anystyle 1.1.0 → 1.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +5 -5
- data/HISTORY.md +9 -0
- data/lib/anystyle.rb +2 -0
- data/lib/anystyle/document.rb +61 -127
- data/lib/anystyle/feature/line.rb +23 -8
- data/lib/anystyle/feature/ref.rb +4 -4
- data/lib/anystyle/finder.rb +4 -4
- data/lib/anystyle/normalizer/locale.rb +17 -6
- data/lib/anystyle/normalizer/names.rb +1 -1
- data/lib/anystyle/page.rb +50 -0
- data/lib/anystyle/refs.rb +244 -0
- data/lib/anystyle/support/finder.mod +5972 -3461
- data/lib/anystyle/support/finder.txt +94 -72
- data/lib/anystyle/support/parser.mod +12876 -12387
- data/lib/anystyle/utils.rb +49 -5
- data/lib/anystyle/version.rb +1 -1
- data/res/finder/bb132pr2055.ttx +20 -20
- data/res/finder/bb408gp7470.ttx +3919 -0
- data/res/finder/bb599nz4341.ttx +5 -5
- data/res/finder/bb725rt6501.ttx +5 -5
- data/res/finder/bc605xz1554.ttx +40 -40
- data/res/finder/bd040gx5718.ttx +15 -15
- data/res/finder/bd413nt2715.ttx +46 -46
- data/res/finder/bf668vw2021.ttx +7 -7
- data/res/finder/bg495cx0468.ttx +19 -19
- data/res/finder/bg599vt3743.ttx +6 -6
- data/res/finder/bg608dx2253.ttx +3 -3
- data/res/finder/bh410qk3771.ttx +23 -23
- data/res/finder/bh989ww6442.ttx +33 -33
- data/res/finder/bj581pc8202.ttx +2 -2
- data/res/parser/core.xml +47 -0
- data/res/parser/gold.xml +59 -8
- metadata +6 -4
- data/res/finder/bb550sh8053.ttx +0 -18660
data/res/finder/bf668vw2021.ttx
CHANGED
@@ -336,7 +336,7 @@ blank |
|
|
336
336
|
|
|
337
337
|
|
|
338
338
|
meta | xiii
|
339
|
-
|
339
|
+
title | Chapter 1
|
340
340
|
blank |
|
341
341
|
title | Introduction
|
342
342
|
blank |
|
@@ -646,7 +646,7 @@ text | While the specific geometric priors and prototypes listed abo
|
|
646
646
|
| standing of the characteristic of the task at hand, the underlying assumptions and
|
647
647
|
| approach provide a direction to allow everyday user to acquire useful 3-D information
|
648
648
|
| in the years to come as real-time 3-D scans become available.
|
649
|
-
|
649
|
+
title | Chapter 2
|
650
650
|
blank |
|
651
651
|
title | Interactive Acquisition of
|
652
652
|
| Residential Floor Plans1
|
@@ -1417,7 +1417,7 @@ text | Figure 2.11: The system, having detected the planes in the scene
|
|
1417
1417
|
| to interact directly with the physical world. Here the user adds a window to the room
|
1418
1418
|
| by dragging a cursor across the wall (left). This motion updates the internal model
|
1419
1419
|
| of the world (right).
|
1420
|
-
|
1420
|
+
title | Chapter 3
|
1421
1421
|
blank |
|
1422
1422
|
title | Acquiring 3D Indoor Environments
|
1423
1423
|
| with Variability and Repetition2
|
@@ -2052,7 +2052,7 @@ meta | CHAPTER 3. ENVIRONMENTS WITH VARIABILITY AND REPETITION 50
|
|
2052
2052
|
blank |
|
2053
2053
|
|
|
2054
2054
|
|
|
2055
|
-
|
2055
|
+
text | Input points Models matched Parts assigned
|
2056
2056
|
blank |
|
2057
2057
|
|
|
2058
2058
|
|
|
@@ -2536,7 +2536,7 @@ blank |
|
|
2536
2536
|
text | Figure 3.14: We compared our algorithm and Koppula et al. [KAJS11] using multiple
|
2537
2537
|
| frames of scans from the same viewpoint. Our recognition results are more stable
|
2538
2538
|
| across different frames.
|
2539
|
-
|
2539
|
+
title | Chapter 4
|
2540
2540
|
blank |
|
2541
2541
|
title | Guided Real-Time Scanning of
|
2542
2542
|
| Indoor Objects3
|
@@ -3289,7 +3289,7 @@ text | Figure 4.12: Real-time retrieval results on various datasets. Fo
|
|
3289
3289
|
| the image of the object being scanned, the accumulated pointcloud, and the closest
|
3290
3290
|
| shape retrieved model, along with the top 25 candidates that are picked from the
|
3291
3291
|
| database of thousands of models using the proposed A2h descriptor.
|
3292
|
-
|
3292
|
+
title | Chapter 5
|
3293
3293
|
blank |
|
3294
3294
|
title | Conclusions
|
3295
3295
|
blank |
|
@@ -3334,7 +3334,7 @@ text | shape of objects with the help of a large database of 3-D models
|
|
3334
3334
|
| would also benefit from the advances made in the use of reliable depth and color
|
3335
3335
|
| features in the new type of data obtained from the RGB-D sensors in addition to the
|
3336
3336
|
| presented descriptor.
|
3337
|
-
|
3337
|
+
title | Bibliography
|
3338
3338
|
blank |
|
3339
3339
|
ref | [BAD10] Soonmin Bae, Aseem Agarwala, and Fredo Durand. Computational
|
3340
3340
|
| rephotography. ACM Trans. Graph., 29(5), 2010.
|
data/res/finder/bg495cx0468.ttx
CHANGED
@@ -712,7 +712,7 @@ blank |
|
|
712
712
|
|
|
713
713
|
|
|
714
714
|
meta | xxv
|
715
|
-
|
715
|
+
title | Chapter 1
|
716
716
|
blank |
|
717
717
|
title | Introduction
|
718
718
|
blank |
|
@@ -875,7 +875,7 @@ text | biophysical descriptions of the tissue behavior and nanoscale de
|
|
875
875
|
| For the first time, we apply the model to study the disturbances to hydrations due
|
876
876
|
| to the introduction of an intrastromal inlay. A summary of the results and their
|
877
877
|
| implications is given in chapter 8, along with comments on future work.
|
878
|
-
|
878
|
+
title | Chapter 2
|
879
879
|
blank |
|
880
880
|
title | An electrolyte model for the ex
|
881
881
|
| vivo cornea
|
@@ -1484,9 +1484,9 @@ meta | CHAPTER 2. AN ELECTROLYTE MODEL
|
|
1484
1484
|
blank |
|
1485
1485
|
|
|
1486
1486
|
|
|
1487
|
-
|
1487
|
+
title | 2.5.2 Keratocyte and collagen electrolyte volume exclusion
|
1488
1488
|
| effects
|
1489
|
-
|
1489
|
+
text | Predicted electrostatic swelling pressure component Pel , given by equation (2.22), is
|
1490
1490
|
| plotted against volume dilation J in figure 2.4a for three cases: no volume exclusion,
|
1491
1491
|
| only collagen volume exclusion, and collagen and keratocyte volume exclusion. The
|
1492
1492
|
| volume exclusion effects arising from these two stromal components are important for
|
@@ -1632,7 +1632,7 @@ text | Figure 2.8: The effect of the ϕ and ϕ̂ on the electrostatic f
|
|
1632
1632
|
| based and Donnan-based solutions for Pel agree well over the dilation range where
|
1633
1633
|
| PG-coatings are well separated. The Donnan-based solution P̂el cannot capture the
|
1634
1634
|
| effect of PG-coating overlap and thus loses accuracy at low hydration.
|
1635
|
-
|
1635
|
+
title | Chapter 3
|
1636
1636
|
blank |
|
1637
1637
|
title | Modeling the active endothelial ion
|
1638
1638
|
| transport in the in vivo cornea
|
@@ -2050,9 +2050,9 @@ text | Figure 3.2: The computed osmotic pressure Pos versus volume dila
|
|
2050
2050
|
| measurements (Olsen and Sperling, 1987). The measured modulus is given by K exp =
|
2051
2051
|
| 39.12J −4.48 kPa, which is computed by the power law fit function for swelling pressure
|
2052
2052
|
| Psexp = 7.56t−3.48 mmHg from Olsen and Sperling (1987).
|
2053
|
-
|
2053
|
+
title | Chapter 4
|
2054
2054
|
blank |
|
2055
|
-
|
2055
|
+
title | A structural model for the in vivo
|
2056
2056
|
| human cornea including
|
2057
2057
|
| collagen-swelling interaction
|
2058
2058
|
blank |
|
@@ -3154,7 +3154,7 @@ text | corneal dystrophy where the GAG concentration is found to be abn
|
|
3154
3154
|
| respiration (Klyce, 1981). Extension of the model to include these multiple species and
|
3155
3155
|
| their interactions through metabolic reactions for aerobic and anaerobic respiration
|
3156
3156
|
| is presented in chapter 7.
|
3157
|
-
|
3157
|
+
title | Chapter 5
|
3158
3158
|
blank |
|
3159
3159
|
title | Mechanisms of self-organization for
|
3160
3160
|
| the collagen fibril arrangement in
|
@@ -3164,8 +3164,8 @@ title | 5.1 Background
|
|
3164
3164
|
text | The GAGs have an important but less-understood role in the maintenance of the
|
3165
3165
|
| lattice-like fibril arrangement. Keratan sulfate, the predominant stromal GAG com-
|
3166
3166
|
| ponent, has been shown to be involved in modulating the fibril organization by the
|
3167
|
-
|
3168
|
-
|
3167
|
+
| 1
|
3168
|
+
| knockout of Chst5 in the mouse (Hayashida et al., 2006). Scott (1992) proposed
|
3169
3169
|
| that two or more GAG chains, originating at different core proteins on neighboring
|
3170
3170
|
| fibrils, may form an antiparallel duplexed association which appears as a bridge-like
|
3171
3171
|
| structure spanning the interfibrillar distance in electron microscopy after staining,
|
@@ -3694,7 +3694,7 @@ text | current model, PG/GAGs have been assumed to be distributed unifo
|
|
3694
3694
|
| 2010; Quantock et al., 1990) or to genetically mutated corneas (Hayashida et al.,
|
3695
3695
|
| 2006), which leads to a reduction in interfibrillar distance and a more chaotic fibril
|
3696
3696
|
| organization due to the lack of PG regulation.
|
3697
|
-
|
3697
|
+
title | Chapter 6
|
3698
3698
|
blank |
|
3699
3699
|
title | Fluid pressure across active
|
3700
3700
|
| biological membrane in a charged
|
@@ -4277,9 +4277,9 @@ meta | CHAPTER 6. ENHANCED KEDEM-KATCHALSKY EQUATIONS
|
|
4277
4277
|
blank |
|
4278
4278
|
|
|
4279
4279
|
|
|
4280
|
-
|
4280
|
+
title | 6.6 Application to the endothelial transport in the
|
4281
4281
|
| in vivo cornea
|
4282
|
-
|
4282
|
+
text | In this section, we present an example by applying equations (7.25, 6.42) to study
|
4283
4283
|
| the endothelial ionic transport process of the in vivo cornea. The fluid and ion
|
4284
4284
|
| exchanges across the endothelium controls the level of corneal hydration, which is a
|
4285
4285
|
| crucial factor for the maintenance of the transparency of the tissue. Fixed charges
|
@@ -4549,9 +4549,9 @@ text | is negative. This view of a positive stromal fluid pressure is c
|
|
4549
4549
|
| underlying metabolic reactions (Schultz, 1980). This development requires identifica-
|
4550
4550
|
| tion of the molecular mechanisms, and can potentially enhance the understanding of
|
4551
4551
|
| active mechanism involvement in membrane transport.
|
4552
|
-
|
4552
|
+
title | Chapter 7
|
4553
4553
|
blank |
|
4554
|
-
|
4554
|
+
title | A chemo-electro-mechanical model
|
4555
4555
|
| for corneal metabolism
|
4556
4556
|
| and edema
|
4557
4557
|
blank |
|
@@ -5415,7 +5415,7 @@ blank |
|
|
5415
5415
|
|
|
5416
5416
|
text | simplification. The effect of solute diffusivity on contact-lens-induced corneal swelling
|
5417
5417
|
| will be investigated in section 7.4.3.
|
5418
|
-
|
5418
|
+
text |
|
5419
5419
|
title | Initial displacement caused by the IOP
|
5420
5420
|
blank |
|
5421
5421
|
text | Fringe plot of the initial displacement, obtained by finite element solution of equa-
|
@@ -5648,9 +5648,9 @@ text | Figure 7.11: The predicted fluid pressure variation ∆p through
|
|
5648
5648
|
| thickness at five values of lens transmissibility for (a) DB− = 4.89 × 10−6 cm2 /s,
|
5649
5649
|
| DL− = 4.4 × 10−6 cm2 /s and (b) DB− = 1.5 × 10−6 cm2 /s, DL− = 4.4 × 10−6 cm2 /s.
|
5650
5650
|
blank |
|
5651
|
-
|
5651
|
+
title | 7.4.4 Biomechanical behavior after introduction of intrastro-
|
5652
5652
|
| mal inlay
|
5653
|
-
|
5653
|
+
text | The use of intrastromal inlay provides an alternative treatment to improve near and
|
5654
5654
|
| intermediate vision in presbyopes without the removal of tissue (Arlt et al., 2015;
|
5655
5655
|
meta | CHAPTER 7. A CHEMO-ELECTRO-MECHANICAL MODEL 142
|
5656
5656
|
blank |
|
@@ -5895,7 +5895,7 @@ text | under extreme situations (Cheng et al., 2015; Muller et al., 200
|
|
5895
5895
|
| which renders the displacement and fluid pressure as time-independent. However, the
|
5896
5896
|
| theory is readily to be extended to transient cases, which may be useful for interpret-
|
5897
5897
|
| ing experimental results that are obtained in acute situations.
|
5898
|
-
|
5898
|
+
title | Chapter 8
|
5899
5899
|
blank |
|
5900
5900
|
title | Conclusions and future directions
|
5901
5901
|
blank |
|
data/res/finder/bg599vt3743.ttx
CHANGED
@@ -389,7 +389,7 @@ blank |
|
|
389
389
|
|
|
390
390
|
meta | xvii
|
391
391
|
| xviii
|
392
|
-
|
392
|
+
title | Chapter 1
|
393
393
|
blank |
|
394
394
|
title | Introduction
|
395
395
|
blank |
|
@@ -1568,7 +1568,7 @@ text | as free components. There is minimal energy transfer to higher f
|
|
1568
1568
|
| decrease. Interactions between periodic wave trains and a ridge can lead to as much
|
1569
1569
|
| as 40% of the transmitted wave energy propagating as higher harmonic waves.
|
1570
1570
|
meta | 30 CHAPTER 2. HARMONIC WAVE GENERATION
|
1571
|
-
|
1571
|
+
title | Chapter 3
|
1572
1572
|
blank |
|
1573
1573
|
title | Wave breaking criteria1
|
1574
1574
|
blank |
|
@@ -3099,7 +3099,7 @@ text | wave frequency, and thus the time scale associated with the wave
|
|
3099
3099
|
| efficiency based on the instability mechanism, further study is needed to directly
|
3100
3100
|
| measure the mixing efficiency of such breaking events.
|
3101
3101
|
meta | 72 CHAPTER 3. WAVE BREAKING CRITERIA
|
3102
|
-
|
3102
|
+
title | Chapter 4
|
3103
3103
|
blank |
|
3104
3104
|
title | Overall event efficiency of breaking
|
3105
3105
|
| interfacial waves at a ridge1
|
@@ -4009,7 +4009,7 @@ text | was investigated. Between 30% and 65% of the incident wave energ
|
|
4009
4009
|
| ocean from breaking internal waves, it appears a simple, constant mixing efficiency
|
4010
4010
|
| is not appropriate as the wave properties, stratification and topography can lead to
|
4011
4011
|
| spatially varying mixing conditions.
|
4012
|
-
|
4012
|
+
title | Chapter 5
|
4013
4013
|
blank |
|
4014
4014
|
title | Local mixing processes in breaking
|
4015
4015
|
| interfacial waves1
|
@@ -5145,7 +5145,7 @@ text | Smyth et al., 2001). Others have taken the opposing view that tu
|
|
5145
5145
|
| Froude numbers would tend to converge.
|
5146
5146
|
blank |
|
5147
5147
|
|
|
5148
|
-
|
5148
|
+
text | What determines the turbulent Froude number?
|
5149
5149
|
blank |
|
5150
5150
|
text | From figure 5.10, it appears that the turbulent Froude number is O(1) within the
|
5151
5151
|
| turbulent patch resulting from wave breaking. It is reasonable that an internal wave
|
@@ -5477,7 +5477,7 @@ text | Rf ≈ 0 within the lower layer, the resulting overall event eff
|
|
5477
5477
|
| The overall efficiency may increase for waves breaking at a ridge in a more continuous
|
5478
5478
|
| stratification, as boundary-induced turbulent kinetic energy dissipation would lead to
|
5479
5479
|
| overturning of density gradients.
|
5480
|
-
|
5480
|
+
title | Chapter 6
|
5481
5481
|
blank |
|
5482
5482
|
title | Conclusions and Future Work
|
5483
5483
|
blank |
|
data/res/finder/bg608dx2253.ttx
CHANGED
@@ -180,7 +180,7 @@ blank |
|
|
180
180
|
|
|
181
181
|
|
|
182
182
|
meta | viii
|
183
|
-
|
183
|
+
title | Dedication
|
184
184
|
blank |
|
185
185
|
text | For my Wai-Wai
|
186
186
|
blank |
|
@@ -3689,7 +3689,7 @@ blank |
|
|
3689
3689
|
|
|
3690
3690
|
meta | 115
|
3691
3691
|
| 116
|
3692
|
-
|
3692
|
+
title | APPENDIX A: Supporting information for
|
3693
3693
|
| Chapter 2
|
3694
3694
|
blank |
|
3695
3695
|
title | A.1 Reactive Transport Modeling using MIN3P
|
@@ -4002,7 +4002,7 @@ blank |
|
|
4002
4002
|
|
|
4003
4003
|
|
|
4004
4004
|
meta | 124
|
4005
|
-
|
4005
|
+
title | APPENDIX B: Supporting Information for
|
4006
4006
|
| Chapter 3
|
4007
4007
|
blank |
|
4008
4008
|
title | B.1 Reactive Transport Modeling using MIN3P
|
data/res/finder/bh410qk3771.ttx
CHANGED
@@ -314,7 +314,7 @@ blank |
|
|
314
314
|
meta |
|
315
315
|
ix
|
316
316
|
|
317
317
|
title | List of Tables
|
318
318
|
blank |
|
319
|
-
|
319
|
+
text | Introduction
|
320
320
|
blank |
|
321
321
|
text | Table 1 CENP-A nomenclature in different species 60
|
322
322
|
blank |
|
@@ -338,7 +338,7 @@ blank |
|
|
338
338
|
meta |
|
339
339
|
x
|
340
340
|
|
341
341
|
title | List of Figures
|
342
342
|
blank |
|
343
|
-
|
343
|
+
text | Introduction
|
344
344
|
blank |
|
345
345
|
text | Figure 1 Chromatin and nucleosome structure 58
|
346
346
|
blank |
|
@@ -384,7 +384,7 @@ blank |
|
|
384
384
|
|
|
385
385
|
|
|
386
386
|
meta |
|
387
387
|
xi
|
388
388
|
|
389
|
-
|
389
|
+
text | Chapter 2
|
390
390
|
blank |
|
391
391
|
text | Figure 1 Characterization of X. laevis M18BP1. 158
|
392
392
|
blank |
|
@@ -3150,7 +3150,7 @@ text | (aa1-373); oligomerization (aa74-244); CENP-A nucleosome binding
|
|
3150
3150
|
blank |
|
3151
3151
|
text | DNA binding (aa422-537); dimerization (aa856-944); and centromere targeting
|
3152
3152
|
blank |
|
3153
|
-
|
3153
|
+
text | (aa426-537; aa736-758, the CENP-C motif; and aa856-944, the cupin/dimerization
|
3154
3154
|
blank |
|
3155
3155
|
text | domain) (Carroll et al., 2010; Cohen et al., 2008; Fukagawa et al., 2001a; Heeger,
|
3156
3156
|
blank |
|
@@ -3180,11 +3180,11 @@ blank |
|
|
3180
3180
|
|
|
3181
3181
|
|
|
3182
3182
|
meta |
|
3183
3183
|
60
|
3184
3184
|
|
3185
|
-
|
3185
|
+
title | Chapter 1
|
3186
3186
|
blank |
|
3187
|
-
|
3187
|
+
title | Development of an in vitro system for centromeric chromatin assembly in
|
3188
3188
|
blank |
|
3189
|
-
|
3189
|
+
title | Xenopus laevis egg extracts.**
|
3190
3190
|
blank |
|
3191
3191
|
|
|
3192
3192
|
|
|
@@ -4474,7 +4474,7 @@ text | A and DNA is indicated above the panels. Calcium, xHJURP or myc-
|
|
4474
4474
|
blank |
|
4475
4475
|
text | addition is shown to the left of each panel. Scale bar = 10µm.
|
4476
4476
|
blank |
|
4477
|
-
|
4477
|
+
text | C) Quantification of myc-CENP-A fluorescence intensity at centromeres for the
|
4478
4478
|
blank |
|
4479
4479
|
text | assembly reactions represented in 1B, normalized to the metaphase control sample
|
4480
4480
|
blank |
|
@@ -4558,7 +4558,7 @@ text | variant, H2A.X-F (top band, 19 kD). In egg extract, H2A.X-F is
|
|
4558
4558
|
blank |
|
4559
4559
|
text | chromatin with approximately equal stoichiometry to H2A. (Shechter et al., 2009).
|
4560
4560
|
blank |
|
4561
|
-
|
4561
|
+
text | C) Quantification of CENP-A and H2A integrated
|
4562
4562
|
blank |
|
4563
4563
|
text | intensities under each condition, normalized to the levels in metaphase
|
4564
4564
|
blank |
|
@@ -4578,7 +4578,7 @@ text | per condition. Time is in minutes. Error bars, SEM; n=3.
|
|
4578
4578
|
blank |
|
4579
4579
|
|
|
4580
4580
|
|
|
4581
|
-
|
4581
|
+
text | Figure 4. xHJURP, myc-CENP-A, and the sperm chromatin
|
4582
4582
|
blank |
|
4583
4583
|
text | template do not need to pass through mitosis for efficient myc-CENP-A
|
4584
4584
|
blank |
|
@@ -4623,7 +4623,7 @@ text | Supplemental Figure Legends.
|
|
4623
4623
|
blank |
|
4624
4624
|
|
|
4625
4625
|
|
|
4626
|
-
|
4626
|
+
text | Figure S1. Characterization of xHJURP-mediated CENP-A
|
4627
4627
|
blank |
|
4628
4628
|
text | assembly assay in Xenopus egg extract.
|
4629
4629
|
blank |
|
@@ -4805,15 +4805,15 @@ blank |
|
|
4805
4805
|
|
|
4806
4806
|
|
|
4807
4807
|
meta |
|
4808
4808
|
104
|
4809
4809
|
|
4810
|
-
|
4810
|
+
title | Chapter 2
|
4811
4811
|
blank |
|
4812
|
-
|
4812
|
+
title | CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin
|
4813
4813
|
blank |
|
4814
|
-
|
4814
|
+
title | assembly.**
|
4815
4815
|
blank |
|
4816
4816
|
|
|
4817
4817
|
|
|
4818
|
-
|
4818
|
+
text | **Some content from (Moree, B.*, Meyer, C.B.*, Fuller, C.J., and Straight, A.F. 2011.
|
4819
4819
|
| CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J.
|
4820
4820
|
| Cell Biol. 194:855-871.)
|
4821
4821
|
blank |
|
@@ -5071,7 +5071,7 @@ blank |
|
|
5071
5071
|
meta |
|
5072
5072
|
111
|
5073
5073
|
|
5074
5074
|
title | Results
|
5075
5075
|
blank |
|
5076
|
-
|
5076
|
+
title | Characterization of X. laevis M18BP1.
|
5077
5077
|
blank |
|
5078
5078
|
text | In human somatic cells and C. elegans, new CENP-A assembly requires the
|
5079
5079
|
blank |
|
@@ -6240,7 +6240,7 @@ text | immunofluorescence as described below. For CENP-A assembly assay
|
|
6240
6240
|
blank |
|
6241
6241
|
text | M18BP1-depleted extracts (Figure 3C,D), 1 µl of HJURP IVT protein was added per
|
6242
6242
|
blank |
|
6243
|
-
|
6243
|
+
text | 20 µl assembly reaction. For CENP-A assembly assays using CENP-C-depleted
|
6244
6244
|
blank |
|
6245
6245
|
text | extracts, (Figure 6A,B) HJURP RNA was used instead of HJURP IVT protein.
|
6246
6246
|
blank |
|
@@ -6307,7 +6307,7 @@ text | bound to Dynabeads protein A beads (Invitrogen). For 100 µl of
|
|
6307
6307
|
blank |
|
6308
6308
|
text | xM18BP1 antibody or 0.6 µg of α-CENP-C antibody was bound to 33 µl of beads in
|
6309
6309
|
blank |
|
6310
|
-
|
6310
|
+
text | 10mM Tris-HCl, pH 7.4, 150mM NaCl, and 0.1% Triton X-100 for 1h at 4°C. An
|
6311
6311
|
blank |
|
6312
6312
|
text | equivalent amount of whole rabbit IgG was used for control depletions. The beads
|
6313
6313
|
blank |
|
@@ -6336,7 +6336,7 @@ text | of exposure to a magnet, washed four times with TBSTx buffer, an
|
|
6336
6336
|
blank |
|
6337
6337
|
text | protein sample buffer (200 mM Tris pH 6.8, 40 mM EDTA, 0.05% bromophenol blue,
|
6338
6338
|
blank |
|
6339
|
-
|
6339
|
+
text | 10% SDS, 50% glycerol). For immunoprecipitations of M18BP1-FLAG isoforms
|
6340
6340
|
blank |
|
6341
6341
|
text | (Figure 6C,D) and myc-M18BP1 isoforms (Supplemental Figure 7A), 2 µl of
|
6342
6342
|
blank |
|
@@ -6369,7 +6369,7 @@ text | CENP-C-depleted extract. For M18BP1 addback experiments, 0.5 µl
|
|
6369
6369
|
blank |
|
6370
6370
|
text | M18BP1-1-FLAG and M18BP1-2-FLAG IVT proteins (Figure 2C-E), or 1 µl of
|
6371
6371
|
blank |
|
6372
|
-
|
6372
|
+
text | M18BP1-1-FLAG or M18BP1-2-FLAG IVT protein (Supplemental Figure 3), were
|
6373
6373
|
blank |
|
6374
6374
|
text | added per 20 µl of M18BP1-depleted extract. For CENP-A assembly assays using
|
6375
6375
|
blank |
|
@@ -7580,7 +7580,7 @@ text | of centromeric chromatin containing H3 placeholder nucleosomes (
|
|
7580
7580
|
blank |
|
7581
7581
|
|
|
7582
7582
|
|
|
7583
|
-
|
7583
|
+
title | Regulating the levels of CENP-A at centromeres
|
7584
7584
|
blank |
|
7585
7585
|
text | The post-assembly levels of CENP-A are constant through rounds of division,
|
7586
7586
|
blank |
|
@@ -7711,9 +7711,9 @@ text | HJURP and RSF.
|
|
7711
7711
|
blank |
|
7712
7712
|
|
|
7713
7713
|
|
|
7714
|
-
|
7714
|
+
title | Functional interactions between centromeric chromatin and pericentric
|
7715
7715
|
blank |
|
7716
|
-
|
7716
|
+
title | heterochromatin
|
7717
7717
|
blank |
|
7718
7718
|
text | An exciting and largely unexplored future area of research is the functional
|
7719
7719
|
blank |
|
data/res/finder/bh989ww6442.ttx
CHANGED
@@ -158,9 +158,9 @@ blank |
|
|
158
158
|
meta | vi
|
159
159
|
title | Contents
|
160
160
|
blank |
|
161
|
-
|
161
|
+
text | Abstract iv
|
162
162
|
blank |
|
163
|
-
|
163
|
+
text | Acknowledgments v
|
164
164
|
blank |
|
165
165
|
text | 1 Introduction 1
|
166
166
|
| 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
|
@@ -894,7 +894,7 @@ blank |
|
|
894
894
|
|
|
895
895
|
|
|
896
896
|
meta | xxv
|
897
|
-
|
897
|
+
title | Chapter 1
|
898
898
|
blank |
|
899
899
|
title | Introduction
|
900
900
|
blank |
|
@@ -1591,7 +1591,7 @@ text | partial differential equations, their discretization, and PDE-co
|
|
1591
1591
|
| the number of parameters and state variables are comparable. Finally, Chapter 7 offers conclusions
|
1592
1592
|
| and ideas for future research and Appendix D introduces an adjoint method for optimization of
|
1593
1593
|
| time-dependent PDEs, possibly with periodicity constraints, discretized with high-order methods.
|
1594
|
-
|
1594
|
+
title | Chapter 2
|
1595
1595
|
blank |
|
1596
1596
|
title | PDE-Constrained Optimization
|
1597
1597
|
blank |
|
@@ -3243,7 +3243,7 @@ text | Once the dual variable for each functional has been computed, th
|
|
3243
3243
|
| bound on a QoI (not amenable to elimination) and the second requires time-periodicity of the PDE
|
3244
3244
|
| solution (amenable to elimination). Nonlinear elimination is applied to the periodicity constraint
|
3245
3245
|
| and the adjoint equations are modified accordingly.
|
3246
|
-
|
3246
|
+
title | Chapter 3
|
3247
3247
|
blank |
|
3248
3248
|
title | Generalized Multifidelity Trust
|
3249
3249
|
| Region Method
|
@@ -3957,7 +3957,7 @@ blank |
|
|
3957
3957
|
text | µj+1
|
3958
3958
|
| k = µjk + αpjk
|
3959
3959
|
blank |
|
3960
|
-
|
3960
|
+
text | 5: BFGS update: Define sjk and ykj as
|
3961
3961
|
blank |
|
3962
3962
|
text | sjk = µj+1
|
3963
3963
|
| k − µjk ykj = ∇φγk (µj+1 γ j
|
@@ -4744,7 +4744,7 @@ text | 2.0000e+00 2.0002e+00 2.0000e+00 2.000
|
|
4744
4744
|
| 2.0000e+00 2.0000e+00 2.0000e+00 2.0000e+00 5.5167e-05 3.0124e-01 1.3148e-05 True
|
4745
4745
|
| 2.0000e+00 2.0000e+00 2.0000e+00 2.0000e+00 8.5278e-05 6.9467e+00 2.6296e-05 True
|
4746
4746
|
meta | 76
|
4747
|
-
|
4747
|
+
title | Chapter 4
|
4748
4748
|
blank |
|
4749
4749
|
title | Projection-Based Model Reduction
|
4750
4750
|
blank |
|
@@ -6162,8 +6162,8 @@ text | where all terms are evaluated at the linearization point. A vari
|
|
6162
6162
|
| terpolation requires a sufficiently large mask such that P T r(u, µ) = 0 =⇒ r(u, µ) = 0. These
|
6163
6163
|
| results are stated and proved in Proposition 4.7.
|
6164
6164
|
blank |
|
6165
|
-
|
6166
|
-
|
6165
|
+
text | Proposition 4.7. Let (Φ∂ , Θ∂ , P ) define a masked minimum-residual sensitivity reduced-order
|
6166
|
+
meta | CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 102
|
6167
6167
|
blank |
|
6168
6168
|
|
|
6169
6169
|
|
|
@@ -6631,8 +6631,8 @@ text | U , Σ, V = ProbSVD(X, k
|
|
6631
6631
|
| 2: Form Y = (AAT )q AΩ
|
6632
6632
|
| 3: Compute QR factorization of Y: Y = QR
|
6633
6633
|
| 4: Form B = QT A
|
6634
|
-
|
6635
|
-
|
6634
|
+
| 5: Compute SVD of B = ŨΣVT
|
6635
|
+
| 6: Set U = QŨ
|
6636
6636
|
blank |
|
6637
6637
|
|
|
6638
6638
|
text | This completes the discussion of the algorithms that will prove useful in defining the trial basis
|
@@ -6886,8 +6886,8 @@ text | This relations also ensure (4.35) and (4.63) of Propositions 4.3
|
|
6886
6886
|
blank |
|
6887
6887
|
text | Φ∂ = Φ Φλ = Ψ, (4.147)
|
6888
6888
|
blank |
|
6889
|
-
|
6890
|
-
|
6889
|
+
text | the minimum-residual sensitivity and adjoint reduced-order models for the LSPG projection follow
|
6890
|
+
meta | CHAPTER 4. PROJECTION-BASED MODEL REDUCTION 115
|
6891
6891
|
blank |
|
6892
6892
|
|
|
6893
6893
|
|
|
@@ -6907,7 +6907,7 @@ text | The above relationship satisfy all conditions in Propositions 4.
|
|
6907
6907
|
| and interpolation that only holds under stricter assumptions on solutions of the discrete PDE. In this
|
6908
6908
|
| work, the mask P is constructed solely from the primal reduced-order basis Φ and problem-specific
|
6909
6909
|
| information following the approach in [198].
|
6910
|
-
|
6910
|
+
title | Chapter 5
|
6911
6911
|
blank |
|
6912
6912
|
title | Optimization via Model Reduction
|
6913
6913
|
| and Residual-Based Trust Regions
|
@@ -8375,8 +8375,8 @@ text | Figure 5.5: Convergence history of various optimization solvers
|
|
8375
8375
|
| ( ), adj-etr-intpt ( ), adj-ctr-intpt ( ), adj-ctr-stcg ( ).
|
8376
8376
|
blank |
|
8377
8377
|
|
|
8378
|
-
|
8379
|
-
|
8378
|
+
text | [52, 210].
|
8379
|
+
| The increased convergence rate, in terms of major iterations (and therefore HDM evaluations),
|
8380
8380
|
| of Algorithms 11 and 12 comes at the price of a large number of ROM evaluations. Figure 5.7 shows
|
8381
8381
|
| the cumulative number of primal ROM queries as a function of major iteration and a histogram
|
8382
8382
|
| of the number of primal ROM evaluations at a given reduced basis size (ku ). The methods that
|
@@ -9664,7 +9664,7 @@ text | HDM-based ROM-b
|
|
9664
9664
|
| µ∗ − µRAE2822
|
9665
9665
|
| 2.28 × 10−3 % 4.17 × 10−6 %
|
9666
9666
|
| kµRAE2822 k
|
9667
|
-
|
9667
|
+
title | Chapter 6
|
9668
9668
|
blank |
|
9669
9669
|
title | Model Reduction and Sparse Grids
|
9670
9670
|
| for Efficient Stochastic
|
@@ -10410,8 +10410,8 @@ blank |
|
|
10410
10410
|
|
|
10411
10411
|
|
|
10412
10412
|
title | 6.3 Multifidelity Trust Region Method Based on Two-Level
|
10413
|
-
|
10414
|
-
|
10413
|
+
| Approximation
|
10414
|
+
text | This section presents the primary contribution of this chapter: the use of sparse grids and model
|
10415
10415
|
| reduction in the multifidelity trust region framework of Chapter 3 to yield an efficient algorithm for
|
10416
10416
|
| stochastic PDE-constrained optimization. The approximation model, mk (µ), that is central to the
|
10417
10417
|
| trust region theory will be taken as the two-level approximation of risk-averse measures of quantities
|
@@ -11119,8 +11119,8 @@ blank |
|
|
11119
11119
|
|
|
11120
11120
|
|
|
11121
11121
|
title | 6.4 Numerical Experiment: Optimal Control of the Viscous
|
11122
|
-
|
11123
|
-
|
11122
|
+
| Burgers’ Equation with Uncertain Coefficients
|
11123
|
+
text | This section studies the performance of the proposed algorithms (Algorithms 15 and 16) on a simple
|
11124
11124
|
| stochastic PDE-constrained optimization problem: optimal control of the one-dimensional viscous
|
11125
11125
|
| Burgers’ equation with uncertain coefficients. This is precisely the stochastic counterpart to the
|
11126
11126
|
| problem in Section 5.5.2 used to study the deterministic trust region algorithm based on reduced-
|
@@ -11458,7 +11458,7 @@ text | F (µk ) mk (µk ) F (µ̂k ) mk (µ̂k
|
|
11458
11458
|
| 5.0405e-02 5.0404e-02 5.0403e-02 5.0401e-02 8.3139e-05 9.9946e-01 1.6000e+03 1.0000e+00
|
11459
11459
|
| 5.0403e-02 5.0401e-02 - - 2.2846e-06 - - -
|
11460
11460
|
meta | CHAPTER 6. STOCHASTIC PDE OPTIMIZATION WITH ROMS AND SPARSE GRIDS 204
|
11461
|
-
|
11461
|
+
title | Chapter 7
|
11462
11462
|
blank |
|
11463
11463
|
title | Conclusions
|
11464
11464
|
blank |
|
@@ -11577,7 +11577,7 @@ text | • Possible improvements to the proposed methods. A number o
|
|
11577
11577
|
| adjoint residual). Another possible enhancement that would have a positive and widespread
|
11578
11578
|
| impact across the methods proposed in this thesis is the use of improved, faster, and possibly
|
11579
11579
|
| probabilistic, [15] error indicators. In the trust region framework, these can either be used as
|
11580
|
-
|
11580
|
+
meta | CHAPTER 7. CONCLUSIONS 208
|
11581
11581
|
blank |
|
11582
11582
|
|
|
11583
11583
|
|
|
@@ -12492,8 +12492,8 @@ text | This section proposes a two-level, nested reduction strategy for
|
|
12492
12492
|
| which will be combined in Section C.2 to develop the nested optimization algorithm.
|
12493
12493
|
blank |
|
12494
12494
|
|
|
12495
|
-
|
12496
|
-
|
12495
|
+
title | C.1.1 Outer Layer of Reduction: Restriction of Parameter Space
|
12496
|
+
text | The PDE-constrained optimization problem that motivates this work takes the form (reduced-space
|
12497
12497
|
| formulation)
|
12498
12498
|
| minimize F (µ) := f (u(µ), µ) (C.1)
|
12499
12499
|
| µ∈RNµ
|
@@ -12639,8 +12639,8 @@ text | Thus, the adjoint computation requires the solution of one linea
|
|
12639
12639
|
| transpose of the Jacobian matrix, regardless of kµ .
|
12640
12640
|
blank |
|
12641
12641
|
|
|
12642
|
-
|
12643
|
-
|
12642
|
+
title | C.1.2 Inner Layer of Reduction: Projection-Based Model Reduction
|
12643
|
+
text | While the first layer of reduction reduces the number of optimization variables, the large cost as-
|
12644
12644
|
| sociated with solving the PDE for any µ ∈ A(µ̄, Υ) remains since the dimensionality of the state
|
12645
12645
|
| space, i.e., number of equations and unknowns, is Nu 1. The second layer of reduction aims
|
12646
12646
|
| to address this source computational expense through the application of projection-based model
|
@@ -12917,8 +12917,8 @@ text | where Qj is a matrix whose columns consist of problem-specific v
|
|
12917
12917
|
blank |
|
12918
12918
|
|
|
12919
12919
|
title | C.2.2 Inner Iteration: Multifidelity Optimization with Reduced-Order
|
12920
|
-
|
12921
|
-
|
12920
|
+
| Models
|
12921
|
+
text | Each iteration of the affine parameter space adaptation requires the solution of the PDE-constrained
|
12922
12922
|
| optimization problem (C.24), which can be written as an optimization problem in few variables
|
12923
12923
|
| (kµ Nµ ). Even though the optimization problem contains few variables, it is still expensive
|
12924
12924
|
| to solve since each objective evaluation requires the solution of a potentially large-scale partial
|
@@ -13492,8 +13492,8 @@ blank |
|
|
13492
13492
|
text | (n) (n) (n) (n) (n)
|
13493
13493
|
| Ri (u(n−1) , k1 , . . . , ki , µ) = M ki − ∆tn r ui , µ, tn−1 + ci ∆tn = 0
|
13494
13494
|
blank |
|
13495
|
-
|
13496
|
-
|
13495
|
+
text | for n = 1, . . . , n and i = 1, . . . , s. Differentiation of these expressions with respect to µ gives rise to
|
13496
|
+
meta | APPENDIX D. UNSTEADY, PERIODIC PDE-CONSTRAINED OPTIMIZATION 246
|
13497
13497
|
blank |
|
13498
13498
|
|
|
13499
13499
|
|
|
@@ -15499,8 +15499,8 @@ blank |
|
|
15499
15499
|
|
|
15500
15500
|
|
|
15501
15501
|
title | D.4.3 Generalized Reduced-Gradient Method for PDE Optimization with
|
15502
|
-
|
15503
|
-
|
15502
|
+
| Time-Periodicity Constraints
|
15503
|
+
text | Consider the fully discrete time-dependent PDE-constrained optimization problem
|
15504
15504
|
blank |
|
15505
15505
|
text | (1)
|
15506
15506
|
| minimize F (u(0) , . . . , u(Nt ) , k1 , . . . , ks(Nt ) , µ)
|