alglib 1.0.0 → 1.0.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +4 -0
- data/Manifest.txt +10 -0
- data/README.txt +1 -1
- data/Rakefile +2 -1
- data/ext/Rakefile +5 -3
- data/ext/alglib.i +11 -148
- data/ext/alglib/alglib.cpp +2401 -46
- data/ext/alglib/alglib_util.cpp +10 -1
- data/ext/alglib/alglib_util.h +3 -1
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +1 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +27 -60
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +45 -9
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- metadata +17 -3
data/ext/alglib/alglib_util.cpp
CHANGED
@@ -1,5 +1,5 @@
|
|
1
1
|
#include "alglib_util.h"
|
2
|
-
|
2
|
+
#include <iostream>
|
3
3
|
|
4
4
|
VALUE real1d_to_array(ap::real_1d_array *x) {
|
5
5
|
VALUE ar=rb_ary_new2(x->gethighbound()-x->getlowbound());
|
@@ -8,3 +8,12 @@ VALUE real1d_to_array(ap::real_1d_array *x) {
|
|
8
8
|
}
|
9
9
|
return ar;
|
10
10
|
}
|
11
|
+
|
12
|
+
void array_to_real1d(VALUE ary, ap::real_1d_array *x) {
|
13
|
+
x->setlength(RARRAY_LEN(ary));
|
14
|
+
//std::cout << "Largo:" << RARRAY_LEN(ary) << "\n";
|
15
|
+
for(long i=0;i<RARRAY_LEN(ary);i++) {
|
16
|
+
// std::cout << "i:" << i << "=" << rb_num2dbl(RARRAY_PTR(ary)[i]) <<"\n";
|
17
|
+
x->operator()(i)=rb_num2dbl(RARRAY_PTR(ary)[i]);
|
18
|
+
}
|
19
|
+
}
|
data/ext/alglib/alglib_util.h
CHANGED
data/ext/ap.i
ADDED
@@ -0,0 +1,97 @@
|
|
1
|
+
%typemap(in) ap::real_1d_array {
|
2
|
+
$1 = new ap::real_1d_array();
|
3
|
+
$1->setlength(RARRAY_LEN($input));
|
4
|
+
for(long i=0;i<RARRAY_LEN($input);i++) {
|
5
|
+
$1->operator()(i)=rb_num2dbl(RARRAY_PTR($input)[i]);
|
6
|
+
}
|
7
|
+
}
|
8
|
+
|
9
|
+
|
10
|
+
%apply ap::real_1d_array {ap::real_1d_array const &};
|
11
|
+
|
12
|
+
namespace ap {
|
13
|
+
/********************************************************************
|
14
|
+
Template of a dynamical one-dimensional array
|
15
|
+
********************************************************************/
|
16
|
+
template<class T, bool Aligned = false>
|
17
|
+
class template_1d_array
|
18
|
+
{
|
19
|
+
public:
|
20
|
+
template_1d_array();
|
21
|
+
~template_1d_array();
|
22
|
+
template_1d_array(const template_1d_array &rhs);
|
23
|
+
%extend {
|
24
|
+
T __getitem__(int i) {
|
25
|
+
return $self->operator()(i);
|
26
|
+
};
|
27
|
+
T __setitem__(int i, T v) {
|
28
|
+
return $self->operator()(i)=v;
|
29
|
+
};
|
30
|
+
int size() {
|
31
|
+
return $self->gethighbound()-$self->getlowbound()+1;
|
32
|
+
}
|
33
|
+
}
|
34
|
+
|
35
|
+
void setbounds( int iLow, int iHigh );
|
36
|
+
void setlength(int iLen);
|
37
|
+
void setcontent( int iLow, int iHigh, const T *pContent );
|
38
|
+
T* getcontent();
|
39
|
+
int getlowbound(int iBoundNum = 0);
|
40
|
+
int gethighbound(int iBoundNum = 0);
|
41
|
+
};
|
42
|
+
|
43
|
+
template<class T, bool Aligned = false>
|
44
|
+
class template_2d_array
|
45
|
+
{
|
46
|
+
public:
|
47
|
+
template_2d_array();
|
48
|
+
|
49
|
+
~template_2d_array();
|
50
|
+
|
51
|
+
template_2d_array(const template_2d_array &rhs);
|
52
|
+
T& operator()(int i1, int i2);
|
53
|
+
|
54
|
+
void setbounds( int iLow1, int iHigh1, int iLow2, int iHigh2 );
|
55
|
+
|
56
|
+
void setlength(int iLen1, int iLen2);
|
57
|
+
|
58
|
+
void setcontent( int iLow1, int iHigh1, int iLow2, int iHigh2, const T *pContent );
|
59
|
+
|
60
|
+
int getlowbound(int iBoundNum) const;
|
61
|
+
|
62
|
+
int gethighbound(int iBoundNum) const;
|
63
|
+
|
64
|
+
%extend {
|
65
|
+
double __getitem__(int x,int y) {
|
66
|
+
return $self->operator()(x,y);
|
67
|
+
}
|
68
|
+
void __setitem__(int x,int y, T val) {
|
69
|
+
$self->operator()(x,y)=val;
|
70
|
+
}
|
71
|
+
|
72
|
+
}
|
73
|
+
|
74
|
+
};
|
75
|
+
|
76
|
+
|
77
|
+
|
78
|
+
typedef template_1d_array<int> integer_1d_array;
|
79
|
+
typedef template_1d_array<double,true> real_1d_array;
|
80
|
+
typedef template_1d_array<complex> complex_1d_array;
|
81
|
+
typedef template_1d_array<bool> boolean_1d_array;
|
82
|
+
|
83
|
+
typedef template_2d_array<int> integer_2d_array;
|
84
|
+
typedef template_2d_array<double,true> real_2d_array;
|
85
|
+
typedef template_2d_array<complex> complex_2d_array;
|
86
|
+
typedef template_2d_array<bool> boolean_2d_array;
|
87
|
+
|
88
|
+
%template(Integer1dArray) template_1d_array<int>;
|
89
|
+
%template(Real1dArray) template_1d_array<double,true>;
|
90
|
+
%template(Boolean1dArray) template_1d_array<bool>;
|
91
|
+
%template(Integer2dArray) template_2d_array<int>;
|
92
|
+
%template(Real2dArray) template_2d_array<double,true>;
|
93
|
+
};
|
94
|
+
|
95
|
+
|
96
|
+
VALUE real1d_to_array(ap::real_1d_array *x);
|
97
|
+
void array_to_real1d(VALUE ary, ap::real_1d_array *x);
|
data/ext/correlation.i
ADDED
@@ -0,0 +1,24 @@
|
|
1
|
+
%{
|
2
|
+
#include "correlation.h"
|
3
|
+
#include "ialglib.h"
|
4
|
+
%}
|
5
|
+
|
6
|
+
// Complete wrapping and testing
|
7
|
+
|
8
|
+
double pearsoncorrelation(const ap::real_1d_array& x,
|
9
|
+
const ap::real_1d_array& y,
|
10
|
+
int n);
|
11
|
+
|
12
|
+
%rename(spearmanrankcorrelation) wrap_spearmanrankcorrelation;
|
13
|
+
%inline %{
|
14
|
+
double wrap_spearmanrankcorrelation(const ap::real_1d_array& x,
|
15
|
+
const ap::real_1d_array& y,
|
16
|
+
int n) {
|
17
|
+
ap::real_1d_array x1,y1;
|
18
|
+
x1=x;
|
19
|
+
y1=y;
|
20
|
+
return spearmanrankcorrelation(x1,y1,n);
|
21
|
+
|
22
|
+
}
|
23
|
+
%}
|
24
|
+
|
data/ext/extconf.rb
CHANGED
data/ext/logit.i
ADDED
@@ -0,0 +1,89 @@
|
|
1
|
+
%{
|
2
|
+
#include "logit.h"
|
3
|
+
%}
|
4
|
+
/**
|
5
|
+
* Logit
|
6
|
+
*/
|
7
|
+
|
8
|
+
%rename (LogitModel) logitmodel;
|
9
|
+
%rename (LogitMcState) logitmcstate;
|
10
|
+
%rename (MNLReport) mnlreport;
|
11
|
+
struct logitmodel
|
12
|
+
{
|
13
|
+
ap::real_1d_array w;
|
14
|
+
};
|
15
|
+
struct logitmcstate
|
16
|
+
{
|
17
|
+
bool brackt;
|
18
|
+
bool stage1;
|
19
|
+
int infoc;
|
20
|
+
double dg;
|
21
|
+
double dgm;
|
22
|
+
double dginit;
|
23
|
+
double dgtest;
|
24
|
+
double dgx;
|
25
|
+
double dgxm;
|
26
|
+
double dgy;
|
27
|
+
double dgym;
|
28
|
+
double finit;
|
29
|
+
double ftest1;
|
30
|
+
double fm;
|
31
|
+
double fx;
|
32
|
+
double fxm;
|
33
|
+
double fy;
|
34
|
+
double fym;
|
35
|
+
double stx;
|
36
|
+
double sty;
|
37
|
+
double stmin;
|
38
|
+
double stmax;
|
39
|
+
double width;
|
40
|
+
double width1;
|
41
|
+
double xtrapf;
|
42
|
+
};
|
43
|
+
struct mnlreport
|
44
|
+
{
|
45
|
+
int ngrad;
|
46
|
+
int nhess;
|
47
|
+
};
|
48
|
+
|
49
|
+
|
50
|
+
void mnltrainh(const ap::real_2d_array& xy,
|
51
|
+
int npoints,
|
52
|
+
int nvars,
|
53
|
+
int nclasses,
|
54
|
+
int& info,
|
55
|
+
logitmodel& lm,
|
56
|
+
mnlreport& rep);
|
57
|
+
|
58
|
+
|
59
|
+
%rename(mnlprocess) wrap_mnlprocess;
|
60
|
+
%inline %{
|
61
|
+
VALUE wrap_mnlprocess(logitmodel& lm,
|
62
|
+
const ap::real_1d_array& x) {
|
63
|
+
ap::real_1d_array y;
|
64
|
+
// y.setlength(lm.w(3));
|
65
|
+
mnlprocess(lm,x,y);
|
66
|
+
// std::cout << "Saliendo";
|
67
|
+
return real1d_to_array(&y);
|
68
|
+
}
|
69
|
+
%}
|
70
|
+
|
71
|
+
|
72
|
+
|
73
|
+
void mnlunpack(const logitmodel& lm,
|
74
|
+
ap::real_2d_array& a,
|
75
|
+
int& nvars,
|
76
|
+
int& nclasses);
|
77
|
+
|
78
|
+
void mnlpack(const ap::real_2d_array& a,
|
79
|
+
int nvars,
|
80
|
+
int nclasses,
|
81
|
+
logitmodel& lm);
|
82
|
+
|
83
|
+
|
84
|
+
void mnlserialize(const logitmodel& lm, ap::real_1d_array& ra, int& rlen);
|
85
|
+
|
86
|
+
void mnlcopy(const logitmodel& lm1, logitmodel& lm2);
|
87
|
+
|
88
|
+
void mnlunserialize(const ap::real_1d_array& ra, logitmodel& lm);
|
89
|
+
double mnlavgce(logitmodel& lm, const ap::real_2d_array& xy, int npoints);
|
data/lib/alglib.rb
CHANGED
@@ -1,3 +1,5 @@
|
|
1
|
+
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
|
2
|
+
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
|
1
3
|
require 'alglib_ext'
|
2
4
|
require 'matrix'
|
3
5
|
class Matrix
|
@@ -12,67 +14,32 @@ class Matrix
|
|
12
14
|
a_matrix
|
13
15
|
end
|
14
16
|
end
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
attr_reader :model, :cases, :ivars
|
19
|
-
# Creates a Linear Regression object based on a Matrix
|
20
|
-
# EXAMPLE:
|
21
|
-
# require 'alglib'
|
22
|
-
# matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
|
23
|
-
# lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
24
|
-
# => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
|
25
|
-
# lr.coeffs
|
26
|
-
# => [0.585714285714286, -0.0142857142857142]
|
17
|
+
require 'alglib/linearregression.rb'
|
18
|
+
require 'alglib/logit.rb'
|
19
|
+
require 'alglib/correlation.rb'
|
27
20
|
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
def constant
|
49
|
-
v=Alglib_ext::Real1dArray.new
|
50
|
-
Alglib_ext::lrunpack(@model,v, @ivars);
|
51
|
-
Alglib_ext.real1d_to_array(v).slice(-1)
|
52
|
-
end
|
53
|
-
# Array with b coeffs.
|
54
|
-
def coeffs
|
55
|
-
v=Alglib_ext::Real1dArray.new
|
56
|
-
Alglib_ext::lrunpack(@model,v, @ivars);
|
57
|
-
Alglib_ext.real1d_to_array(v)[0,v.size]
|
58
|
-
end
|
59
|
-
# Predict an y value based on an array of predictors.
|
60
|
-
def process(vector)
|
61
|
-
Alglib_ext::lrprocess(@model,vector);
|
62
|
-
end
|
63
|
-
# A wrapper for lm_report
|
64
|
-
def report
|
65
|
-
{:c=>@report.c,
|
66
|
-
:rmserror=>@report.rmserror,
|
67
|
-
:avgerror=>@report.avgerror,
|
68
|
-
:avgrelerror=>@report.avgrelerror,
|
69
|
-
:cvrmserror=>@report.cvrmserror,
|
70
|
-
:cvavgerror=>@report.cvavgerror,
|
71
|
-
:cvavgrelerror=>@report.cvavgrelerror,
|
72
|
-
:ncvdefects=>@report.ncvdefects,
|
73
|
-
:cvdefects=>@report.cvdefects
|
21
|
+
module Alglib
|
22
|
+
VERSION = '1.0.1'
|
23
|
+
|
24
|
+
def self.array_to_real1darray(a)
|
25
|
+
v=Alglib_ext::Real1dArray.new
|
26
|
+
Alglib_ext.array_to_real1d(a,v)
|
27
|
+
v
|
28
|
+
end
|
29
|
+
|
30
|
+
def self.real2darray_to_array(a)
|
31
|
+
lr=a.getlowbound(1)
|
32
|
+
lc=a.getlowbound(2)
|
33
|
+
hr=a.gethighbound(1)
|
34
|
+
hc=a.gethighbound(2)
|
35
|
+
out=[]
|
36
|
+
(lr..hr).each{|x|
|
37
|
+
row=[]
|
38
|
+
(lc..hc).each{|y|
|
39
|
+
row[y]=a[x,y]
|
74
40
|
}
|
75
|
-
|
76
|
-
|
41
|
+
out[x]=row
|
42
|
+
}
|
43
|
+
out
|
77
44
|
end
|
78
45
|
end
|
@@ -0,0 +1,26 @@
|
|
1
|
+
module Alglib
|
2
|
+
# Retrieves Pearson correlation for two arrays
|
3
|
+
def self.pearson_correlation(a,b)
|
4
|
+
raise ArgumentError "argument should be the same size" if a.size!=b.size
|
5
|
+
Alglib_ext::pearsoncorrelation(a,b,a.size)
|
6
|
+
end
|
7
|
+
# Retrieves Spearman ranked correlation for two arrays
|
8
|
+
# Equal to Pearson correlation for ranked data
|
9
|
+
|
10
|
+
def self.spearman_correlation(a,b)
|
11
|
+
raise ArgumentError "argument should be the same size" if a.size!=b.size
|
12
|
+
Alglib_ext::spearmanrankcorrelation(a,b,a.size)
|
13
|
+
end
|
14
|
+
# Retrieves significance for pearson correlation for one or two tails
|
15
|
+
# Returns a hash with keys :both, :left and :right
|
16
|
+
def self.pearson_correlation_significance(r,size)
|
17
|
+
out={}
|
18
|
+
out[:both], out[:left], out[:right] = Alglib_ext::pearsoncorrelationsignificance(r, size)
|
19
|
+
out
|
20
|
+
end
|
21
|
+
def self.spearman_correlation_significance(r,size)
|
22
|
+
out={}
|
23
|
+
out[:both], out[:left], out[:right] = Alglib_ext::spearmanrankcorrelationsignificance(r, size)
|
24
|
+
out
|
25
|
+
end
|
26
|
+
end
|
@@ -0,0 +1,63 @@
|
|
1
|
+
module Alglib
|
2
|
+
class LinearRegression
|
3
|
+
attr_reader :model, :cases, :ivars
|
4
|
+
# Creates a Linear Regression object based on a Matrix
|
5
|
+
# EXAMPLE:
|
6
|
+
# require 'alglib'
|
7
|
+
# matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
|
8
|
+
# lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
9
|
+
# => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
|
10
|
+
# lr.coeffs
|
11
|
+
# => [0.585714285714286, -0.0142857142857142]
|
12
|
+
|
13
|
+
def self.build_from_matrix(matrix)
|
14
|
+
raise "Argument should be a matrix" unless matrix.is_a? Matrix
|
15
|
+
cases=matrix.row_size
|
16
|
+
ivars=matrix.column_size-1
|
17
|
+
lm=Alglib_ext::LinearModel.new
|
18
|
+
lr=Alglib_ext::LrReport.new
|
19
|
+
am=matrix.to_alglib_matrix
|
20
|
+
Alglib_ext::lrbuild(am,cases,ivars,lm,lr)
|
21
|
+
self.new(lm,lr,cases,ivars)
|
22
|
+
end
|
23
|
+
# Use with care...
|
24
|
+
def initialize(lm,lr,cases,ivars)
|
25
|
+
@model=lm
|
26
|
+
@report=lr
|
27
|
+
@cases=cases
|
28
|
+
@ivars=ivars
|
29
|
+
end
|
30
|
+
# Constant value. a on
|
31
|
+
# y= a+b1x1+b2x2...
|
32
|
+
|
33
|
+
def constant
|
34
|
+
v=Alglib_ext::Real1dArray.new
|
35
|
+
Alglib_ext::lrunpack(@model,v, @ivars);
|
36
|
+
Alglib_ext.real1d_to_array(v).slice(-1)
|
37
|
+
end
|
38
|
+
# Array with b coeffs.
|
39
|
+
def coeffs
|
40
|
+
v=Alglib_ext::Real1dArray.new
|
41
|
+
Alglib_ext::lrunpack(@model,v, @ivars);
|
42
|
+
Alglib_ext.real1d_to_array(v)[0,v.size]
|
43
|
+
end
|
44
|
+
# Predict an y value based on an array of predictors.
|
45
|
+
def process(vector)
|
46
|
+
Alglib_ext::lrprocess(@model,vector);
|
47
|
+
end
|
48
|
+
# A wrapper for lm_report
|
49
|
+
def report
|
50
|
+
{:c=>@report.c,
|
51
|
+
:rmserror=>@report.rmserror,
|
52
|
+
:avgerror=>@report.avgerror,
|
53
|
+
:avgrelerror=>@report.avgrelerror,
|
54
|
+
:cvrmserror=>@report.cvrmserror,
|
55
|
+
:cvavgerror=>@report.cvavgerror,
|
56
|
+
:cvavgrelerror=>@report.cvavgrelerror,
|
57
|
+
:ncvdefects=>@report.ncvdefects,
|
58
|
+
:cvdefects=>@report.cvdefects
|
59
|
+
}
|
60
|
+
end
|
61
|
+
|
62
|
+
end
|
63
|
+
end
|
data/lib/alglib/logit.rb
ADDED
@@ -0,0 +1,42 @@
|
|
1
|
+
module Alglib
|
2
|
+
class Logit
|
3
|
+
attr_reader :model, :cases, :ivars
|
4
|
+
# Creates a Logit object based on a Matrix
|
5
|
+
# EXAMPLE:
|
6
|
+
# require 'alglib'
|
7
|
+
# matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
|
8
|
+
# lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
9
|
+
# => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
|
10
|
+
# lr.coeffs
|
11
|
+
# => [0.585714285714286, -0.0142857142857142]
|
12
|
+
|
13
|
+
def self.build_from_matrix(matrix)
|
14
|
+
raise "Argument should be a matrix" unless matrix.is_a? Matrix
|
15
|
+
cases=matrix.row_size
|
16
|
+
ivars=matrix.column_size-1
|
17
|
+
lm=Alglib_ext::LogitModel.new
|
18
|
+
lr=Alglib_ext::MNLReport.new
|
19
|
+
nclasses=matrix.column(matrix.column_size-1).to_a.uniq.size
|
20
|
+
am=matrix.to_alglib_matrix
|
21
|
+
Alglib_ext::mnltrainh(am,cases,ivars,nclasses,lm,lr)
|
22
|
+
self.new(lm,lr,cases,ivars,nclasses)
|
23
|
+
end
|
24
|
+
# Use with care...
|
25
|
+
def initialize(lm,lr,cases,ivars,nclasses)
|
26
|
+
@model=lm
|
27
|
+
@report=lr
|
28
|
+
@cases=cases
|
29
|
+
@ivars=ivars
|
30
|
+
@nclasses=nclasses
|
31
|
+
end
|
32
|
+
def process(vector)
|
33
|
+
Alglib_ext.mnlprocess(@model,vector)
|
34
|
+
end
|
35
|
+
def unpack
|
36
|
+
a2d=Alglib_ext::Real2dArray.new
|
37
|
+
Alglib_ext::mnlunpack(@model, a2d,@ivars,@nclasses);
|
38
|
+
Alglib.real2darray_to_array(a2d)
|
39
|
+
end
|
40
|
+
|
41
|
+
end
|
42
|
+
end
|