alglib 0.1.2 → 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +0 -4
- data/Manifest.txt +0 -10
- data/README.txt +1 -1
- data/Rakefile +12 -23
- data/ext/Rakefile +10 -11
- data/ext/alglib.i +151 -16
- data/ext/alglib/alglib.cpp +164 -2664
- data/ext/alglib/alglib_util.cpp +1 -9
- data/ext/alglib/alglib_util.h +1 -3
- data/ext/alglib/ap.h +1 -1
- data/ext/extconf.rb +1 -3
- data/lib/alglib.rb +60 -53
- data/test/test_alglib.rb +10 -46
- metadata +10 -64
- data/ext/ap.i +0 -97
- data/ext/correlation.i +0 -24
- data/ext/logit.i +0 -89
- data/lib/alglib/correlation.rb +0 -26
- data/lib/alglib/linearregression.rb +0 -63
- data/lib/alglib/logit.rb +0 -42
- data/test/test_correlation.rb +0 -44
- data/test/test_correlationtest.rb +0 -45
- data/test/test_linreg.rb +0 -19
- data/test/test_logit.rb +0 -43
- data/test/test_pca.rb +0 -27
data/ext/correlation.i
DELETED
@@ -1,24 +0,0 @@
|
|
1
|
-
%{
|
2
|
-
#include "correlation.h"
|
3
|
-
#include "ialglib.h"
|
4
|
-
%}
|
5
|
-
|
6
|
-
// Complete wrapping and testing
|
7
|
-
|
8
|
-
double pearsoncorrelation(const ap::real_1d_array& x,
|
9
|
-
const ap::real_1d_array& y,
|
10
|
-
int n);
|
11
|
-
|
12
|
-
%rename(spearmanrankcorrelation) wrap_spearmanrankcorrelation;
|
13
|
-
%inline %{
|
14
|
-
double wrap_spearmanrankcorrelation(const ap::real_1d_array& x,
|
15
|
-
const ap::real_1d_array& y,
|
16
|
-
int n) {
|
17
|
-
ap::real_1d_array x1,y1;
|
18
|
-
x1=x;
|
19
|
-
y1=y;
|
20
|
-
return spearmanrankcorrelation(x1,y1,n);
|
21
|
-
|
22
|
-
}
|
23
|
-
%}
|
24
|
-
|
data/ext/logit.i
DELETED
@@ -1,89 +0,0 @@
|
|
1
|
-
%{
|
2
|
-
#include "logit.h"
|
3
|
-
%}
|
4
|
-
/**
|
5
|
-
* Logit
|
6
|
-
*/
|
7
|
-
|
8
|
-
%rename (LogitModel) logitmodel;
|
9
|
-
%rename (LogitMcState) logitmcstate;
|
10
|
-
%rename (MNLReport) mnlreport;
|
11
|
-
struct logitmodel
|
12
|
-
{
|
13
|
-
ap::real_1d_array w;
|
14
|
-
};
|
15
|
-
struct logitmcstate
|
16
|
-
{
|
17
|
-
bool brackt;
|
18
|
-
bool stage1;
|
19
|
-
int infoc;
|
20
|
-
double dg;
|
21
|
-
double dgm;
|
22
|
-
double dginit;
|
23
|
-
double dgtest;
|
24
|
-
double dgx;
|
25
|
-
double dgxm;
|
26
|
-
double dgy;
|
27
|
-
double dgym;
|
28
|
-
double finit;
|
29
|
-
double ftest1;
|
30
|
-
double fm;
|
31
|
-
double fx;
|
32
|
-
double fxm;
|
33
|
-
double fy;
|
34
|
-
double fym;
|
35
|
-
double stx;
|
36
|
-
double sty;
|
37
|
-
double stmin;
|
38
|
-
double stmax;
|
39
|
-
double width;
|
40
|
-
double width1;
|
41
|
-
double xtrapf;
|
42
|
-
};
|
43
|
-
struct mnlreport
|
44
|
-
{
|
45
|
-
int ngrad;
|
46
|
-
int nhess;
|
47
|
-
};
|
48
|
-
|
49
|
-
|
50
|
-
void mnltrainh(const ap::real_2d_array& xy,
|
51
|
-
int npoints,
|
52
|
-
int nvars,
|
53
|
-
int nclasses,
|
54
|
-
int& info,
|
55
|
-
logitmodel& lm,
|
56
|
-
mnlreport& rep);
|
57
|
-
|
58
|
-
|
59
|
-
%rename(mnlprocess) wrap_mnlprocess;
|
60
|
-
%inline %{
|
61
|
-
VALUE wrap_mnlprocess(logitmodel& lm,
|
62
|
-
const ap::real_1d_array& x) {
|
63
|
-
ap::real_1d_array y;
|
64
|
-
// y.setlength(lm.w(3));
|
65
|
-
mnlprocess(lm,x,y);
|
66
|
-
// std::cout << "Saliendo";
|
67
|
-
return real1d_to_array(&y);
|
68
|
-
}
|
69
|
-
%}
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
void mnlunpack(const logitmodel& lm,
|
74
|
-
ap::real_2d_array& a,
|
75
|
-
int& nvars,
|
76
|
-
int& nclasses);
|
77
|
-
|
78
|
-
void mnlpack(const ap::real_2d_array& a,
|
79
|
-
int nvars,
|
80
|
-
int nclasses,
|
81
|
-
logitmodel& lm);
|
82
|
-
|
83
|
-
|
84
|
-
void mnlserialize(const logitmodel& lm, ap::real_1d_array& ra, int& rlen);
|
85
|
-
|
86
|
-
void mnlcopy(const logitmodel& lm1, logitmodel& lm2);
|
87
|
-
|
88
|
-
void mnlunserialize(const ap::real_1d_array& ra, logitmodel& lm);
|
89
|
-
double mnlavgce(logitmodel& lm, const ap::real_2d_array& xy, int npoints);
|
data/lib/alglib/correlation.rb
DELETED
@@ -1,26 +0,0 @@
|
|
1
|
-
module Alglib
|
2
|
-
# Retrieves Pearson correlation for two arrays
|
3
|
-
def self.pearson_correlation(a,b)
|
4
|
-
raise ArgumentError "argument should be the same size" if a.size!=b.size
|
5
|
-
Alglib_ext.pearsoncorrelation(a,b,a.size)
|
6
|
-
end
|
7
|
-
# Retrieves Spearman ranked correlation for two arrays
|
8
|
-
# Equal to Pearson correlation for ranked data
|
9
|
-
|
10
|
-
def self.spearman_correlation(a,b)
|
11
|
-
raise ArgumentError "argument should be the same size" if a.size!=b.size
|
12
|
-
Alglib_ext.spearmanrankcorrelation(a,b,a.size)
|
13
|
-
end
|
14
|
-
# Retrieves significance for pearson correlation for one or two tails
|
15
|
-
# Returns a hash with keys :both, :left and :right
|
16
|
-
def self.pearson_correlation_significance(r,size)
|
17
|
-
out={}
|
18
|
-
out[:both], out[:left], out[:right] = Alglib_ext.pearsoncorrelationsignificance(r, size)
|
19
|
-
out
|
20
|
-
end
|
21
|
-
def self.spearman_correlation_significance(r,size)
|
22
|
-
out={}
|
23
|
-
out[:both], out[:left], out[:right] = Alglib_ext.spearmanrankcorrelationsignificance(r, size)
|
24
|
-
out
|
25
|
-
end
|
26
|
-
end
|
@@ -1,63 +0,0 @@
|
|
1
|
-
module Alglib
|
2
|
-
class LinearRegression
|
3
|
-
attr_reader :model, :cases, :ivars
|
4
|
-
# Creates a Linear Regression object based on a Matrix
|
5
|
-
# EXAMPLE:
|
6
|
-
# require 'alglib'
|
7
|
-
# matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
|
8
|
-
# lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
9
|
-
# => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
|
10
|
-
# lr.coeffs
|
11
|
-
# => [0.585714285714286, -0.0142857142857142]
|
12
|
-
|
13
|
-
def self.build_from_matrix(matrix)
|
14
|
-
raise "Argument should be a matrix" unless matrix.is_a? Matrix
|
15
|
-
cases=matrix.row_size
|
16
|
-
ivars=matrix.column_size-1
|
17
|
-
lm=Alglib_ext::LinearModel.new
|
18
|
-
lr=Alglib_ext::LrReport.new
|
19
|
-
am=matrix.to_alglib_matrix
|
20
|
-
Alglib_ext::lrbuild(am,cases,ivars,lm,lr)
|
21
|
-
self.new(lm,lr,cases,ivars)
|
22
|
-
end
|
23
|
-
# Use with care...
|
24
|
-
def initialize(lm,lr,cases,ivars)
|
25
|
-
@model=lm
|
26
|
-
@report=lr
|
27
|
-
@cases=cases
|
28
|
-
@ivars=ivars
|
29
|
-
end
|
30
|
-
# Constant value. a on
|
31
|
-
# y= a+b1x1+b2x2...
|
32
|
-
|
33
|
-
def constant
|
34
|
-
v=Alglib_ext::Real1dArray.new
|
35
|
-
Alglib_ext::lrunpack(@model,v, @ivars);
|
36
|
-
Alglib_ext.real1d_to_array(v).slice(-1)
|
37
|
-
end
|
38
|
-
# Array with b coeffs.
|
39
|
-
def coeffs
|
40
|
-
v=Alglib_ext::Real1dArray.new
|
41
|
-
Alglib_ext::lrunpack(@model,v, @ivars);
|
42
|
-
Alglib_ext.real1d_to_array(v)[0,v.size]
|
43
|
-
end
|
44
|
-
# Predict an y value based on an array of predictors.
|
45
|
-
def process(vector)
|
46
|
-
Alglib_ext::lrprocess(@model,vector);
|
47
|
-
end
|
48
|
-
# A wrapper for lm_report
|
49
|
-
def report
|
50
|
-
{:c=>@report.c,
|
51
|
-
:rmserror=>@report.rmserror,
|
52
|
-
:avgerror=>@report.avgerror,
|
53
|
-
:avgrelerror=>@report.avgrelerror,
|
54
|
-
:cvrmserror=>@report.cvrmserror,
|
55
|
-
:cvavgerror=>@report.cvavgerror,
|
56
|
-
:cvavgrelerror=>@report.cvavgrelerror,
|
57
|
-
:ncvdefects=>@report.ncvdefects,
|
58
|
-
:cvdefects=>@report.cvdefects
|
59
|
-
}
|
60
|
-
end
|
61
|
-
|
62
|
-
end
|
63
|
-
end
|
data/lib/alglib/logit.rb
DELETED
@@ -1,42 +0,0 @@
|
|
1
|
-
module Alglib
|
2
|
-
class Logit
|
3
|
-
attr_reader :model, :cases, :ivars
|
4
|
-
# Creates a Logit object based on a Matrix
|
5
|
-
# EXAMPLE:
|
6
|
-
# require 'alglib'
|
7
|
-
# matrix=Matrix[[2,3,4],[2,5,5],[1,5,3],[4,6,5]]
|
8
|
-
# lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
9
|
-
# => #<Alglib::LinearRegression:0x7ffaf6c05dc0 @model=#<Alglib_ext::LinearModel:0x7ffaf6c05e60>, @cases=4, @report=#<Alglib_ext::LrReport:0x7ffaf6c05e10>, @ivars=2>
|
10
|
-
# lr.coeffs
|
11
|
-
# => [0.585714285714286, -0.0142857142857142]
|
12
|
-
|
13
|
-
def self.build_from_matrix(matrix)
|
14
|
-
raise "Argument should be a matrix" unless matrix.is_a? Matrix
|
15
|
-
cases=matrix.row_size
|
16
|
-
ivars=matrix.column_size-1
|
17
|
-
lm=Alglib_ext::LogitModel.new
|
18
|
-
lr=Alglib_ext::MNLReport.new
|
19
|
-
nclasses=matrix.column(matrix.column_size-1).to_a.uniq.size
|
20
|
-
am=matrix.to_alglib_matrix
|
21
|
-
Alglib_ext::mnltrainh(am,cases,ivars,nclasses,lm,lr)
|
22
|
-
self.new(lm,lr,cases,ivars,nclasses)
|
23
|
-
end
|
24
|
-
# Use with care...
|
25
|
-
def initialize(lm,lr,cases,ivars,nclasses)
|
26
|
-
@model=lm
|
27
|
-
@report=lr
|
28
|
-
@cases=cases
|
29
|
-
@ivars=ivars
|
30
|
-
@nclasses=nclasses
|
31
|
-
end
|
32
|
-
def process(vector)
|
33
|
-
Alglib_ext.mnlprocess(@model,vector)
|
34
|
-
end
|
35
|
-
def unpack
|
36
|
-
a2d=Alglib_ext::Real2dArray.new
|
37
|
-
Alglib_ext::mnlunpack(@model, a2d,@ivars,@nclasses);
|
38
|
-
Alglib.real2darray_to_array(a2d)
|
39
|
-
end
|
40
|
-
|
41
|
-
end
|
42
|
-
end
|
data/test/test_correlation.rb
DELETED
@@ -1,44 +0,0 @@
|
|
1
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
|
2
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
|
3
|
-
|
4
|
-
require "test/unit"
|
5
|
-
begin
|
6
|
-
require 'statsample'
|
7
|
-
HAS_SS=true
|
8
|
-
rescue
|
9
|
-
HAS_SS=false
|
10
|
-
end
|
11
|
-
|
12
|
-
if(HAS_GSL.nil?)
|
13
|
-
begin
|
14
|
-
require 'rbgsl'
|
15
|
-
HAS_GSL=true
|
16
|
-
rescue
|
17
|
-
HAS_GSL=false
|
18
|
-
end
|
19
|
-
end
|
20
|
-
|
21
|
-
require "alglib"
|
22
|
-
require 'matrix'
|
23
|
-
class TestAlglibCorrelation < Test::Unit::TestCase
|
24
|
-
def test_correlation
|
25
|
-
a=[1,2,3,6,7,9,0,10]
|
26
|
-
b=[2,5, 7,8,4,8, 0, 5]
|
27
|
-
|
28
|
-
if(HAS_GSL)
|
29
|
-
a_gsl=GSL::Vector.alloc(a)
|
30
|
-
b_gsl=GSL::Vector.alloc(b)
|
31
|
-
corr_expected=GSL::Stats::correlation(a_gsl, b_gsl)
|
32
|
-
corr_alglib=Alglib.pearson_correlation(a,b)
|
33
|
-
assert_equal(corr_expected,corr_alglib)
|
34
|
-
end
|
35
|
-
if(HAS_SS)
|
36
|
-
va=a.to_vector(:scale)
|
37
|
-
vb=b.to_vector(:scale)
|
38
|
-
corr_expected=Statsample::Bivariate::spearman(va, vb)
|
39
|
-
corr_alglib=Alglib.spearman_correlation(a,b)
|
40
|
-
assert_in_delta(corr_expected,corr_alglib,0.001)
|
41
|
-
end
|
42
|
-
end
|
43
|
-
|
44
|
-
end
|
@@ -1,45 +0,0 @@
|
|
1
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
|
2
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
|
3
|
-
|
4
|
-
require "test/unit"
|
5
|
-
begin
|
6
|
-
require 'statsample'
|
7
|
-
HAS_SS=true
|
8
|
-
rescue
|
9
|
-
HAS_SS=false
|
10
|
-
end
|
11
|
-
|
12
|
-
if(HAS_GSL.nil?)
|
13
|
-
begin
|
14
|
-
require 'rbgsl'
|
15
|
-
HAS_GSL=true
|
16
|
-
rescue
|
17
|
-
HAS_GSL=false
|
18
|
-
end
|
19
|
-
end
|
20
|
-
|
21
|
-
require "alglib"
|
22
|
-
require 'matrix'
|
23
|
-
class TestAlglibCorrelationTests < Test::Unit::TestCase
|
24
|
-
def test_pearson
|
25
|
-
a=[2,3,4,5,6,7,8,9 ,10,22,20]
|
26
|
-
b=[1,4,3,5,6,8,9,10,10,20,30]
|
27
|
-
r=Alglib.pearson_correlation(a,b)
|
28
|
-
t= Statsample::Bivariate.t_r(r, a.size)
|
29
|
-
out = Alglib.pearson_correlation_significance(r, a.size)
|
30
|
-
assert_in_delta(out[:both], Statsample::Bivariate.prop_pearson(t,a.size), 0.0001)
|
31
|
-
assert_in_delta(out[:left], Statsample::Bivariate.prop_pearson(t, a.size,:left), 0.0001)
|
32
|
-
assert_in_delta(out[:right], Statsample::Bivariate.prop_pearson(t,a.size, :right), 0.0001)
|
33
|
-
end
|
34
|
-
def test_spearman
|
35
|
-
a=[2,3,4,5,6,7,8,9 ,10,22,20]
|
36
|
-
b=[1,4,3,5,6,8,9,10,10,20,30]
|
37
|
-
r=Alglib.spearman_correlation(a,b)
|
38
|
-
t= Statsample::Bivariate.t_r(r, a.size)
|
39
|
-
out = Alglib.spearman_correlation_significance(r, a.size)
|
40
|
-
|
41
|
-
assert_in_delta(out[:both], Statsample::Bivariate.prop_pearson(t,a.size), 0.0001)
|
42
|
-
assert_in_delta(out[:left], Statsample::Bivariate.prop_pearson(t, a.size,:left), 0.0001)
|
43
|
-
assert_in_delta(out[:right], Statsample::Bivariate.prop_pearson(t,a.size, :right), 0.0001)
|
44
|
-
end
|
45
|
-
end
|
data/test/test_linreg.rb
DELETED
@@ -1,19 +0,0 @@
|
|
1
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
|
2
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
|
3
|
-
|
4
|
-
require "test/unit"
|
5
|
-
require "alglib"
|
6
|
-
require 'matrix'
|
7
|
-
class TestAlglibLinreg < Test::Unit::TestCase
|
8
|
-
def test_linear_regression
|
9
|
-
a=[1,3,2,4,3,5,4,6,5,7]
|
10
|
-
b=[3,3,4,4,5,5,6,6,4,4]
|
11
|
-
c=[11,22,30,40,50,65,78,79,99,100]
|
12
|
-
y=[3,4,5,6,7,8,9,10,20,30]
|
13
|
-
matrix=Matrix.columns([a,b,c,y])
|
14
|
-
lr=Alglib::LinearRegression.build_from_matrix(matrix)
|
15
|
-
assert_in_delta(0.695,lr.coeffs[0],0.001)
|
16
|
-
assert_in_delta(11.027,lr.constant,0.001)
|
17
|
-
assert_in_delta(1.785,lr.process([1,3,11]),0.001)
|
18
|
-
end
|
19
|
-
end
|
data/test/test_logit.rb
DELETED
@@ -1,43 +0,0 @@
|
|
1
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
|
2
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
|
3
|
-
|
4
|
-
require "test/unit"
|
5
|
-
begin
|
6
|
-
require 'statsample'
|
7
|
-
HAS_SS=true
|
8
|
-
rescue
|
9
|
-
HAS_SS=false
|
10
|
-
end
|
11
|
-
|
12
|
-
if(HAS_GSL.nil?)
|
13
|
-
begin
|
14
|
-
require 'rbgsl'
|
15
|
-
HAS_GSL=true
|
16
|
-
rescue
|
17
|
-
HAS_GSL=false
|
18
|
-
end
|
19
|
-
end
|
20
|
-
|
21
|
-
require "alglib"
|
22
|
-
require 'matrix'
|
23
|
-
class TestAlglib < Test::Unit::TestCase
|
24
|
-
def test_logit
|
25
|
-
a=[1,2,3,4,5,6,7,8,9,10]
|
26
|
-
b=[0,0,1,0,0,0,1,1,1,1]
|
27
|
-
matrix=Matrix.columns([a,b])
|
28
|
-
lr=Alglib::Logit.build_from_matrix(matrix)
|
29
|
-
end
|
30
|
-
def atest_logit_1
|
31
|
-
ds=Statsample::CSV.read(File.dirname(__FILE__)+"/sample_logit.csv")
|
32
|
-
ds['female'].recode! {|c|
|
33
|
-
c=='female' ? 1: 0
|
34
|
-
}
|
35
|
-
constant=[1]*(ds.cases)
|
36
|
-
matrix=Matrix.columns([ds['female'].data,ds['hon'].data])
|
37
|
-
lr=Alglib::Logit.build_from_matrix(matrix)
|
38
|
-
lr.unpack
|
39
|
-
matrix=Matrix.columns([ds['math'].data, ds['female'].data,ds['read'].data, ds['hon'].data])
|
40
|
-
lr=Alglib::Logit.build_from_matrix(matrix)
|
41
|
-
|
42
|
-
end
|
43
|
-
end
|
data/test/test_pca.rb
DELETED
@@ -1,27 +0,0 @@
|
|
1
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../lib"))
|
2
|
-
$:.unshift(File.expand_path(File.dirname(__FILE__)+"/../ext"))
|
3
|
-
require "test/unit"
|
4
|
-
require "alglib"
|
5
|
-
require 'matrix'
|
6
|
-
class TestAlglibPca < Test::Unit::TestCase
|
7
|
-
def test_pca
|
8
|
-
a=[10,20,30,40,50,60,70,80,90,100]
|
9
|
-
b=[1.2,2.3,3.4,4,5,6,7,8,9,10]
|
10
|
-
c=[6,8,3,6,8,2,3,9,10,1]
|
11
|
-
d=[61,82,31,62,86,21,33,99,101,12]
|
12
|
-
matrix=Matrix.columns([a,b,c,d])
|
13
|
-
input_2d_array=matrix.to_alglib_matrix
|
14
|
-
npoints=a.size
|
15
|
-
nvars=4
|
16
|
-
info=1
|
17
|
-
s2=Alglib_ext::Real1dArray.new
|
18
|
-
v=Alglib_ext::Real2dArray.new
|
19
|
-
a=Alglib_ext.pcabuildbasis(input_2d_array,npoints,nvars, s2,v)
|
20
|
-
comp=s2.to_a
|
21
|
-
sum=comp.inject{|a,val| a+val}
|
22
|
-
|
23
|
-
new=comp.collect{|val| (4.0*val).quo(sum)}
|
24
|
-
p new
|
25
|
-
p v.to_2d_a
|
26
|
-
end
|
27
|
-
end
|