SimpleNeuralNetwork 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/lib/layer.rb +71 -0
- data/lib/network.rb +78 -0
- data/lib/neuron.rb +28 -0
- data/lib/simple_neural_network.rb +3 -0
- metadata +47 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 46f5556f65b4606a5e8314e7ba7791f73ba314fd
|
4
|
+
data.tar.gz: 72fdae81f4c25de9f57bf4295f064d414dcd5380
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 7149124f6817e608bba4ad2f9ca8419bbf50c27991fc1565b59f0f42cb8b2d1bdfa17fb4ad3bfeb4c41055eb19b7bec0b22e30361ead91c4c3251c4fb9a2c92a
|
7
|
+
data.tar.gz: 73e138bd6e0b474fcf57e576a884a407fe6512f2e0ae66ed8ab8ae2c22143247ac6b24aae5c2c409d3e19a83d3ea41075d71745b96c2ed34f9d5b5a31b4f9d35
|
data/lib/layer.rb
ADDED
@@ -0,0 +1,71 @@
|
|
1
|
+
require_relative "neuron"
|
2
|
+
|
3
|
+
class SimpleNeuralNetwork
|
4
|
+
class Layer
|
5
|
+
# Number of neurons
|
6
|
+
attr_accessor :size
|
7
|
+
|
8
|
+
attr_accessor :prev_layer
|
9
|
+
attr_accessor :next_layer
|
10
|
+
|
11
|
+
# List of #{size} neurons
|
12
|
+
attr_accessor :neurons
|
13
|
+
|
14
|
+
attr_accessor :network
|
15
|
+
|
16
|
+
def initialize(size, network)
|
17
|
+
@size = size
|
18
|
+
@neurons = []
|
19
|
+
@network = network
|
20
|
+
|
21
|
+
populate_neurons
|
22
|
+
end
|
23
|
+
|
24
|
+
# The method that drives network output resolution.
|
25
|
+
# get_output calculates the array of node values for this layer.
|
26
|
+
# This is calculated by recursively fetching the output from the previous layer, then applying edge/node weight rules.
|
27
|
+
# The first layer will fetch it's values from @network.inputs
|
28
|
+
def get_output
|
29
|
+
if !prev_layer
|
30
|
+
# This is the first layer, so the output set is simply the network input set
|
31
|
+
@network.inputs
|
32
|
+
else
|
33
|
+
# Each neuron output value is calculated by:
|
34
|
+
# output[i] = (
|
35
|
+
# (prev_layer.neurons[0] * prev_layer.neurons[0].edges[i])
|
36
|
+
# + (prev_layer.neurons[1] * prev_layer.neurons[1].edges[i])
|
37
|
+
# + ...
|
38
|
+
# ) + self.neurons[i].bias
|
39
|
+
|
40
|
+
prev_layer_output = prev_layer.get_output
|
41
|
+
|
42
|
+
# Generate the output values for the layer
|
43
|
+
(0..@size-1).map do |i|
|
44
|
+
value = 0
|
45
|
+
|
46
|
+
prev_layer_output.each_with_index do |output, index|
|
47
|
+
value += (output * prev_layer.neurons[index].edges[i])
|
48
|
+
end
|
49
|
+
|
50
|
+
value + @neurons[i].bias
|
51
|
+
end
|
52
|
+
end
|
53
|
+
end
|
54
|
+
|
55
|
+
def initialize_neuron_edges
|
56
|
+
return unless @next_layer
|
57
|
+
|
58
|
+
@neurons.each do |neuron|
|
59
|
+
neuron.initialize_edges(@next_layer.size)
|
60
|
+
end
|
61
|
+
end
|
62
|
+
|
63
|
+
private
|
64
|
+
|
65
|
+
def populate_neurons
|
66
|
+
@size.times do
|
67
|
+
@neurons << Neuron.new(layer: self)
|
68
|
+
end
|
69
|
+
end
|
70
|
+
end
|
71
|
+
end
|
data/lib/network.rb
ADDED
@@ -0,0 +1,78 @@
|
|
1
|
+
require_relative "layer"
|
2
|
+
|
3
|
+
# To properly initialze a network:
|
4
|
+
# - Initialize the new Network object
|
5
|
+
# - Create layers using Network#create_layer
|
6
|
+
# (This creates layers from left to right, input -> hidden layers -> output layer)
|
7
|
+
# - Call Network#initialize_edges to populate neuron edges in the network.
|
8
|
+
# This has to be done after creating all layers because the number of edges depends
|
9
|
+
# on the number on neurons in the next layer
|
10
|
+
class SimpleNeuralNetwork
|
11
|
+
class Network
|
12
|
+
class InvalidInputError < StandardError; end
|
13
|
+
# An array of layers
|
14
|
+
attr_accessor :layers
|
15
|
+
|
16
|
+
attr_accessor :inputs
|
17
|
+
|
18
|
+
def initialize
|
19
|
+
@layers = []
|
20
|
+
@inputs = []
|
21
|
+
end
|
22
|
+
|
23
|
+
# Run an input set against the neural network.
|
24
|
+
# Accepts an array of input integers between 0 and 1 of length #input_size
|
25
|
+
# Returns
|
26
|
+
def run(inputs)
|
27
|
+
unless inputs.size == input_size && inputs.all? { |input| input >= 0 && input <= 1 }
|
28
|
+
raise InvalidInputError.new("Invalid input passed to Network#run")
|
29
|
+
end
|
30
|
+
|
31
|
+
@inputs = inputs
|
32
|
+
|
33
|
+
# Get output from last layer. It recursively depends on layers before it.
|
34
|
+
@layers[-1].get_output
|
35
|
+
end
|
36
|
+
|
37
|
+
# Returns the number of input nodes
|
38
|
+
def input_size
|
39
|
+
@layers[0].size
|
40
|
+
end
|
41
|
+
|
42
|
+
# Returns the number of output nodes
|
43
|
+
def output_size
|
44
|
+
@layers[-1].size
|
45
|
+
end
|
46
|
+
|
47
|
+
def create_layer(neurons:)
|
48
|
+
unless @layers.empty?
|
49
|
+
new_layer = Layer.new(neurons, self)
|
50
|
+
prev_layer = @layers.last
|
51
|
+
|
52
|
+
@layers << new_layer
|
53
|
+
|
54
|
+
new_layer.prev_layer = prev_layer
|
55
|
+
prev_layer.next_layer = new_layer
|
56
|
+
else
|
57
|
+
@layers << Layer.new(neurons, self)
|
58
|
+
end
|
59
|
+
end
|
60
|
+
|
61
|
+
# This traverses the network and initializes all neurons with edges
|
62
|
+
# Initializes with random weights between -5 and 5
|
63
|
+
def initialize_edges
|
64
|
+
@layers.each(&:initialize_neuron_edges)
|
65
|
+
end
|
66
|
+
end
|
67
|
+
end
|
68
|
+
|
69
|
+
# Sample usage:
|
70
|
+
#
|
71
|
+
# network = Network.new
|
72
|
+
#
|
73
|
+
# network.create_layer(neurons: 10)
|
74
|
+
# network.create_layer(neurons: 2)
|
75
|
+
|
76
|
+
# network.initialize_edges
|
77
|
+
|
78
|
+
# network.run([0.5]*10)
|
data/lib/neuron.rb
ADDED
@@ -0,0 +1,28 @@
|
|
1
|
+
class SimpleNeuralNetwork
|
2
|
+
class Neuron
|
3
|
+
# Define the minimum and maximum edge weight
|
4
|
+
EDGE_RANGE = -5..5
|
5
|
+
|
6
|
+
attr_accessor :bias
|
7
|
+
|
8
|
+
# The neuron parent layer
|
9
|
+
attr_accessor :layer
|
10
|
+
|
11
|
+
# A neuron's edges connect it to the #{layer.next_layer.size} neurons of the next layer
|
12
|
+
attr_accessor :edges
|
13
|
+
|
14
|
+
def initialize(layer)
|
15
|
+
@layer = layer
|
16
|
+
@bias = 0
|
17
|
+
@edges = []
|
18
|
+
@value = nil
|
19
|
+
end
|
20
|
+
|
21
|
+
# A neuron should have one edge per neuron in the next layer
|
22
|
+
def initialize_edges(next_layer_size)
|
23
|
+
next_layer_size.times do
|
24
|
+
@edges << rand(EDGE_RANGE)
|
25
|
+
end
|
26
|
+
end
|
27
|
+
end
|
28
|
+
end
|
metadata
ADDED
@@ -0,0 +1,47 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: SimpleNeuralNetwork
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Nathaniel Woodthorpe
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2018-02-20 00:00:00.000000000 Z
|
12
|
+
dependencies: []
|
13
|
+
description: A very simple neural network implementation in Ruby.
|
14
|
+
email: njwoodthorpe@gmail.com
|
15
|
+
executables: []
|
16
|
+
extensions: []
|
17
|
+
extra_rdoc_files: []
|
18
|
+
files:
|
19
|
+
- lib/layer.rb
|
20
|
+
- lib/network.rb
|
21
|
+
- lib/neuron.rb
|
22
|
+
- lib/simple_neural_network.rb
|
23
|
+
homepage: https://github.com/d12/SimpleNeuralNetwork
|
24
|
+
licenses:
|
25
|
+
- MIT
|
26
|
+
metadata: {}
|
27
|
+
post_install_message:
|
28
|
+
rdoc_options: []
|
29
|
+
require_paths:
|
30
|
+
- lib
|
31
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
32
|
+
requirements:
|
33
|
+
- - ">="
|
34
|
+
- !ruby/object:Gem::Version
|
35
|
+
version: '0'
|
36
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '0'
|
41
|
+
requirements: []
|
42
|
+
rubyforge_project:
|
43
|
+
rubygems_version: 2.5.2
|
44
|
+
signing_key:
|
45
|
+
specification_version: 4
|
46
|
+
summary: A very simple neural network implementation in Ruby.
|
47
|
+
test_files: []
|