anystyle 1.1.0 → 1.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -336,7 +336,7 @@ blank |
336
336
  |
337
337
  |
338
338
  meta | xiii
339
- | Chapter 1
339
+ title | Chapter 1
340
340
  blank |
341
341
  title | Introduction
342
342
  blank |
@@ -646,7 +646,7 @@ text | While the specific geometric priors and prototypes listed abo
646
646
  | standing of the characteristic of the task at hand, the underlying assumptions and
647
647
  | approach provide a direction to allow everyday user to acquire useful 3-D information
648
648
  | in the years to come as real-time 3-D scans become available.
649
- meta | Chapter 2
649
+ title | Chapter 2
650
650
  blank |
651
651
  title | Interactive Acquisition of
652
652
  | Residential Floor Plans1
@@ -1417,7 +1417,7 @@ text | Figure 2.11: The system, having detected the planes in the scene
1417
1417
  | to interact directly with the physical world. Here the user adds a window to the room
1418
1418
  | by dragging a cursor across the wall (left). This motion updates the internal model
1419
1419
  | of the world (right).
1420
- meta | Chapter 3
1420
+ title | Chapter 3
1421
1421
  blank |
1422
1422
  title | Acquiring 3D Indoor Environments
1423
1423
  | with Variability and Repetition2
@@ -2052,7 +2052,7 @@ meta | CHAPTER 3. ENVIRONMENTS WITH VARIABILITY AND REPETITION 50
2052
2052
  blank |
2053
2053
  |
2054
2054
  |
2055
- title | Input points Models matched Parts assigned
2055
+ text | Input points Models matched Parts assigned
2056
2056
  blank |
2057
2057
  |
2058
2058
  |
@@ -2536,7 +2536,7 @@ blank |
2536
2536
  text | Figure 3.14: We compared our algorithm and Koppula et al. [KAJS11] using multiple
2537
2537
  | frames of scans from the same viewpoint. Our recognition results are more stable
2538
2538
  | across different frames.
2539
- meta | Chapter 4
2539
+ title | Chapter 4
2540
2540
  blank |
2541
2541
  title | Guided Real-Time Scanning of
2542
2542
  | Indoor Objects3
@@ -3289,7 +3289,7 @@ text | Figure 4.12: Real-time retrieval results on various datasets. Fo
3289
3289
  | the image of the object being scanned, the accumulated pointcloud, and the closest
3290
3290
  | shape retrieved model, along with the top 25 candidates that are picked from the
3291
3291
  | database of thousands of models using the proposed A2h descriptor.
3292
- meta | Chapter 5
3292
+ title | Chapter 5
3293
3293
  blank |
3294
3294
  title | Conclusions
3295
3295
  blank |
@@ -3334,7 +3334,7 @@ text | shape of objects with the help of a large database of 3-D models
3334
3334
  | would also benefit from the advances made in the use of reliable depth and color
3335
3335
  | features in the new type of data obtained from the RGB-D sensors in addition to the
3336
3336
  | presented descriptor.
3337
- meta | Bibliography
3337
+ title | Bibliography
3338
3338
  blank |
3339
3339
  ref | [BAD10] Soonmin Bae, Aseem Agarwala, and Fredo Durand. Computational
3340
3340
  | rephotography. ACM Trans. Graph., 29(5), 2010.
@@ -712,7 +712,7 @@ blank |
712
712
  |
713
713
  |
714
714
  meta | xxv
715
- | Chapter 1
715
+ title | Chapter 1
716
716
  blank |
717
717
  title | Introduction
718
718
  blank |
@@ -875,7 +875,7 @@ text | biophysical descriptions of the tissue behavior and nanoscale de
875
875
  | For the first time, we apply the model to study the disturbances to hydrations due
876
876
  | to the introduction of an intrastromal inlay. A summary of the results and their
877
877
  | implications is given in chapter 8, along with comments on future work.
878
- meta | Chapter 2
878
+ title | Chapter 2
879
879
  blank |
880
880
  title | An electrolyte model for the ex
881
881
  | vivo cornea
@@ -1484,9 +1484,9 @@ meta | CHAPTER 2. AN ELECTROLYTE MODEL
1484
1484
  blank |
1485
1485
  |
1486
1486
  |
1487
- text | 2.5.2 Keratocyte and collagen electrolyte volume exclusion
1487
+ title | 2.5.2 Keratocyte and collagen electrolyte volume exclusion
1488
1488
  | effects
1489
- | Predicted electrostatic swelling pressure component Pel , given by equation (2.22), is
1489
+ text | Predicted electrostatic swelling pressure component Pel , given by equation (2.22), is
1490
1490
  | plotted against volume dilation J in figure 2.4a for three cases: no volume exclusion,
1491
1491
  | only collagen volume exclusion, and collagen and keratocyte volume exclusion. The
1492
1492
  | volume exclusion effects arising from these two stromal components are important for
@@ -1632,7 +1632,7 @@ text | Figure 2.8: The effect of the ϕ and ϕ̂ on the electrostatic f
1632
1632
  | based and Donnan-based solutions for Pel agree well over the dilation range where
1633
1633
  | PG-coatings are well separated. The Donnan-based solution P̂el cannot capture the
1634
1634
  | effect of PG-coating overlap and thus loses accuracy at low hydration.
1635
- meta | Chapter 3
1635
+ title | Chapter 3
1636
1636
  blank |
1637
1637
  title | Modeling the active endothelial ion
1638
1638
  | transport in the in vivo cornea
@@ -2050,9 +2050,9 @@ text | Figure 3.2: The computed osmotic pressure Pos versus volume dila
2050
2050
  | measurements (Olsen and Sperling, 1987). The measured modulus is given by K exp =
2051
2051
  | 39.12J −4.48 kPa, which is computed by the power law fit function for swelling pressure
2052
2052
  | Psexp = 7.56t−3.48 mmHg from Olsen and Sperling (1987).
2053
- meta | Chapter 4
2053
+ title | Chapter 4
2054
2054
  blank |
2055
- text | A structural model for the in vivo
2055
+ title | A structural model for the in vivo
2056
2056
  | human cornea including
2057
2057
  | collagen-swelling interaction
2058
2058
  blank |
@@ -3154,7 +3154,7 @@ text | corneal dystrophy where the GAG concentration is found to be abn
3154
3154
  | respiration (Klyce, 1981). Extension of the model to include these multiple species and
3155
3155
  | their interactions through metabolic reactions for aerobic and anaerobic respiration
3156
3156
  | is presented in chapter 7.
3157
- meta | Chapter 5
3157
+ title | Chapter 5
3158
3158
  blank |
3159
3159
  title | Mechanisms of self-organization for
3160
3160
  | the collagen fibril arrangement in
@@ -3164,8 +3164,8 @@ title | 5.1 Background
3164
3164
  text | The GAGs have an important but less-understood role in the maintenance of the
3165
3165
  | lattice-like fibril arrangement. Keratan sulfate, the predominant stromal GAG com-
3166
3166
  | ponent, has been shown to be involved in modulating the fibril organization by the
3167
- meta | 1
3168
- text | knockout of Chst5 in the mouse (Hayashida et al., 2006). Scott (1992) proposed
3167
+ | 1
3168
+ | knockout of Chst5 in the mouse (Hayashida et al., 2006). Scott (1992) proposed
3169
3169
  | that two or more GAG chains, originating at different core proteins on neighboring
3170
3170
  | fibrils, may form an antiparallel duplexed association which appears as a bridge-like
3171
3171
  | structure spanning the interfibrillar distance in electron microscopy after staining,
@@ -3694,7 +3694,7 @@ text | current model, PG/GAGs have been assumed to be distributed unifo
3694
3694
  | 2010; Quantock et al., 1990) or to genetically mutated corneas (Hayashida et al.,
3695
3695
  | 2006), which leads to a reduction in interfibrillar distance and a more chaotic fibril
3696
3696
  | organization due to the lack of PG regulation.
3697
- meta | Chapter 6
3697
+ title | Chapter 6
3698
3698
  blank |
3699
3699
  title | Fluid pressure across active
3700
3700
  | biological membrane in a charged
@@ -4277,9 +4277,9 @@ meta | CHAPTER 6. ENHANCED KEDEM-KATCHALSKY EQUATIONS
4277
4277
  blank |
4278
4278
  |
4279
4279
  |
4280
- text | 6.6 Application to the endothelial transport in the
4280
+ title | 6.6 Application to the endothelial transport in the
4281
4281
  | in vivo cornea
4282
- | In this section, we present an example by applying equations (7.25, 6.42) to study
4282
+ text | In this section, we present an example by applying equations (7.25, 6.42) to study
4283
4283
  | the endothelial ionic transport process of the in vivo cornea. The fluid and ion
4284
4284
  | exchanges across the endothelium controls the level of corneal hydration, which is a
4285
4285
  | crucial factor for the maintenance of the transparency of the tissue. Fixed charges
@@ -4549,9 +4549,9 @@ text | is negative. This view of a positive stromal fluid pressure is c
4549
4549
  | underlying metabolic reactions (Schultz, 1980). This development requires identifica-
4550
4550
  | tion of the molecular mechanisms, and can potentially enhance the understanding of
4551
4551
  | active mechanism involvement in membrane transport.
4552
- meta | Chapter 7
4552
+ title | Chapter 7
4553
4553
  blank |
4554
- text | A chemo-electro-mechanical model
4554
+ title | A chemo-electro-mechanical model
4555
4555
  | for corneal metabolism
4556
4556
  | and edema
4557
4557
  blank |
@@ -5415,7 +5415,7 @@ blank |
5415
5415
  |
5416
5416
  text | simplification. The effect of solute diffusivity on contact-lens-induced corneal swelling
5417
5417
  | will be investigated in section 7.4.3.
5418
- blank |
5418
+ text |
5419
5419
  title | Initial displacement caused by the IOP
5420
5420
  blank |
5421
5421
  text | Fringe plot of the initial displacement, obtained by finite element solution of equa-
@@ -5648,9 +5648,9 @@ text | Figure 7.11: The predicted fluid pressure variation ∆p through
5648
5648
  | thickness at five values of lens transmissibility for (a) DB− = 4.89 × 10−6 cm2 /s,
5649
5649
  | DL− = 4.4 × 10−6 cm2 /s and (b) DB− = 1.5 × 10−6 cm2 /s, DL− = 4.4 × 10−6 cm2 /s.
5650
5650
  blank |
5651
- text | 7.4.4 Biomechanical behavior after introduction of intrastro-
5651
+ title | 7.4.4 Biomechanical behavior after introduction of intrastro-
5652
5652
  | mal inlay
5653
- | The use of intrastromal inlay provides an alternative treatment to improve near and
5653
+ text | The use of intrastromal inlay provides an alternative treatment to improve near and
5654
5654
  | intermediate vision in presbyopes without the removal of tissue (Arlt et al., 2015;
5655
5655
  meta | CHAPTER 7. A CHEMO-ELECTRO-MECHANICAL MODEL 142
5656
5656
  blank |
@@ -5895,7 +5895,7 @@ text | under extreme situations (Cheng et al., 2015; Muller et al., 200
5895
5895
  | which renders the displacement and fluid pressure as time-independent. However, the
5896
5896
  | theory is readily to be extended to transient cases, which may be useful for interpret-
5897
5897
  | ing experimental results that are obtained in acute situations.
5898
- meta | Chapter 8
5898
+ title | Chapter 8
5899
5899
  blank |
5900
5900
  title | Conclusions and future directions
5901
5901
  blank |
@@ -389,7 +389,7 @@ blank |
389
389
  |
390
390
  meta | xvii
391
391
  | xviii
392
- | Chapter 1
392
+ title | Chapter 1
393
393
  blank |
394
394
  title | Introduction
395
395
  blank |
@@ -1568,7 +1568,7 @@ text | as free components. There is minimal energy transfer to higher f
1568
1568
  | decrease. Interactions between periodic wave trains and a ridge can lead to as much
1569
1569
  | as 40% of the transmitted wave energy propagating as higher harmonic waves.
1570
1570
  meta | 30 CHAPTER 2. HARMONIC WAVE GENERATION
1571
- | Chapter 3
1571
+ title | Chapter 3
1572
1572
  blank |
1573
1573
  title | Wave breaking criteria1
1574
1574
  blank |
@@ -3099,7 +3099,7 @@ text | wave frequency, and thus the time scale associated with the wave
3099
3099
  | efficiency based on the instability mechanism, further study is needed to directly
3100
3100
  | measure the mixing efficiency of such breaking events.
3101
3101
  meta | 72 CHAPTER 3. WAVE BREAKING CRITERIA
3102
- | Chapter 4
3102
+ title | Chapter 4
3103
3103
  blank |
3104
3104
  title | Overall event efficiency of breaking
3105
3105
  | interfacial waves at a ridge1
@@ -4009,7 +4009,7 @@ text | was investigated. Between 30% and 65% of the incident wave energ
4009
4009
  | ocean from breaking internal waves, it appears a simple, constant mixing efficiency
4010
4010
  | is not appropriate as the wave properties, stratification and topography can lead to
4011
4011
  | spatially varying mixing conditions.
4012
- meta | Chapter 5
4012
+ title | Chapter 5
4013
4013
  blank |
4014
4014
  title | Local mixing processes in breaking
4015
4015
  | interfacial waves1
@@ -5145,7 +5145,7 @@ text | Smyth et al., 2001). Others have taken the opposing view that tu
5145
5145
  | Froude numbers would tend to converge.
5146
5146
  blank |
5147
5147
  |
5148
- title | What determines the turbulent Froude number?
5148
+ text | What determines the turbulent Froude number?
5149
5149
  blank |
5150
5150
  text | From figure 5.10, it appears that the turbulent Froude number is O(1) within the
5151
5151
  | turbulent patch resulting from wave breaking. It is reasonable that an internal wave
@@ -5477,7 +5477,7 @@ text | Rf ≈ 0 within the lower layer, the resulting overall event eff
5477
5477
  | The overall efficiency may increase for waves breaking at a ridge in a more continuous
5478
5478
  | stratification, as boundary-induced turbulent kinetic energy dissipation would lead to
5479
5479
  | overturning of density gradients.
5480
- meta | Chapter 6
5480
+ title | Chapter 6
5481
5481
  blank |
5482
5482
  title | Conclusions and Future Work
5483
5483
  blank |
@@ -180,7 +180,7 @@ blank |
180
180
  |
181
181
  |
182
182
  meta | viii
183
- | Dedication
183
+ title | Dedication
184
184
  blank |
185
185
  text | For my Wai-Wai
186
186
  blank |
@@ -3689,7 +3689,7 @@ blank |
3689
3689
  |
3690
3690
  meta | 115
3691
3691
  | 116
3692
- | APPENDIX A: Supporting information for
3692
+ title | APPENDIX A: Supporting information for
3693
3693
  | Chapter 2
3694
3694
  blank |
3695
3695
  title | A.1 Reactive Transport Modeling using MIN3P
@@ -4002,7 +4002,7 @@ blank |
4002
4002
  |
4003
4003
  |
4004
4004
  meta | 124
4005
- | APPENDIX B: Supporting Information for
4005
+ title | APPENDIX B: Supporting Information for
4006
4006
  | Chapter 3
4007
4007
  blank |
4008
4008
  title | B.1 Reactive Transport Modeling using MIN3P
@@ -314,7 +314,7 @@ blank |
314
314
  meta |
315
315
    ix
316
316
   
317
317
  title | List of Tables
318
318
  blank |
319
- title | Introduction
319
+ text | Introduction
320
320
  blank |
321
321
  text | Table 1 CENP-A nomenclature in different species 60
322
322
  blank |
@@ -338,7 +338,7 @@ blank |
338
338
  meta |
339
339
    x
340
340
   
341
341
  title | List of Figures
342
342
  blank |
343
- title | Introduction
343
+ text | Introduction
344
344
  blank |
345
345
  text | Figure 1 Chromatin and nucleosome structure 58
346
346
  blank |
@@ -384,7 +384,7 @@ blank |
384
384
  |
385
385
  |
386
386
  meta |
387
387
    xi
388
388
   
389
- | Chapter 2
389
+ text | Chapter 2
390
390
  blank |
391
391
  text | Figure 1 Characterization of X. laevis M18BP1. 158
392
392
  blank |
@@ -3150,7 +3150,7 @@ text | (aa1-373); oligomerization (aa74-244); CENP-A nucleosome binding
3150
3150
  blank |
3151
3151
  text | DNA binding (aa422-537); dimerization (aa856-944); and centromere targeting
3152
3152
  blank |
3153
- title | (aa426-537; aa736-758, the CENP-C motif; and aa856-944, the cupin/dimerization
3153
+ text | (aa426-537; aa736-758, the CENP-C motif; and aa856-944, the cupin/dimerization
3154
3154
  blank |
3155
3155
  text | domain) (Carroll et al., 2010; Cohen et al., 2008; Fukagawa et al., 2001a; Heeger,
3156
3156
  blank |
@@ -3180,11 +3180,11 @@ blank |
3180
3180
  |
3181
3181
  |
3182
3182
  meta |
3183
3183
    60
3184
3184
   
3185
- text | Chapter 1
3185
+ title | Chapter 1
3186
3186
  blank |
3187
- text | Development of an in vitro system for centromeric chromatin assembly in
3187
+ title | Development of an in vitro system for centromeric chromatin assembly in
3188
3188
  blank |
3189
- text | Xenopus laevis egg extracts.**
3189
+ title | Xenopus laevis egg extracts.**
3190
3190
  blank |
3191
3191
  |
3192
3192
  |
@@ -4474,7 +4474,7 @@ text | A and DNA is indicated above the panels. Calcium, xHJURP or myc-
4474
4474
  blank |
4475
4475
  text | addition is shown to the left of each panel. Scale bar = 10µm.
4476
4476
  blank |
4477
- title | C) Quantification of myc-CENP-A fluorescence intensity at centromeres for the
4477
+ text | C) Quantification of myc-CENP-A fluorescence intensity at centromeres for the
4478
4478
  blank |
4479
4479
  text | assembly reactions represented in 1B, normalized to the metaphase control sample
4480
4480
  blank |
@@ -4558,7 +4558,7 @@ text | variant, H2A.X-F (top band, 19 kD). In egg extract, H2A.X-F is
4558
4558
  blank |
4559
4559
  text | chromatin with approximately equal stoichiometry to H2A. (Shechter et al., 2009).
4560
4560
  blank |
4561
- title | C) Quantification of CENP-A and H2A integrated
4561
+ text | C) Quantification of CENP-A and H2A integrated
4562
4562
  blank |
4563
4563
  text | intensities under each condition, normalized to the levels in metaphase
4564
4564
  blank |
@@ -4578,7 +4578,7 @@ text | per condition. Time is in minutes. Error bars, SEM; n=3.
4578
4578
  blank |
4579
4579
  |
4580
4580
  |
4581
- title | Figure 4. xHJURP, myc-CENP-A, and the sperm chromatin
4581
+ text | Figure 4. xHJURP, myc-CENP-A, and the sperm chromatin
4582
4582
  blank |
4583
4583
  text | template do not need to pass through mitosis for efficient myc-CENP-A
4584
4584
  blank |
@@ -4623,7 +4623,7 @@ text | Supplemental Figure Legends.
4623
4623
  blank |
4624
4624
  |
4625
4625
  |
4626
- title | Figure S1. Characterization of xHJURP-mediated CENP-A
4626
+ text | Figure S1. Characterization of xHJURP-mediated CENP-A
4627
4627
  blank |
4628
4628
  text | assembly assay in Xenopus egg extract.
4629
4629
  blank |
@@ -4805,15 +4805,15 @@ blank |
4805
4805
  |
4806
4806
  |
4807
4807
  meta |
4808
4808
    104
4809
4809
   
4810
- | Chapter 2
4810
+ title | Chapter 2
4811
4811
  blank |
4812
- text | CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin
4812
+ title | CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin
4813
4813
  blank |
4814
- text | assembly.**
4814
+ title | assembly.**
4815
4815
  blank |
4816
4816
  |
4817
4817
  |
4818
- ref | **Some content from (Moree, B.*, Meyer, C.B.*, Fuller, C.J., and Straight, A.F. 2011.
4818
+ text | **Some content from (Moree, B.*, Meyer, C.B.*, Fuller, C.J., and Straight, A.F. 2011.
4819
4819
  | CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J.
4820
4820
  | Cell Biol. 194:855-871.)
4821
4821
  blank |
@@ -5071,7 +5071,7 @@ blank |
5071
5071
  meta |
5072
5072
    111
5073
5073
   
5074
5074
  title | Results
5075
5075
  blank |
5076
- text | Characterization of X. laevis M18BP1.
5076
+ title | Characterization of X. laevis M18BP1.
5077
5077
  blank |
5078
5078
  text | In human somatic cells and C. elegans, new CENP-A assembly requires the
5079
5079
  blank |
@@ -6240,7 +6240,7 @@ text | immunofluorescence as described below. For CENP-A assembly assay
6240
6240
  blank |
6241
6241
  text | M18BP1-depleted extracts (Figure 3C,D), 1 µl of HJURP IVT protein was added per
6242
6242
  blank |
6243
- title | 20 µl assembly reaction. For CENP-A assembly assays using CENP-C-depleted
6243
+ text | 20 µl assembly reaction. For CENP-A assembly assays using CENP-C-depleted
6244
6244
  blank |
6245
6245
  text | extracts, (Figure 6A,B) HJURP RNA was used instead of HJURP IVT protein.
6246
6246
  blank |
@@ -6307,7 +6307,7 @@ text | bound to Dynabeads protein A beads (Invitrogen). For 100 µl of
6307
6307
  blank |
6308
6308
  text | xM18BP1 antibody or 0.6 µg of α-CENP-C antibody was bound to 33 µl of beads in
6309
6309
  blank |
6310
- title | 10mM Tris-HCl, pH 7.4, 150mM NaCl, and 0.1% Triton X-100 for 1h at 4°C. An
6310
+ text | 10mM Tris-HCl, pH 7.4, 150mM NaCl, and 0.1% Triton X-100 for 1h at 4°C. An
6311
6311
  blank |
6312
6312
  text | equivalent amount of whole rabbit IgG was used for control depletions. The beads
6313
6313
  blank |
@@ -6336,7 +6336,7 @@ text | of exposure to a magnet, washed four times with TBSTx buffer, an
6336
6336
  blank |
6337
6337
  text | protein sample buffer (200 mM Tris pH 6.8, 40 mM EDTA, 0.05% bromophenol blue,
6338
6338
  blank |
6339
- title | 10% SDS, 50% glycerol). For immunoprecipitations of M18BP1-FLAG isoforms
6339
+ text | 10% SDS, 50% glycerol). For immunoprecipitations of M18BP1-FLAG isoforms
6340
6340
  blank |
6341
6341
  text | (Figure 6C,D) and myc-M18BP1 isoforms (Supplemental Figure 7A), 2 µl of
6342
6342
  blank |
@@ -6369,7 +6369,7 @@ text | CENP-C-depleted extract. For M18BP1 addback experiments, 0.5 µl
6369
6369
  blank |
6370
6370
  text | M18BP1-1-FLAG and M18BP1-2-FLAG IVT proteins (Figure 2C-E), or 1 µl of
6371
6371
  blank |
6372
- title | M18BP1-1-FLAG or M18BP1-2-FLAG IVT protein (Supplemental Figure 3), were
6372
+ text | M18BP1-1-FLAG or M18BP1-2-FLAG IVT protein (Supplemental Figure 3), were
6373
6373
  blank |
6374
6374
  text | added per 20 µl of M18BP1-depleted extract. For CENP-A assembly assays using
6375
6375
  blank |
@@ -7580,7 +7580,7 @@ text | of centromeric chromatin containing H3 placeholder nucleosomes (
7580
7580
  blank |
7581
7581
  |
7582
7582
  |
7583
- text | Regulating the levels of CENP-A at centromeres
7583
+ title | Regulating the levels of CENP-A at centromeres
7584
7584
  blank |
7585
7585
  text | The post-assembly levels of CENP-A are constant through rounds of division,
7586
7586
  blank |
@@ -7711,9 +7711,9 @@ text | HJURP and RSF.
7711
7711
  blank |
7712
7712
  |
7713
7713
  |
7714
- text | Functional interactions between centromeric chromatin and pericentric
7714
+ title | Functional interactions between centromeric chromatin and pericentric
7715
7715
  blank |
7716
- text | heterochromatin
7716
+ title | heterochromatin
7717
7717
  blank |
7718
7718
  text | An exciting and largely unexplored future area of research is the functional
7719
7719
  blank |
@@ -158,9 +158,9 @@ blank |
158
158
  meta | vi
159
159
  title | Contents
160
160
  blank |
161
- title | Abstract iv
161
+ text | Abstract iv
162
162
  blank |
163
- title | Acknowledgments v
163
+ text | Acknowledgments v
164
164
  blank |
165
165
  text | 1 Introduction 1
166
166
  | 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
@@ -894,7 +894,7 @@ blank |
894
894
  |
895
895
  |
896
896
  meta | xxv
897
- | Chapter 1
897
+ title | Chapter 1
898
898
  blank |
899
899
  title | Introduction
900
900
  blank |
@@ -1591,7 +1591,7 @@ text | partial differential equations, their discretization, and PDE-co
1591
1591
  | the number of parameters and state variables are comparable. Finally, Chapter 7 offers conclusions
1592
1592
  | and ideas for future research and Appendix D introduces an adjoint method for optimization of
1593
1593
  | time-dependent PDEs, possibly with periodicity constraints, discretized with high-order methods.
1594
- meta | Chapter 2
1594
+ title | Chapter 2
1595
1595
  blank |
1596
1596
  title | PDE-Constrained Optimization
1597
1597
  blank |
@@ -3243,7 +3243,7 @@ text | Once the dual variable for each functional has been computed, th
3243
3243
  | bound on a QoI (not amenable to elimination) and the second requires time-periodicity of the PDE
3244
3244
  | solution (amenable to elimination). Nonlinear elimination is applied to the periodicity constraint
3245
3245
  | and the adjoint equations are modified accordingly.
3246
- meta | Chapter 3
3246
+ title | Chapter 3
3247
3247
  blank |
3248
3248
  title | Generalized Multifidelity Trust
3249
3249
  | Region Method
@@ -3957,7 +3957,7 @@ blank |
3957
3957
  text | µj+1
3958
3958
  | k = µjk + αpjk
3959
3959
  blank |
3960
- title | 5: BFGS update: Define sjk and ykj as
3960
+ text | 5: BFGS update: Define sjk and ykj as
3961
3961
  blank |
3962
3962
  text | sjk = µj+1
3963
3963
  | k − µjk ykj = ∇φγk (µj+1 γ j
@@ -4744,7 +4744,7 @@ text | 2.0000e+00 2.0002e+00 2.0000e+00 2.000
4744
4744
  | 2.0000e+00 2.0000e+00 2.0000e+00 2.0000e+00 5.5167e-05 3.0124e-01 1.3148e-05 True
4745
4745
  | 2.0000e+00 2.0000e+00 2.0000e+00 2.0000e+00 8.5278e-05 6.9467e+00 2.6296e-05 True
4746
4746
  meta | 76
4747
- | Chapter 4
4747
+ title | Chapter 4
4748
4748
  blank |
4749
4749
  title | Projection-Based Model Reduction
4750
4750
  blank |
@@ -6162,8 +6162,8 @@ text | where all terms are evaluated at the linearization point. A vari
6162
6162
  | terpolation requires a sufficiently large mask such that P T r(u, µ) = 0 =⇒ r(u, µ) = 0. These
6163
6163
  | results are stated and proved in Proposition 4.7.
6164
6164
  blank |
6165
- meta | Proposition 4.7. Let (Φ∂ , Θ∂ , P ) define a masked minimum-residual sensitivity reduced-order
6166
- | CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 102
6165
+ text | Proposition 4.7. Let (Φ∂ , Θ∂ , P ) define a masked minimum-residual sensitivity reduced-order
6166
+ meta | CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 102
6167
6167
  blank |
6168
6168
  |
6169
6169
  |
@@ -6631,8 +6631,8 @@ text | U , Σ, V = ProbSVD(X, k
6631
6631
  | 2: Form Y = (AAT )q AΩ
6632
6632
  | 3: Compute QR factorization of Y: Y = QR
6633
6633
  | 4: Form B = QT A
6634
- meta | 5: Compute SVD of B = ŨΣVT
6635
- title | 6: Set U = QŨ
6634
+ | 5: Compute SVD of B = ŨΣVT
6635
+ | 6: Set U = QŨ
6636
6636
  blank |
6637
6637
  |
6638
6638
  text | This completes the discussion of the algorithms that will prove useful in defining the trial basis
@@ -6886,8 +6886,8 @@ text | This relations also ensure (4.35) and (4.63) of Propositions 4.3
6886
6886
  blank |
6887
6887
  text | Φ∂ = Φ Φλ = Ψ, (4.147)
6888
6888
  blank |
6889
- meta | the minimum-residual sensitivity and adjoint reduced-order models for the LSPG projection follow
6890
- | CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 115
6889
+ text | the minimum-residual sensitivity and adjoint reduced-order models for the LSPG projection follow
6890
+ meta | CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 115
6891
6891
  blank |
6892
6892
  |
6893
6893
  |
@@ -6907,7 +6907,7 @@ text | The above relationship satisfy all conditions in Propositions 4.
6907
6907
  | and interpolation that only holds under stricter assumptions on solutions of the discrete PDE. In this
6908
6908
  | work, the mask P is constructed solely from the primal reduced-order basis Φ and problem-specific
6909
6909
  | information following the approach in [198].
6910
- meta | Chapter 5
6910
+ title | Chapter 5
6911
6911
  blank |
6912
6912
  title | Optimization via Model Reduction
6913
6913
  | and Residual-Based Trust Regions
@@ -8375,8 +8375,8 @@ text | Figure 5.5: Convergence history of various optimization solvers
8375
8375
  | ( ), adj-etr-intpt ( ), adj-ctr-intpt ( ), adj-ctr-stcg ( ).
8376
8376
  blank |
8377
8377
  |
8378
- title | [52, 210].
8379
- text | The increased convergence rate, in terms of major iterations (and therefore HDM evaluations),
8378
+ text | [52, 210].
8379
+ | The increased convergence rate, in terms of major iterations (and therefore HDM evaluations),
8380
8380
  | of Algorithms 11 and 12 comes at the price of a large number of ROM evaluations. Figure 5.7 shows
8381
8381
  | the cumulative number of primal ROM queries as a function of major iteration and a histogram
8382
8382
  | of the number of primal ROM evaluations at a given reduced basis size (ku ). The methods that
@@ -9664,7 +9664,7 @@ text | HDM-based ROM-b
9664
9664
  | µ∗ − µRAE2822
9665
9665
  | 2.28 × 10−3 % 4.17 × 10−6 %
9666
9666
  | kµRAE2822 k
9667
- meta | Chapter 6
9667
+ title | Chapter 6
9668
9668
  blank |
9669
9669
  title | Model Reduction and Sparse Grids
9670
9670
  | for Efficient Stochastic
@@ -10410,8 +10410,8 @@ blank |
10410
10410
  |
10411
10411
  |
10412
10412
  title | 6.3 Multifidelity Trust Region Method Based on Two-Level
10413
- text | Approximation
10414
- | This section presents the primary contribution of this chapter: the use of sparse grids and model
10413
+ | Approximation
10414
+ text | This section presents the primary contribution of this chapter: the use of sparse grids and model
10415
10415
  | reduction in the multifidelity trust region framework of Chapter 3 to yield an efficient algorithm for
10416
10416
  | stochastic PDE-constrained optimization. The approximation model, mk (µ), that is central to the
10417
10417
  | trust region theory will be taken as the two-level approximation of risk-averse measures of quantities
@@ -11119,8 +11119,8 @@ blank |
11119
11119
  |
11120
11120
  |
11121
11121
  title | 6.4 Numerical Experiment: Optimal Control of the Viscous
11122
- text | Burgers’ Equation with Uncertain Coefficients
11123
- | This section studies the performance of the proposed algorithms (Algorithms 15 and 16) on a simple
11122
+ | Burgers’ Equation with Uncertain Coefficients
11123
+ text | This section studies the performance of the proposed algorithms (Algorithms 15 and 16) on a simple
11124
11124
  | stochastic PDE-constrained optimization problem: optimal control of the one-dimensional viscous
11125
11125
  | Burgers’ equation with uncertain coefficients. This is precisely the stochastic counterpart to the
11126
11126
  | problem in Section 5.5.2 used to study the deterministic trust region algorithm based on reduced-
@@ -11458,7 +11458,7 @@ text | F (µk ) mk (µk ) F (µ̂k ) mk (µ̂k
11458
11458
  | 5.0405e-02 5.0404e-02 5.0403e-02 5.0401e-02 8.3139e-05 9.9946e-01 1.6000e+03 1.0000e+00
11459
11459
  | 5.0403e-02 5.0401e-02 - - 2.2846e-06 - - -
11460
11460
  meta | CHAPTER 6. STOCHASTIC PDE OPTIMIZATION WITH ROMS AND SPARSE GRIDS 204
11461
- | Chapter 7
11461
+ title | Chapter 7
11462
11462
  blank |
11463
11463
  title | Conclusions
11464
11464
  blank |
@@ -11577,7 +11577,7 @@ text | • Possible improvements to the proposed methods. A number o
11577
11577
  | adjoint residual). Another possible enhancement that would have a positive and widespread
11578
11578
  | impact across the methods proposed in this thesis is the use of improved, faster, and possibly
11579
11579
  | probabilistic, [15] error indicators. In the trust region framework, these can either be used as
11580
- | CHAPTER 7. CONCLUSIONS 208
11580
+ meta | CHAPTER 7. CONCLUSIONS 208
11581
11581
  blank |
11582
11582
  |
11583
11583
  |
@@ -12492,8 +12492,8 @@ text | This section proposes a two-level, nested reduction strategy for
12492
12492
  | which will be combined in Section C.2 to develop the nested optimization algorithm.
12493
12493
  blank |
12494
12494
  |
12495
- text | C.1.1 Outer Layer of Reduction: Restriction of Parameter Space
12496
- | The PDE-constrained optimization problem that motivates this work takes the form (reduced-space
12495
+ title | C.1.1 Outer Layer of Reduction: Restriction of Parameter Space
12496
+ text | The PDE-constrained optimization problem that motivates this work takes the form (reduced-space
12497
12497
  | formulation)
12498
12498
  | minimize F (µ) := f (u(µ), µ) (C.1)
12499
12499
  | µ∈RNµ
@@ -12639,8 +12639,8 @@ text | Thus, the adjoint computation requires the solution of one linea
12639
12639
  | transpose of the Jacobian matrix, regardless of kµ .
12640
12640
  blank |
12641
12641
  |
12642
- text | C.1.2 Inner Layer of Reduction: Projection-Based Model Reduction
12643
- | While the first layer of reduction reduces the number of optimization variables, the large cost as-
12642
+ title | C.1.2 Inner Layer of Reduction: Projection-Based Model Reduction
12643
+ text | While the first layer of reduction reduces the number of optimization variables, the large cost as-
12644
12644
  | sociated with solving the PDE for any µ ∈ A(µ̄, Υ) remains since the dimensionality of the state
12645
12645
  | space, i.e., number of equations and unknowns, is Nu  1. The second layer of reduction aims
12646
12646
  | to address this source computational expense through the application of projection-based model
@@ -12917,8 +12917,8 @@ text | where Qj is a matrix whose columns consist of problem-specific v
12917
12917
  blank |
12918
12918
  |
12919
12919
  title | C.2.2 Inner Iteration: Multifidelity Optimization with Reduced-Order
12920
- text | Models
12921
- | Each iteration of the affine parameter space adaptation requires the solution of the PDE-constrained
12920
+ | Models
12921
+ text | Each iteration of the affine parameter space adaptation requires the solution of the PDE-constrained
12922
12922
  | optimization problem (C.24), which can be written as an optimization problem in few variables
12923
12923
  | (kµ  Nµ ). Even though the optimization problem contains few variables, it is still expensive
12924
12924
  | to solve since each objective evaluation requires the solution of a potentially large-scale partial
@@ -13492,8 +13492,8 @@ blank |
13492
13492
  text | (n) (n) (n) (n) (n)
13493
13493
  | Ri (u(n−1) , k1 , . . . , ki , µ) = M ki − ∆tn r ui , µ, tn−1 + ci ∆tn = 0
13494
13494
  blank |
13495
- meta | for n = 1, . . . , n and i = 1, . . . , s. Differentiation of these expressions with respect to µ gives rise to
13496
- | APPENDIX D. UNSTEADY, PERIODIC PDE-CONSTRAINED OPTIMIZATION 246
13495
+ text | for n = 1, . . . , n and i = 1, . . . , s. Differentiation of these expressions with respect to µ gives rise to
13496
+ meta | APPENDIX D. UNSTEADY, PERIODIC PDE-CONSTRAINED OPTIMIZATION 246
13497
13497
  blank |
13498
13498
  |
13499
13499
  |
@@ -15499,8 +15499,8 @@ blank |
15499
15499
  |
15500
15500
  |
15501
15501
  title | D.4.3 Generalized Reduced-Gradient Method for PDE Optimization with
15502
- text | Time-Periodicity Constraints
15503
- | Consider the fully discrete time-dependent PDE-constrained optimization problem
15502
+ | Time-Periodicity Constraints
15503
+ text | Consider the fully discrete time-dependent PDE-constrained optimization problem
15504
15504
  blank |
15505
15505
  text | (1)
15506
15506
  | minimize F (u(0) , . . . , u(Nt ) , k1 , . . . , ks(Nt ) , µ)