aidp 0.27.0 → 0.28.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +89 -0
  3. data/lib/aidp/cli/models_command.rb +5 -6
  4. data/lib/aidp/cli.rb +10 -8
  5. data/lib/aidp/config.rb +54 -0
  6. data/lib/aidp/debug_mixin.rb +23 -1
  7. data/lib/aidp/execute/agent_signal_parser.rb +22 -0
  8. data/lib/aidp/execute/repl_macros.rb +2 -2
  9. data/lib/aidp/execute/steps.rb +94 -1
  10. data/lib/aidp/execute/work_loop_runner.rb +209 -17
  11. data/lib/aidp/execute/workflow_selector.rb +2 -25
  12. data/lib/aidp/firewall/provider_requirements_collector.rb +262 -0
  13. data/lib/aidp/harness/ai_decision_engine.rb +35 -2
  14. data/lib/aidp/harness/config_manager.rb +0 -5
  15. data/lib/aidp/harness/config_schema.rb +8 -0
  16. data/lib/aidp/harness/configuration.rb +27 -19
  17. data/lib/aidp/harness/enhanced_runner.rb +1 -4
  18. data/lib/aidp/harness/error_handler.rb +1 -72
  19. data/lib/aidp/harness/provider_factory.rb +11 -2
  20. data/lib/aidp/harness/state_manager.rb +0 -7
  21. data/lib/aidp/harness/thinking_depth_manager.rb +47 -68
  22. data/lib/aidp/harness/ui/enhanced_tui.rb +8 -18
  23. data/lib/aidp/harness/ui/enhanced_workflow_selector.rb +0 -18
  24. data/lib/aidp/harness/ui/progress_display.rb +6 -2
  25. data/lib/aidp/harness/user_interface.rb +0 -58
  26. data/lib/aidp/init/runner.rb +7 -2
  27. data/lib/aidp/planning/analyzers/feedback_analyzer.rb +365 -0
  28. data/lib/aidp/planning/builders/agile_plan_builder.rb +387 -0
  29. data/lib/aidp/planning/builders/project_plan_builder.rb +193 -0
  30. data/lib/aidp/planning/generators/gantt_generator.rb +190 -0
  31. data/lib/aidp/planning/generators/iteration_plan_generator.rb +392 -0
  32. data/lib/aidp/planning/generators/legacy_research_planner.rb +473 -0
  33. data/lib/aidp/planning/generators/marketing_report_generator.rb +348 -0
  34. data/lib/aidp/planning/generators/mvp_scope_generator.rb +310 -0
  35. data/lib/aidp/planning/generators/user_test_plan_generator.rb +373 -0
  36. data/lib/aidp/planning/generators/wbs_generator.rb +259 -0
  37. data/lib/aidp/planning/mappers/persona_mapper.rb +163 -0
  38. data/lib/aidp/planning/parsers/document_parser.rb +141 -0
  39. data/lib/aidp/planning/parsers/feedback_data_parser.rb +252 -0
  40. data/lib/aidp/provider_manager.rb +8 -32
  41. data/lib/aidp/providers/aider.rb +264 -0
  42. data/lib/aidp/providers/anthropic.rb +74 -2
  43. data/lib/aidp/providers/base.rb +25 -1
  44. data/lib/aidp/providers/codex.rb +26 -3
  45. data/lib/aidp/providers/cursor.rb +16 -0
  46. data/lib/aidp/providers/gemini.rb +13 -0
  47. data/lib/aidp/providers/github_copilot.rb +17 -0
  48. data/lib/aidp/providers/kilocode.rb +11 -0
  49. data/lib/aidp/providers/opencode.rb +11 -0
  50. data/lib/aidp/setup/wizard.rb +249 -39
  51. data/lib/aidp/version.rb +1 -1
  52. data/lib/aidp/watch/build_processor.rb +211 -30
  53. data/lib/aidp/watch/change_request_processor.rb +128 -14
  54. data/lib/aidp/watch/ci_fix_processor.rb +103 -37
  55. data/lib/aidp/watch/ci_log_extractor.rb +258 -0
  56. data/lib/aidp/watch/github_state_extractor.rb +177 -0
  57. data/lib/aidp/watch/implementation_verifier.rb +284 -0
  58. data/lib/aidp/watch/plan_generator.rb +7 -43
  59. data/lib/aidp/watch/plan_processor.rb +7 -6
  60. data/lib/aidp/watch/repository_client.rb +245 -17
  61. data/lib/aidp/watch/review_processor.rb +98 -17
  62. data/lib/aidp/watch/reviewers/base_reviewer.rb +1 -1
  63. data/lib/aidp/watch/runner.rb +181 -29
  64. data/lib/aidp/watch/state_store.rb +22 -1
  65. data/lib/aidp/workflows/definitions.rb +147 -0
  66. data/lib/aidp/workstream_cleanup.rb +245 -0
  67. data/lib/aidp/worktree.rb +19 -0
  68. data/templates/aidp.yml.example +57 -0
  69. data/templates/implementation/generate_tdd_specs.md +213 -0
  70. data/templates/implementation/iterative_implementation.md +122 -0
  71. data/templates/planning/agile/analyze_feedback.md +183 -0
  72. data/templates/planning/agile/generate_iteration_plan.md +179 -0
  73. data/templates/planning/agile/generate_legacy_research_plan.md +171 -0
  74. data/templates/planning/agile/generate_marketing_report.md +162 -0
  75. data/templates/planning/agile/generate_mvp_scope.md +127 -0
  76. data/templates/planning/agile/generate_user_test_plan.md +143 -0
  77. data/templates/planning/agile/ingest_feedback.md +174 -0
  78. data/templates/planning/assemble_project_plan.md +113 -0
  79. data/templates/planning/assign_personas.md +108 -0
  80. data/templates/planning/create_tasks.md +52 -6
  81. data/templates/planning/generate_gantt.md +86 -0
  82. data/templates/planning/generate_wbs.md +85 -0
  83. data/templates/planning/initialize_planning_mode.md +70 -0
  84. data/templates/skills/README.md +2 -2
  85. data/templates/skills/marketing_strategist/SKILL.md +279 -0
  86. data/templates/skills/product_manager/SKILL.md +177 -0
  87. data/templates/skills/ruby_aidp_planning/SKILL.md +497 -0
  88. data/templates/skills/ruby_rspec_tdd/SKILL.md +514 -0
  89. data/templates/skills/ux_researcher/SKILL.md +222 -0
  90. metadata +39 -1
@@ -0,0 +1,183 @@
1
+ # Analyze User Feedback
2
+
3
+ You are a UX researcher analyzing user feedback using AI-powered semantic analysis.
4
+
5
+ ## Input
6
+
7
+ Read:
8
+
9
+ - `.aidp/docs/feedback_data.json` - Normalized feedback data from ingestion step
10
+
11
+ ## Your Task
12
+
13
+ Perform comprehensive analysis of user feedback to extract insights, identify trends, and generate actionable recommendations.
14
+
15
+ ## Analysis Components
16
+
17
+ ### 1. Executive Summary
18
+
19
+ High-level overview (2-3 paragraphs):
20
+
21
+ - Overall sentiment and key themes
22
+ - Most important findings
23
+ - Top recommendations
24
+
25
+ ### 2. Sentiment Breakdown
26
+
27
+ Distribution analysis:
28
+
29
+ - Positive/negative/neutral counts and percentages
30
+ - Sentiment trends over time if timestamps available
31
+ - Sentiment by feature or category
32
+
33
+ ### 3. Key Findings
34
+
35
+ 3-5 major discoveries, each with:
36
+
37
+ - Finding title and description
38
+ - Evidence (quotes, data supporting the finding)
39
+ - Impact assessment (high/medium/low)
40
+
41
+ ### 4. Trends and Patterns
42
+
43
+ Recurring themes across responses:
44
+
45
+ - Trend description
46
+ - Frequency (how often mentioned)
47
+ - Implications for product development
48
+
49
+ ### 5. Insights
50
+
51
+ Categorized observations:
52
+
53
+ - **Usability**: Ease of use, interface issues
54
+ - **Features**: What's working, what's missing
55
+ - **Performance**: Speed, reliability concerns
56
+ - **Value**: Perceived value and benefits
57
+
58
+ ### 6. Feature-Specific Feedback
59
+
60
+ For each feature mentioned:
61
+
62
+ - Overall sentiment
63
+ - Positive feedback
64
+ - Negative feedback
65
+ - Suggested improvements
66
+
67
+ ### 7. Priority Issues
68
+
69
+ Critical items requiring immediate attention:
70
+
71
+ - Issue description
72
+ - Priority level (critical/high/medium)
73
+ - Number/percentage of users affected
74
+ - Recommended action
75
+
76
+ ### 8. Positive Highlights
77
+
78
+ What users loved:
79
+
80
+ - Features or aspects that delighted users
81
+ - Strengths to maintain or amplify
82
+
83
+ ### 9. Recommendations
84
+
85
+ 4-6 actionable recommendations, each with:
86
+
87
+ - Recommendation title and description
88
+ - Rationale based on feedback
89
+ - Effort estimate (low/medium/high)
90
+ - Expected impact (low/medium/high)
91
+
92
+ ## Analysis Principles
93
+
94
+ **Semantic Analysis:**
95
+
96
+ - Use AI to understand meaning and context, not just keywords
97
+ - Identify themes across different wording
98
+ - Understand user intent and emotion
99
+
100
+ **Evidence-Based:**
101
+
102
+ - Support findings with specific quotes or data
103
+ - Quantify when possible
104
+ - Don't over-generalize from limited data
105
+
106
+ **Actionable:**
107
+
108
+ - Translate insights into specific recommendations
109
+ - Prioritize by impact and urgency
110
+ - Make recommendations concrete and implementable
111
+
112
+ **Objective:**
113
+
114
+ - Present both positive and negative feedback fairly
115
+ - Avoid bias toward confirming existing beliefs
116
+ - Let data speak for itself
117
+
118
+ ## Implementation
119
+
120
+ **For Ruby/AIDP projects**, use the `ruby_aidp_planning` skill with `Aidp::Planning::Analyzers::FeedbackAnalyzer`:
121
+
122
+ 1. Read feedback data from `.aidp/docs/feedback_data.json`
123
+ 2. Analyze using `FeedbackAnalyzer.new(ai_decision_engine:).analyze(feedback_data)`
124
+ 3. Format as markdown using `format_as_markdown(analysis)`
125
+ 4. Write to `.aidp/docs/USER_FEEDBACK_ANALYSIS.md`
126
+
127
+ **For other implementations**, create equivalent functionality that:
128
+
129
+ 1. Parses normalized feedback data
130
+ 2. Uses AI for semantic analysis (NO regex, keyword matching, or heuristics)
131
+ 3. Identifies patterns and themes
132
+ 4. Calculates sentiment distribution
133
+ 5. Extracts evidence-based findings
134
+ 6. Generates prioritized recommendations
135
+ 7. Formats as comprehensive markdown report
136
+
137
+ ## AI Analysis Guidelines
138
+
139
+ Use AI Decision Engine with Zero Framework Cognition:
140
+
141
+ **NO:**
142
+
143
+ - Regex pattern matching
144
+ - Keyword counting
145
+ - Scoring formulas
146
+ - Heuristic thresholds
147
+
148
+ **YES:**
149
+
150
+ - Semantic understanding of text
151
+ - Context-aware analysis
152
+ - Theme identification across varied wording
153
+ - Nuanced sentiment analysis
154
+ - Evidence-based recommendations
155
+
156
+ Provide structured schema for consistent output.
157
+
158
+ ## Output Structure
159
+
160
+ Write to `.aidp/docs/USER_FEEDBACK_ANALYSIS.md` with:
161
+
162
+ - Executive summary
163
+ - Sentiment breakdown (table with counts and percentages)
164
+ - Key findings with evidence and impact
165
+ - Trends and patterns with frequency and implications
166
+ - Categorized insights (usability, features, performance, value)
167
+ - Feature-specific feedback (positive, negative, improvements)
168
+ - Priority issues (with recommended actions)
169
+ - Positive highlights
170
+ - Actionable recommendations (with rationale, effort, impact)
171
+ - Generated timestamp and metadata
172
+
173
+ ## Common Pitfalls to Avoid
174
+
175
+ - Keyword matching instead of semantic understanding
176
+ - Ignoring negative feedback
177
+ - Over-generalizing from limited responses
178
+ - Recommendations without evidence
179
+ - Analysis paralysis (waiting for perfect data)
180
+
181
+ ## Output
182
+
183
+ Write complete feedback analysis to `.aidp/docs/USER_FEEDBACK_ANALYSIS.md` with all insights and evidence-based recommendations.
@@ -0,0 +1,179 @@
1
+ # Generate Next Iteration Plan
2
+
3
+ You are a product manager creating the next iteration plan based on user feedback.
4
+
5
+ ## Input
6
+
7
+ Read:
8
+
9
+ - `.aidp/docs/USER_FEEDBACK_ANALYSIS.md` - Analyzed user feedback with insights and recommendations
10
+ - `.aidp/docs/MVP_SCOPE.md` (if available) - Current MVP features
11
+
12
+ ## Your Task
13
+
14
+ Create a detailed plan for the next development iteration that addresses user feedback, prioritizes improvements, and defines specific, actionable tasks.
15
+
16
+ ## Iteration Plan Components
17
+
18
+ ### 1. Overview
19
+
20
+ - Focus of this iteration
21
+ - Why these priorities
22
+ - Expected outcomes
23
+
24
+ ### 2. Iteration Goals
25
+
26
+ 3-5 clear, measurable goals for this iteration
27
+
28
+ ### 3. Feature Improvements
29
+
30
+ For existing features that need enhancement:
31
+
32
+ - Feature name
33
+ - Current issue/problem
34
+ - Proposed improvement
35
+ - User impact
36
+ - Effort estimate (low/medium/high)
37
+ - Priority (critical/high/medium/low)
38
+
39
+ ### 4. New Features
40
+
41
+ Features to add based on user requests:
42
+
43
+ - Feature name and description
44
+ - Rationale (why add this now)
45
+ - Acceptance criteria
46
+ - Effort estimate
47
+
48
+ ### 5. Bug Fixes
49
+
50
+ Critical and high-priority bugs:
51
+
52
+ - Bug title and description
53
+ - Priority level
54
+ - Number/percentage of users affected
55
+ - Fix approach
56
+
57
+ ### 6. Technical Debt
58
+
59
+ Technical improvements needed:
60
+
61
+ - Debt item title and description
62
+ - Why it matters (impact on quality, performance, maintainability)
63
+ - Effort estimate
64
+
65
+ ### 7. Task Breakdown
66
+
67
+ Specific, actionable tasks:
68
+
69
+ - Task name and description
70
+ - Category (feature, improvement, bug_fix, tech_debt, testing, documentation)
71
+ - Priority
72
+ - Estimated effort
73
+ - Dependencies
74
+ - Success criteria
75
+
76
+ ### 8. Success Metrics
77
+
78
+ How to measure iteration success:
79
+
80
+ - Metric name
81
+ - Target value
82
+ - How to measure
83
+
84
+ ### 9. Risks and Mitigation
85
+
86
+ What could go wrong:
87
+
88
+ - Risk description
89
+ - Probability (low/medium/high)
90
+ - Impact (low/medium/high)
91
+ - Mitigation strategy
92
+
93
+ ### 10. Timeline
94
+
95
+ Iteration phases:
96
+
97
+ - Phase name
98
+ - Duration
99
+ - Key activities
100
+
101
+ ## Prioritization Framework
102
+
103
+ Consider these factors when prioritizing:
104
+
105
+ 1. **User Impact**: How many users benefit? How significantly?
106
+ 2. **Business Value**: Does this align with business goals?
107
+ 3. **Effort**: How much work required?
108
+ 4. **Risk**: What's the probability and impact of failure?
109
+ 5. **Dependencies**: What must happen first?
110
+ 6. **Learning**: What will we learn from building this?
111
+
112
+ ## Implementation
113
+
114
+ **For Ruby/AIDP projects**, use the `ruby_aidp_planning` skill with `Aidp::Planning::Generators::IterationPlanGenerator`:
115
+
116
+ 1. Parse feedback analysis using `Aidp::Planning::Parsers::DocumentParser`
117
+ 2. Parse MVP scope if available
118
+ 3. Generate plan using `IterationPlanGenerator.generate(feedback_analysis:, current_mvp:)`
119
+ 4. Format as markdown using `format_as_markdown(plan)`
120
+ 5. Write to `.aidp/docs/NEXT_ITERATION_PLAN.md`
121
+
122
+ **For other implementations**, create equivalent functionality that:
123
+
124
+ 1. Parses feedback analysis to understand issues and recommendations
125
+ 2. Parses current MVP scope if available
126
+ 3. Uses AI to transform recommendations into actionable tasks
127
+ 4. Prioritizes based on user impact, effort, and dependencies
128
+ 5. Breaks down work into specific tasks
129
+ 6. Defines success metrics for iteration
130
+ 7. Identifies and plans mitigation for risks
131
+
132
+ ## AI Analysis Guidelines
133
+
134
+ Use AI Decision Engine to:
135
+
136
+ - Transform feedback insights into specific improvements
137
+ - Prioritize tasks by impact and effort
138
+ - Break down complex improvements into tasks
139
+ - Identify dependencies and sequencing
140
+ - Suggest realistic timelines
141
+
142
+ Be specific and actionable—tasks should be clear enough for developers to implement.
143
+
144
+ ## Task Categories
145
+
146
+ - **feature**: New functionality
147
+ - **improvement**: Enhancement to existing feature
148
+ - **bug_fix**: Resolve defect or error
149
+ - **tech_debt**: Technical improvement (refactoring, performance, etc.)
150
+ - **testing**: Test coverage or quality improvements
151
+ - **documentation**: User guides, API docs, etc.
152
+
153
+ ## Output Structure
154
+
155
+ Write to `.aidp/docs/NEXT_ITERATION_PLAN.md` with:
156
+
157
+ - Overview of iteration focus
158
+ - Iteration goals (3-5 measurable goals)
159
+ - Feature improvements (with issue, improvement, impact, effort, priority)
160
+ - New features (with rationale and acceptance criteria)
161
+ - Bug fixes (with priority and affected users)
162
+ - Technical debt items (with impact and effort)
163
+ - Task breakdown (with category, priority, effort, dependencies, success criteria)
164
+ - Success metrics and targets
165
+ - Risks with probability, impact, and mitigation
166
+ - Timeline with phases and activities
167
+ - Generated timestamp and metadata
168
+
169
+ ## Common Pitfalls to Avoid
170
+
171
+ - Vague, non-actionable tasks
172
+ - Ignoring technical debt
173
+ - Over-ambitious scope for iteration
174
+ - Missing dependencies between tasks
175
+ - No clear success metrics
176
+
177
+ ## Output
178
+
179
+ Write complete iteration plan to `.aidp/docs/NEXT_ITERATION_PLAN.md` with specific, prioritized, actionable tasks based on user feedback.
@@ -0,0 +1,171 @@
1
+ # Generate Legacy User Research Plan
2
+
3
+ You are a UX researcher creating a user research plan for an existing codebase/product.
4
+
5
+ ## Your Task
6
+
7
+ Analyze an existing codebase to understand what features are already built, then create a user research plan to understand how users experience the product and identify improvement opportunities.
8
+
9
+ ## Interactive Input
10
+
11
+ **Prompt the user for:**
12
+
13
+ 1. Path to codebase directory
14
+ 2. Primary language/framework (for context)
15
+ 3. Known user segments (if any)
16
+
17
+ ## Codebase Analysis
18
+
19
+ Analyze the existing codebase to understand:
20
+
21
+ 1. **Feature Inventory**: What features currently exist
22
+ 2. **User-Facing Components**: UI, APIs, endpoints, workflows
23
+ 3. **Integration Points**: External services, databases
24
+ 4. **Configuration Options**: Customization and settings
25
+ 5. **Documentation**: README, docs, comments
26
+
27
+ Use tree-sitter or static analysis to extract:
28
+
29
+ - Classes and modules
30
+ - Public APIs and methods
31
+ - User workflows and entry points
32
+ - Feature flags or toggles
33
+ - Configuration files
34
+
35
+ ## Legacy Research Plan Components
36
+
37
+ ### 1. Current Feature Audit
38
+
39
+ List of features identified in codebase:
40
+
41
+ - Feature name
42
+ - Description (what it does)
43
+ - Entry points (how users access it)
44
+ - Status (active, deprecated, experimental)
45
+
46
+ ### 2. Research Questions
47
+
48
+ Key questions to answer about user experience:
49
+
50
+ - How are users currently using each feature?
51
+ - What pain points exist in current workflows?
52
+ - Which features are most/least valuable?
53
+ - Where do users get confused or stuck?
54
+ - What improvements would have biggest impact?
55
+
56
+ ### 3. Research Methods
57
+
58
+ Appropriate methods for legacy product:
59
+
60
+ - **User Interviews**: Understand current usage and pain points
61
+ - **Usage Analytics**: Analyze feature adoption and patterns
62
+ - **Usability Testing**: Observe users with existing features
63
+ - **Surveys**: Collect feedback from broad user base
64
+
65
+ ### 4. Testing Priorities
66
+
67
+ Which features/flows to focus on first:
68
+
69
+ - High-usage features (most critical)
70
+ - Features with known issues
71
+ - Recently changed or updated features
72
+ - Features with low adoption (understand why)
73
+
74
+ ### 5. User Segments
75
+
76
+ Different types of users to study:
77
+
78
+ - Power users vs. casual users
79
+ - Different use cases or workflows
80
+ - Different industries or contexts
81
+
82
+ ### 6. Improvement Opportunities
83
+
84
+ Based on codebase analysis:
85
+
86
+ - Missing features users likely need
87
+ - Workflows that could be streamlined
88
+ - Technical debt affecting user experience
89
+ - Areas for modernization
90
+
91
+ ### 7. Research Timeline
92
+
93
+ Phases with duration:
94
+
95
+ - Codebase analysis completion
96
+ - User recruitment
97
+ - Data collection (interviews, surveys, testing)
98
+ - Analysis and reporting
99
+
100
+ ## Implementation
101
+
102
+ **For Ruby/AIDP projects**, use the `ruby_aidp_planning` skill with `Aidp::Planning::Generators::LegacyResearchPlanner`:
103
+
104
+ 1. Prompt for codebase path using TTY::Prompt
105
+ 2. Analyze codebase structure (tree-sitter, file scanning)
106
+ 3. Generate research plan using `LegacyResearchPlanner.generate(codebase_path:)`
107
+ 4. Format as markdown using `format_as_markdown(plan)`
108
+ 5. Write to `.aidp/docs/LEGACY_USER_RESEARCH_PLAN.md`
109
+
110
+ **For other implementations**, create equivalent functionality that:
111
+
112
+ 1. Prompts for codebase information
113
+ 2. Analyzes codebase to extract feature list
114
+ 3. Uses AI to generate contextual research questions
115
+ 4. Identifies testing priorities based on feature importance
116
+ 5. Suggests appropriate research methods
117
+ 6. Creates improvement recommendations based on code analysis
118
+
119
+ ## Codebase Analysis Approach
120
+
121
+ For static analysis:
122
+
123
+ - Parse main entry points and routes
124
+ - Extract public APIs and classes
125
+ - Identify user-facing components
126
+ - Find configuration and feature flags
127
+ - Review documentation for feature descriptions
128
+
129
+ For tree-sitter analysis:
130
+
131
+ - Parse AST to find classes and methods
132
+ - Identify public vs. private interfaces
133
+ - Extract comments and documentation
134
+ - Find integration points
135
+ - Map user workflows
136
+
137
+ ## AI Analysis Guidelines
138
+
139
+ Use AI Decision Engine to:
140
+
141
+ - Generate feature descriptions from code structure
142
+ - Create contextual research questions based on features
143
+ - Prioritize features for testing
144
+ - Suggest improvement opportunities
145
+ - Recommend appropriate research methods
146
+
147
+ ## Output Structure
148
+
149
+ Write to `.aidp/docs/LEGACY_USER_RESEARCH_PLAN.md` with:
150
+
151
+ - Overview of research goals
152
+ - Current feature audit (features identified in codebase)
153
+ - Research questions to answer
154
+ - Recommended research methods
155
+ - Testing priorities (features to focus on)
156
+ - User segments to study
157
+ - Improvement opportunities identified
158
+ - Research timeline
159
+ - Generated timestamp and metadata
160
+
161
+ ## Common Use Cases
162
+
163
+ - Understanding usage of existing product before redesign
164
+ - Identifying pain points in mature product
165
+ - Prioritizing feature improvements
166
+ - Planning modernization efforts
167
+ - Validating assumptions about user needs
168
+
169
+ ## Output
170
+
171
+ Write complete legacy user research plan to `.aidp/docs/LEGACY_USER_RESEARCH_PLAN.md` based on codebase analysis and AI-generated research questions.
@@ -0,0 +1,162 @@
1
+ # Generate Marketing Report
2
+
3
+ You are a marketing strategist creating comprehensive marketing materials for product launch.
4
+
5
+ ## Input
6
+
7
+ Read:
8
+
9
+ - `.aidp/docs/MVP_SCOPE.md` - MVP features and scope
10
+ - `.aidp/docs/USER_FEEDBACK_ANALYSIS.md` (if available) - User insights
11
+
12
+ ## Your Task
13
+
14
+ Translate technical features into compelling customer value and create go-to-market materials that drive adoption.
15
+
16
+ ## Marketing Report Components
17
+
18
+ ### 1. Value Proposition
19
+
20
+ - **Headline**: Compelling 10-15 word benefit statement
21
+ - **Subheadline**: 15-25 word expansion
22
+ - **Core Benefits**: 3-5 customer outcomes (not features)
23
+
24
+ ### 2. Key Messages
25
+
26
+ 3-5 primary messages, each with:
27
+
28
+ - Message title
29
+ - Description
30
+ - 3-5 supporting points
31
+ - Focus on customer value, not technical details
32
+
33
+ ### 3. Differentiators
34
+
35
+ 2-4 competitive advantages:
36
+
37
+ - What makes this unique
38
+ - Why it matters to customers
39
+ - Evidence or proof points
40
+
41
+ ### 4. Target Audience
42
+
43
+ 2-3 customer segments, each with:
44
+
45
+ - Segment name and description
46
+ - Pain points they experience
47
+ - How our solution addresses their needs
48
+
49
+ ### 5. Positioning
50
+
51
+ - Category (what market/space)
52
+ - Positioning statement (who, what, value, differentiation)
53
+ - Tagline (memorable 3-7 words)
54
+
55
+ ### 6. Success Metrics
56
+
57
+ 4-6 launch metrics:
58
+
59
+ - Specific targets
60
+ - How to measure
61
+ - Why it matters
62
+
63
+ ### 7. Messaging Framework
64
+
65
+ For each audience:
66
+
67
+ - Tailored message
68
+ - Appropriate channel
69
+ - Call to action
70
+
71
+ ### 8. Launch Checklist
72
+
73
+ 8-12 pre-launch tasks:
74
+
75
+ - Task description
76
+ - Owner
77
+ - Timeline
78
+
79
+ ## Marketing Principles
80
+
81
+ **Customer-Focused:**
82
+
83
+ - Start with problems and benefits, not features
84
+ - Use language customers use
85
+ - Focus on outcomes, not outputs
86
+
87
+ **Clear and Compelling:**
88
+
89
+ - Avoid jargon and technical terms
90
+ - Make it emotionally resonant
91
+ - Be specific and concrete
92
+
93
+ **Differentiated:**
94
+
95
+ - Clearly state what makes you different
96
+ - Don't just match competitors
97
+ - Claim unique positioning
98
+
99
+ **Evidence-Based:**
100
+
101
+ - Support claims with proof
102
+ - Use data when available
103
+ - Reference user feedback
104
+
105
+ ## Implementation
106
+
107
+ **For Ruby/AIDP projects**, use the `ruby_aidp_planning` skill with `Aidp::Planning::Generators::MarketingReportGenerator`:
108
+
109
+ 1. Parse MVP scope using `Aidp::Planning::Parsers::DocumentParser`
110
+ 2. Parse feedback analysis if available
111
+ 3. Generate report using `MarketingReportGenerator.generate(mvp_scope:, feedback_analysis:)`
112
+ 4. Format as markdown using `format_as_markdown(report)`
113
+ 5. Write to `.aidp/docs/MARKETING_REPORT.md`
114
+
115
+ **For other implementations**, create equivalent functionality that:
116
+
117
+ 1. Parses MVP scope to understand features
118
+ 2. Analyzes user feedback if available
119
+ 3. Uses AI to craft customer-focused messaging
120
+ 4. Translates technical features to customer benefits
121
+ 5. Identifies competitive differentiation
122
+ 6. Creates audience-specific messaging
123
+ 7. Generates actionable launch checklist
124
+
125
+ ## AI Analysis Guidelines
126
+
127
+ Use AI Decision Engine to:
128
+
129
+ - Transform technical features into customer benefits
130
+ - Craft compelling, jargon-free headlines
131
+ - Identify competitive advantages
132
+ - Create audience-specific messaging
133
+ - Generate evidence-based differentiators
134
+
135
+ Focus on customer value, not product capabilities.
136
+
137
+ ## Output Structure
138
+
139
+ Write to `.aidp/docs/MARKETING_REPORT.md` with:
140
+
141
+ - Overview of marketing strategy
142
+ - Complete value proposition (headline, subheadline, benefits)
143
+ - Key messages with supporting points
144
+ - Differentiators with competitive advantages
145
+ - Target audience analysis with pain points and solutions
146
+ - Positioning (category, statement, tagline)
147
+ - Success metrics with targets and measurement
148
+ - Messaging framework table (audience, message, channel, CTA)
149
+ - Launch checklist with tasks, owners, timelines
150
+ - Generated timestamp and metadata
151
+
152
+ ## Common Pitfalls to Avoid
153
+
154
+ - Feature lists without customer benefits
155
+ - Technical jargon that confuses customers
156
+ - Generic "me too" positioning
157
+ - Vague, unmeasurable claims
158
+ - Inside-out thinking (what we built vs. what customers get)
159
+
160
+ ## Output
161
+
162
+ Write complete marketing report to `.aidp/docs/MARKETING_REPORT.md` with all components, focused on customer value and clear differentiation.