alglib 1.0.0 → 1.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,5 +1,5 @@
1
1
  #include "alglib_util.h"
2
-
2
+ #include <iostream>
3
3
 
4
4
  VALUE real1d_to_array(ap::real_1d_array *x) {
5
5
  VALUE ar=rb_ary_new2(x->gethighbound()-x->getlowbound());
@@ -8,3 +8,12 @@ VALUE real1d_to_array(ap::real_1d_array *x) {
8
8
  }
9
9
  return ar;
10
10
  }
11
+
12
+ void array_to_real1d(VALUE ary, ap::real_1d_array *x) {
13
+ x->setlength(RARRAY_LEN(ary));
14
+ //std::cout << "Largo:" << RARRAY_LEN(ary) << "\n";
15
+ for(long i=0;i<RARRAY_LEN(ary);i++) {
16
+ // std::cout << "i:" << i << "=" << rb_num2dbl(RARRAY_PTR(ary)[i]) <<"\n";
17
+ x->operator()(i)=rb_num2dbl(RARRAY_PTR(ary)[i]);
18
+ }
19
+ }
@@ -4,9 +4,11 @@
4
4
 
5
5
  #include "ap.h"
6
6
  #include "linreg.h"
7
+ #include "logit.h"
8
+
7
9
  #include "ruby.h"
8
10
 
9
11
  VALUE real1d_to_array(ap::real_1d_array *x);
10
-
12
+ void array_to_real1d(VALUE ary, ap::real_1d_array *x);
11
13
 
12
14
  #endif
@@ -0,0 +1,97 @@
1
+ %typemap(in) ap::real_1d_array {
2
+ $1 = new ap::real_1d_array();
3
+ $1->setlength(RARRAY_LEN($input));
4
+ for(long i=0;i<RARRAY_LEN($input);i++) {
5
+ $1->operator()(i)=rb_num2dbl(RARRAY_PTR($input)[i]);
6
+ }
7
+ }
8
+
9
+
10
+ %apply ap::real_1d_array {ap::real_1d_array const &};
11
+
12
+ namespace ap {
13
+ /********************************************************************
14
+ Template of a dynamical one-dimensional array
15
+ ********************************************************************/
16
+ template<class T, bool Aligned = false>
17
+ class template_1d_array
18
+ {
19
+ public:
20
+ template_1d_array();
21
+ ~template_1d_array();
22
+ template_1d_array(const template_1d_array &rhs);
23
+ %extend {
24
+ T __getitem__(int i) {
25
+ return $self->operator()(i);
26
+ };
27
+ T __setitem__(int i, T v) {
28
+ return $self->operator()(i)=v;
29
+ };
30
+ int size() {
31
+ return $self->gethighbound()-$self->getlowbound()+1;
32
+ }
33
+ }
34
+
35
+ void setbounds( int iLow, int iHigh );
36
+ void setlength(int iLen);
37
+ void setcontent( int iLow, int iHigh, const T *pContent );
38
+ T* getcontent();
39
+ int getlowbound(int iBoundNum = 0);
40
+ int gethighbound(int iBoundNum = 0);
41
+ };
42
+
43
+ template<class T, bool Aligned = false>
44
+ class template_2d_array
45
+ {
46
+ public:
47
+ template_2d_array();
48
+
49
+ ~template_2d_array();
50
+
51
+ template_2d_array(const template_2d_array &rhs);
52
+ T& operator()(int i1, int i2);
53
+
54
+ void setbounds( int iLow1, int iHigh1, int iLow2, int iHigh2 );
55
+
56
+ void setlength(int iLen1, int iLen2);
57
+
58
+ void setcontent( int iLow1, int iHigh1, int iLow2, int iHigh2, const T *pContent );
59
+
60
+ int getlowbound(int iBoundNum) const;
61
+
62
+ int gethighbound(int iBoundNum) const;
63
+
64
+ %extend {
65
+ double __getitem__(int x,int y) {
66
+ return $self->operator()(x,y);
67
+ }
68
+ void __setitem__(int x,int y, T val) {
69
+ $self->operator()(x,y)=val;
70
+ }
71
+
72
+ }
73
+
74
+ };
75
+
76
+
77
+
78
+ typedef template_1d_array<int> integer_1d_array;
79
+ typedef template_1d_array<double,true> real_1d_array;
80
+ typedef template_1d_array<complex> complex_1d_array;
81
+ typedef template_1d_array<bool> boolean_1d_array;
82
+
83
+ typedef template_2d_array<int> integer_2d_array;
84
+ typedef template_2d_array<double,true> real_2d_array;
85
+ typedef template_2d_array<complex> complex_2d_array;
86
+ typedef template_2d_array<bool> boolean_2d_array;
87
+
88
+ %template(Integer1dArray) template_1d_array<int>;
89
+ %template(Real1dArray) template_1d_array<double,true>;
90
+ %template(Boolean1dArray) template_1d_array<bool>;
91
+ %template(Integer2dArray) template_2d_array<int>;
92
+ %template(Real2dArray) template_2d_array<double,true>;
93
+ };
94
+
95
+
96
+ VALUE real1d_to_array(ap::real_1d_array *x);
97
+ void array_to_real1d(VALUE ary, ap::real_1d_array *x);
@@ -0,0 +1,24 @@
1
+ %{
2
+ #include "correlation.h"
3
+ #include "ialglib.h"
4
+ %}
5
+
6
+ // Complete wrapping and testing
7
+
8
+ double pearsoncorrelation(const ap::real_1d_array& x,
9
+ const ap::real_1d_array& y,
10
+ int n);
11
+
12
+ %rename(spearmanrankcorrelation) wrap_spearmanrankcorrelation;
13
+ %inline %{
14
+ double wrap_spearmanrankcorrelation(const ap::real_1d_array& x,
15
+ const ap::real_1d_array& y,
16
+ int n) {
17
+ ap::real_1d_array x1,y1;
18
+ x1=x;
19
+ y1=y;
20
+ return spearmanrankcorrelation(x1,y1,n);
21
+
22
+ }
23
+ %}
24
+
@@ -1,4 +1,5 @@
1
1
  require 'mkmf'
2
+ $CFLAGS+=" -DEBUG "
2
3
  $libs = append_library($libs, "supc++")
3
4
  $libs = append_library($libs, "stdc++")
4
5
  create_makefile("alglib_ext","alglib")
@@ -0,0 +1,89 @@
1
+ %{
2
+ #include "logit.h"
3
+ %}
4
+ /**
5
+ * Logit
6
+ */
7
+
8
+ %rename (LogitModel) logitmodel;
9
+ %rename (LogitMcState) logitmcstate;
10
+ %rename (MNLReport) mnlreport;
11
+ struct logitmodel
12
+ {
13
+ ap::real_1d_array w;
14
+ };
15
+ struct logitmcstate
16
+ {
17
+ bool brackt;
18
+ bool stage1;
19
+ int infoc;
20
+ double dg;
21
+ double dgm;
22
+ double dginit;
23
+ double dgtest;
24
+ double dgx;
25
+ double dgxm;
26
+ double dgy;
27
+ double dgym;
28
+ double finit;
29
+ double ftest1;
30
+ double fm;
31
+ double fx;
32
+ double fxm;
33
+ double fy;
34
+ double fym;
35
+ double stx;
36
+ double sty;
37
+ double stmin;
38
+ double stmax;
39
+ double width;
40
+ double width1;
41
+ double xtrapf;
42
+ };
43
+ struct mnlreport
44
+ {
45
+ int ngrad;
46
+ int nhess;
47
+ };
48
+
49
+
50
+ void mnltrainh(const ap::real_2d_array& xy,
51
+ int npoints,
52
+ int nvars,
53
+ int nclasses,
54
+ int& info,
55
+ logitmodel& lm,
56
+ mnlreport& rep);
57
+
58
+
59
+ %rename(mnlprocess) wrap_mnlprocess;
60
+ %inline %{
61
+ VALUE wrap_mnlprocess(logitmodel& lm,
62
+ const ap::real_1d_array& x) {
63
+ ap::real_1d_array y;
64
+ // y.setlength(lm.w(3));
65
+ mnlprocess(lm,x,y);
66
+ // std::cout << "Saliendo";
67
+ return real1d_to_array(&y);
68
+ }
69
+ %}
70
+
71
+
72
+
73
+ void mnlunpack(const logitmodel& lm,
74
+ ap::real_2d_array& a,
75
+ int& nvars,
76
+ int& nclasses);
77
+
78
+ void mnlpack(const ap::real_2d_array& a,
79
+ int nvars,
80
+ int nclasses,
81
+ logitmodel& lm);
82
+
83
+
84
+ void mnlserialize(const logitmodel& lm, ap::real_1d_array& ra, int& rlen);
85
+
86
+ void mnlcopy(const logitmodel& lm1, logitmodel& lm2);
87
+
88
+ void mnlunserialize(const ap::real_1d_array& ra, logitmodel& lm);
89
+ double mnlavgce(logitmodel& lm, const ap::real_2d_array& xy, int npoints);
@@ -1,3 +1,5 @@
1
+ $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
2
+ $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
1
3
  require 'alglib_ext'
2
4
  require 'matrix'
3
5
  class Matrix
@@ -12,67 +14,32 @@ class Matrix
12
14
  a_matrix
13
15
  end
14
16
  end
15
- module Alglib
16
- VERSION = '1.0.0'
17
- class LinearRegression
18
- attr_reader :model, :cases, :ivars
19
- # Creates a Linear Regression object based on a Matrix
20
- # EXAMPLE:
21
- # require 'alglib'
22
- # matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
23
- # lr=Alglib::LinearRegression.build_from_matrix(matrix)
24
- # => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
25
- # lr.coeffs
26
- # => [0.585714285714286, -0.0142857142857142]
17
+ require 'alglib/linearregression.rb'
18
+ require 'alglib/logit.rb'
19
+ require 'alglib/correlation.rb'
27
20
 
28
- def self.build_from_matrix(matrix)
29
- raise "Argument should be a matrix" unless matrix.is_a? Matrix
30
- cases=matrix.row_size
31
- ivars=matrix.column_size-1
32
- lm=Alglib_ext::LinearModel.new
33
- lr=Alglib_ext::LrReport.new
34
- am=matrix.to_alglib_matrix
35
- Alglib_ext::lrbuild(am,cases,ivars,lm,lr)
36
- self.new(lm,lr,cases,ivars)
37
- end
38
- # Use with care...
39
- def initialize(lm,lr,cases,ivars)
40
- @model=lm
41
- @report=lr
42
- @cases=cases
43
- @ivars=ivars
44
- end
45
- # Constant value. a on
46
- # y= a+b1x1+b2x2...
47
-
48
- def constant
49
- v=Alglib_ext::Real1dArray.new
50
- Alglib_ext::lrunpack(@model,v, @ivars);
51
- Alglib_ext.real1d_to_array(v).slice(-1)
52
- end
53
- # Array with b coeffs.
54
- def coeffs
55
- v=Alglib_ext::Real1dArray.new
56
- Alglib_ext::lrunpack(@model,v, @ivars);
57
- Alglib_ext.real1d_to_array(v)[0,v.size]
58
- end
59
- # Predict an y value based on an array of predictors.
60
- def process(vector)
61
- Alglib_ext::lrprocess(@model,vector);
62
- end
63
- # A wrapper for lm_report
64
- def report
65
- {:c=>@report.c,
66
- :rmserror=>@report.rmserror,
67
- :avgerror=>@report.avgerror,
68
- :avgrelerror=>@report.avgrelerror,
69
- :cvrmserror=>@report.cvrmserror,
70
- :cvavgerror=>@report.cvavgerror,
71
- :cvavgrelerror=>@report.cvavgrelerror,
72
- :ncvdefects=>@report.ncvdefects,
73
- :cvdefects=>@report.cvdefects
21
+ module Alglib
22
+ VERSION = '1.0.1'
23
+
24
+ def self.array_to_real1darray(a)
25
+ v=Alglib_ext::Real1dArray.new
26
+ Alglib_ext.array_to_real1d(a,v)
27
+ v
28
+ end
29
+
30
+ def self.real2darray_to_array(a)
31
+ lr=a.getlowbound(1)
32
+ lc=a.getlowbound(2)
33
+ hr=a.gethighbound(1)
34
+ hc=a.gethighbound(2)
35
+ out=[]
36
+ (lr..hr).each{|x|
37
+ row=[]
38
+ (lc..hc).each{|y|
39
+ row[y]=a[x,y]
74
40
  }
75
- end
76
-
41
+ out[x]=row
42
+ }
43
+ out
77
44
  end
78
45
  end
@@ -0,0 +1,26 @@
1
+ module Alglib
2
+ # Retrieves Pearson correlation for two arrays
3
+ def self.pearson_correlation(a,b)
4
+ raise ArgumentError "argument should be the same size" if a.size!=b.size
5
+ Alglib_ext::pearsoncorrelation(a,b,a.size)
6
+ end
7
+ # Retrieves Spearman ranked correlation for two arrays
8
+ # Equal to Pearson correlation for ranked data
9
+
10
+ def self.spearman_correlation(a,b)
11
+ raise ArgumentError "argument should be the same size" if a.size!=b.size
12
+ Alglib_ext::spearmanrankcorrelation(a,b,a.size)
13
+ end
14
+ # Retrieves significance for pearson correlation for one or two tails
15
+ # Returns a hash with keys :both, :left and :right
16
+ def self.pearson_correlation_significance(r,size)
17
+ out={}
18
+ out[:both], out[:left], out[:right] = Alglib_ext::pearsoncorrelationsignificance(r, size)
19
+ out
20
+ end
21
+ def self.spearman_correlation_significance(r,size)
22
+ out={}
23
+ out[:both], out[:left], out[:right] = Alglib_ext::spearmanrankcorrelationsignificance(r, size)
24
+ out
25
+ end
26
+ end
@@ -0,0 +1,63 @@
1
+ module Alglib
2
+ class LinearRegression
3
+ attr_reader :model, :cases, :ivars
4
+ # Creates a Linear Regression object based on a Matrix
5
+ # EXAMPLE:
6
+ # require 'alglib'
7
+ # matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
8
+ # lr=Alglib::LinearRegression.build_from_matrix(matrix)
9
+ # => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
10
+ # lr.coeffs
11
+ # => [0.585714285714286, -0.0142857142857142]
12
+
13
+ def self.build_from_matrix(matrix)
14
+ raise "Argument should be a matrix" unless matrix.is_a? Matrix
15
+ cases=matrix.row_size
16
+ ivars=matrix.column_size-1
17
+ lm=Alglib_ext::LinearModel.new
18
+ lr=Alglib_ext::LrReport.new
19
+ am=matrix.to_alglib_matrix
20
+ Alglib_ext::lrbuild(am,cases,ivars,lm,lr)
21
+ self.new(lm,lr,cases,ivars)
22
+ end
23
+ # Use with care...
24
+ def initialize(lm,lr,cases,ivars)
25
+ @model=lm
26
+ @report=lr
27
+ @cases=cases
28
+ @ivars=ivars
29
+ end
30
+ # Constant value. a on
31
+ # y= a+b1x1+b2x2...
32
+
33
+ def constant
34
+ v=Alglib_ext::Real1dArray.new
35
+ Alglib_ext::lrunpack(@model,v, @ivars);
36
+ Alglib_ext.real1d_to_array(v).slice(-1)
37
+ end
38
+ # Array with b coeffs.
39
+ def coeffs
40
+ v=Alglib_ext::Real1dArray.new
41
+ Alglib_ext::lrunpack(@model,v, @ivars);
42
+ Alglib_ext.real1d_to_array(v)[0,v.size]
43
+ end
44
+ # Predict an y value based on an array of predictors.
45
+ def process(vector)
46
+ Alglib_ext::lrprocess(@model,vector);
47
+ end
48
+ # A wrapper for lm_report
49
+ def report
50
+ {:c=>@report.c,
51
+ :rmserror=>@report.rmserror,
52
+ :avgerror=>@report.avgerror,
53
+ :avgrelerror=>@report.avgrelerror,
54
+ :cvrmserror=>@report.cvrmserror,
55
+ :cvavgerror=>@report.cvavgerror,
56
+ :cvavgrelerror=>@report.cvavgrelerror,
57
+ :ncvdefects=>@report.ncvdefects,
58
+ :cvdefects=>@report.cvdefects
59
+ }
60
+ end
61
+
62
+ end
63
+ end
@@ -0,0 +1,42 @@
1
+ module Alglib
2
+ class Logit
3
+ attr_reader :model, :cases, :ivars
4
+ # Creates a Logit object based on a Matrix
5
+ # EXAMPLE:
6
+ # require 'alglib'
7
+ # matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
8
+ # lr=Alglib::LinearRegression.build_from_matrix(matrix)
9
+ # => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
10
+ # lr.coeffs
11
+ # => [0.585714285714286, -0.0142857142857142]
12
+
13
+ def self.build_from_matrix(matrix)
14
+ raise "Argument should be a matrix" unless matrix.is_a? Matrix
15
+ cases=matrix.row_size
16
+ ivars=matrix.column_size-1
17
+ lm=Alglib_ext::LogitModel.new
18
+ lr=Alglib_ext::MNLReport.new
19
+ nclasses=matrix.column(matrix.column_size-1).to_a.uniq.size
20
+ am=matrix.to_alglib_matrix
21
+ Alglib_ext::mnltrainh(am,cases,ivars,nclasses,lm,lr)
22
+ self.new(lm,lr,cases,ivars,nclasses)
23
+ end
24
+ # Use with care...
25
+ def initialize(lm,lr,cases,ivars,nclasses)
26
+ @model=lm
27
+ @report=lr
28
+ @cases=cases
29
+ @ivars=ivars
30
+ @nclasses=nclasses
31
+ end
32
+ def process(vector)
33
+ Alglib_ext.mnlprocess(@model,vector)
34
+ end
35
+ def unpack
36
+ a2d=Alglib_ext::Real2dArray.new
37
+ Alglib_ext::mnlunpack(@model, a2d,@ivars,@nclasses);
38
+ Alglib.real2darray_to_array(a2d)
39
+ end
40
+
41
+ end
42
+ end