alglib 0.1.2 → 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,24 +0,0 @@
1
- %{
2
- #include "correlation.h"
3
- #include "ialglib.h"
4
- %}
5
-
6
- // Complete wrapping and testing
7
-
8
- double pearsoncorrelation(const ap::real_1d_array& x,
9
- const ap::real_1d_array& y,
10
- int n);
11
-
12
- %rename(spearmanrankcorrelation) wrap_spearmanrankcorrelation;
13
- %inline %{
14
- double wrap_spearmanrankcorrelation(const ap::real_1d_array& x,
15
- const ap::real_1d_array& y,
16
- int n) {
17
- ap::real_1d_array x1,y1;
18
- x1=x;
19
- y1=y;
20
- return spearmanrankcorrelation(x1,y1,n);
21
-
22
- }
23
- %}
24
-
@@ -1,89 +0,0 @@
1
- %{
2
- #include "logit.h"
3
- %}
4
- /**
5
- * Logit
6
- */
7
-
8
- %rename (LogitModel) logitmodel;
9
- %rename (LogitMcState) logitmcstate;
10
- %rename (MNLReport) mnlreport;
11
- struct logitmodel
12
- {
13
- ap::real_1d_array w;
14
- };
15
- struct logitmcstate
16
- {
17
- bool brackt;
18
- bool stage1;
19
- int infoc;
20
- double dg;
21
- double dgm;
22
- double dginit;
23
- double dgtest;
24
- double dgx;
25
- double dgxm;
26
- double dgy;
27
- double dgym;
28
- double finit;
29
- double ftest1;
30
- double fm;
31
- double fx;
32
- double fxm;
33
- double fy;
34
- double fym;
35
- double stx;
36
- double sty;
37
- double stmin;
38
- double stmax;
39
- double width;
40
- double width1;
41
- double xtrapf;
42
- };
43
- struct mnlreport
44
- {
45
- int ngrad;
46
- int nhess;
47
- };
48
-
49
-
50
- void mnltrainh(const ap::real_2d_array& xy,
51
- int npoints,
52
- int nvars,
53
- int nclasses,
54
- int& info,
55
- logitmodel& lm,
56
- mnlreport& rep);
57
-
58
-
59
- %rename(mnlprocess) wrap_mnlprocess;
60
- %inline %{
61
- VALUE wrap_mnlprocess(logitmodel& lm,
62
- const ap::real_1d_array& x) {
63
- ap::real_1d_array y;
64
- // y.setlength(lm.w(3));
65
- mnlprocess(lm,x,y);
66
- // std::cout << "Saliendo";
67
- return real1d_to_array(&y);
68
- }
69
- %}
70
-
71
-
72
-
73
- void mnlunpack(const logitmodel& lm,
74
- ap::real_2d_array& a,
75
- int& nvars,
76
- int& nclasses);
77
-
78
- void mnlpack(const ap::real_2d_array& a,
79
- int nvars,
80
- int nclasses,
81
- logitmodel& lm);
82
-
83
-
84
- void mnlserialize(const logitmodel& lm, ap::real_1d_array& ra, int& rlen);
85
-
86
- void mnlcopy(const logitmodel& lm1, logitmodel& lm2);
87
-
88
- void mnlunserialize(const ap::real_1d_array& ra, logitmodel& lm);
89
- double mnlavgce(logitmodel& lm, const ap::real_2d_array& xy, int npoints);
@@ -1,26 +0,0 @@
1
- module Alglib
2
- # Retrieves Pearson correlation for two arrays
3
- def self.pearson_correlation(a,b)
4
- raise ArgumentError "argument should be the same size" if a.size!=b.size
5
- Alglib_ext.pearsoncorrelation(a,b,a.size)
6
- end
7
- # Retrieves Spearman ranked correlation for two arrays
8
- # Equal to Pearson correlation for ranked data
9
-
10
- def self.spearman_correlation(a,b)
11
- raise ArgumentError "argument should be the same size" if a.size!=b.size
12
- Alglib_ext.spearmanrankcorrelation(a,b,a.size)
13
- end
14
- # Retrieves significance for pearson correlation for one or two tails
15
- # Returns a hash with keys :both, :left and :right
16
- def self.pearson_correlation_significance(r,size)
17
- out={}
18
- out[:both], out[:left], out[:right] = Alglib_ext.pearsoncorrelationsignificance(r, size)
19
- out
20
- end
21
- def self.spearman_correlation_significance(r,size)
22
- out={}
23
- out[:both], out[:left], out[:right] = Alglib_ext.spearmanrankcorrelationsignificance(r, size)
24
- out
25
- end
26
- end
@@ -1,63 +0,0 @@
1
- module Alglib
2
- class LinearRegression
3
- attr_reader :model, :cases, :ivars
4
- # Creates a Linear Regression object based on a Matrix
5
- # EXAMPLE:
6
- # require 'alglib'
7
- # matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
8
- # lr=Alglib::LinearRegression.build_from_matrix(matrix)
9
- # => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
10
- # lr.coeffs
11
- # => [0.585714285714286, -0.0142857142857142]
12
-
13
- def self.build_from_matrix(matrix)
14
- raise "Argument should be a matrix" unless matrix.is_a? Matrix
15
- cases=matrix.row_size
16
- ivars=matrix.column_size-1
17
- lm=Alglib_ext::LinearModel.new
18
- lr=Alglib_ext::LrReport.new
19
- am=matrix.to_alglib_matrix
20
- Alglib_ext::lrbuild(am,cases,ivars,lm,lr)
21
- self.new(lm,lr,cases,ivars)
22
- end
23
- # Use with care...
24
- def initialize(lm,lr,cases,ivars)
25
- @model=lm
26
- @report=lr
27
- @cases=cases
28
- @ivars=ivars
29
- end
30
- # Constant value. a on
31
- # y= a+b1x1+b2x2...
32
-
33
- def constant
34
- v=Alglib_ext::Real1dArray.new
35
- Alglib_ext::lrunpack(@model,v, @ivars);
36
- Alglib_ext.real1d_to_array(v).slice(-1)
37
- end
38
- # Array with b coeffs.
39
- def coeffs
40
- v=Alglib_ext::Real1dArray.new
41
- Alglib_ext::lrunpack(@model,v, @ivars);
42
- Alglib_ext.real1d_to_array(v)[0,v.size]
43
- end
44
- # Predict an y value based on an array of predictors.
45
- def process(vector)
46
- Alglib_ext::lrprocess(@model,vector);
47
- end
48
- # A wrapper for lm_report
49
- def report
50
- {:c=>@report.c,
51
- :rmserror=>@report.rmserror,
52
- :avgerror=>@report.avgerror,
53
- :avgrelerror=>@report.avgrelerror,
54
- :cvrmserror=>@report.cvrmserror,
55
- :cvavgerror=>@report.cvavgerror,
56
- :cvavgrelerror=>@report.cvavgrelerror,
57
- :ncvdefects=>@report.ncvdefects,
58
- :cvdefects=>@report.cvdefects
59
- }
60
- end
61
-
62
- end
63
- end
@@ -1,42 +0,0 @@
1
- module Alglib
2
- class Logit
3
- attr_reader :model, :cases, :ivars
4
- # Creates a Logit object based on a Matrix
5
- # EXAMPLE:
6
- # require 'alglib'
7
- # matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
8
- # lr=Alglib::LinearRegression.build_from_matrix(matrix)
9
- # => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
10
- # lr.coeffs
11
- # => [0.585714285714286, -0.0142857142857142]
12
-
13
- def self.build_from_matrix(matrix)
14
- raise "Argument should be a matrix" unless matrix.is_a? Matrix
15
- cases=matrix.row_size
16
- ivars=matrix.column_size-1
17
- lm=Alglib_ext::LogitModel.new
18
- lr=Alglib_ext::MNLReport.new
19
- nclasses=matrix.column(matrix.column_size-1).to_a.uniq.size
20
- am=matrix.to_alglib_matrix
21
- Alglib_ext::mnltrainh(am,cases,ivars,nclasses,lm,lr)
22
- self.new(lm,lr,cases,ivars,nclasses)
23
- end
24
- # Use with care...
25
- def initialize(lm,lr,cases,ivars,nclasses)
26
- @model=lm
27
- @report=lr
28
- @cases=cases
29
- @ivars=ivars
30
- @nclasses=nclasses
31
- end
32
- def process(vector)
33
- Alglib_ext.mnlprocess(@model,vector)
34
- end
35
- def unpack
36
- a2d=Alglib_ext::Real2dArray.new
37
- Alglib_ext::mnlunpack(@model, a2d,@ivars,@nclasses);
38
- Alglib.real2darray_to_array(a2d)
39
- end
40
-
41
- end
42
- end
@@ -1,44 +0,0 @@
1
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
2
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
3
-
4
- require "test/unit"
5
- begin
6
- require 'statsample'
7
- HAS_SS=true
8
- rescue
9
- HAS_SS=false
10
- end
11
-
12
- if(HAS_GSL.nil?)
13
- begin
14
- require 'rbgsl'
15
- HAS_GSL=true
16
- rescue
17
- HAS_GSL=false
18
- end
19
- end
20
-
21
- require "alglib"
22
- require 'matrix'
23
- class TestAlglibCorrelation < Test::Unit::TestCase
24
- def test_correlation
25
- a=[1,2,3,6,7,9,0,10]
26
- b=[2,5, 7,8,4,8, 0, 5]
27
-
28
- if(HAS_GSL)
29
- a_gsl=GSL::Vector.alloc(a)
30
- b_gsl=GSL::Vector.alloc(b)
31
- corr_expected=GSL::Stats::correlation(a_gsl, b_gsl)
32
- corr_alglib=Alglib.pearson_correlation(a,b)
33
- assert_equal(corr_expected,corr_alglib)
34
- end
35
- if(HAS_SS)
36
- va=a.to_vector(:scale)
37
- vb=b.to_vector(:scale)
38
- corr_expected=Statsample::Bivariate::spearman(va, vb)
39
- corr_alglib=Alglib.spearman_correlation(a,b)
40
- assert_in_delta(corr_expected,corr_alglib,0.001)
41
- end
42
- end
43
-
44
- end
@@ -1,45 +0,0 @@
1
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
2
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
3
-
4
- require "test/unit"
5
- begin
6
- require 'statsample'
7
- HAS_SS=true
8
- rescue
9
- HAS_SS=false
10
- end
11
-
12
- if(HAS_GSL.nil?)
13
- begin
14
- require 'rbgsl'
15
- HAS_GSL=true
16
- rescue
17
- HAS_GSL=false
18
- end
19
- end
20
-
21
- require "alglib"
22
- require 'matrix'
23
- class TestAlglibCorrelationTests < Test::Unit::TestCase
24
- def test_pearson
25
- a=[2,3,4,5,6,7,8,9 ,10,22,20]
26
- b=[1,4,3,5,6,8,9,10,10,20,30]
27
- r=Alglib.pearson_correlation(a,b)
28
- t= Statsample::Bivariate.t_r(r, a.size)
29
- out = Alglib.pearson_correlation_significance(r, a.size)
30
- assert_in_delta(out[:both], Statsample::Bivariate.prop_pearson(t,a.size), 0.0001)
31
- assert_in_delta(out[:left], Statsample::Bivariate.prop_pearson(t, a.size,:left), 0.0001)
32
- assert_in_delta(out[:right], Statsample::Bivariate.prop_pearson(t,a.size, :right), 0.0001)
33
- end
34
- def test_spearman
35
- a=[2,3,4,5,6,7,8,9 ,10,22,20]
36
- b=[1,4,3,5,6,8,9,10,10,20,30]
37
- r=Alglib.spearman_correlation(a,b)
38
- t= Statsample::Bivariate.t_r(r, a.size)
39
- out = Alglib.spearman_correlation_significance(r, a.size)
40
-
41
- assert_in_delta(out[:both], Statsample::Bivariate.prop_pearson(t,a.size), 0.0001)
42
- assert_in_delta(out[:left], Statsample::Bivariate.prop_pearson(t, a.size,:left), 0.0001)
43
- assert_in_delta(out[:right], Statsample::Bivariate.prop_pearson(t,a.size, :right), 0.0001)
44
- end
45
- end
@@ -1,19 +0,0 @@
1
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
2
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
3
-
4
- require "test/unit"
5
- require "alglib"
6
- require 'matrix'
7
- class TestAlglibLinreg < Test::Unit::TestCase
8
- def test_linear_regression
9
- a=[1,3,2,4,3,5,4,6,5,7]
10
- b=[3,3,4,4,5,5,6,6,4,4]
11
- c=[11,22,30,40,50,65,78,79,99,100]
12
- y=[3,4,5,6,7,8,9,10,20,30]
13
- matrix=Matrix.columns([a,b,c,y])
14
- lr=Alglib::LinearRegression.build_from_matrix(matrix)
15
- assert_in_delta(0.695,lr.coeffs[0],0.001)
16
- assert_in_delta(11.027,lr.constant,0.001)
17
- assert_in_delta(1.785,lr.process([1,3,11]),0.001)
18
- end
19
- end
@@ -1,43 +0,0 @@
1
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
2
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
3
-
4
- require "test/unit"
5
- begin
6
- require 'statsample'
7
- HAS_SS=true
8
- rescue
9
- HAS_SS=false
10
- end
11
-
12
- if(HAS_GSL.nil?)
13
- begin
14
- require 'rbgsl'
15
- HAS_GSL=true
16
- rescue
17
- HAS_GSL=false
18
- end
19
- end
20
-
21
- require "alglib"
22
- require 'matrix'
23
- class TestAlglib < Test::Unit::TestCase
24
- def test_logit
25
- a=[1,2,3,4,5,6,7,8,9,10]
26
- b=[0,0,1,0,0,0,1,1,1,1]
27
- matrix=Matrix.columns([a,b])
28
- lr=Alglib::Logit.build_from_matrix(matrix)
29
- end
30
- def atest_logit_1
31
- ds=Statsample::CSV.read(File.dirname(__FILE__)+"/sample_logit.csv")
32
- ds['female'].recode! {|c|
33
- c=='female' ? 1: 0
34
- }
35
- constant=[1]*(ds.cases)
36
- matrix=Matrix.columns([ds['female'].data,ds['hon'].data])
37
- lr=Alglib::Logit.build_from_matrix(matrix)
38
- lr.unpack
39
- matrix=Matrix.columns([ds['math'].data, ds['female'].data,ds['read'].data, ds['hon'].data])
40
- lr=Alglib::Logit.build_from_matrix(matrix)
41
-
42
- end
43
- end
@@ -1,27 +0,0 @@
1
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
2
- $:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
3
- require "test/unit"
4
- require "alglib"
5
- require 'matrix'
6
- class TestAlglibPca < Test::Unit::TestCase
7
- def test_pca
8
- a=[10,20,30,40,50,60,70,80,90,100]
9
- b=[1.2,2.3,3.4,4,5,6,7,8,9,10]
10
- c=[6,8,3,6,8,2,3,9,10,1]
11
- d=[61,82,31,62,86,21,33,99,101,12]
12
- matrix=Matrix.columns([a,b,c,d])
13
- input_2d_array=matrix.to_alglib_matrix
14
- npoints=a.size
15
- nvars=4
16
- info=1
17
- s2=Alglib_ext::Real1dArray.new
18
- v=Alglib_ext::Real2dArray.new
19
- a=Alglib_ext.pcabuildbasis(input_2d_array,npoints,nvars, s2,v)
20
- comp=s2.to_a
21
- sum=comp.inject{|a,val| a+val}
22
-
23
- new=comp.collect{|val| (4.0*val).quo(sum)}
24
- p new
25
- p v.to_2d_a
26
- end
27
- end