
|
+
# specifies whether to include or exclude the predictors that match
|
2597
|
+
# the statement from the list, respectively. The match statement
|
2598
|
+
# consists of a key and a value.
|
2497
2599
|
#
|
2498
|
-
#
|
2600
|
+
# **Filter properties**
|
2499
2601
|
#
|
2500
|
-
# * `
|
2602
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
2603
|
+
# `IS_NOT`. To include the predictors that match the statement,
|
2604
|
+
# specify `IS`. To exclude matching predictors, specify `IS_NOT`.
|
2501
2605
|
#
|
2502
|
-
# * `
|
2606
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
2607
|
+
# `DatasetGroupArn` and `Status`.
|
2503
2608
|
#
|
2504
|
-
#
|
2505
|
-
# specify:
|
2609
|
+
# * `Value` - The value to match.
|
2506
2610
|
#
|
2507
|
-
#
|
2508
|
-
#
|
2611
|
+
# For example, to list all predictors whose status is ACTIVE, you
|
2612
|
+
# would specify:
|
2613
|
+
#
|
2614
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value":
|
2615
|
+
# "ACTIVE" \} ]`
|
2509
2616
|
# @return [Array<Types::Filter>]
|
2510
2617
|
#
|
2511
2618
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListPredictorsRequest AWS API Documentation
|
@@ -2534,8 +2641,8 @@ module Aws::ForecastService
|
|
2534
2641
|
include Aws::Structure
|
2535
2642
|
end
|
2536
2643
|
|
2537
|
-
# Provides metrics used to evaluate the performance of a
|
2538
|
-
# object is part of the WindowSummary object.
|
2644
|
+
# Provides metrics that are used to evaluate the performance of a
|
2645
|
+
# predictor. This object is part of the WindowSummary object.
|
2539
2646
|
#
|
2540
2647
|
# @!attribute [rw] rmse
|
2541
2648
|
# The root mean square error (RMSE).
|
@@ -2610,7 +2717,47 @@ module Aws::ForecastService
|
|
2610
2717
|
include Aws::Structure
|
2611
2718
|
end
|
2612
2719
|
|
2613
|
-
#
|
2720
|
+
# The algorithm used to perform a backtest and the status of those
|
2721
|
+
# tests.
|
2722
|
+
#
|
2723
|
+
# @!attribute [rw] algorithm_arn
|
2724
|
+
# The ARN of the algorithm used to test the predictor.
|
2725
|
+
# @return [String]
|
2726
|
+
#
|
2727
|
+
# @!attribute [rw] test_windows
|
2728
|
+
# An array of test windows used to evaluate the algorithm. The
|
2729
|
+
# `NumberOfBacktestWindows` from the object determines the number of
|
2730
|
+
# windows in the array.
|
2731
|
+
# @return [Array<Types::TestWindowSummary>]
|
2732
|
+
#
|
2733
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecution AWS API Documentation
|
2734
|
+
#
|
2735
|
+
class PredictorExecution < Struct.new(
|
2736
|
+
:algorithm_arn,
|
2737
|
+
:test_windows)
|
2738
|
+
include Aws::Structure
|
2739
|
+
end
|
2740
|
+
|
2741
|
+
# Contains details on the backtests performed to evaluate the accuracy
|
2742
|
+
# of the predictor. The tests are returned in descending order of
|
2743
|
+
# accuracy, with the most accurate backtest appearing first. You specify
|
2744
|
+
# the number of backtests to perform when you call the operation.
|
2745
|
+
#
|
2746
|
+
# @!attribute [rw] predictor_executions
|
2747
|
+
# An array of the backtests performed to evaluate the accuracy of the
|
2748
|
+
# predictor against a particular algorithm. The
|
2749
|
+
# `NumberOfBacktestWindows` from the object determines the number of
|
2750
|
+
# windows in the array.
|
2751
|
+
# @return [Array<Types::PredictorExecution>]
|
2752
|
+
#
|
2753
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecutionDetails AWS API Documentation
|
2754
|
+
#
|
2755
|
+
class PredictorExecutionDetails < Struct.new(
|
2756
|
+
:predictor_executions)
|
2757
|
+
include Aws::Structure
|
2758
|
+
end
|
2759
|
+
|
2760
|
+
# Provides a summary of the predictor properties that are used in the
|
2614
2761
|
# ListPredictors operation. To get the complete set of properties, call
|
2615
2762
|
# the DescribePredictor operation, and provide the listed
|
2616
2763
|
# `PredictorArn`.
|
@@ -2639,8 +2786,8 @@ module Aws::ForecastService
|
|
2639
2786
|
#
|
2640
2787
|
# * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED`
|
2641
2788
|
#
|
2642
|
-
# <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before
|
2643
|
-
# predictor to create a forecast.
|
2789
|
+
# <note markdown="1"> The `Status` of the predictor must be `ACTIVE` before you can use
|
2790
|
+
# the predictor to create a forecast.
|
2644
2791
|
#
|
2645
2792
|
# </note>
|
2646
2793
|
# @return [String]
|
@@ -2673,8 +2820,8 @@ module Aws::ForecastService
|
|
2673
2820
|
include Aws::Structure
|
2674
2821
|
end
|
2675
2822
|
|
2676
|
-
# There is already a resource with
|
2677
|
-
#
|
2823
|
+
# There is already a resource with this name. Try again with a different
|
2824
|
+
# name.
|
2678
2825
|
#
|
2679
2826
|
# @!attribute [rw] message
|
2680
2827
|
# @return [String]
|
@@ -2714,8 +2861,10 @@ module Aws::ForecastService
|
|
2714
2861
|
# The path to the file(s) in an Amazon Simple Storage Service (Amazon
|
2715
2862
|
# S3) bucket, and an AWS Identity and Access Management (IAM) role that
|
2716
2863
|
# Amazon Forecast can assume to access the file(s). Optionally, includes
|
2717
|
-
# an AWS Key Management Service (KMS) key. This object is
|
2718
|
-
#
|
2864
|
+
# an AWS Key Management Service (KMS) key. This object is part of the
|
2865
|
+
# DataSource object that is submitted in the CreateDatasetImportJob
|
2866
|
+
# request, and part of the DataDestination object that is submitted in
|
2867
|
+
# the CreateForecastExportJob request.
|
2719
2868
|
#
|
2720
2869
|
# @note When making an API call, you may pass S3Config
|
2721
2870
|
# data as a hash:
|
@@ -2733,12 +2882,13 @@ module Aws::ForecastService
|
|
2733
2882
|
#
|
2734
2883
|
# @!attribute [rw] role_arn
|
2735
2884
|
# The ARN of the AWS Identity and Access Management (IAM) role that
|
2736
|
-
# Amazon Forecast can assume to access the Amazon S3 bucket or
|
2737
|
-
#
|
2885
|
+
# Amazon Forecast can assume to access the Amazon S3 bucket or files.
|
2886
|
+
# If you provide a value for the `KMSKeyArn` key, the role must allow
|
2887
|
+
# access to the key.
|
2738
2888
|
#
|
2739
|
-
#
|
2740
|
-
#
|
2741
|
-
#
|
2889
|
+
# Passing a role across AWS accounts is not allowed. If you pass a
|
2890
|
+
# role that isn't in your account, you get an `InvalidInputException`
|
2891
|
+
# error.
|
2742
2892
|
# @return [String]
|
2743
2893
|
#
|
2744
2894
|
# @!attribute [rw] kms_key_arn
|
@@ -2755,7 +2905,7 @@ module Aws::ForecastService
|
|
2755
2905
|
include Aws::Structure
|
2756
2906
|
end
|
2757
2907
|
|
2758
|
-
# Defines the fields of a dataset.
|
2908
|
+
# Defines the fields of a dataset. You specify this object in the
|
2759
2909
|
# CreateDataset request.
|
2760
2910
|
#
|
2761
2911
|
# @note When making an API call, you may pass Schema
|
@@ -2782,7 +2932,7 @@ module Aws::ForecastService
|
|
2782
2932
|
include Aws::Structure
|
2783
2933
|
end
|
2784
2934
|
|
2785
|
-
# An attribute of a schema, which defines a field
|
2935
|
+
# An attribute of a schema, which defines a dataset field. A schema
|
2786
2936
|
# attribute is required for every field in a dataset. The Schema object
|
2787
2937
|
# contains an array of `SchemaAttribute` objects.
|
2788
2938
|
#
|
@@ -2810,8 +2960,8 @@ module Aws::ForecastService
|
|
2810
2960
|
include Aws::Structure
|
2811
2961
|
end
|
2812
2962
|
|
2813
|
-
# Provides statistics for each data field imported to an Amazon
|
2814
|
-
# dataset with the CreateDatasetImportJob operation.
|
2963
|
+
# Provides statistics for each data field imported into to an Amazon
|
2964
|
+
# Forecast dataset with the CreateDatasetImportJob operation.
|
2815
2965
|
#
|
2816
2966
|
# @!attribute [rw] count
|
2817
2967
|
# The number of values in the field.
|
@@ -2862,10 +3012,10 @@ module Aws::ForecastService
|
|
2862
3012
|
# Describes a supplementary feature of a dataset group. This object is
|
2863
3013
|
# part of the InputDataConfig object.
|
2864
3014
|
#
|
2865
|
-
#
|
2866
|
-
#
|
2867
|
-
# the calendar. For the calendar data, see
|
2868
|
-
#
|
3015
|
+
# The only supported feature is a holiday calendar. If you use the
|
3016
|
+
# calendar, all data in the datasets should belong to the same country
|
3017
|
+
# as the calendar. For the holiday calendar data, see the [Jollyday][1]
|
3018
|
+
# web site.
|
2869
3019
|
#
|
2870
3020
|
#
|
2871
3021
|
#
|
@@ -2905,6 +3055,41 @@ module Aws::ForecastService
|
|
2905
3055
|
include Aws::Structure
|
2906
3056
|
end
|
2907
3057
|
|
3058
|
+
# The status, start time, and end time of a backtest, as well as a
|
3059
|
+
# failure reason if applicable.
|
3060
|
+
#
|
3061
|
+
# @!attribute [rw] test_window_start
|
3062
|
+
# The time at which the test began.
|
3063
|
+
# @return [Time]
|
3064
|
+
#
|
3065
|
+
# @!attribute [rw] test_window_end
|
3066
|
+
# The time at which the test ended.
|
3067
|
+
# @return [Time]
|
3068
|
+
#
|
3069
|
+
# @!attribute [rw] status
|
3070
|
+
# The status of the test. Possible status values are:
|
3071
|
+
#
|
3072
|
+
# * `ACTIVE`
|
3073
|
+
#
|
3074
|
+
# * `CREATE_IN_PROGRESS`
|
3075
|
+
#
|
3076
|
+
# * `CREATE_FAILED`
|
3077
|
+
# @return [String]
|
3078
|
+
#
|
3079
|
+
# @!attribute [rw] message
|
3080
|
+
# If the test failed, the reason why it failed.
|
3081
|
+
# @return [String]
|
3082
|
+
#
|
3083
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/TestWindowSummary AWS API Documentation
|
3084
|
+
#
|
3085
|
+
class TestWindowSummary < Struct.new(
|
3086
|
+
:test_window_start,
|
3087
|
+
:test_window_end,
|
3088
|
+
:status,
|
3089
|
+
:message)
|
3090
|
+
include Aws::Structure
|
3091
|
+
end
|
3092
|
+
|
2908
3093
|
# @note When making an API call, you may pass UpdateDatasetGroupRequest
|
2909
3094
|
# data as a hash:
|
2910
3095
|
#
|
@@ -2918,8 +3103,8 @@ module Aws::ForecastService
|
|
2918
3103
|
# @return [String]
|
2919
3104
|
#
|
2920
3105
|
# @!attribute [rw] dataset_arns
|
2921
|
-
# An array of Amazon Resource Names (ARNs) of the datasets to add
|
2922
|
-
# the dataset group.
|
3106
|
+
# An array of the Amazon Resource Names (ARNs) of the datasets to add
|
3107
|
+
# to the dataset group.
|
2923
3108
|
# @return [Array<String>]
|
2924
3109
|
#
|
2925
3110
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/UpdateDatasetGroupRequest AWS API Documentation
|
@@ -2945,8 +3130,8 @@ module Aws::ForecastService
|
|
2945
3130
|
# @return [Float]
|
2946
3131
|
#
|
2947
3132
|
# @!attribute [rw] loss_value
|
2948
|
-
# The difference between the predicted value and actual value over
|
2949
|
-
# quantile, weighted (normalized) by dividing by the sum over all
|
3133
|
+
# The difference between the predicted value and the actual value over
|
3134
|
+
# the quantile, weighted (normalized) by dividing by the sum over all
|
2950
3135
|
# quantiles.
|
2951
3136
|
# @return [Float]
|
2952
3137
|
#
|
@@ -2987,7 +3172,6 @@ module Aws::ForecastService
|
|
2987
3172
|
#
|
2988
3173
|
# @!attribute [rw] metrics
|
2989
3174
|
# Provides metrics used to evaluate the performance of a predictor.
|
2990
|
-
# This object is part of the WindowSummary object.
|
2991
3175
|
# @return [Types::Metrics]
|
2992
3176
|
#
|
2993
3177
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/WindowSummary AWS API Documentation
|