ai4r 1.3 → 1.4
Sign up to get free protection for your applications and to get access to all the features.
- data/README.rdoc +6 -12
- data/examples/neural_network/backpropagation_example.rb +18 -16
- data/examples/neural_network/xor_example.rb +30 -20
- data/lib/ai4r/classifiers/classifier.rb +15 -4
- data/lib/ai4r/classifiers/id3.rb +31 -31
- data/lib/ai4r/clusterers/clusterer.rb +5 -24
- data/lib/ai4r/clusterers/k_means.rb +7 -38
- data/lib/ai4r/data/data_set.rb +4 -2
- data/lib/ai4r/data/parameterizable.rb +64 -0
- data/lib/ai4r/neural_network/backpropagation.rb +233 -210
- data/site/build/site/en/downloads.html +3 -3
- data/site/build/site/en/geneticAlgorithms.html +3 -3
- data/site/build/site/en/index.html +32 -15
- data/site/build/site/en/index.pdf +126 -100
- data/site/build/site/en/linkmap.html +7 -9
- data/site/build/site/en/linkmap.pdf +12 -12
- data/site/build/site/en/machineLearning.html +7 -6
- data/site/build/site/en/machineLearning.pdf +29 -29
- data/site/build/site/en/neuralNetworks.html +164 -127
- data/site/build/site/en/neuralNetworks.pdf +267 -200
- data/site/build/site/en/svn.html +4 -4
- data/site/build/tmp/cocoon-work/cache-dir/cocoon-ehcache-1.data +0 -0
- data/site/build/tmp/cocoon-work/cache-dir/cocoon-ehcache-1.index +0 -0
- data/site/build/tmp/projfilters.properties +1 -1
- data/site/build/webapp/WEB-INF/logs/core.log +670 -489
- data/site/build/webapp/WEB-INF/logs/error.log +213 -364
- data/site/build/webapp/WEB-INF/logs/sitemap.log +0 -368
- data/site/src/documentation/content/xdocs/index.xml +1 -1
- data/site/src/documentation/content/xdocs/neuralNetworks.xml +118 -90
- data/site/src/documentation/content/xdocs/site.xml +2 -3
- data/test/neural_network/backpropagation_test.rb +23 -0
- metadata +5 -7
- data/site/build/site/en/forum.html +0 -197
- data/site/build/site/en/forum.pdf +0 -151
- data/site/build/site/en/wholesite.pdf +0 -1915
@@ -115,13 +115,13 @@ document.write("Last Published: " + document.lastModified);
|
|
115
115
|
<a href="http://forum.jadeferret.com/viewforum.php?f=3" title="Ai4r Forum">Forum</a>
|
116
116
|
</div>
|
117
117
|
<div class="menuitem">
|
118
|
-
<a href="
|
118
|
+
<a href="svn.html" title="ai4r Subversion repository">Source Code repository</a>
|
119
119
|
</div>
|
120
120
|
<div class="menuitem">
|
121
|
-
<a href="
|
121
|
+
<a href="http://wiki.jadeferret.com/Category:AI4R" title="ai4r wiki with How-to guides and more documentation">AI4R Wiki</a>
|
122
122
|
</div>
|
123
123
|
<div class="menuitem">
|
124
|
-
<a href="
|
124
|
+
<a href="http://ai4r.rubyforge.org/rdoc/index.html" title="Ai4 RDoc docs">API doc (Rdoc)</a>
|
125
125
|
</div>
|
126
126
|
</div>
|
127
127
|
<div id="credit">
|
@@ -208,23 +208,21 @@ google_ad_height = 125;
|
|
208
208
|
|
209
209
|
<ul>
|
210
210
|
<li>
|
211
|
-
<a href="
|
211
|
+
<a href="svn.html">Source Code repository</a> ___________________ <em>svn</em> : ai4r Subversion repository</li>
|
212
212
|
</ul>
|
213
213
|
|
214
214
|
<ul>
|
215
215
|
<li>
|
216
|
-
<a href="
|
216
|
+
<a class="external" href="http://wiki.jadeferret.com/Category:AI4R">AI4R Wiki</a> ___________________ <em>wiki</em> : ai4r wiki with How-to guides and more documentation</li>
|
217
217
|
</ul>
|
218
218
|
|
219
219
|
<ul>
|
220
220
|
<li>
|
221
|
-
<a href="
|
222
|
-
</
|
223
|
-
</ul>
|
221
|
+
<a href="http://ai4r.rubyforge.org/rdoc/index.html">API doc (Rdoc)</a> ___________________ <em>rdoc</em> : Ai4 RDoc docs</li>
|
222
|
+
</ul>
|
224
223
|
|
225
224
|
</ul>
|
226
225
|
</ul>
|
227
|
-
|
228
226
|
|
229
227
|
</ul>
|
230
228
|
</ul>
|
@@ -5,10 +5,10 @@
|
|
5
5
|
/Producer (FOP 0.20.5) >>
|
6
6
|
endobj
|
7
7
|
5 0 obj
|
8
|
-
<< /Length
|
8
|
+
<< /Length 1206 /Filter [ /ASCII85Decode /FlateDecode ]
|
9
9
|
>>
|
10
10
|
stream
|
11
|
-
Gat=+
|
11
|
+
Gat=+gMYb*&:O:SkV3)r>$aU&qW>`d`^R@M'*J-Y'FR@(AKm<$V5RYu^6E/tUgb6JV*N1s_Du6=B/nuFHM6M7HRSB7\),=opKof\?87'R;#d2TFE:jjHlU/_](1;T4>9>[]djf9lH@-_<^0[M:/@t?Vpb@c2gTkhCIr<p>^AWJok/tP4GX2P$][W;++dmN>AmZn\KK^p$Zhj'iL[kn%$8A/DQ,NL?L:?7NL>Nh<a+YjOu/gM.G@J(K)/"*d(u7uIM2+[59`M@":ILC$OMA+*26/1+;?@-4m]p*Iu`s6&+0upIMgf<L&g$<:tRK.TT=WBq$Ot^niL1*ab5hqa!eCpVbasjk9u&?"@;=^K@6dFl.]04(h:N6YQ<D7dE)\F:)J`ZU/+8<%(isWY4QZc,hoP^V59bfW?N``<mWl`Ec8k7T"n3Z\BcOf,Okg*^3t;Ls&C^R&1>%u7WNnjBdQtp;Rh-J]1Q``MjVGr*Z",1J>9fi2`^+X5DY7l*O5U%el6oNUaum+R+t`+=U-qYP6BRC`IMHEGHrPD;RIP"%R,k1"Mq7:!YXa^59J)-]W(R+SCm!j0cW9uipS_YZJ%jK0/OD$X,H4gWDanW2J=t@B]!^8TMd9[/U+.i)UL4\<su*>=O<!aN#UKP"f;6'2F*eonWgQ"XGsD_^2ia+4j-eU]kSm+h1KCmDUAIXP:3e>T,%k`88$n(RQ^*Bhk`ak/\)k[rP!g\q19jXljsR(>*h@rVk5<9@B$tP@H;d5B;>kW*&IJ_,C+;$I$e%lI9;KG-@rMYQ<^fIoI_uMKE\Rt4J(e(lElP4]uUJ)DM>_[]T&Z&7^\5MHJknZgX6PW%85%g=#UI=hBuA09`!%CEG/\DF8Lp.AqTFrcCKDtT3eH5Nf4Y='I0RBapdHt:&m</dsMncCX@R`1RjmAlG=BmJW9BW4*5+%gthU3H]:se_3qam<a0eGoh'7A(G3fp(.0_q;U&P*ilnHD`J'F"3R?DO?1[dqd0X6DlCY5bRX\OEY-d_DENe`LbK3)kYeQT1kb<iOk8mH$L=fgA=.D2:(FEAJpE8M`HM1_GVWo6/&4Ct8e-2O%J<,L6W4/1CT3ZYZ0r2P\qmT[dU4=(V0rS2"1%>nCPA&lp_ftR$'jIXZ=c\A(D'8m'D*:]m0WsdhUOq(A++!'jRN%<s,o)"M^?9(,N?5P`Ct__U6??Lhr<lH0??l~>
|
12
12
|
endstream
|
13
13
|
endobj
|
14
14
|
6 0 obj
|
@@ -72,17 +72,17 @@ endobj
|
|
72
72
|
xref
|
73
73
|
0 12
|
74
74
|
0000000000 65535 f
|
75
|
-
|
76
|
-
|
77
|
-
|
75
|
+
0000002030 00000 n
|
76
|
+
0000002088 00000 n
|
77
|
+
0000002138 00000 n
|
78
78
|
0000000015 00000 n
|
79
79
|
0000000071 00000 n
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
80
|
+
0000001369 00000 n
|
81
|
+
0000001475 00000 n
|
82
|
+
0000001587 00000 n
|
83
|
+
0000001696 00000 n
|
84
|
+
0000001806 00000 n
|
85
|
+
0000001914 00000 n
|
86
86
|
trailer
|
87
87
|
<<
|
88
88
|
/Size 12
|
@@ -90,5 +90,5 @@ trailer
|
|
90
90
|
/Info 4 0 R
|
91
91
|
>>
|
92
92
|
startxref
|
93
|
-
|
93
|
+
2258
|
94
94
|
%%EOF
|
@@ -115,13 +115,13 @@ document.write("Last Published: " + document.lastModified);
|
|
115
115
|
<a href="http://forum.jadeferret.com/viewforum.php?f=3" title="Ai4r Forum">Forum</a>
|
116
116
|
</div>
|
117
117
|
<div class="menuitem">
|
118
|
-
<a href="
|
118
|
+
<a href="svn.html" title="ai4r Subversion repository">Source Code repository</a>
|
119
119
|
</div>
|
120
120
|
<div class="menuitem">
|
121
|
-
<a href="
|
121
|
+
<a href="http://wiki.jadeferret.com/Category:AI4R" title="ai4r wiki with How-to guides and more documentation">AI4R Wiki</a>
|
122
122
|
</div>
|
123
123
|
<div class="menuitem">
|
124
|
-
<a href="
|
124
|
+
<a href="http://ai4r.rubyforge.org/rdoc/index.html" title="Ai4 RDoc docs">API doc (Rdoc)</a>
|
125
125
|
</div>
|
126
126
|
</div>
|
127
127
|
<div id="credit">
|
@@ -229,7 +229,7 @@ The only information that you have is a collection of examples, provided by a ma
|
|
229
229
|
and identify new posible marketing targets:</p>
|
230
230
|
<pre class="code">
|
231
231
|
|
232
|
-
id3.
|
232
|
+
id3.get_rules
|
233
233
|
# => if age_range=='<30' then marketing_target='Y'
|
234
234
|
elsif age_range=='[30-50)' and city=='Chicago' then marketing_target='Y'
|
235
235
|
elsif age_range=='[30-50)' and city=='New York' then marketing_target='N'
|
@@ -277,7 +277,8 @@ id3.eval(['New York', '<30', 'M'])
|
|
277
277
|
# => 'Y'
|
278
278
|
</pre>
|
279
279
|
<p>
|
280
|
-
But instead of going through the tree every time, you can take advantage of the
|
280
|
+
But instead of going through the tree every time, you can take advantage of the
|
281
|
+
fact that the method "get_rules" generates proper ruby code!
|
281
282
|
</p>
|
282
283
|
<pre class="code">
|
283
284
|
|
@@ -286,7 +287,7 @@ But instead of going through the tree every time, you can take advantage of the
|
|
286
287
|
city = 'New York'
|
287
288
|
gender = 'M'
|
288
289
|
marketing_target = nil
|
289
|
-
eval id3.
|
290
|
+
eval id3.get_rules
|
290
291
|
puts marketing_target
|
291
292
|
# => 'Y'
|
292
293
|
</pre>
|
@@ -95,10 +95,10 @@ endobj
|
|
95
95
|
>>
|
96
96
|
endobj
|
97
97
|
20 0 obj
|
98
|
-
<< /Length
|
98
|
+
<< /Length 1802 /Filter [ /ASCII85Decode /FlateDecode ]
|
99
99
|
>>
|
100
100
|
stream
|
101
|
-
Gau0DD/\/e&H;*)Tqrjt!!t0=H7b9]8X^>FdUGk.!C[tFN()
|
101
|
+
Gau0DD/\/e&H;*)Tqrjt!!t0=H7b9]8X^>FdUGk.!C[tFN()JfD98X<AAPkW^=+T.M6qM0L*DnCV!e2Q48O%]3$/Z[%&gRa^Q4#o-FW#]*rPK:q>2=XIH#U>P1JII\%ud$hBniSgTG*$T5pRc:ENUg9.d7Ec)ZoV/e[#IKGMhA`q+ae-t^@]$>V3mQ3SZDXmt,V)9!18$`U%=]9:j]F_ct$S(#m/:U?-Z?ClVPD]O.Ic?OI/*o8=rM0Nnr`'R4a8/CdkG^.0oU"RgdR2BZje9@nPA22V$JI9H8Do8I[']sZt,g7nVOK5HYed])!?$il<"H"H[`%9K#E9qBYcbq#UVH-?/l!c_"%P?f1XK3@q`-#E[frst_XF3alpDqb,K91=dTA!Y!eFl6Bn<_[KmDH`Rr>.3UPNRWFHo\(mK3-,9f<Yd[N@\dG-kTs03*o42kQd4f,"]0cA<LgH91-bA4B60jitNpZD&$`>e-BtbHR8%f+DB$"'T,fL)"Y=9ksd-R5MFE:dQo&C\JU_I$&s2OQ!DL#&$^9);b%V5iGtEtgu*q"(TY[AVB\_EOAg3/_"<uPm:<sFBj:kPkPm?dQloHY)Ggdf#>^EV%Qm)o6IAg^g9]J*W"XK13<hqRkaWEIqGs:-^h>5d:>c`pS-r=W!W?-:@WX*-/cnu!Q)cEMQ&;M2!+S9pD)f7*W9lJ=E"3D[Nb_MCV2iTi;3]d^8rPkY`<o1tkL*1fl.-CVnHp;lB'A#R,`daRQ0bgej`e*Vrt+K*oT]M08MBtn$*@3T\(*6$*^*/[/<4bC5-L4+:Mu0=l$Z2_f[h't]^?]3$.]oEQXHGV?2neua_7!Cf8*3L2aRh19Rr#Qat1m-H=\/$,\a1CIqnnA_h`5O,Rd4Nj)5a;"53'q<QaIlQt?sSg9Gq:\a?JIa*+.F<"-Pqn(q>A!J)EPK1o$0(V-4>9?C_OpZBeRMIQ);)YU&WMbf]&e*1ECYICoU1<]+[%_BO"6Pl1Y-#'<4PPr@l20pE:r2J,"T:K*$!tRZ3fA*,Ge-49U:4o7U!J`0@I@/)a%c].MY/D?&R82'dVJ"(sY.OKi*akYmJ8?U*:EMPfjMRd%Gjn*jWC$coY5soYZPGIdN0To1^fXW@jIjXZ0s?KlNDOo?)cT%9D].a:B3R7L*^o+?QQajUX`XV/)=.F(/>(tf35Ad,Uk81I0jBJc1F2VSHN5S'K%+(!]kj+)4u3A!8W'C&m!_Y?@3L?4`[r/7?0;A*.DPHo\7i,HDZjIN6UI:03Wo#00>HMr@!0'2`g(P,Btu=,ONqhe[X*a9WbTgp(/T[kOqL8]W^iSsCPgbOX4tp=cdC`6DLp3K82Q:@h>4P?cc&T</YSdVI#b:e\\t]-nh_H_RX<s6nq]tMhW!6\^;2Ucg>4!jB5&W@H-K<b5")\JeK?"69;u)=.1L>0@lkn!LQh8Mo_Nrod^3,f4?5R>]^EmB)Gjnpjj;de3X&Mbi@ZH@i+&>Kq7X!/qlZu-(H7Bf?DB(T0>c<DbjS3NpF[ae^q-_1SXbjfe]l40`2ij/irlrr]_J6(jjX:TAuecnIBHNQ"j@=0o*bpJY6\^iIJA_f/`WY*+W.W)>f,]&$<<.hc!ii52@C8b2tR>8MmMukAJW=:#[(phDBHA<8d3`LoVt5NCAYqnX!B@$Iur[]3lPg2AYDHm^G>0-$8NMk*4_pA-&;]NgKj`(O:O2]\5qO<O/bMB/DWFgGd/gH`".aAQatUBJAT$oY,,=?WM(tS\3hY*aBu)tL+*`%9;NonI8\oa8tqE:+^/JUh9-)s^:s]'id_"~>
|
102
102
|
endstream
|
103
103
|
endobj
|
104
104
|
21 0 obj
|
@@ -288,44 +288,44 @@ endobj
|
|
288
288
|
xref
|
289
289
|
0 39
|
290
290
|
0000000000 65535 f
|
291
|
-
|
292
|
-
|
293
|
-
|
291
|
+
0000009548 00000 n
|
292
|
+
0000009627 00000 n
|
293
|
+
0000009719 00000 n
|
294
294
|
0000000015 00000 n
|
295
295
|
0000000071 00000 n
|
296
296
|
0000000834 00000 n
|
297
297
|
0000000954 00000 n
|
298
298
|
0000001007 00000 n
|
299
|
-
|
299
|
+
0000009853 00000 n
|
300
300
|
0000001142 00000 n
|
301
|
-
|
301
|
+
0000009916 00000 n
|
302
302
|
0000001278 00000 n
|
303
|
-
|
303
|
+
0000009982 00000 n
|
304
304
|
0000001414 00000 n
|
305
|
-
|
305
|
+
0000010047 00000 n
|
306
306
|
0000001551 00000 n
|
307
|
-
|
307
|
+
0000010113 00000 n
|
308
308
|
0000001688 00000 n
|
309
309
|
0000003674 00000 n
|
310
310
|
0000003782 00000 n
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
311
|
+
0000005677 00000 n
|
312
|
+
0000005785 00000 n
|
313
|
+
0000006805 00000 n
|
314
|
+
0000006928 00000 n
|
315
|
+
0000006962 00000 n
|
316
|
+
0000007155 00000 n
|
317
|
+
0000010178 00000 n
|
318
|
+
0000007350 00000 n
|
319
|
+
0000007611 00000 n
|
320
|
+
0000008103 00000 n
|
321
|
+
0000008321 00000 n
|
322
|
+
0000008602 00000 n
|
323
|
+
0000008886 00000 n
|
324
|
+
0000008999 00000 n
|
325
|
+
0000009109 00000 n
|
326
|
+
0000009217 00000 n
|
327
|
+
0000009323 00000 n
|
328
|
+
0000009439 00000 n
|
329
329
|
trailer
|
330
330
|
<<
|
331
331
|
/Size 39
|
@@ -333,5 +333,5 @@ trailer
|
|
333
333
|
/Info 4 0 R
|
334
334
|
>>
|
335
335
|
startxref
|
336
|
-
|
336
|
+
10229
|
337
337
|
%%EOF
|
@@ -5,7 +5,7 @@
|
|
5
5
|
<meta content="Apache Forrest" name="Generator">
|
6
6
|
<meta name="Forrest-version" content="0.8">
|
7
7
|
<meta name="Forrest-skin-name" content="pelt">
|
8
|
-
<title>Backpropagation
|
8
|
+
<title>OCR example using Backpropagation networks in ruby :: ai4r</title>
|
9
9
|
<link type="text/css" href="skin/basic.css" rel="stylesheet">
|
10
10
|
<link media="screen" type="text/css" href="skin/screen.css" rel="stylesheet">
|
11
11
|
<link media="print" type="text/css" href="skin/print.css" rel="stylesheet">
|
@@ -115,13 +115,13 @@ document.write("Last Published: " + document.lastModified);
|
|
115
115
|
<a href="http://forum.jadeferret.com/viewforum.php?f=3" title="Ai4r Forum">Forum</a>
|
116
116
|
</div>
|
117
117
|
<div class="menuitem">
|
118
|
-
<a href="
|
118
|
+
<a href="svn.html" title="ai4r Subversion repository">Source Code repository</a>
|
119
119
|
</div>
|
120
120
|
<div class="menuitem">
|
121
|
-
<a href="
|
121
|
+
<a href="http://wiki.jadeferret.com/Category:AI4R" title="ai4r wiki with How-to guides and more documentation">AI4R Wiki</a>
|
122
122
|
</div>
|
123
123
|
<div class="menuitem">
|
124
|
-
<a href="
|
124
|
+
<a href="http://ai4r.rubyforge.org/rdoc/index.html" title="Ai4 RDoc docs">API doc (Rdoc)</a>
|
125
125
|
</div>
|
126
126
|
</div>
|
127
127
|
<div id="credit">
|
@@ -151,17 +151,20 @@ google_ad_height = 125;
|
|
151
151
|
<a class="dida" href="neuralNetworks.pdf"><img alt="PDF -icon" src="skin/images/pdfdoc.gif" class="skin"><br>
|
152
152
|
PDF</a>
|
153
153
|
</div>
|
154
|
-
<h1>Backpropagation
|
154
|
+
<h1>OCR example using Backpropagation networks in ruby :: ai4r</h1>
|
155
155
|
<div id="minitoc-area">
|
156
156
|
<ul class="minitoc">
|
157
157
|
<li>
|
158
|
-
<a href="#nn-Introduction">Introduction to Neural Networks
|
158
|
+
<a href="#nn-Introduction">Introduction to Neural Networks</a>
|
159
|
+
</li>
|
160
|
+
<li>
|
161
|
+
<a href="#nn-example">Modeling the OCR problem using Neural Networks networks</a>
|
159
162
|
</li>
|
160
163
|
<li>
|
161
|
-
<a href="#
|
164
|
+
<a href="#nn2-example">Implementing a basic OCR application using ruby and AI4R</a>
|
162
165
|
</li>
|
163
166
|
<li>
|
164
|
-
<a href="#
|
167
|
+
<a href="#nn3-example">Results obtained with the AI4R OCR algorithm</a>
|
165
168
|
</li>
|
166
169
|
<li>
|
167
170
|
<a href="#nn-custom">Customizing your neural network in ai4r</a>
|
@@ -173,7 +176,7 @@ google_ad_height = 125;
|
|
173
176
|
</div>
|
174
177
|
|
175
178
|
<a name="N1000D"></a><a name="nn-Introduction"></a>
|
176
|
-
<h2 class="boxed">Introduction to Neural Networks
|
179
|
+
<h2 class="boxed">Introduction to Neural Networks</h2>
|
177
180
|
<div class="section">
|
178
181
|
<p>
|
179
182
|
The utility of artificial neural network models lies in the fact
|
@@ -194,31 +197,9 @@ google_ad_height = 125;
|
|
194
197
|
Rumelhart, Geoffrey E. Hinton and Ronald J. Williams in 1986)
|
195
198
|
</p>
|
196
199
|
</div>
|
197
|
-
|
198
|
-
<a name="N1001A"></a><a name="nn-HowTo"></a>
|
199
|
-
<h2 class="boxed">How to use Backpropagation Neural Networks in Ruby</h2>
|
200
|
-
<div class="section">
|
201
|
-
<pre class="code">
|
202
|
-
|
203
|
-
# Create the network
|
204
|
-
net = Ai4r::NeuralNetwork::Backpropagation.new([4, 3, 2])
|
205
|
-
# 4 inputs
|
206
|
-
# 1 hidden layer with 3 neurons
|
207
|
-
# 2 outputs
|
208
|
-
# Train the network
|
209
|
-
1..upto(100) do |i|
|
210
|
-
net.train(example[i], result[i])
|
211
|
-
end
|
212
|
-
|
213
|
-
# Use it: Evaluate data with the trained network
|
214
|
-
net.eval([12, 48, 12, 25]) # => [0.89, 0.04]
|
215
|
-
|
216
|
-
</pre>
|
217
|
-
</div>
|
218
200
|
|
219
|
-
|
220
|
-
<
|
221
|
-
<h2 class="boxed">OCR example using Backpropagation networks in ruby</h2>
|
201
|
+
<a name="N1001A"></a><a name="nn-example"></a>
|
202
|
+
<h2 class="boxed">Modeling the OCR problem using Neural Networks networks</h2>
|
222
203
|
<div class="section">
|
223
204
|
<p>
|
224
205
|
Let's imagine that we have to implement a program to identify simple patterns
|
@@ -228,12 +209,14 @@ google_ad_height = 125;
|
|
228
209
|
signal).
|
229
210
|
</p>
|
230
211
|
<p>
|
231
|
-
|
232
|
-
neural network to identify
|
212
|
+
In order to solve this problem, we can take an example of each pattern
|
213
|
+
to be recognized, and train a neural network to identify similar patterns.
|
214
|
+
In fact, one of the most popular uses of neural networks in business
|
215
|
+
applications is OCR (opticar character recognition)
|
233
216
|
</p>
|
234
217
|
<p>
|
235
|
-
|
236
|
-
|
218
|
+
In our porposed solotion, we create a network with the following
|
219
|
+
architecture: 256 input neurons and 3 output neurons. We feed this network
|
237
220
|
with 16x16 matrices (in fact will convert them to vectors of length 256).
|
238
221
|
Each pixel is represented with a number from 0 (white pixel) to 10
|
239
222
|
(black pixel). The output of this network if a 3 vector of dimension 3,
|
@@ -262,81 +245,56 @@ google_ad_height = 125;
|
|
262
245
|
</tr>
|
263
246
|
|
264
247
|
</table>
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
</
|
269
|
-
<
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
<li>
|
275
|
-
<img alt="Triangule training example" src="/images/t.png">
|
276
|
-
[0.98, 0.03, 0.01] => TRIANGLE </li>
|
277
|
-
|
278
|
-
<li>
|
279
|
-
<img alt="Square training example" src="/images/s.png">
|
280
|
-
[0.00, 0.96, 0.03] => SQUARE </li>
|
281
|
-
|
282
|
-
<li>
|
283
|
-
<img alt="Cross training example" src="/images/c.png">
|
284
|
-
[0.00, 0.00, 0.99] => CROSS </li>
|
285
|
-
|
286
|
-
</ol>
|
287
|
-
|
288
|
-
</li>
|
289
|
-
|
290
|
-
<li>Evaluating the patterns with random noise with the trained network:
|
291
|
-
<ol>
|
292
|
-
|
293
|
-
<li>
|
294
|
-
<img alt="Triangule pattern with random noise" src="/images/t_wn.png"> [0.98, 0.01, 0.01] => TRIANGLE </li>
|
295
|
-
|
296
|
-
<li>
|
297
|
-
<img alt="Square pattern with random noise" src="/images/s_wn.png"> [0.00, 0.96, 0.02] => SQUARE </li>
|
298
|
-
|
299
|
-
<li>
|
300
|
-
<img alt="Cross pattern with random noise" src="/images/c_wn.png"> [0.00, 0.00, 0.98] => CROSS </li>
|
301
|
-
|
302
|
-
</ol>
|
303
|
-
|
304
|
-
</li>
|
305
|
-
|
306
|
-
<li>Evaluating the patterns with line noise with the trained network:
|
307
|
-
<ol>
|
308
|
-
|
309
|
-
<li>
|
310
|
-
<img alt="Triangule pattern with line noise" src="/images/t_wbn.png"> [0.62, 0.00, 0.02] => TRIANGLE </li>
|
311
|
-
|
312
|
-
<li>
|
313
|
-
<img alt="Square pattern with line noise" src="/images/s_wbn.png"> [0.00, 0.75, 0.01] => SQUARE </li>
|
314
|
-
|
315
|
-
<li>
|
316
|
-
<img alt="Cross pattern with line noise" src="/images/c_wbn.png"> [0.00, 0.00, 0.98] => CROSS </li>
|
317
|
-
|
318
|
-
</ol>
|
319
|
-
|
320
|
-
</li>
|
248
|
+
</div>
|
249
|
+
|
250
|
+
<a name="N10057"></a><a name="nn2-example"></a>
|
251
|
+
<h2 class="boxed">Implementing a basic OCR application using ruby and AI4R</h2>
|
252
|
+
<div class="section">
|
253
|
+
<p>The code bellow shows the basic steps to use Backpropagation Neural
|
254
|
+
Networks in AI4R:</p>
|
255
|
+
<pre class="code">
|
321
256
|
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
257
|
+
# Create the network with:
|
258
|
+
# 4 inputs
|
259
|
+
# 1 hidden layer with 3 neurons
|
260
|
+
# 2 outputs
|
261
|
+
net = Ai4r::NeuralNetwork::Backpropagation.new([4, 3, 2])
|
262
|
+
|
263
|
+
# Train the network
|
264
|
+
100.times do |i|
|
265
|
+
net.train(example[i], result[i])
|
266
|
+
end
|
267
|
+
|
268
|
+
# Use it: Evaluate data with the trained network
|
269
|
+
net.eval([12, 48, 12, 25]) # => [0.89, 0.04]
|
270
|
+
|
271
|
+
</pre>
|
272
|
+
<p>This is the source code used to elaborate this simple OCR application
|
273
|
+
(You can find it inside the AI4R zip file release):</p>
|
326
274
|
<pre class="code">
|
327
275
|
|
328
276
|
require "rubygems"
|
329
|
-
require "ai4r
|
277
|
+
require "ai4r"
|
330
278
|
require File.dirname(__FILE__) + '/training_patterns'
|
331
279
|
require File.dirname(__FILE__) + '/patterns_with_noise'
|
332
280
|
require File.dirname(__FILE__) + '/patterns_with_base_noise'
|
333
281
|
|
334
|
-
|
282
|
+
# Create a network with 256 inputs, and 3 outputs
|
283
|
+
net = Ai4r::NeuralNetwork::Backpropagation.new([256, 3])
|
335
284
|
|
285
|
+
# Load training data
|
336
286
|
tr_input = TRIANGLE.flatten.collect { |input| input.to_f / 10}
|
337
287
|
sq_input = SQUARE.flatten.collect { |input| input.to_f / 10}
|
338
288
|
cr_input = CROSS.flatten.collect { |input| input.to_f / 10}
|
289
|
+
# Train the network
|
290
|
+
puts "Training the network, please wait."
|
291
|
+
100.times do
|
292
|
+
net.train(tr_input, [1,0,0])
|
293
|
+
net.train(sq_input, [0,1,0])
|
294
|
+
net.train(cr_input, [0,0,1])
|
295
|
+
end
|
339
296
|
|
297
|
+
# Load test data with noise
|
340
298
|
tr_with_noise = TRIANGLE_WITH_NOISE.flatten.collect { |input| input.to_f / 10}
|
341
299
|
sq_with_noise = SQUARE_WITH_NOISE.flatten.collect { |input| input.to_f / 10}
|
342
300
|
cr_with_noise = CROSS_WITH_NOISE.flatten.collect { |input| input.to_f / 10}
|
@@ -345,12 +303,7 @@ tr_with_base_noise = TRIANGLE_WITH_BASE_NOISE.flatten.collect { |input| input.to
|
|
345
303
|
sq_with_base_noise = SQUARE_WITH_BASE_NOISE.flatten.collect { |input| input.to_f / 10}
|
346
304
|
cr_with_base_noise = CROSS_WITH_BASE_NOISE.flatten.collect { |input| input.to_f / 10}
|
347
305
|
|
348
|
-
|
349
|
-
20.times do
|
350
|
-
net.train(tr_input, [1,0,0])
|
351
|
-
net.train(sq_input, [0,1,0])
|
352
|
-
net.train(cr_input, [0,0,1])
|
353
|
-
end
|
306
|
+
# Print the evaluation results
|
354
307
|
|
355
308
|
def result_label(result)
|
356
309
|
if result[0] > result[1] && result[0] > result[2]
|
@@ -377,45 +330,129 @@ puts "#{net.eval(cr_with_base_noise).inspect} => #{result_label(net.eval(cr_w
|
|
377
330
|
|
378
331
|
</pre>
|
379
332
|
</div>
|
333
|
+
|
334
|
+
<a name="N1006C"></a><a name="nn3-example"></a>
|
335
|
+
<h2 class="boxed">Results obtained with the AI4R OCR algorithm</h2>
|
336
|
+
<div class="section">
|
337
|
+
<p>
|
338
|
+
The results we got when we evaluate patterns with our trained network are:
|
339
|
+
</p>
|
340
|
+
<ul>
|
341
|
+
|
342
|
+
<li>Evaluating the training patterns with the trained network:
|
343
|
+
<ol>
|
344
|
+
|
345
|
+
<li>
|
346
|
+
<img alt="Triangule training example" src="/images/t.png">
|
347
|
+
[0.98, 0.03, 0.01] => TRIANGLE </li>
|
348
|
+
|
349
|
+
<li>
|
350
|
+
<img alt="Square training example" src="/images/s.png">
|
351
|
+
[0.00, 0.96, 0.03] => SQUARE </li>
|
352
|
+
|
353
|
+
<li>
|
354
|
+
<img alt="Cross training example" src="/images/c.png">
|
355
|
+
[0.00, 0.00, 0.99] => CROSS </li>
|
356
|
+
|
357
|
+
</ol>
|
358
|
+
|
359
|
+
</li>
|
360
|
+
|
361
|
+
<li>Evaluating the patterns with random noise with the trained network:
|
362
|
+
<ol>
|
363
|
+
|
364
|
+
<li>
|
365
|
+
<img alt="Triangule pattern with random noise" src="/images/t_wn.png"> [0.98, 0.01, 0.01] => TRIANGLE </li>
|
366
|
+
|
367
|
+
<li>
|
368
|
+
<img alt="Square pattern with random noise" src="/images/s_wn.png"> [0.00, 0.96, 0.02] => SQUARE </li>
|
369
|
+
|
370
|
+
<li>
|
371
|
+
<img alt="Cross pattern with random noise" src="/images/c_wn.png"> [0.00, 0.00, 0.98] => CROSS </li>
|
372
|
+
|
373
|
+
</ol>
|
374
|
+
|
375
|
+
</li>
|
376
|
+
|
377
|
+
<li>Evaluating the patterns with line noise with the trained network:
|
378
|
+
<ol>
|
379
|
+
|
380
|
+
<li>
|
381
|
+
<img alt="Triangule pattern with line noise" src="/images/t_wbn.png"> [0.62, 0.00, 0.02] => TRIANGLE </li>
|
382
|
+
|
383
|
+
<li>
|
384
|
+
<img alt="Square pattern with line noise" src="/images/s_wbn.png"> [0.00, 0.75, 0.01] => SQUARE </li>
|
385
|
+
|
386
|
+
<li>
|
387
|
+
<img alt="Cross pattern with line noise" src="/images/c_wbn.png"> [0.00, 0.00, 0.98] => CROSS </li>
|
388
|
+
|
389
|
+
</ol>
|
390
|
+
|
391
|
+
</li>
|
392
|
+
|
393
|
+
</ul>
|
394
|
+
<p>These results are satisfactory. The network could sucessfully identify
|
395
|
+
the patterns despite the noise introduced to them.</p>
|
396
|
+
</div>
|
380
397
|
|
381
398
|
|
382
|
-
<a name="
|
399
|
+
<a name="N100CD"></a><a name="nn-custom"></a>
|
383
400
|
<h2 class="boxed">Customizing your neural network in ai4r</h2>
|
384
401
|
<div class="section">
|
385
402
|
<p>Sometime for a given problem, you will have to "play around" with some parameters to
|
386
403
|
get to a solution. This parameters are:</p>
|
387
404
|
<p>
|
388
|
-
|
389
|
-
<
|
390
|
-
|
405
|
+
|
406
|
+
<strong>Learning Rate</strong>: a real number, usually between 0.05
|
407
|
+
and 0.25.
|
408
|
+
</p>
|
391
409
|
<p>
|
392
|
-
|
410
|
+
|
411
|
+
<strong>Momentum</strong>: A momentum will avoid oscillations during
|
412
|
+
learning, converging to a solution in less iterations.
|
413
|
+
</p>
|
393
414
|
<p>
|
394
|
-
<strong>
|
395
|
-
This function is called
|
396
|
-
"
|
415
|
+
<strong>Propagation function</strong>: By default, f(x) = 1/(1 + e^(-x)).
|
416
|
+
This function is called
|
417
|
+
<a class="external" href="http://en.wikipedia.org/wiki/Sigmoid_function">
|
418
|
+
Sigmoid function
|
419
|
+
</a>. You can see it like a "smoothed" version of the
|
420
|
+
<a class="external" href="http://en.wikipedia.org/wiki/Heaviside_step_function">
|
421
|
+
Heaviside step function
|
422
|
+
</a>. It will always provide a
|
397
423
|
value between 0 and 1. </p>
|
398
424
|
<p>
|
399
425
|
<img alt="Sigmoid function" src="images/sigmoid.png"></p>
|
400
426
|
<p>
|
401
|
-
Sometimes you will have better results with f(x) = x
|
402
|
-
|
427
|
+
Sometimes you will have better results with f(x) = tanh(x), or even with
|
428
|
+
f(x) = x. If you modify the propagation function, you have to supply the
|
429
|
+
derivative function too (in terms of the propagation function result).
|
430
|
+
</p>
|
431
|
+
<p>To customize these parameters in AI4R, you can user the "set_parameters"
|
432
|
+
method:</p>
|
403
433
|
<pre class="code">
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
434
|
+
net.set_parameters(
|
435
|
+
:momentum => 0.15,
|
436
|
+
:learning_rate => 0.5,
|
437
|
+
:propagation_function => lambda { |x| Math.tanh(x) },
|
438
|
+
:derivative_propagation_function => lambda { |y| 1.0 - y**2 }
|
439
|
+
)
|
440
|
+
</pre>
|
441
|
+
<p>You can also use the attribute accesors:</p>
|
442
|
+
<pre class="code">
|
443
|
+
net.momentum = 0.15
|
444
|
+
net.learning_rate = 0.5
|
445
|
+
net.propagation_function = lambda { |x| Math.tanh(x) }
|
446
|
+
net.derivative_propagation_function = lambda { |y| 1.0 - y**2 }
|
414
447
|
</pre>
|
415
448
|
</div>
|
416
|
-
|
417
449
|
|
418
|
-
<
|
450
|
+
<div class="note">
|
451
|
+
<div class="label">Note</div>
|
452
|
+
<div class="content">Remember to set the custom parameters BEFORE training the network</div>
|
453
|
+
</div>
|
454
|
+
|
455
|
+
<a name="N1010B"></a><a name="nn-more"></a>
|
419
456
|
<h2 class="boxed">More about Neural Networks and Backpropagation</h2>
|
420
457
|
<div class="section">
|
421
458
|
<ul>
|