ai4ruby 1.11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. data/README.rdoc +47 -0
  2. data/examples/classifiers/id3_data.csv +121 -0
  3. data/examples/classifiers/id3_example.rb +29 -0
  4. data/examples/classifiers/naive_bayes_data.csv +11 -0
  5. data/examples/classifiers/naive_bayes_example.rb +16 -0
  6. data/examples/classifiers/results.txt +31 -0
  7. data/examples/genetic_algorithm/genetic_algorithm_example.rb +37 -0
  8. data/examples/genetic_algorithm/travel_cost.csv +16 -0
  9. data/examples/neural_network/backpropagation_example.rb +67 -0
  10. data/examples/neural_network/patterns_with_base_noise.rb +68 -0
  11. data/examples/neural_network/patterns_with_noise.rb +66 -0
  12. data/examples/neural_network/training_patterns.rb +68 -0
  13. data/examples/neural_network/xor_example.rb +35 -0
  14. data/examples/som/som_data.rb +156 -0
  15. data/examples/som/som_multi_node_example.rb +22 -0
  16. data/examples/som/som_single_example.rb +24 -0
  17. data/lib/ai4r.rb +33 -0
  18. data/lib/ai4r/classifiers/classifier.rb +62 -0
  19. data/lib/ai4r/classifiers/hyperpipes.rb +118 -0
  20. data/lib/ai4r/classifiers/ib1.rb +121 -0
  21. data/lib/ai4r/classifiers/id3.rb +326 -0
  22. data/lib/ai4r/classifiers/multilayer_perceptron.rb +135 -0
  23. data/lib/ai4r/classifiers/naive_bayes.rb +259 -0
  24. data/lib/ai4r/classifiers/one_r.rb +110 -0
  25. data/lib/ai4r/classifiers/prism.rb +197 -0
  26. data/lib/ai4r/classifiers/zero_r.rb +73 -0
  27. data/lib/ai4r/clusterers/average_linkage.rb +59 -0
  28. data/lib/ai4r/clusterers/bisecting_k_means.rb +93 -0
  29. data/lib/ai4r/clusterers/centroid_linkage.rb +66 -0
  30. data/lib/ai4r/clusterers/clusterer.rb +61 -0
  31. data/lib/ai4r/clusterers/complete_linkage.rb +67 -0
  32. data/lib/ai4r/clusterers/diana.rb +139 -0
  33. data/lib/ai4r/clusterers/k_means.rb +126 -0
  34. data/lib/ai4r/clusterers/median_linkage.rb +61 -0
  35. data/lib/ai4r/clusterers/single_linkage.rb +194 -0
  36. data/lib/ai4r/clusterers/ward_linkage.rb +64 -0
  37. data/lib/ai4r/clusterers/ward_linkage_hierarchical.rb +31 -0
  38. data/lib/ai4r/clusterers/weighted_average_linkage.rb +61 -0
  39. data/lib/ai4r/data/data_set.rb +266 -0
  40. data/lib/ai4r/data/parameterizable.rb +64 -0
  41. data/lib/ai4r/data/proximity.rb +100 -0
  42. data/lib/ai4r/data/statistics.rb +77 -0
  43. data/lib/ai4r/experiment/classifier_evaluator.rb +95 -0
  44. data/lib/ai4r/genetic_algorithm/genetic_algorithm.rb +270 -0
  45. data/lib/ai4r/neural_network/backpropagation.rb +326 -0
  46. data/lib/ai4r/neural_network/hopfield.rb +149 -0
  47. data/lib/ai4r/som/layer.rb +68 -0
  48. data/lib/ai4r/som/node.rb +96 -0
  49. data/lib/ai4r/som/som.rb +155 -0
  50. data/lib/ai4r/som/two_phase_layer.rb +90 -0
  51. data/test/classifiers/hyperpipes_test.rb +84 -0
  52. data/test/classifiers/ib1_test.rb +78 -0
  53. data/test/classifiers/id3_test.rb +208 -0
  54. data/test/classifiers/multilayer_perceptron_test.rb +79 -0
  55. data/test/classifiers/naive_bayes_test.rb +43 -0
  56. data/test/classifiers/one_r_test.rb +62 -0
  57. data/test/classifiers/prism_test.rb +85 -0
  58. data/test/classifiers/zero_r_test.rb +49 -0
  59. data/test/clusterers/average_linkage_test.rb +51 -0
  60. data/test/clusterers/bisecting_k_means_test.rb +66 -0
  61. data/test/clusterers/centroid_linkage_test.rb +53 -0
  62. data/test/clusterers/complete_linkage_test.rb +57 -0
  63. data/test/clusterers/diana_test.rb +69 -0
  64. data/test/clusterers/k_means_test.rb +100 -0
  65. data/test/clusterers/median_linkage_test.rb +53 -0
  66. data/test/clusterers/single_linkage_test.rb +122 -0
  67. data/test/clusterers/ward_linkage_hierarchical_test.rb +61 -0
  68. data/test/clusterers/ward_linkage_test.rb +53 -0
  69. data/test/clusterers/weighted_average_linkage_test.rb +53 -0
  70. data/test/data/data_set_test.rb +96 -0
  71. data/test/data/proximity_test.rb +81 -0
  72. data/test/data/statistics_test.rb +65 -0
  73. data/test/experiment/classifier_evaluator_test.rb +76 -0
  74. data/test/genetic_algorithm/chromosome_test.rb +58 -0
  75. data/test/genetic_algorithm/genetic_algorithm_test.rb +81 -0
  76. data/test/neural_network/backpropagation_test.rb +82 -0
  77. data/test/neural_network/hopfield_test.rb +72 -0
  78. data/test/som/som_test.rb +97 -0
  79. metadata +168 -0
@@ -0,0 +1,53 @@
1
+ # Author:: Sergio Fierens (implementation)
2
+ # License:: MPL 1.1
3
+ # Project:: ai4r
4
+ # Url:: http://ai4r.rubyforge.org/
5
+ #
6
+ # You can redistribute it and/or modify it under the terms of
7
+ # the Mozilla Public License version 1.1 as published by the
8
+ # Mozilla Foundation at http://www.mozilla.org/MPL/MPL-1.1.txt
9
+
10
+ require 'test/unit'
11
+ require File.dirname(__FILE__) + '/../../lib/ai4r/clusterers/median_linkage'
12
+
13
+ class Ai4r::Clusterers::MedianLinkage
14
+ attr_accessor :data_set, :number_of_clusters, :clusters, :distance_matrix, :index_clusters
15
+ end
16
+
17
+ class Ai4r::Clusterers::MedianLinkageTest < Test::Unit::TestCase
18
+
19
+ include Ai4r::Clusterers
20
+ include Ai4r::Data
21
+
22
+ @@data = [ [10, 3], [3, 10], [2, 8], [2, 5], [3, 8], [10, 3],
23
+ [1, 3], [8, 1], [2, 9], [2, 5], [3, 3], [9, 4]]
24
+
25
+ @@expected_distance_matrix = [
26
+ [98.0],
27
+ [89.0, 5.0],
28
+ [68.0, 26.0, 9.0],
29
+ [74.0, 4.0, 1.0, 10.0],
30
+ [0.0, 98.0, 89.0, 68.0, 74.0],
31
+ [81.0, 53.0, 26.0, 5.0, 29.0, 81.0],
32
+ [8.0, 106.0, 85.0, 52.0, 74.0, 8.0, 53.0],
33
+ [100.0, 2.0, 1.0, 16.0, 2.0, 100.0, 37.0, 100.0],
34
+ [68.0, 26.0, 9.0, 0.0, 10.0, 68.0, 5.0, 52.0, 16.0],
35
+ [49.0, 49.0, 26.0, 5.0, 25.0, 49.0, 4.0, 29.0, 37.0, 5.0],
36
+ [2.0, 72.0, 65.0, 50.0, 52.0, 2.0, 65.0, 10.0, 74.0, 50.0, 37.0]]
37
+
38
+ def setup
39
+ Ai4r::Clusterers::MedianLinkage.send(:public,
40
+ *Ai4r::Clusterers::MedianLinkage.protected_instance_methods)
41
+ end
42
+
43
+ def test_linkage_distance
44
+ clusterer = Ai4r::Clusterers::MedianLinkage.new
45
+ clusterer.data_set = DataSet.new :data_items => @@data
46
+ clusterer.index_clusters = clusterer.create_initial_index_clusters
47
+ clusterer.distance_matrix = @@expected_distance_matrix
48
+ assert_equal 92.25, clusterer.linkage_distance(0,1,2)
49
+ assert_equal 15.25, clusterer.linkage_distance(4,2,5)
50
+ end
51
+
52
+ end
53
+
@@ -0,0 +1,122 @@
1
+ # Author:: Sergio Fierens (implementation)
2
+ # License:: MPL 1.1
3
+ # Project:: ai4r
4
+ # Url:: http://ai4r.rubyforge.org/
5
+ #
6
+ # You can redistribute it and/or modify it under the terms of
7
+ # the Mozilla Public License version 1.1 as published by the
8
+ # Mozilla Foundation at http://www.mozilla.org/MPL/MPL-1.1.txt
9
+
10
+ require 'test/unit'
11
+ require File.dirname(__FILE__) + '/../../lib/ai4r/clusterers/single_linkage'
12
+
13
+ class Ai4r::Clusterers::SingleLinkage
14
+ attr_accessor :data_set, :number_of_clusters, :clusters, :distance_matrix
15
+ end
16
+
17
+ class SingleLinkageTest < Test::Unit::TestCase
18
+
19
+ include Ai4r::Clusterers
20
+ include Ai4r::Data
21
+
22
+ @@data = [ [10, 3], [3, 10], [2, 8], [2, 5], [3, 8], [10, 3],
23
+ [1, 3], [8, 1], [2, 9], [2, 5], [3, 3], [9, 4]]
24
+
25
+ @@expected_distance_matrix = [
26
+ [98.0],
27
+ [89.0, 5.0],
28
+ [68.0, 26.0, 9.0],
29
+ [74.0, 4.0, 1.0, 10.0],
30
+ [0.0, 98.0, 89.0, 68.0, 74.0],
31
+ [81.0, 53.0, 26.0, 5.0, 29.0, 81.0],
32
+ [8.0, 106.0, 85.0, 52.0, 74.0, 8.0, 53.0],
33
+ [100.0, 2.0, 1.0, 16.0, 2.0, 100.0, 37.0, 100.0],
34
+ [68.0, 26.0, 9.0, 0.0, 10.0, 68.0, 5.0, 52.0, 16.0],
35
+ [49.0, 49.0, 26.0, 5.0, 25.0, 49.0, 4.0, 29.0, 37.0, 5.0],
36
+ [2.0, 72.0, 65.0, 50.0, 52.0, 2.0, 65.0, 10.0, 74.0, 50.0, 37.0]]
37
+
38
+ def setup
39
+ SingleLinkage.send(:public, *SingleLinkage.protected_instance_methods)
40
+ end
41
+
42
+ def test_build
43
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
44
+ clusterer.build(DataSet.new(:data_items => @@data), 4)
45
+ #draw_map(clusterer)
46
+ assert_equal 4, clusterer.clusters.length
47
+ end
48
+
49
+ def test_eval
50
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
51
+ clusterer.build(DataSet.new(:data_items => @@data), 4)
52
+ assert_equal 2, clusterer.eval([0,8])
53
+ assert_equal 0, clusterer.eval([8,0])
54
+ end
55
+
56
+ def test_create_distance_matrix
57
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
58
+ clusterer.create_distance_matrix(DataSet.new(:data_items => @@data))
59
+ assert clusterer.distance_matrix
60
+ clusterer.distance_matrix.each_with_index do |row, row_index|
61
+ assert_equal row_index+1, row.length
62
+ end
63
+ assert_equal @@expected_distance_matrix, clusterer.distance_matrix
64
+ end
65
+
66
+ def test_read_distance_matrix
67
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
68
+ clusterer.distance_matrix = @@expected_distance_matrix
69
+ assert_equal 9.0, clusterer.read_distance_matrix(3, 2)
70
+ assert_equal 9.0, clusterer.read_distance_matrix(2, 3)
71
+ assert_equal 0, clusterer.read_distance_matrix(5, 5)
72
+ end
73
+
74
+ def test_linkage_distance
75
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
76
+ clusterer.distance_matrix = @@expected_distance_matrix
77
+ assert_equal 89, clusterer.linkage_distance(0,1,2)
78
+ assert_equal 1, clusterer.linkage_distance(4,2,5)
79
+ end
80
+
81
+ def test_get_closest_clusters
82
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
83
+ clusterer.distance_matrix = @@expected_distance_matrix
84
+ assert_equal [1,0], clusterer.get_closest_clusters([[0,1], [3,4]])
85
+ assert_equal [2,1], clusterer.get_closest_clusters([[3,4], [0,1], [5,6]])
86
+ end
87
+
88
+ def test_create_initial_index_clusters
89
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
90
+ clusterer.data_set = DataSet.new :data_items => @@data
91
+ index_clusters = clusterer.create_initial_index_clusters
92
+ assert_equal @@data.length, index_clusters.length
93
+ assert_equal 0, index_clusters.first.first
94
+ assert_equal @@data.length-1, index_clusters.last.first
95
+ end
96
+
97
+ def test_merge_clusters
98
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
99
+ clusters = clusterer.merge_clusters(1,2, [[1,2],[3,4],[5,6]])
100
+ assert_equal [[1,2], [3,4,5,6]], clusters.collect {|x| x.sort}
101
+ clusters = clusterer.merge_clusters(2,1, [[1,2],[3,4],[5,6]])
102
+ assert_equal [[1,2], [3,4,5,6]], clusters.collect {|x| x.sort}
103
+ end
104
+
105
+ def test_distance_between_item_and_cluster
106
+ clusterer = Ai4r::Clusterers::SingleLinkage.new
107
+ assert_equal 8.0, clusterer.distance_between_item_and_cluster([1,2],
108
+ DataSet.new(:data_items => [[3,4],[5,6]]))
109
+ end
110
+
111
+ private
112
+ def draw_map(clusterer)
113
+ map = Array.new(11) {Array.new(11, 0)}
114
+ clusterer.clusters.each_index do |i|
115
+ clusterer.clusters[i].data_items.each do |point|
116
+ map[point.first][point.last]=(i+1)
117
+ end
118
+ end
119
+ map.each { |row| puts row.inspect}
120
+ end
121
+
122
+ end
@@ -0,0 +1,61 @@
1
+ # Author:: Sergio Fierens (implementation)
2
+ # License:: MPL 1.1
3
+ # Project:: ai4r
4
+ # Url:: http://ai4r.rubyforge.org/
5
+ #
6
+ # You can redistribute it and/or modify it under the terms of
7
+ # the Mozilla Public License version 1.1 as published by the
8
+ # Mozilla Foundation at http://www.mozilla.org/MPL/MPL-1.1.txt
9
+
10
+ require 'test/unit'
11
+ require File.dirname(__FILE__) + '/../../lib/ai4r/clusterers/ward_linkage_hierarchical'
12
+
13
+ class Ai4r::Clusterers::WardLinkageHierarchical
14
+ attr_accessor :data_set, :number_of_clusters, :clusters, :distance_matrix, :index_clusters
15
+ end
16
+
17
+ class Ai4r::Clusterers::WardLinkageHierarchicalTest < Test::Unit::TestCase
18
+
19
+ include Ai4r::Clusterers
20
+ include Ai4r::Data
21
+
22
+ @@data = [ [10, 3], [3, 10], [2, 8], [2, 5], [3, 8], [10, 3],
23
+ [1, 3], [8, 1], [2, 9], [2, 5], [3, 3], [9, 4]]
24
+
25
+ @@expected_distance_matrix = [
26
+ [98.0],
27
+ [89.0, 5.0],
28
+ [68.0, 26.0, 9.0],
29
+ [74.0, 4.0, 1.0, 10.0],
30
+ [0.0, 98.0, 89.0, 68.0, 74.0],
31
+ [81.0, 53.0, 26.0, 5.0, 29.0, 81.0],
32
+ [8.0, 106.0, 85.0, 52.0, 74.0, 8.0, 53.0],
33
+ [100.0, 2.0, 1.0, 16.0, 2.0, 100.0, 37.0, 100.0],
34
+ [68.0, 26.0, 9.0, 0.0, 10.0, 68.0, 5.0, 52.0, 16.0],
35
+ [49.0, 49.0, 26.0, 5.0, 25.0, 49.0, 4.0, 29.0, 37.0, 5.0],
36
+ [2.0, 72.0, 65.0, 50.0, 52.0, 2.0, 65.0, 10.0, 74.0, 50.0, 37.0]]
37
+
38
+ def setup
39
+ Ai4r::Clusterers::WardLinkageHierarchical.send(:public,
40
+ *Ai4r::Clusterers::WardLinkageHierarchical.protected_instance_methods)
41
+ end
42
+
43
+ def test_linkage_distance
44
+ clusterer = Ai4r::Clusterers::WardLinkageHierarchical.new
45
+ clusterer.data_set = DataSet.new :data_items => @@data
46
+ clusterer.index_clusters = clusterer.create_initial_index_clusters
47
+ clusterer.distance_matrix = @@expected_distance_matrix
48
+ assert_in_delta 123.4166, clusterer.linkage_distance(0,1,2), 0.0001
49
+ assert_equal 27.75, clusterer.linkage_distance(4,2,5)
50
+ end
51
+
52
+ def test_cluster_tree
53
+ clusterer = Ai4r::Clusterers::WardLinkageHierarchical.new
54
+ clusterer.build(DataSet.new(:data_items => @@data), 1)
55
+
56
+ assert_equal clusterer.cluster_tree.length, @@data.length - 1
57
+ end
58
+
59
+
60
+ end
61
+
@@ -0,0 +1,53 @@
1
+ # Author:: Sergio Fierens (implementation)
2
+ # License:: MPL 1.1
3
+ # Project:: ai4r
4
+ # Url:: http://ai4r.rubyforge.org/
5
+ #
6
+ # You can redistribute it and/or modify it under the terms of
7
+ # the Mozilla Public License version 1.1 as published by the
8
+ # Mozilla Foundation at http://www.mozilla.org/MPL/MPL-1.1.txt
9
+
10
+ require 'test/unit'
11
+ require File.dirname(__FILE__) + '/../../lib/ai4r/clusterers/ward_linkage'
12
+
13
+ class Ai4r::Clusterers::WardLinkage
14
+ attr_accessor :data_set, :number_of_clusters, :clusters, :distance_matrix, :index_clusters
15
+ end
16
+
17
+ class Ai4r::Clusterers::WardLinkageTest < Test::Unit::TestCase
18
+
19
+ include Ai4r::Clusterers
20
+ include Ai4r::Data
21
+
22
+ @@data = [ [10, 3], [3, 10], [2, 8], [2, 5], [3, 8], [10, 3],
23
+ [1, 3], [8, 1], [2, 9], [2, 5], [3, 3], [9, 4]]
24
+
25
+ @@expected_distance_matrix = [
26
+ [98.0],
27
+ [89.0, 5.0],
28
+ [68.0, 26.0, 9.0],
29
+ [74.0, 4.0, 1.0, 10.0],
30
+ [0.0, 98.0, 89.0, 68.0, 74.0],
31
+ [81.0, 53.0, 26.0, 5.0, 29.0, 81.0],
32
+ [8.0, 106.0, 85.0, 52.0, 74.0, 8.0, 53.0],
33
+ [100.0, 2.0, 1.0, 16.0, 2.0, 100.0, 37.0, 100.0],
34
+ [68.0, 26.0, 9.0, 0.0, 10.0, 68.0, 5.0, 52.0, 16.0],
35
+ [49.0, 49.0, 26.0, 5.0, 25.0, 49.0, 4.0, 29.0, 37.0, 5.0],
36
+ [2.0, 72.0, 65.0, 50.0, 52.0, 2.0, 65.0, 10.0, 74.0, 50.0, 37.0]]
37
+
38
+ def setup
39
+ Ai4r::Clusterers::WardLinkage.send(:public,
40
+ *Ai4r::Clusterers::WardLinkage.protected_instance_methods)
41
+ end
42
+
43
+ def test_linkage_distance
44
+ clusterer = Ai4r::Clusterers::WardLinkage.new
45
+ clusterer.data_set = DataSet.new :data_items => @@data
46
+ clusterer.index_clusters = clusterer.create_initial_index_clusters
47
+ clusterer.distance_matrix = @@expected_distance_matrix
48
+ assert_in_delta 123.4166, clusterer.linkage_distance(0,1,2), 0.0001
49
+ assert_equal 27.75, clusterer.linkage_distance(4,2,5)
50
+ end
51
+
52
+ end
53
+
@@ -0,0 +1,53 @@
1
+ # Author:: Sergio Fierens (implementation)
2
+ # License:: MPL 1.1
3
+ # Project:: ai4r
4
+ # Url:: http://ai4r.rubyforge.org/
5
+ #
6
+ # You can redistribute it and/or modify it under the terms of
7
+ # the Mozilla Public License version 1.1 as published by the
8
+ # Mozilla Foundation at http://www.mozilla.org/MPL/MPL-1.1.txt
9
+
10
+ require 'test/unit'
11
+ require File.dirname(__FILE__) + '/../../lib/ai4r/clusterers/weighted_average_linkage'
12
+
13
+ class Ai4r::Clusterers::WeightedAverageLinkage
14
+ attr_accessor :data_set, :number_of_clusters, :clusters, :distance_matrix, :index_clusters
15
+ end
16
+
17
+ class Ai4r::Clusterers::WeightedAverageLinkageTest < Test::Unit::TestCase
18
+
19
+ include Ai4r::Clusterers
20
+ include Ai4r::Data
21
+
22
+ @@data = [ [10, 3], [3, 10], [2, 8], [2, 5], [3, 8], [10, 3],
23
+ [1, 3], [8, 1], [2, 9], [2, 5], [3, 3], [9, 4]]
24
+
25
+ @@expected_distance_matrix = [
26
+ [98.0],
27
+ [89.0, 5.0],
28
+ [68.0, 26.0, 9.0],
29
+ [74.0, 4.0, 1.0, 10.0],
30
+ [0.0, 98.0, 89.0, 68.0, 74.0],
31
+ [81.0, 53.0, 26.0, 5.0, 29.0, 81.0],
32
+ [8.0, 106.0, 85.0, 52.0, 74.0, 8.0, 53.0],
33
+ [100.0, 2.0, 1.0, 16.0, 2.0, 100.0, 37.0, 100.0],
34
+ [68.0, 26.0, 9.0, 0.0, 10.0, 68.0, 5.0, 52.0, 16.0],
35
+ [49.0, 49.0, 26.0, 5.0, 25.0, 49.0, 4.0, 29.0, 37.0, 5.0],
36
+ [2.0, 72.0, 65.0, 50.0, 52.0, 2.0, 65.0, 10.0, 74.0, 50.0, 37.0]]
37
+
38
+ def setup
39
+ Ai4r::Clusterers::WeightedAverageLinkage.send(:public,
40
+ *Ai4r::Clusterers::WeightedAverageLinkage.protected_instance_methods)
41
+ end
42
+
43
+ def test_linkage_distance
44
+ clusterer = Ai4r::Clusterers::WeightedAverageLinkage.new
45
+ clusterer.data_set = DataSet.new :data_items => @@data
46
+ clusterer.index_clusters = clusterer.create_initial_index_clusters
47
+ clusterer.distance_matrix = @@expected_distance_matrix
48
+ assert_equal 93.5, clusterer.linkage_distance(0,1,2)
49
+ assert_equal 37.5, clusterer.linkage_distance(4,2,5)
50
+ end
51
+
52
+ end
53
+
@@ -0,0 +1,96 @@
1
+ # Author:: Sergio Fierens
2
+ # License:: MPL 1.1
3
+ # Project:: ai4r
4
+ # Url:: http://ai4r.rubyforge.org/
5
+ #
6
+ # You can redistribute it and/or modify it under the terms of
7
+ # the Mozilla Public License version 1.1 as published by the
8
+ # Mozilla Foundation at http://www.mozilla.org/MPL/MPL-1.1.txt
9
+
10
+ require 'test/unit'
11
+ require File.dirname(__FILE__) + '/../../lib/ai4r/data/data_set'
12
+
13
+ module Ai4r
14
+ module Data
15
+ class DataSetTest < Test::Unit::TestCase
16
+
17
+ def test_load_csv_with_labels
18
+ set = DataSet.new.load_csv_with_labels("#{File.dirname(__FILE__)}/data_set.csv")
19
+ assert_equal 120, set.data_items.length
20
+ assert_equal ["zone", "rooms", "size", "price"], set.data_labels
21
+ end
22
+
23
+ def test_build_domains
24
+ domains = [ Set.new(["New York", "Chicago"]),
25
+ Set.new(["M", "F"]),
26
+ [5, 85],
27
+ Set.new(["Y", "N"]) ]
28
+ data = [ [ "New York", "M", 23, "Y"],
29
+ [ "Chicago", "M", 85, "Y"],
30
+ [ "New York", "F", 32, "Y"],
31
+ [ "New York", "M", 5, "N"],
32
+ [ "Chicago", "M", 15, "N"],
33
+ [ "Chicago", "F", 45, "Y"] ]
34
+ labels = ["city", "gender", "age", "result"]
35
+ set = DataSet.new({:data_items => data, :data_labels => labels})
36
+ assert_equal domains, set.build_domains
37
+ assert_equal domains[0], set.build_domain("city")
38
+ assert_equal domains[1], set.build_domain(1)
39
+ assert_equal domains[2], set.build_domain("age")
40
+ assert_equal domains[3], set.build_domain("result")
41
+ end
42
+
43
+ def test_set_data_labels
44
+ labels = ["A", "B"]
45
+ set = DataSet.new.set_data_labels(labels)
46
+ assert_equal labels, set.data_labels
47
+ set = DataSet.new(:data_labels => labels)
48
+ assert_equal labels, set.data_labels
49
+ set = DataSet.new(:data_items => [[ 1, 2, 3]])
50
+ assert_raise(ArgumentError) { set.set_data_labels(labels) }
51
+ end
52
+
53
+ def test_set_data_items
54
+ items = [ [ "New York", "M", "Y"],
55
+ [ "Chicago", "M", "Y"],
56
+ [ "New York", "F", "Y"],
57
+ [ "New York", "M", "N"],
58
+ [ "Chicago", "M", "N"],
59
+ [ "Chicago", "F", "Y"] ]
60
+ set = DataSet.new.set_data_items(items)
61
+ assert_equal items, set.data_items
62
+ assert_equal 3, set.data_labels.length
63
+ items << items.first[0..-2]
64
+ assert_raise(ArgumentError) { set.set_data_items(items) }
65
+ assert_raise(ArgumentError) { set.set_data_items(nil) }
66
+ assert_raise(ArgumentError) { set.set_data_items([1]) }
67
+ end
68
+
69
+ def test_get_mean_or_mode
70
+ items = [ [ "New York", 25, "Y"],
71
+ [ "New York", 55, "Y"],
72
+ [ "Chicago", 23, "Y"],
73
+ [ "Boston", 23, "N"],
74
+ [ "Chicago", 12, "N"],
75
+ [ "Chicago", 87, "Y"] ]
76
+ set = DataSet.new.set_data_items(items)
77
+ assert_equal ["Chicago", 37.5, "Y"], set.get_mean_or_mode
78
+ end
79
+
80
+ def test_index
81
+ items = [ [ "New York", 25, "Y"],
82
+ [ "New York", 55, "Y"],
83
+ [ "Chicago", 23, "Y"],
84
+ [ "Boston", 23, "N"],
85
+ [ "Chicago", 12, "N"],
86
+ [ "Chicago", 87, "Y"] ]
87
+ set = DataSet.new.set_data_items(items)
88
+ assert_equal set.data_labels, set[0].data_labels
89
+ assert_equal [[ "New York", 25, "Y"]], set[0].data_items
90
+ assert_equal [[ "Chicago", 23, "Y"],[ "Boston", 23, "N"]], set[2..3].data_items
91
+ assert_equal items[1..-1], set[1..-1].data_items
92
+ end
93
+
94
+ end
95
+ end
96
+ end
@@ -0,0 +1,81 @@
1
+ # Author:: Sergio Fierens
2
+ # License:: MPL 1.1
3
+ # Project:: ai4r
4
+ # Url:: http://ai4r.rubyforge.org/
5
+ #
6
+ # You can redistribute it and/or modify it under the terms of
7
+ # the Mozilla Public License version 1.1 as published by the
8
+ # Mozilla Foundation at http://www.mozilla.org/MPL/MPL-1.1.txt
9
+
10
+ require 'test/unit'
11
+ require File.dirname(__FILE__) + '/../../lib/ai4r/data/proximity'
12
+
13
+ module Ai4r
14
+ module Data
15
+ class ProximityTest < Test::Unit::TestCase
16
+
17
+ @@delta = 0.0001
18
+ @@data1 = [rand*10, rand*10, rand*-10]
19
+ @@data2 = [rand*10, rand*-10, rand*10]
20
+
21
+ def test_squared_euclidean_distance
22
+ assert_equal 0, Proximity.squared_euclidean_distance(@@data1, @@data1)
23
+ assert_equal Proximity.squared_euclidean_distance(@@data1, @@data2),
24
+ Proximity.squared_euclidean_distance(@@data2, @@data1)
25
+ assert 0 <= Proximity.squared_euclidean_distance(@@data1, @@data1)
26
+ assert_equal 2, Proximity.squared_euclidean_distance([1,1], [2,2])
27
+ assert_equal 9, Proximity.squared_euclidean_distance([3], [0])
28
+ end
29
+
30
+ def test_euclidean_distance
31
+ assert_equal 0, Proximity.euclidean_distance(@@data1, @@data1)
32
+ assert_equal Proximity.euclidean_distance(@@data1, @@data2),
33
+ Proximity.euclidean_distance(@@data2, @@data1)
34
+ assert 0 <= Proximity.euclidean_distance(@@data1, @@data1)
35
+ assert_equal Math.sqrt(2), Proximity.euclidean_distance([1,1], [2,2])
36
+ assert_equal 3, Proximity.euclidean_distance([3], [0])
37
+ end
38
+
39
+ def test_manhattan_distance
40
+ assert_equal 0, Proximity.manhattan_distance(@@data1, @@data1)
41
+ assert_equal Proximity.manhattan_distance(@@data1, @@data2),
42
+ Proximity.manhattan_distance(@@data2, @@data1)
43
+ assert 0 <= Proximity.manhattan_distance(@@data1, @@data1)
44
+ assert_equal 2, Proximity.manhattan_distance([1,1], [2,2])
45
+ assert_equal 9, Proximity.manhattan_distance([1,10], [2,2])
46
+ assert_equal 3, Proximity.manhattan_distance([3], [0])
47
+ end
48
+
49
+ def test_sup_distance
50
+ assert_equal 0, Proximity.sup_distance(@@data1, @@data1)
51
+ assert_equal Proximity.sup_distance(@@data1, @@data2),
52
+ Proximity.sup_distance(@@data2, @@data1)
53
+ assert 0 <= Proximity.sup_distance(@@data1, @@data1)
54
+ assert_equal 1, Proximity.sup_distance([1,1], [2,2])
55
+ assert_equal 8, Proximity.sup_distance([1,10], [2,2])
56
+ assert_equal 3, Proximity.sup_distance([3], [0])
57
+ end
58
+
59
+ def test_hamming_distance
60
+ assert_equal 0, Proximity.hamming_distance(@@data1, @@data1)
61
+ assert_equal Proximity.hamming_distance(@@data1, @@data2),
62
+ Proximity.hamming_distance(@@data2, @@data1)
63
+ assert 0 <= Proximity.hamming_distance(@@data1, @@data1)
64
+ assert_equal 1, Proximity.hamming_distance([1,1], [0,1])
65
+ assert_equal 2, Proximity.hamming_distance([1,10], [2,2])
66
+ assert_equal 1, Proximity.hamming_distance([3], [0])
67
+ end
68
+
69
+ def test_simple_matching_distance
70
+ assert_equal 0, Proximity.simple_matching_distance(@@data1, @@data1)
71
+ assert_equal Proximity.simple_matching_distance(@@data1, @@data2),
72
+ Proximity.simple_matching_distance(@@data2, @@data1)
73
+ assert 0 <= Proximity.simple_matching_distance(@@data1, @@data1)
74
+ assert_equal 1, Proximity.simple_matching_distance([1,2], [0,1])
75
+ assert_equal 1.0/0, Proximity.simple_matching_distance([1,10], [2,2])
76
+ assert_equal 1.0/0, Proximity.simple_matching_distance([3], [0])
77
+ end
78
+
79
+ end
80
+ end
81
+ end