algorithms 0.3.0-jruby
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +172 -0
- data/Manifest +43 -0
- data/README.markdown +93 -0
- data/Rakefile +31 -0
- data/algorithms.gemspec +33 -0
- data/benchmarks/deque.rb +17 -0
- data/benchmarks/sorts.rb +34 -0
- data/benchmarks/treemaps.rb +51 -0
- data/ext/containers/deque/deque.c +247 -0
- data/ext/containers/deque/extconf.rb +4 -0
- data/ext/containers/rbtree_map/extconf.rb +4 -0
- data/ext/containers/rbtree_map/rbtree.c +498 -0
- data/ext/containers/splaytree_map/extconf.rb +4 -0
- data/ext/containers/splaytree_map/splaytree.c +419 -0
- data/lib/algorithms.rb +68 -0
- data/lib/algorithms/search.rb +84 -0
- data/lib/algorithms/sort.rb +238 -0
- data/lib/containers/deque.rb +171 -0
- data/lib/containers/heap.rb +486 -0
- data/lib/containers/kd_tree.rb +110 -0
- data/lib/containers/priority_queue.rb +113 -0
- data/lib/containers/queue.rb +68 -0
- data/lib/containers/rb_tree_map.rb +398 -0
- data/lib/containers/splay_tree_map.rb +269 -0
- data/lib/containers/stack.rb +67 -0
- data/lib/containers/suffix_array.rb +68 -0
- data/lib/containers/trie.rb +182 -0
- data/spec/deque_gc_mark_spec.rb +18 -0
- data/spec/deque_spec.rb +108 -0
- data/spec/heap_spec.rb +126 -0
- data/spec/kd_expected_out.txt +10000 -0
- data/spec/kd_test_in.txt +10000 -0
- data/spec/kd_tree_spec.rb +34 -0
- data/spec/map_gc_mark_spec.rb +27 -0
- data/spec/priority_queue_spec.rb +75 -0
- data/spec/queue_spec.rb +61 -0
- data/spec/rb_tree_map_spec.rb +123 -0
- data/spec/search_spec.rb +28 -0
- data/spec/sort_spec.rb +28 -0
- data/spec/splay_tree_map_spec.rb +106 -0
- data/spec/stack_spec.rb +60 -0
- data/spec/suffix_array_spec.rb +40 -0
- data/spec/trie_spec.rb +59 -0
- metadata +122 -0
@@ -0,0 +1,110 @@
|
|
1
|
+
=begin rdoc
|
2
|
+
|
3
|
+
A kd-tree is a binary tree that allows one to store points (of any space dimension: 2D, 3D, etc).
|
4
|
+
The structure of the resulting tree makes it so that large portions of the tree are pruned
|
5
|
+
during queries.
|
6
|
+
|
7
|
+
One very good use of the tree is to allow nearest neighbor searching. Let's say you have a number
|
8
|
+
of points in 2D space, and you want to find the nearest 2 points from a specific point:
|
9
|
+
|
10
|
+
First, put the points into the tree:
|
11
|
+
|
12
|
+
kdtree = Containers::KDTree.new( {0 => [4, 3], 1 => [3, 4], 2 => [-1, 2], 3 => [6, 4],
|
13
|
+
4 => [3, -5], 5 => [-2, -5] })
|
14
|
+
|
15
|
+
Then, query on the tree:
|
16
|
+
|
17
|
+
puts kd.find_nearest([0, 0], 2) => [[5, 2], [9, 1]]
|
18
|
+
|
19
|
+
The result is an array of [distance, id] pairs. There seems to be a bug in this version.
|
20
|
+
|
21
|
+
Note that the point queried on does not have to exist in the tree. However, if it does exist,
|
22
|
+
it will be returned.
|
23
|
+
|
24
|
+
=end
|
25
|
+
|
26
|
+
class Containers::KDTree
|
27
|
+
Node = Struct.new(:id, :coords, :left, :right)
|
28
|
+
|
29
|
+
# Points is a hash of id => [coord, coord] pairs.
|
30
|
+
def initialize(points)
|
31
|
+
raise "must pass in a hash" unless points.kind_of?(Hash)
|
32
|
+
@dimensions = points[ points.keys.first ].size
|
33
|
+
@root = build_tree(points.to_a)
|
34
|
+
@nearest = []
|
35
|
+
end
|
36
|
+
|
37
|
+
# Find k closest points to given coordinates
|
38
|
+
def find_nearest(target, k_nearest)
|
39
|
+
@nearest = []
|
40
|
+
nearest(@root, target, k_nearest, 0)
|
41
|
+
end
|
42
|
+
|
43
|
+
# points is an array
|
44
|
+
def build_tree(points, depth=0)
|
45
|
+
return if points.empty?
|
46
|
+
|
47
|
+
axis = depth % @dimensions
|
48
|
+
|
49
|
+
points.sort! { |a, b| a.last[axis] <=> b.last[axis] }
|
50
|
+
median = points.size / 2
|
51
|
+
|
52
|
+
node = Node.new(points[median].first, points[median].last, nil, nil)
|
53
|
+
node.left = build_tree(points[0...median], depth+1)
|
54
|
+
node.right = build_tree(points[median+1..-1], depth+1)
|
55
|
+
node
|
56
|
+
end
|
57
|
+
private :build_tree
|
58
|
+
|
59
|
+
# Euclidian distanced, squared, between a node and target coords
|
60
|
+
def distance2(node, target)
|
61
|
+
return nil if node.nil? or target.nil?
|
62
|
+
c = (node.coords[0] - target[0])
|
63
|
+
d = (node.coords[1] - target[1])
|
64
|
+
c * c + d * d
|
65
|
+
end
|
66
|
+
private :distance2
|
67
|
+
|
68
|
+
# Update array of nearest elements if necessary
|
69
|
+
def check_nearest(nearest, node, target, k_nearest)
|
70
|
+
d = distance2(node, target)
|
71
|
+
if nearest.size < k_nearest || d < nearest.last[0]
|
72
|
+
nearest.pop if nearest.size >= k_nearest
|
73
|
+
nearest << [d, node.id]
|
74
|
+
nearest.sort! { |a, b| a[0] <=> b[0] }
|
75
|
+
end
|
76
|
+
nearest
|
77
|
+
end
|
78
|
+
private :check_nearest
|
79
|
+
|
80
|
+
# Recursively find nearest coordinates, going down the appropriate branch as needed
|
81
|
+
def nearest(node, target, k_nearest, depth)
|
82
|
+
axis = depth % @dimensions
|
83
|
+
|
84
|
+
if node.left.nil? && node.right.nil? # Leaf node
|
85
|
+
@nearest = check_nearest(@nearest, node, target, k_nearest)
|
86
|
+
return
|
87
|
+
end
|
88
|
+
|
89
|
+
# Go down the nearest split
|
90
|
+
if node.right.nil? || (node.left && target[axis] <= node.coords[axis])
|
91
|
+
nearer = node.left
|
92
|
+
further = node.right
|
93
|
+
else
|
94
|
+
nearer = node.right
|
95
|
+
further = node.left
|
96
|
+
end
|
97
|
+
nearest(nearer, target, k_nearest, depth+1)
|
98
|
+
|
99
|
+
# See if we have to check other side
|
100
|
+
if further
|
101
|
+
if @nearest.size < k_nearest || (target[axis] - node.coords[axis])**2 < @nearest.last[0]
|
102
|
+
nearest(further, target, k_nearest, depth+1)
|
103
|
+
end
|
104
|
+
end
|
105
|
+
|
106
|
+
@nearest = check_nearest(@nearest, node, target, k_nearest)
|
107
|
+
end
|
108
|
+
private :nearest
|
109
|
+
|
110
|
+
end
|
@@ -0,0 +1,113 @@
|
|
1
|
+
require 'containers/heap'
|
2
|
+
|
3
|
+
=begin rdoc
|
4
|
+
A Priority Queue is a data structure that behaves like a queue except that elements have an
|
5
|
+
associated priority. The #next and #pop methods return the item with the next highest priority.
|
6
|
+
|
7
|
+
Priority Queues are often used in graph problems, such as Dijkstra's Algorithm for shortest
|
8
|
+
path, and the A* search algorithm for shortest path.
|
9
|
+
|
10
|
+
This container is implemented using the Fibonacci heap included in the Collections library.
|
11
|
+
=end
|
12
|
+
class Containers::PriorityQueue
|
13
|
+
include Enumerable
|
14
|
+
|
15
|
+
# Create a new, empty PriorityQueue
|
16
|
+
def initialize(&block)
|
17
|
+
# We default to a priority queue that returns the largest value
|
18
|
+
block ||= lambda { |x, y| (x <=> y) == 1 }
|
19
|
+
@heap = Containers::Heap.new(&block)
|
20
|
+
end
|
21
|
+
|
22
|
+
# Returns the number of elements in the queue.
|
23
|
+
#
|
24
|
+
# q = Containers::PriorityQueue.new
|
25
|
+
# q.size #=> 0
|
26
|
+
# q.push("Alaska", 1)
|
27
|
+
# q.size #=> 1
|
28
|
+
def size
|
29
|
+
@heap.size
|
30
|
+
end
|
31
|
+
alias_method :length, :size
|
32
|
+
|
33
|
+
# Add an object to the queue with associated priority.
|
34
|
+
#
|
35
|
+
# q = Containers::PriorityQueue.new
|
36
|
+
# q.push("Alaska", 1)
|
37
|
+
# q.pop #=> "Alaska"
|
38
|
+
def push(object, priority)
|
39
|
+
@heap.push(priority, object)
|
40
|
+
end
|
41
|
+
|
42
|
+
# Clears all the items in the queue.
|
43
|
+
def clear
|
44
|
+
@heap.clear
|
45
|
+
end
|
46
|
+
|
47
|
+
# Returns true if the queue is empty, false otherwise.
|
48
|
+
def empty?
|
49
|
+
@heap.empty?
|
50
|
+
end
|
51
|
+
|
52
|
+
# call-seq:
|
53
|
+
# has_priority? priority -> boolean
|
54
|
+
#
|
55
|
+
# Return true if the priority is in the queue, false otherwise.
|
56
|
+
#
|
57
|
+
# q = PriorityQueue.new
|
58
|
+
# q.push("Alaska", 1)
|
59
|
+
#
|
60
|
+
# q.has_priority?(1) #=> true
|
61
|
+
# q.has_priority?(2) #=> false
|
62
|
+
def has_priority?(priority)
|
63
|
+
@heap.has_key?(priority)
|
64
|
+
end
|
65
|
+
|
66
|
+
# call-seq:
|
67
|
+
# next -> object
|
68
|
+
#
|
69
|
+
# Return the object with the next highest priority, but does not remove it
|
70
|
+
#
|
71
|
+
# q = Containers::PriorityQueue.new
|
72
|
+
# q.push("Alaska", 50)
|
73
|
+
# q.push("Delaware", 30)
|
74
|
+
# q.push("Georgia", 35)
|
75
|
+
# q.next #=> "Alaska"
|
76
|
+
def next
|
77
|
+
@heap.next
|
78
|
+
end
|
79
|
+
|
80
|
+
# call-seq:
|
81
|
+
# pop -> object
|
82
|
+
#
|
83
|
+
# Return the object with the next highest priority and removes it from the queue
|
84
|
+
#
|
85
|
+
# q = Containers::PriorityQueue.new
|
86
|
+
# q.push("Alaska", 50)
|
87
|
+
# q.push("Delaware", 30)
|
88
|
+
# q.push("Georgia", 35)
|
89
|
+
# q.pop #=> "Alaska"
|
90
|
+
# q.size #=> 2
|
91
|
+
def pop
|
92
|
+
@heap.pop
|
93
|
+
end
|
94
|
+
alias_method :next!, :pop
|
95
|
+
|
96
|
+
# call-seq:
|
97
|
+
# delete(priority) -> object
|
98
|
+
# delete(priority) -> nil
|
99
|
+
#
|
100
|
+
# Delete an object with specified priority from the queue. If there are duplicates, an
|
101
|
+
# arbitrary object with that priority is deleted and returned. Returns nil if there are
|
102
|
+
# no objects with the priority.
|
103
|
+
#
|
104
|
+
# q = PriorityQueue.new
|
105
|
+
# q.push("Alaska", 50)
|
106
|
+
# q.push("Delaware", 30)
|
107
|
+
# q.delete(50) #=> "Alaska"
|
108
|
+
# q.delete(10) #=> nil
|
109
|
+
def delete(priority)
|
110
|
+
@heap.delete(priority)
|
111
|
+
end
|
112
|
+
|
113
|
+
end
|
@@ -0,0 +1,68 @@
|
|
1
|
+
require 'containers/deque'
|
2
|
+
|
3
|
+
=begin rdoc
|
4
|
+
A Queue is a container that keeps elements in a first-in first-out (FIFO) order. Because of its
|
5
|
+
properties, it is often used as a buffer.
|
6
|
+
|
7
|
+
This implementation uses a doubly-linked list, guaranteeing O(1) complexity for all operations.
|
8
|
+
|
9
|
+
=end
|
10
|
+
class Containers::Queue
|
11
|
+
include Enumerable
|
12
|
+
# Create a new queue. Takes an optional array argument to initialize the queue.
|
13
|
+
#
|
14
|
+
# q = Containers::Queue.new([1, 2, 3])
|
15
|
+
# q.pop #=> 1
|
16
|
+
# q.pop #=> 2
|
17
|
+
def initialize(ary=[])
|
18
|
+
@container = Containers::Deque.new(ary)
|
19
|
+
end
|
20
|
+
|
21
|
+
# Returns the next item from the queue but does not remove it.
|
22
|
+
#
|
23
|
+
# q = Containers::Queue.new([1, 2, 3])
|
24
|
+
# q.next #=> 1
|
25
|
+
# q.size #=> 3
|
26
|
+
def next
|
27
|
+
@container.front
|
28
|
+
end
|
29
|
+
|
30
|
+
# Adds an item to the queue.
|
31
|
+
#
|
32
|
+
# q = Containers::Queue.new([1])
|
33
|
+
# q.push(2)
|
34
|
+
# q.pop #=> 1
|
35
|
+
# q.pop #=> 2
|
36
|
+
def push(obj)
|
37
|
+
@container.push_back(obj)
|
38
|
+
end
|
39
|
+
alias_method :<<, :push
|
40
|
+
|
41
|
+
# Removes the next item from the queue and returns it.
|
42
|
+
#
|
43
|
+
# q = Containers::Queue.new([1, 2, 3])
|
44
|
+
# q.pop #=> 1
|
45
|
+
# q.size #=> 2
|
46
|
+
def pop
|
47
|
+
@container.pop_front
|
48
|
+
end
|
49
|
+
|
50
|
+
# Return the number of items in the queue.
|
51
|
+
#
|
52
|
+
# q = Containers::Queue.new([1, 2, 3])
|
53
|
+
# q.size #=> 3
|
54
|
+
def size
|
55
|
+
@container.size
|
56
|
+
end
|
57
|
+
|
58
|
+
# Returns true if the queue is empty, false otherwise.
|
59
|
+
def empty?
|
60
|
+
@container.empty?
|
61
|
+
end
|
62
|
+
|
63
|
+
# Iterate over the Queue in FIFO order.
|
64
|
+
def each(&block)
|
65
|
+
@container.each_forward(&block)
|
66
|
+
end
|
67
|
+
|
68
|
+
end
|
@@ -0,0 +1,398 @@
|
|
1
|
+
require 'containers/stack'
|
2
|
+
=begin rdoc
|
3
|
+
A RBTreeMap is a map that is stored in sorted order based on the order of its keys. This ordering is
|
4
|
+
determined by applying the function <=> to compare the keys. No duplicate values for keys are allowed,
|
5
|
+
so duplicate values are overwritten.
|
6
|
+
|
7
|
+
A major advantage of RBTreeMap over a Hash is the fact that keys are stored in order and can thus be
|
8
|
+
iterated over in order. This is useful for many datasets.
|
9
|
+
|
10
|
+
The implementation is adapted from Robert Sedgewick's Left Leaning Red-Black Tree implementation,
|
11
|
+
which can be found at http://www.cs.princeton.edu/~rs/talks/LLRB/Java/RedBlackBST.java
|
12
|
+
|
13
|
+
Containers::RBTreeMap automatically uses the faster C implementation if it was built
|
14
|
+
when the gem was installed. Alternatively, Containers::RubyRBTreeMap and Containers::CRBTreeMap can be
|
15
|
+
explicitly used as well; their functionality is identical.
|
16
|
+
|
17
|
+
Most methods have O(log n) complexity.
|
18
|
+
|
19
|
+
=end
|
20
|
+
class Containers::RubyRBTreeMap
|
21
|
+
include Enumerable
|
22
|
+
|
23
|
+
attr_accessor :height_black
|
24
|
+
|
25
|
+
# Create and initialize a new empty TreeMap.
|
26
|
+
def initialize
|
27
|
+
@root = nil
|
28
|
+
@height_black = 0
|
29
|
+
end
|
30
|
+
|
31
|
+
# Insert an item with an associated key into the TreeMap, and returns the item inserted
|
32
|
+
#
|
33
|
+
# Complexity: O(log n)
|
34
|
+
#
|
35
|
+
# map = Containers::TreeMap.new
|
36
|
+
# map.push("MA", "Massachusetts") #=> "Massachusetts"
|
37
|
+
# map.get("MA") #=> "Massachusetts"
|
38
|
+
def push(key, value)
|
39
|
+
@root = insert(@root, key, value)
|
40
|
+
@height_black += 1 if isred(@root)
|
41
|
+
@root.color = :black
|
42
|
+
value
|
43
|
+
end
|
44
|
+
alias_method :[]=, :push
|
45
|
+
|
46
|
+
# Return the number of items in the TreeMap.
|
47
|
+
#
|
48
|
+
# map = Containers::TreeMap.new
|
49
|
+
# map.push("MA", "Massachusetts")
|
50
|
+
# map.push("GA", "Georgia")
|
51
|
+
# map.size #=> 2
|
52
|
+
def size
|
53
|
+
@root and @root.size or 0
|
54
|
+
end
|
55
|
+
|
56
|
+
# Return the height of the tree structure in the TreeMap.
|
57
|
+
#
|
58
|
+
# Complexity: O(1)
|
59
|
+
#
|
60
|
+
# map = Containers::TreeMap.new
|
61
|
+
# map.push("MA", "Massachusetts")
|
62
|
+
# map.push("GA", "Georgia")
|
63
|
+
# map.height #=> 2
|
64
|
+
def height
|
65
|
+
@root and @root.height or 0
|
66
|
+
end
|
67
|
+
|
68
|
+
# Return true if key is found in the TreeMap, false otherwise
|
69
|
+
#
|
70
|
+
# Complexity: O(log n)
|
71
|
+
#
|
72
|
+
# map = Containers::TreeMap.new
|
73
|
+
# map.push("MA", "Massachusetts")
|
74
|
+
# map.push("GA", "Georgia")
|
75
|
+
# map.has_key?("GA") #=> true
|
76
|
+
# map.has_key?("DE") #=> false
|
77
|
+
def has_key?(key)
|
78
|
+
!get(key).nil?
|
79
|
+
end
|
80
|
+
|
81
|
+
# Return the item associated with the key, or nil if none found.
|
82
|
+
#
|
83
|
+
# Complexity: O(log n)
|
84
|
+
#
|
85
|
+
# map = Containers::TreeMap.new
|
86
|
+
# map.push("MA", "Massachusetts")
|
87
|
+
# map.push("GA", "Georgia")
|
88
|
+
# map.get("GA") #=> "Georgia"
|
89
|
+
def get(key)
|
90
|
+
get_recursive(@root, key)
|
91
|
+
end
|
92
|
+
alias_method :[], :get
|
93
|
+
|
94
|
+
# Return the smallest key in the map.
|
95
|
+
#
|
96
|
+
# Complexity: O(log n)
|
97
|
+
#
|
98
|
+
# map = Containers::TreeMap.new
|
99
|
+
# map.push("MA", "Massachusetts")
|
100
|
+
# map.push("GA", "Georgia")
|
101
|
+
# map.min_key #=> "GA"
|
102
|
+
def min_key
|
103
|
+
@root.nil? ? nil : min_recursive(@root)
|
104
|
+
end
|
105
|
+
|
106
|
+
# Return the largest key in the map.
|
107
|
+
#
|
108
|
+
# Complexity: O(log n)
|
109
|
+
#
|
110
|
+
# map = Containers::TreeMap.new
|
111
|
+
# map.push("MA", "Massachusetts")
|
112
|
+
# map.push("GA", "Georgia")
|
113
|
+
# map.max_key #=> "MA"
|
114
|
+
def max_key
|
115
|
+
@root.nil? ? nil : max_recursive(@root)
|
116
|
+
end
|
117
|
+
|
118
|
+
# Deletes the item and key if it's found, and returns the item. Returns nil
|
119
|
+
# if key is not present.
|
120
|
+
#
|
121
|
+
# !!! Warning !!! There is a currently a bug in the delete method that occurs rarely
|
122
|
+
# but often enough, especially in large datasets. It is currently under investigation.
|
123
|
+
#
|
124
|
+
# Complexity: O(log n)
|
125
|
+
#
|
126
|
+
# map = Containers::TreeMap.new
|
127
|
+
# map.push("MA", "Massachusetts")
|
128
|
+
# map.push("GA", "Georgia")
|
129
|
+
# map.min_key #=> "GA"
|
130
|
+
def delete(key)
|
131
|
+
result = nil
|
132
|
+
if @root
|
133
|
+
@root, result = delete_recursive(@root, key)
|
134
|
+
@root.color = :black if @root
|
135
|
+
end
|
136
|
+
result
|
137
|
+
end
|
138
|
+
|
139
|
+
# Returns true if the tree is empty, false otherwise
|
140
|
+
def empty?
|
141
|
+
@root.nil?
|
142
|
+
end
|
143
|
+
|
144
|
+
# Deletes the item with the smallest key and returns the item. Returns nil
|
145
|
+
# if key is not present.
|
146
|
+
#
|
147
|
+
# Complexity: O(log n)
|
148
|
+
#
|
149
|
+
# map = Containers::TreeMap.new
|
150
|
+
# map.push("MA", "Massachusetts")
|
151
|
+
# map.push("GA", "Georgia")
|
152
|
+
# map.delete_min #=> "Massachusetts"
|
153
|
+
# map.size #=> 1
|
154
|
+
def delete_min
|
155
|
+
result = nil
|
156
|
+
if @root
|
157
|
+
@root, result = delete_min_recursive(@root)
|
158
|
+
@root.color = :black if @root
|
159
|
+
end
|
160
|
+
result
|
161
|
+
end
|
162
|
+
|
163
|
+
# Deletes the item with the smallest key and returns the item. Returns nil
|
164
|
+
# if key is not present.
|
165
|
+
#
|
166
|
+
# Complexity: O(log n)
|
167
|
+
#
|
168
|
+
# map = Containers::TreeMap.new
|
169
|
+
# map.push("MA", "Massachusetts")
|
170
|
+
# map.push("GA", "Georgia")
|
171
|
+
# map.delete_max #=> "Georgia"
|
172
|
+
# map.size #=> 1
|
173
|
+
def delete_max
|
174
|
+
result = nil
|
175
|
+
if @root
|
176
|
+
@root, result = delete_max_recursive(@root)
|
177
|
+
@root.color = :black if @root
|
178
|
+
end
|
179
|
+
result
|
180
|
+
end
|
181
|
+
|
182
|
+
# Iterates over the TreeMap from smallest to largest element. Iterative approach.
|
183
|
+
def each
|
184
|
+
return nil unless @root
|
185
|
+
stack = Containers::Stack.new
|
186
|
+
cursor = @root
|
187
|
+
loop do
|
188
|
+
if cursor
|
189
|
+
stack.push(cursor)
|
190
|
+
cursor = cursor.left
|
191
|
+
else
|
192
|
+
unless stack.empty?
|
193
|
+
cursor = stack.pop
|
194
|
+
yield(cursor.key, cursor.value)
|
195
|
+
cursor = cursor.right
|
196
|
+
else
|
197
|
+
break
|
198
|
+
end
|
199
|
+
end
|
200
|
+
end
|
201
|
+
end
|
202
|
+
|
203
|
+
class Node # :nodoc: all
|
204
|
+
attr_accessor :color, :key, :value, :left, :right, :size, :height
|
205
|
+
def initialize(key, value)
|
206
|
+
@key = key
|
207
|
+
@value = value
|
208
|
+
@color = :red
|
209
|
+
@left = nil
|
210
|
+
@right = nil
|
211
|
+
@size = 1
|
212
|
+
@height = 1
|
213
|
+
end
|
214
|
+
|
215
|
+
def red?
|
216
|
+
@color == :red
|
217
|
+
end
|
218
|
+
|
219
|
+
def colorflip
|
220
|
+
@color = @color == :red ? :black : :red
|
221
|
+
@left.color = @left.color == :red ? :black : :red
|
222
|
+
@right.color = @right.color == :red ? :black : :red
|
223
|
+
end
|
224
|
+
|
225
|
+
def update_size
|
226
|
+
@size = (@left ? @left.size : 0) + (@right ? @right.size : 0) + 1
|
227
|
+
left_height = (@left ? @left.height : 0)
|
228
|
+
right_height = (@right ? @right.height : 0)
|
229
|
+
if left_height > right_height
|
230
|
+
@height = left_height + 1
|
231
|
+
else
|
232
|
+
@height = right_height + 1
|
233
|
+
end
|
234
|
+
self
|
235
|
+
end
|
236
|
+
|
237
|
+
def rotate_left
|
238
|
+
r = @right
|
239
|
+
r_key, r_value, r_color = r.key, r.value, r.color
|
240
|
+
b = r.left
|
241
|
+
r.left = @left
|
242
|
+
@left = r
|
243
|
+
@right = r.right
|
244
|
+
r.right = b
|
245
|
+
r.color, r.key, r.value = :red, @key, @value
|
246
|
+
@key, @value = r_key, r_value
|
247
|
+
r.update_size
|
248
|
+
update_size
|
249
|
+
end
|
250
|
+
|
251
|
+
def rotate_right
|
252
|
+
l = @left
|
253
|
+
l_key, l_value, l_color = l.key, l.value, l.color
|
254
|
+
b = l.right
|
255
|
+
l.right = @right
|
256
|
+
@right = l
|
257
|
+
@left = l.left
|
258
|
+
l.left = b
|
259
|
+
l.color, l.key, l.value = :red, @key, @value
|
260
|
+
@key, @value = l_key, l_value
|
261
|
+
l.update_size
|
262
|
+
update_size
|
263
|
+
end
|
264
|
+
|
265
|
+
def move_red_left
|
266
|
+
colorflip
|
267
|
+
if (@right.left && @right.left.red?)
|
268
|
+
@right.rotate_right
|
269
|
+
rotate_left
|
270
|
+
colorflip
|
271
|
+
end
|
272
|
+
self
|
273
|
+
end
|
274
|
+
|
275
|
+
def move_red_right
|
276
|
+
colorflip
|
277
|
+
if (@left.left && @left.left.red?)
|
278
|
+
rotate_right
|
279
|
+
colorflip
|
280
|
+
end
|
281
|
+
self
|
282
|
+
end
|
283
|
+
|
284
|
+
def fixup
|
285
|
+
rotate_left if @right && @right.red?
|
286
|
+
rotate_right if (@left && @left.red?) && (@left.left && @left.left.red?)
|
287
|
+
colorflip if (@left && @left.red?) && (@right && @right.red?)
|
288
|
+
|
289
|
+
update_size
|
290
|
+
end
|
291
|
+
end
|
292
|
+
|
293
|
+
def delete_recursive(node, key)
|
294
|
+
if (key <=> node.key) == -1
|
295
|
+
node.move_red_left if ( !isred(node.left) && !isred(node.left.left) )
|
296
|
+
node.left, result = delete_recursive(node.left, key)
|
297
|
+
else
|
298
|
+
node.rotate_right if isred(node.left)
|
299
|
+
if ( ( (key <=> node.key) == 0) && node.right.nil? )
|
300
|
+
return nil, node.value
|
301
|
+
end
|
302
|
+
if ( !isred(node.right) && !isred(node.right.left) )
|
303
|
+
node.move_red_right
|
304
|
+
end
|
305
|
+
if (key <=> node.key) == 0
|
306
|
+
result = node.value
|
307
|
+
node.value = get_recursive(node.right, min_recursive(node.right))
|
308
|
+
node.key = min_recursive(node.right)
|
309
|
+
node.right = delete_min_recursive(node.right).first
|
310
|
+
else
|
311
|
+
node.right, result = delete_recursive(node.right, key)
|
312
|
+
end
|
313
|
+
end
|
314
|
+
return node.fixup, result
|
315
|
+
end
|
316
|
+
private :delete_recursive
|
317
|
+
|
318
|
+
def delete_min_recursive(node)
|
319
|
+
if node.left.nil?
|
320
|
+
return nil, node.value
|
321
|
+
end
|
322
|
+
if ( !isred(node.left) && !isred(node.left.left) )
|
323
|
+
node.move_red_left
|
324
|
+
end
|
325
|
+
node.left, result = delete_min_recursive(node.left)
|
326
|
+
|
327
|
+
return node.fixup, result
|
328
|
+
end
|
329
|
+
private :delete_min_recursive
|
330
|
+
|
331
|
+
def delete_max_recursive(node)
|
332
|
+
if (isred(node.left))
|
333
|
+
node = node.rotate_right
|
334
|
+
end
|
335
|
+
return nil, node.value if node.right.nil?
|
336
|
+
if ( !isred(node.right) && !isred(node.right.left) )
|
337
|
+
node.move_red_right
|
338
|
+
end
|
339
|
+
node.right, result = delete_max_recursive(node.right)
|
340
|
+
|
341
|
+
return node.fixup, result
|
342
|
+
end
|
343
|
+
private :delete_max_recursive
|
344
|
+
|
345
|
+
def get_recursive(node, key)
|
346
|
+
return nil if node.nil?
|
347
|
+
case key <=> node.key
|
348
|
+
when 0 then return node.value
|
349
|
+
when -1 then return get_recursive(node.left, key)
|
350
|
+
when 1 then return get_recursive(node.right, key)
|
351
|
+
end
|
352
|
+
end
|
353
|
+
private :get_recursive
|
354
|
+
|
355
|
+
def min_recursive(node)
|
356
|
+
return node.key if node.left.nil?
|
357
|
+
|
358
|
+
min_recursive(node.left)
|
359
|
+
end
|
360
|
+
private :min_recursive
|
361
|
+
|
362
|
+
def max_recursive(node)
|
363
|
+
return node.key if node.right.nil?
|
364
|
+
|
365
|
+
max_recursive(node.right)
|
366
|
+
end
|
367
|
+
private :max_recursive
|
368
|
+
|
369
|
+
def insert(node, key, value)
|
370
|
+
return Node.new(key, value) unless node
|
371
|
+
|
372
|
+
case key <=> node.key
|
373
|
+
when 0 then node.value = value
|
374
|
+
when -1 then node.left = insert(node.left, key, value)
|
375
|
+
when 1 then node.right = insert(node.right, key, value)
|
376
|
+
end
|
377
|
+
|
378
|
+
node.rotate_left if (node.right && node.right.red?)
|
379
|
+
node.rotate_right if (node.left && node.left.red? && node.left.left && node.left.left.red?)
|
380
|
+
node.colorflip if (node.left && node.left.red? && node.right && node.right.red?)
|
381
|
+
node.update_size
|
382
|
+
end
|
383
|
+
private :insert
|
384
|
+
|
385
|
+
def isred(node)
|
386
|
+
return false if node.nil?
|
387
|
+
|
388
|
+
node.color == :red
|
389
|
+
end
|
390
|
+
private :isred
|
391
|
+
end
|
392
|
+
|
393
|
+
begin
|
394
|
+
require 'CRBTreeMap'
|
395
|
+
Containers::RBTreeMap = Containers::CRBTreeMap
|
396
|
+
rescue LoadError # C Version could not be found, try ruby version
|
397
|
+
Containers::RBTreeMap = Containers::RubyRBTreeMap
|
398
|
+
end
|