alglib 1.0.0 → 1.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +4 -0
- data/Manifest.txt +10 -0
- data/README.txt +1 -1
- data/Rakefile +2 -1
- data/ext/Rakefile +5 -3
- data/ext/alglib.i +11 -148
- data/ext/alglib/alglib.cpp +2401 -46
- data/ext/alglib/alglib_util.cpp +10 -1
- data/ext/alglib/alglib_util.h +3 -1
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +1 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +27 -60
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +45 -9
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- metadata +17 -3
data/ext/alglib/alglib_util.cpp
CHANGED
@@ -1,5 +1,5 @@
|
|
1
1
|
#include "alglib_util.h"
|
2
|
-
|
2
|
+
#include <iostream>
|
3
3
|
|
4
4
|
VALUE real1d_to_array(ap::real_1d_array *x) {
|
5
5
|
VALUE ar=rb_ary_new2(x->gethighbound()-x->getlowbound());
|
@@ -8,3 +8,12 @@ VALUE real1d_to_array(ap::real_1d_array *x) {
|
|
8
8
|
}
|
9
9
|
return ar;
|
10
10
|
}
|
11
|
+
|
12
|
+
void array_to_real1d(VALUE ary, ap::real_1d_array *x) {
|
13
|
+
x->setlength(RARRAY_LEN(ary));
|
14
|
+
//std::cout << "Largo:" << RARRAY_LEN(ary) << "\n";
|
15
|
+
for(long i=0;i<RARRAY_LEN(ary);i++) {
|
16
|
+
// std::cout << "i:" << i << "=" << rb_num2dbl(RARRAY_PTR(ary)[i]) <<"\n";
|
17
|
+
x->operator()(i)=rb_num2dbl(RARRAY_PTR(ary)[i]);
|
18
|
+
}
|
19
|
+
}
|
data/ext/alglib/alglib_util.h
CHANGED
data/ext/ap.i
ADDED
@@ -0,0 +1,97 @@
|
|
1
|
+
%typemap(in) ap::real_1d_array {
|
2
|
+
$1 = new ap::real_1d_array();
|
3
|
+
$1->setlength(RARRAY_LEN($input));
|
4
|
+
for(long i=0;i<RARRAY_LEN($input);i++) {
|
5
|
+
$1->operator()(i)=rb_num2dbl(RARRAY_PTR($input)[i]);
|
6
|
+
}
|
7
|
+
}
|
8
|
+
|
9
|
+
|
10
|
+
%apply ap::real_1d_array {ap::real_1d_array const &};
|
11
|
+
|
12
|
+
namespace ap {
|
13
|
+
/********************************************************************
|
14
|
+
Template of a dynamical one-dimensional array
|
15
|
+
********************************************************************/
|
16
|
+
template<class T, bool Aligned = false>
|
17
|
+
class template_1d_array
|
18
|
+
{
|
19
|
+
public:
|
20
|
+
template_1d_array();
|
21
|
+
~template_1d_array();
|
22
|
+
template_1d_array(const template_1d_array &rhs);
|
23
|
+
%extend {
|
24
|
+
T __getitem__(int i) {
|
25
|
+
return $self->operator()(i);
|
26
|
+
};
|
27
|
+
T __setitem__(int i, T v) {
|
28
|
+
return $self->operator()(i)=v;
|
29
|
+
};
|
30
|
+
int size() {
|
31
|
+
return $self->gethighbound()-$self->getlowbound()+1;
|
32
|
+
}
|
33
|
+
}
|
34
|
+
|
35
|
+
void setbounds( int iLow, int iHigh );
|
36
|
+
void setlength(int iLen);
|
37
|
+
void setcontent( int iLow, int iHigh, const T *pContent );
|
38
|
+
T* getcontent();
|
39
|
+
int getlowbound(int iBoundNum = 0);
|
40
|
+
int gethighbound(int iBoundNum = 0);
|
41
|
+
};
|
42
|
+
|
43
|
+
template<class T, bool Aligned = false>
|
44
|
+
class template_2d_array
|
45
|
+
{
|
46
|
+
public:
|
47
|
+
template_2d_array();
|
48
|
+
|
49
|
+
~template_2d_array();
|
50
|
+
|
51
|
+
template_2d_array(const template_2d_array &rhs);
|
52
|
+
T& operator()(int i1, int i2);
|
53
|
+
|
54
|
+
void setbounds( int iLow1, int iHigh1, int iLow2, int iHigh2 );
|
55
|
+
|
56
|
+
void setlength(int iLen1, int iLen2);
|
57
|
+
|
58
|
+
void setcontent( int iLow1, int iHigh1, int iLow2, int iHigh2, const T *pContent );
|
59
|
+
|
60
|
+
int getlowbound(int iBoundNum) const;
|
61
|
+
|
62
|
+
int gethighbound(int iBoundNum) const;
|
63
|
+
|
64
|
+
%extend {
|
65
|
+
double __getitem__(int x,int y) {
|
66
|
+
return $self->operator()(x,y);
|
67
|
+
}
|
68
|
+
void __setitem__(int x,int y, T val) {
|
69
|
+
$self->operator()(x,y)=val;
|
70
|
+
}
|
71
|
+
|
72
|
+
}
|
73
|
+
|
74
|
+
};
|
75
|
+
|
76
|
+
|
77
|
+
|
78
|
+
typedef template_1d_array<int> integer_1d_array;
|
79
|
+
typedef template_1d_array<double,true> real_1d_array;
|
80
|
+
typedef template_1d_array<complex> complex_1d_array;
|
81
|
+
typedef template_1d_array<bool> boolean_1d_array;
|
82
|
+
|
83
|
+
typedef template_2d_array<int> integer_2d_array;
|
84
|
+
typedef template_2d_array<double,true> real_2d_array;
|
85
|
+
typedef template_2d_array<complex> complex_2d_array;
|
86
|
+
typedef template_2d_array<bool> boolean_2d_array;
|
87
|
+
|
88
|
+
%template(Integer1dArray) template_1d_array<int>;
|
89
|
+
%template(Real1dArray) template_1d_array<double,true>;
|
90
|
+
%template(Boolean1dArray) template_1d_array<bool>;
|
91
|
+
%template(Integer2dArray) template_2d_array<int>;
|
92
|
+
%template(Real2dArray) template_2d_array<double,true>;
|
93
|
+
};
|
94
|
+
|
95
|
+
|
96
|
+
VALUE real1d_to_array(ap::real_1d_array *x);
|
97
|
+
void array_to_real1d(VALUE ary, ap::real_1d_array *x);
|
data/ext/correlation.i
ADDED
@@ -0,0 +1,24 @@
|
|
1
|
+
%{
|
2
|
+
#include "correlation.h"
|
3
|
+
#include "ialglib.h"
|
4
|
+
%}
|
5
|
+
|
6
|
+
// Complete wrapping and testing
|
7
|
+
|
8
|
+
double pearsoncorrelation(const ap::real_1d_array& x,
|
9
|
+
const ap::real_1d_array& y,
|
10
|
+
int n);
|
11
|
+
|
12
|
+
%rename(spearmanrankcorrelation) wrap_spearmanrankcorrelation;
|
13
|
+
%inline %{
|
14
|
+
double wrap_spearmanrankcorrelation(const ap::real_1d_array& x,
|
15
|
+
const ap::real_1d_array& y,
|
16
|
+
int n) {
|
17
|
+
ap::real_1d_array x1,y1;
|
18
|
+
x1=x;
|
19
|
+
y1=y;
|
20
|
+
return spearmanrankcorrelation(x1,y1,n);
|
21
|
+
|
22
|
+
}
|
23
|
+
%}
|
24
|
+
|
data/ext/extconf.rb
CHANGED
data/ext/logit.i
ADDED
@@ -0,0 +1,89 @@
|
|
1
|
+
%{
|
2
|
+
#include "logit.h"
|
3
|
+
%}
|
4
|
+
/**
|
5
|
+
* Logit
|
6
|
+
*/
|
7
|
+
|
8
|
+
%rename (LogitModel) logitmodel;
|
9
|
+
%rename (LogitMcState) logitmcstate;
|
10
|
+
%rename (MNLReport) mnlreport;
|
11
|
+
struct logitmodel
|
12
|
+
{
|
13
|
+
ap::real_1d_array w;
|
14
|
+
};
|
15
|
+
struct logitmcstate
|
16
|
+
{
|
17
|
+
bool brackt;
|
18
|
+
bool stage1;
|
19
|
+
int infoc;
|
20
|
+
double dg;
|
21
|
+
double dgm;
|
22
|
+
double dginit;
|
23
|
+
double dgtest;
|
24
|
+
double dgx;
|
25
|
+
double dgxm;
|
26
|
+
double dgy;
|
27
|
+
double dgym;
|
28
|
+
double finit;
|
29
|
+
double ftest1;
|
30
|
+
double fm;
|
31
|
+
double fx;
|
32
|
+
double fxm;
|
33
|
+
double fy;
|
34
|
+
double fym;
|
35
|
+
double stx;
|
36
|
+
double sty;
|
37
|
+
double stmin;
|
38
|
+
double stmax;
|
39
|
+
double width;
|
40
|
+
double width1;
|
41
|
+
double xtrapf;
|
42
|
+
};
|
43
|
+
struct mnlreport
|
44
|
+
{
|
45
|
+
int ngrad;
|
46
|
+
int nhess;
|
47
|
+
};
|
48
|
+
|
49
|
+
|
50
|
+
void mnltrainh(const ap::real_2d_array& xy,
|
51
|
+
int npoints,
|
52
|
+
int nvars,
|
53
|
+
int nclasses,
|
54
|
+
int& info,
|
55
|
+
logitmodel& lm,
|
56
|
+
mnlreport& rep);
|
57
|
+
|
58
|
+
|
59
|
+
%rename(mnlprocess) wrap_mnlprocess;
|
60
|
+
%inline %{
|
61
|
+
VALUE wrap_mnlprocess(logitmodel& lm,
|
62
|
+
const ap::real_1d_array& x) {
|
63
|
+
ap::real_1d_array y;
|
64
|
+
// y.setlength(lm.w(3));
|
65
|
+
mnlprocess(lm,x,y);
|
66
|
+
// std::cout << "Saliendo";
|
67
|
+
return real1d_to_array(&y);
|
68
|
+
}
|
69
|
+
%}
|
70
|
+
|
71
|
+
|
72
|
+
|
73
|
+
void mnlunpack(const logitmodel& lm,
|
74
|
+
ap::real_2d_array& a,
|
75
|
+
int& nvars,
|
76
|
+
int& nclasses);
|
77
|
+
|
78
|
+
void mnlpack(const ap::real_2d_array& a,
|
79
|
+
int nvars,
|
80
|
+
int nclasses,
|
81
|
+
logitmodel& lm);
|
82
|
+
|
83
|
+
|
84
|
+
void mnlserialize(const logitmodel& lm, ap::real_1d_array& ra, int& rlen);
|
85
|
+
|
86
|
+
void mnlcopy(const logitmodel& lm1, logitmodel& lm2);
|
87
|
+
|
88
|
+
void mnlunserialize(const ap::real_1d_array& ra, logitmodel& lm);
|
89
|
+
double mnlavgce(logitmodel& lm, const ap::real_2d_array& xy, int npoints);
|
data/lib/alglib.rb
CHANGED
@@ -1,3 +1,5 @@
|
|
1
|
+
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
|
2
|
+
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
|
1
3
|
require 'alglib_ext'
|
2
4
|
require 'matrix'
|
3
5
|
class Matrix
|
@@ -12,67 +14,32 @@ class Matrix
|
|
12
14
|
a_matrix
|
13
15
|
end
|
14
16
|
end
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
attr_reader :model, :cases, :ivars
|
19
|
-
# Creates a Linear Regression object based on a Matrix
|
20
|
-
# EXAMPLE:
|
21
|
-
# require 'alglib'
|
22
|
-
# matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
|
23
|
-
# lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
24
|
-
# => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
|
25
|
-
# lr.coeffs
|
26
|
-
# => [0.585714285714286, -0.0142857142857142]
|
17
|
+
require 'alglib/linearregression.rb'
|
18
|
+
require 'alglib/logit.rb'
|
19
|
+
require 'alglib/correlation.rb'
|
27
20
|
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
def constant
|
49
|
-
v=Alglib_ext::Real1dArray.new
|
50
|
-
Alglib_ext::lrunpack(@model,v, @ivars);
|
51
|
-
Alglib_ext.real1d_to_array(v).slice(-1)
|
52
|
-
end
|
53
|
-
# Array with b coeffs.
|
54
|
-
def coeffs
|
55
|
-
v=Alglib_ext::Real1dArray.new
|
56
|
-
Alglib_ext::lrunpack(@model,v, @ivars);
|
57
|
-
Alglib_ext.real1d_to_array(v)[0,v.size]
|
58
|
-
end
|
59
|
-
# Predict an y value based on an array of predictors.
|
60
|
-
def process(vector)
|
61
|
-
Alglib_ext::lrprocess(@model,vector);
|
62
|
-
end
|
63
|
-
# A wrapper for lm_report
|
64
|
-
def report
|
65
|
-
{:c=>@report.c,
|
66
|
-
:rmserror=>@report.rmserror,
|
67
|
-
:avgerror=>@report.avgerror,
|
68
|
-
:avgrelerror=>@report.avgrelerror,
|
69
|
-
:cvrmserror=>@report.cvrmserror,
|
70
|
-
:cvavgerror=>@report.cvavgerror,
|
71
|
-
:cvavgrelerror=>@report.cvavgrelerror,
|
72
|
-
:ncvdefects=>@report.ncvdefects,
|
73
|
-
:cvdefects=>@report.cvdefects
|
21
|
+
module Alglib
|
22
|
+
VERSION = '1.0.1'
|
23
|
+
|
24
|
+
def self.array_to_real1darray(a)
|
25
|
+
v=Alglib_ext::Real1dArray.new
|
26
|
+
Alglib_ext.array_to_real1d(a,v)
|
27
|
+
v
|
28
|
+
end
|
29
|
+
|
30
|
+
def self.real2darray_to_array(a)
|
31
|
+
lr=a.getlowbound(1)
|
32
|
+
lc=a.getlowbound(2)
|
33
|
+
hr=a.gethighbound(1)
|
34
|
+
hc=a.gethighbound(2)
|
35
|
+
out=[]
|
36
|
+
(lr..hr).each{|x|
|
37
|
+
row=[]
|
38
|
+
(lc..hc).each{|y|
|
39
|
+
row[y]=a[x,y]
|
74
40
|
}
|
75
|
-
|
76
|
-
|
41
|
+
out[x]=row
|
42
|
+
}
|
43
|
+
out
|
77
44
|
end
|
78
45
|
end
|
@@ -0,0 +1,26 @@
|
|
1
|
+
module Alglib
|
2
|
+
# Retrieves Pearson correlation for two arrays
|
3
|
+
def self.pearson_correlation(a,b)
|
4
|
+
raise ArgumentError "argument should be the same size" if a.size!=b.size
|
5
|
+
Alglib_ext::pearsoncorrelation(a,b,a.size)
|
6
|
+
end
|
7
|
+
# Retrieves Spearman ranked correlation for two arrays
|
8
|
+
# Equal to Pearson correlation for ranked data
|
9
|
+
|
10
|
+
def self.spearman_correlation(a,b)
|
11
|
+
raise ArgumentError "argument should be the same size" if a.size!=b.size
|
12
|
+
Alglib_ext::spearmanrankcorrelation(a,b,a.size)
|
13
|
+
end
|
14
|
+
# Retrieves significance for pearson correlation for one or two tails
|
15
|
+
# Returns a hash with keys :both, :left and :right
|
16
|
+
def self.pearson_correlation_significance(r,size)
|
17
|
+
out={}
|
18
|
+
out[:both], out[:left], out[:right] = Alglib_ext::pearsoncorrelationsignificance(r, size)
|
19
|
+
out
|
20
|
+
end
|
21
|
+
def self.spearman_correlation_significance(r,size)
|
22
|
+
out={}
|
23
|
+
out[:both], out[:left], out[:right] = Alglib_ext::spearmanrankcorrelationsignificance(r, size)
|
24
|
+
out
|
25
|
+
end
|
26
|
+
end
|
@@ -0,0 +1,63 @@
|
|
1
|
+
module Alglib
|
2
|
+
class LinearRegression
|
3
|
+
attr_reader :model, :cases, :ivars
|
4
|
+
# Creates a Linear Regression object based on a Matrix
|
5
|
+
# EXAMPLE:
|
6
|
+
# require 'alglib'
|
7
|
+
# matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
|
8
|
+
# lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
9
|
+
# => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
|
10
|
+
# lr.coeffs
|
11
|
+
# => [0.585714285714286, -0.0142857142857142]
|
12
|
+
|
13
|
+
def self.build_from_matrix(matrix)
|
14
|
+
raise "Argument should be a matrix" unless matrix.is_a? Matrix
|
15
|
+
cases=matrix.row_size
|
16
|
+
ivars=matrix.column_size-1
|
17
|
+
lm=Alglib_ext::LinearModel.new
|
18
|
+
lr=Alglib_ext::LrReport.new
|
19
|
+
am=matrix.to_alglib_matrix
|
20
|
+
Alglib_ext::lrbuild(am,cases,ivars,lm,lr)
|
21
|
+
self.new(lm,lr,cases,ivars)
|
22
|
+
end
|
23
|
+
# Use with care...
|
24
|
+
def initialize(lm,lr,cases,ivars)
|
25
|
+
@model=lm
|
26
|
+
@report=lr
|
27
|
+
@cases=cases
|
28
|
+
@ivars=ivars
|
29
|
+
end
|
30
|
+
# Constant value. a on
|
31
|
+
# y= a+b1x1+b2x2...
|
32
|
+
|
33
|
+
def constant
|
34
|
+
v=Alglib_ext::Real1dArray.new
|
35
|
+
Alglib_ext::lrunpack(@model,v, @ivars);
|
36
|
+
Alglib_ext.real1d_to_array(v).slice(-1)
|
37
|
+
end
|
38
|
+
# Array with b coeffs.
|
39
|
+
def coeffs
|
40
|
+
v=Alglib_ext::Real1dArray.new
|
41
|
+
Alglib_ext::lrunpack(@model,v, @ivars);
|
42
|
+
Alglib_ext.real1d_to_array(v)[0,v.size]
|
43
|
+
end
|
44
|
+
# Predict an y value based on an array of predictors.
|
45
|
+
def process(vector)
|
46
|
+
Alglib_ext::lrprocess(@model,vector);
|
47
|
+
end
|
48
|
+
# A wrapper for lm_report
|
49
|
+
def report
|
50
|
+
{:c=>@report.c,
|
51
|
+
:rmserror=>@report.rmserror,
|
52
|
+
:avgerror=>@report.avgerror,
|
53
|
+
:avgrelerror=>@report.avgrelerror,
|
54
|
+
:cvrmserror=>@report.cvrmserror,
|
55
|
+
:cvavgerror=>@report.cvavgerror,
|
56
|
+
:cvavgrelerror=>@report.cvavgrelerror,
|
57
|
+
:ncvdefects=>@report.ncvdefects,
|
58
|
+
:cvdefects=>@report.cvdefects
|
59
|
+
}
|
60
|
+
end
|
61
|
+
|
62
|
+
end
|
63
|
+
end
|
data/lib/alglib/logit.rb
ADDED
@@ -0,0 +1,42 @@
|
|
1
|
+
module Alglib
|
2
|
+
class Logit
|
3
|
+
attr_reader :model, :cases, :ivars
|
4
|
+
# Creates a Logit object based on a Matrix
|
5
|
+
# EXAMPLE:
|
6
|
+
# require 'alglib'
|
7
|
+
# matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
|
8
|
+
# lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
9
|
+
# => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
|
10
|
+
# lr.coeffs
|
11
|
+
# => [0.585714285714286, -0.0142857142857142]
|
12
|
+
|
13
|
+
def self.build_from_matrix(matrix)
|
14
|
+
raise "Argument should be a matrix" unless matrix.is_a? Matrix
|
15
|
+
cases=matrix.row_size
|
16
|
+
ivars=matrix.column_size-1
|
17
|
+
lm=Alglib_ext::LogitModel.new
|
18
|
+
lr=Alglib_ext::MNLReport.new
|
19
|
+
nclasses=matrix.column(matrix.column_size-1).to_a.uniq.size
|
20
|
+
am=matrix.to_alglib_matrix
|
21
|
+
Alglib_ext::mnltrainh(am,cases,ivars,nclasses,lm,lr)
|
22
|
+
self.new(lm,lr,cases,ivars,nclasses)
|
23
|
+
end
|
24
|
+
# Use with care...
|
25
|
+
def initialize(lm,lr,cases,ivars,nclasses)
|
26
|
+
@model=lm
|
27
|
+
@report=lr
|
28
|
+
@cases=cases
|
29
|
+
@ivars=ivars
|
30
|
+
@nclasses=nclasses
|
31
|
+
end
|
32
|
+
def process(vector)
|
33
|
+
Alglib_ext.mnlprocess(@model,vector)
|
34
|
+
end
|
35
|
+
def unpack
|
36
|
+
a2d=Alglib_ext::Real2dArray.new
|
37
|
+
Alglib_ext::mnlunpack(@model, a2d,@ivars,@nclasses);
|
38
|
+
Alglib.real2darray_to_array(a2d)
|
39
|
+
end
|
40
|
+
|
41
|
+
end
|
42
|
+
end
|