zenml-nightly 0.83.1.dev20250709__py3-none-any.whl → 0.83.1.dev20250710__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- zenml/VERSION +1 -1
- zenml/cli/login.py +141 -18
- zenml/cli/project.py +8 -6
- zenml/cli/utils.py +63 -16
- zenml/client.py +4 -1
- zenml/config/compiler.py +1 -0
- zenml/config/retry_config.py +5 -3
- zenml/config/step_configurations.py +7 -1
- zenml/console.py +4 -1
- zenml/constants.py +0 -1
- zenml/enums.py +13 -4
- zenml/integrations/kubernetes/flavors/kubernetes_orchestrator_flavor.py +58 -4
- zenml/integrations/kubernetes/orchestrators/kube_utils.py +172 -0
- zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator.py +37 -23
- zenml/integrations/kubernetes/orchestrators/kubernetes_orchestrator_entrypoint.py +92 -22
- zenml/integrations/kubernetes/orchestrators/manifest_utils.py +59 -0
- zenml/logger.py +6 -4
- zenml/login/web_login.py +13 -6
- zenml/models/v2/core/model_version.py +9 -1
- zenml/models/v2/core/pipeline_run.py +1 -0
- zenml/models/v2/core/step_run.py +35 -1
- zenml/orchestrators/base_orchestrator.py +63 -8
- zenml/orchestrators/dag_runner.py +3 -1
- zenml/orchestrators/publish_utils.py +4 -1
- zenml/orchestrators/step_launcher.py +77 -139
- zenml/orchestrators/step_run_utils.py +16 -0
- zenml/orchestrators/step_runner.py +1 -4
- zenml/pipelines/pipeline_decorator.py +6 -1
- zenml/pipelines/pipeline_definition.py +7 -0
- zenml/zen_server/auth.py +0 -1
- zenml/zen_stores/migrations/versions/360fa84718bf_step_run_versioning.py +64 -0
- zenml/zen_stores/migrations/versions/85289fea86ff_adding_source_to_logs.py +1 -1
- zenml/zen_stores/schemas/pipeline_deployment_schemas.py +21 -0
- zenml/zen_stores/schemas/pipeline_run_schemas.py +31 -2
- zenml/zen_stores/schemas/step_run_schemas.py +41 -17
- zenml/zen_stores/sql_zen_store.py +152 -32
- zenml/zen_stores/template_utils.py +29 -9
- zenml_nightly-0.83.1.dev20250710.dist-info/METADATA +499 -0
- {zenml_nightly-0.83.1.dev20250709.dist-info → zenml_nightly-0.83.1.dev20250710.dist-info}/RECORD +42 -41
- zenml_nightly-0.83.1.dev20250709.dist-info/METADATA +0 -538
- {zenml_nightly-0.83.1.dev20250709.dist-info → zenml_nightly-0.83.1.dev20250710.dist-info}/LICENSE +0 -0
- {zenml_nightly-0.83.1.dev20250709.dist-info → zenml_nightly-0.83.1.dev20250710.dist-info}/WHEEL +0 -0
- {zenml_nightly-0.83.1.dev20250709.dist-info → zenml_nightly-0.83.1.dev20250710.dist-info}/entry_points.txt +0 -0
@@ -213,33 +213,53 @@ def generate_config_schema(
|
|
213
213
|
|
214
214
|
all_steps: Dict[str, Any] = {}
|
215
215
|
all_steps_required = False
|
216
|
-
for
|
216
|
+
for step_name, step in deployment.to_model(
|
217
217
|
include_metadata=True
|
218
218
|
).step_configurations.items():
|
219
219
|
step_fields = generic_step_fields.copy()
|
220
220
|
if step.config.parameters:
|
221
|
-
parameter_fields: Dict[str, Any] = {
|
222
|
-
|
223
|
-
|
224
|
-
|
221
|
+
parameter_fields: Dict[str, Any] = {}
|
222
|
+
|
223
|
+
for parameter_name in step.config.parameters:
|
224
|
+
# Pydantic doesn't allow field names to start with an underscore
|
225
|
+
sanitized_parameter_name = parameter_name.lstrip("_")
|
226
|
+
while sanitized_parameter_name in parameter_fields:
|
227
|
+
sanitized_parameter_name = sanitized_parameter_name + "_"
|
228
|
+
|
229
|
+
parameter_fields[sanitized_parameter_name] = (
|
230
|
+
Any,
|
231
|
+
FieldInfo(default=..., validation_alias=parameter_name),
|
232
|
+
)
|
233
|
+
|
225
234
|
parameters_class = create_model(
|
226
|
-
f"{
|
235
|
+
f"{step_name}_parameters", **parameter_fields
|
227
236
|
)
|
228
237
|
step_fields["parameters"] = (
|
229
238
|
parameters_class,
|
230
239
|
FieldInfo(default=...),
|
231
240
|
)
|
232
241
|
|
233
|
-
step_model = create_model(
|
242
|
+
step_model = create_model(step_name, **step_fields)
|
243
|
+
|
244
|
+
# Pydantic doesn't allow field names to start with an underscore
|
245
|
+
sanitized_step_name = step_name.lstrip("_")
|
246
|
+
while sanitized_step_name in all_steps:
|
247
|
+
sanitized_step_name = sanitized_step_name + "_"
|
234
248
|
|
235
249
|
if step.config.parameters:
|
236
250
|
# This step has required parameters -> we make this attribute
|
237
251
|
# required and also the parent attribute so these parameters must
|
238
252
|
# always be included
|
239
253
|
all_steps_required = True
|
240
|
-
all_steps[
|
254
|
+
all_steps[sanitized_step_name] = (
|
255
|
+
step_model,
|
256
|
+
FieldInfo(default=..., validation_alias=step_name),
|
257
|
+
)
|
241
258
|
else:
|
242
|
-
all_steps[
|
259
|
+
all_steps[sanitized_step_name] = (
|
260
|
+
Optional[step_model],
|
261
|
+
FieldInfo(default=None, validation_alias=step_name),
|
262
|
+
)
|
243
263
|
|
244
264
|
all_steps_model = create_model("Steps", **all_steps)
|
245
265
|
|
@@ -0,0 +1,499 @@
|
|
1
|
+
Metadata-Version: 2.3
|
2
|
+
Name: zenml-nightly
|
3
|
+
Version: 0.83.1.dev20250710
|
4
|
+
Summary: ZenML: Write production-ready ML code.
|
5
|
+
License: Apache-2.0
|
6
|
+
Keywords: machine learning,production,pipeline,mlops,devops
|
7
|
+
Author: ZenML GmbH
|
8
|
+
Author-email: info@zenml.io
|
9
|
+
Requires-Python: >=3.9,<3.13
|
10
|
+
Classifier: Development Status :: 4 - Beta
|
11
|
+
Classifier: Intended Audience :: Developers
|
12
|
+
Classifier: Intended Audience :: Science/Research
|
13
|
+
Classifier: Intended Audience :: System Administrators
|
14
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
15
|
+
Classifier: Programming Language :: Python :: 3
|
16
|
+
Classifier: Programming Language :: Python :: 3.9
|
17
|
+
Classifier: Programming Language :: Python :: 3.10
|
18
|
+
Classifier: Programming Language :: Python :: 3.11
|
19
|
+
Classifier: Programming Language :: Python :: 3.12
|
20
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
21
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
22
|
+
Classifier: Topic :: System :: Distributed Computing
|
23
|
+
Classifier: Typing :: Typed
|
24
|
+
Provides-Extra: adlfs
|
25
|
+
Provides-Extra: azureml
|
26
|
+
Provides-Extra: connectors-aws
|
27
|
+
Provides-Extra: connectors-azure
|
28
|
+
Provides-Extra: connectors-gcp
|
29
|
+
Provides-Extra: connectors-kubernetes
|
30
|
+
Provides-Extra: dev
|
31
|
+
Provides-Extra: gcsfs
|
32
|
+
Provides-Extra: s3fs
|
33
|
+
Provides-Extra: sagemaker
|
34
|
+
Provides-Extra: secrets-aws
|
35
|
+
Provides-Extra: secrets-azure
|
36
|
+
Provides-Extra: secrets-gcp
|
37
|
+
Provides-Extra: secrets-hashicorp
|
38
|
+
Provides-Extra: server
|
39
|
+
Provides-Extra: templates
|
40
|
+
Provides-Extra: terraform
|
41
|
+
Provides-Extra: vertex
|
42
|
+
Requires-Dist: Jinja2 ; extra == "server"
|
43
|
+
Requires-Dist: adlfs (>=2021.10.0) ; extra == "adlfs"
|
44
|
+
Requires-Dist: alembic (>=1.8.1,<=1.15.2)
|
45
|
+
Requires-Dist: aws-profile-manager (>=0.5.0) ; extra == "connectors-aws"
|
46
|
+
Requires-Dist: azure-ai-ml (==1.23.1) ; extra == "azureml"
|
47
|
+
Requires-Dist: azure-identity (>=1.4.0) ; extra == "secrets-azure" or extra == "connectors-azure"
|
48
|
+
Requires-Dist: azure-keyvault-secrets (>=4.0.0) ; extra == "secrets-azure"
|
49
|
+
Requires-Dist: azure-mgmt-containerregistry (>=10.0.0) ; extra == "connectors-azure"
|
50
|
+
Requires-Dist: azure-mgmt-containerservice (>=20.0.0) ; extra == "connectors-azure"
|
51
|
+
Requires-Dist: azure-mgmt-resource (>=21.0.0) ; extra == "connectors-azure"
|
52
|
+
Requires-Dist: azure-mgmt-storage (>=20.0.0) ; extra == "connectors-azure"
|
53
|
+
Requires-Dist: azure-storage-blob (>=12.0.0) ; extra == "connectors-azure"
|
54
|
+
Requires-Dist: bandit (>=1.7.5,<2.0.0) ; extra == "dev"
|
55
|
+
Requires-Dist: bcrypt (==4.0.1)
|
56
|
+
Requires-Dist: boto3 (>=1.16.0) ; extra == "secrets-aws" or extra == "connectors-aws"
|
57
|
+
Requires-Dist: click (>=8.0.1,<8.1.8)
|
58
|
+
Requires-Dist: cloudpickle (>=2.0.0,<3)
|
59
|
+
Requires-Dist: copier (>=8.1.0) ; extra == "templates"
|
60
|
+
Requires-Dist: coverage[toml] (>=5.5,<6.0) ; extra == "dev"
|
61
|
+
Requires-Dist: darglint (>=1.8.1,<2.0.0) ; extra == "dev"
|
62
|
+
Requires-Dist: distro (>=1.6.0,<2.0.0)
|
63
|
+
Requires-Dist: docker (>=7.1.0,<7.2.0)
|
64
|
+
Requires-Dist: fastapi (>=0.100,<=0.115.8) ; extra == "server"
|
65
|
+
Requires-Dist: gcsfs (>=2022.11.0) ; extra == "gcsfs"
|
66
|
+
Requires-Dist: gitpython (>=3.1.18,<4.0.0)
|
67
|
+
Requires-Dist: google-cloud-aiplatform (>=1.34.0) ; extra == "vertex"
|
68
|
+
Requires-Dist: google-cloud-artifact-registry (>=1.11.3) ; extra == "connectors-gcp"
|
69
|
+
Requires-Dist: google-cloud-container (>=2.21.0) ; extra == "connectors-gcp"
|
70
|
+
Requires-Dist: google-cloud-pipeline-components (>=2.19.0) ; extra == "vertex"
|
71
|
+
Requires-Dist: google-cloud-secret-manager (>=2.12.5) ; extra == "secrets-gcp"
|
72
|
+
Requires-Dist: google-cloud-storage (>=2.9.0) ; extra == "connectors-gcp"
|
73
|
+
Requires-Dist: hvac (>=0.11.2) ; extra == "secrets-hashicorp"
|
74
|
+
Requires-Dist: hypothesis (>=6.43.1,<7.0.0) ; extra == "dev"
|
75
|
+
Requires-Dist: importlib_metadata (<=7.0.0) ; python_version < "3.10"
|
76
|
+
Requires-Dist: ipinfo (>=4.4.3) ; extra == "server"
|
77
|
+
Requires-Dist: itsdangerous (>=2.2.0,<2.3.0) ; extra == "server"
|
78
|
+
Requires-Dist: jinja2-time (>=0.2.0,<0.3.0) ; extra == "templates"
|
79
|
+
Requires-Dist: kfp (>=2.6.0) ; extra == "vertex"
|
80
|
+
Requires-Dist: kubernetes (>=18.20.0) ; extra == "connectors-kubernetes" or extra == "connectors-aws" or extra == "connectors-gcp" or extra == "connectors-azure"
|
81
|
+
Requires-Dist: maison (<2.0) ; extra == "dev"
|
82
|
+
Requires-Dist: mike (>=1.1.2,<2.0.0) ; extra == "dev"
|
83
|
+
Requires-Dist: mkdocs (>=1.6.1,<2.0.0) ; extra == "dev"
|
84
|
+
Requires-Dist: mkdocs-autorefs (>=1.4.0,<2.0.0) ; extra == "dev"
|
85
|
+
Requires-Dist: mkdocs-awesome-pages-plugin (>=2.10.1,<3.0.0) ; extra == "dev"
|
86
|
+
Requires-Dist: mkdocs-material (==9.6.8) ; extra == "dev"
|
87
|
+
Requires-Dist: mkdocstrings[python] (>=0.28.1,<0.29.0) ; extra == "dev"
|
88
|
+
Requires-Dist: mypy (==1.7.1) ; extra == "dev"
|
89
|
+
Requires-Dist: orjson (>=3.10.0,<3.11.0) ; extra == "server"
|
90
|
+
Requires-Dist: packaging (>=24.1)
|
91
|
+
Requires-Dist: passlib[bcrypt] (>=1.7.4,<1.8.0)
|
92
|
+
Requires-Dist: psutil (>=5.0.0)
|
93
|
+
Requires-Dist: pydantic (>=2.0,<2.11.2)
|
94
|
+
Requires-Dist: pydantic-settings
|
95
|
+
Requires-Dist: pyjwt[crypto] (==2.7.*) ; extra == "server"
|
96
|
+
Requires-Dist: pyment (>=0.3.3,<0.4.0) ; extra == "dev"
|
97
|
+
Requires-Dist: pymysql (>=1.1.1,<1.2.0)
|
98
|
+
Requires-Dist: pytest (>=7.4.0,<8.0.0) ; extra == "dev"
|
99
|
+
Requires-Dist: pytest-clarity (>=1.0.1,<2.0.0) ; extra == "dev"
|
100
|
+
Requires-Dist: pytest-instafail (>=0.5.0) ; extra == "dev"
|
101
|
+
Requires-Dist: pytest-mock (>=3.6.1,<4.0.0) ; extra == "dev"
|
102
|
+
Requires-Dist: pytest-randomly (>=3.10.1,<4.0.0) ; extra == "dev"
|
103
|
+
Requires-Dist: pytest-rerunfailures (>=13.0) ; extra == "dev"
|
104
|
+
Requires-Dist: pytest-split (>=0.8.1,<0.9.0) ; extra == "dev"
|
105
|
+
Requires-Dist: python-dateutil (>=2.8.1,<3.0.0)
|
106
|
+
Requires-Dist: python-multipart (>=0.0.9,<0.1.0) ; extra == "server"
|
107
|
+
Requires-Dist: pyyaml (>=6.0.1)
|
108
|
+
Requires-Dist: pyyaml-include (<2.0) ; extra == "templates"
|
109
|
+
Requires-Dist: requests (>=2.27.11,<3.0.0) ; extra == "connectors-azure"
|
110
|
+
Requires-Dist: rich[jupyter] (>=12.0.0)
|
111
|
+
Requires-Dist: ruff (>=0.1.7) ; extra == "templates" or extra == "dev"
|
112
|
+
Requires-Dist: s3fs (>=2022.11.0,!=2025.3.1) ; extra == "s3fs"
|
113
|
+
Requires-Dist: sagemaker (>=2.237.3) ; extra == "sagemaker"
|
114
|
+
Requires-Dist: secure (>=0.3.0,<0.4.0) ; extra == "server"
|
115
|
+
Requires-Dist: setuptools (>=70.0.0)
|
116
|
+
Requires-Dist: sqlalchemy (>=2.0.0,<3.0.0)
|
117
|
+
Requires-Dist: sqlalchemy_utils
|
118
|
+
Requires-Dist: sqlmodel (==0.0.18)
|
119
|
+
Requires-Dist: tldextract (>=5.1.0,<5.2.0) ; extra == "server"
|
120
|
+
Requires-Dist: tox (>=3.24.3,<4.0.0) ; extra == "dev"
|
121
|
+
Requires-Dist: types-Markdown (>=3.3.6,<4.0.0) ; extra == "dev"
|
122
|
+
Requires-Dist: types-Pillow (>=9.2.1,<10.0.0) ; extra == "dev"
|
123
|
+
Requires-Dist: types-PyMySQL (>=1.0.4,<2.0.0) ; extra == "dev"
|
124
|
+
Requires-Dist: types-PyYAML (>=6.0.0,<7.0.0) ; extra == "dev"
|
125
|
+
Requires-Dist: types-certifi (>=2021.10.8.0,<2022.0.0.0) ; extra == "dev"
|
126
|
+
Requires-Dist: types-croniter (>=1.0.2,<2.0.0) ; extra == "dev"
|
127
|
+
Requires-Dist: types-futures (>=3.3.1,<4.0.0) ; extra == "dev"
|
128
|
+
Requires-Dist: types-paramiko (>=3.4.0) ; extra == "dev"
|
129
|
+
Requires-Dist: types-passlib (>=1.7.7,<2.0.0) ; extra == "dev"
|
130
|
+
Requires-Dist: types-protobuf (>=3.18.0,<4.0.0) ; extra == "dev"
|
131
|
+
Requires-Dist: types-psutil (>=5.8.13,<6.0.0) ; extra == "dev"
|
132
|
+
Requires-Dist: types-python-dateutil (>=2.8.2,<3.0.0) ; extra == "dev"
|
133
|
+
Requires-Dist: types-python-slugify (>=5.0.2,<6.0.0) ; extra == "dev"
|
134
|
+
Requires-Dist: types-redis (>=4.1.19,<5.0.0) ; extra == "dev"
|
135
|
+
Requires-Dist: types-requests (>=2.27.11,<3.0.0) ; extra == "dev"
|
136
|
+
Requires-Dist: types-setuptools (>=57.4.2,<58.0.0) ; extra == "dev"
|
137
|
+
Requires-Dist: types-six (>=1.16.2,<2.0.0) ; extra == "dev"
|
138
|
+
Requires-Dist: types-termcolor (>=1.1.2,<2.0.0) ; extra == "dev"
|
139
|
+
Requires-Dist: typing-extensions (>=3.7.4) ; extra == "dev"
|
140
|
+
Requires-Dist: uvicorn[standard] (>=0.17.5) ; extra == "server"
|
141
|
+
Requires-Dist: yamlfix (>=1.16.0,<2.0.0) ; extra == "dev"
|
142
|
+
Project-URL: Documentation, https://docs.zenml.io
|
143
|
+
Project-URL: Homepage, https://zenml.io
|
144
|
+
Project-URL: Repository, https://github.com/zenml-io/zenml
|
145
|
+
Description-Content-Type: text/markdown
|
146
|
+
|
147
|
+
<div align="center">
|
148
|
+
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0fcbab94-8fbe-4a38-93e8-c2348450a42e" />
|
149
|
+
<h1 align="center">MLOps for Reliable AI - From Classical ML to Agents</h1>
|
150
|
+
<h3 align="center">Your unified toolkit for shipping everything from decision trees to complex AI agents, built on the MLOps principles you already trust.</h3>
|
151
|
+
</div>
|
152
|
+
|
153
|
+
<div align="center">
|
154
|
+
|
155
|
+
<!-- PROJECT LOGO -->
|
156
|
+
<br />
|
157
|
+
<a href="https://zenml.io">
|
158
|
+
<img alt="ZenML Logo" src="docs/book/.gitbook/assets/header.png" alt="ZenML Logo">
|
159
|
+
</a>
|
160
|
+
<br />
|
161
|
+
|
162
|
+
[![PyPi][pypi-shield]][pypi-url]
|
163
|
+
[![PyPi][pypiversion-shield]][pypi-url]
|
164
|
+
[![PyPi][downloads-shield]][downloads-url]
|
165
|
+
[![Contributors][contributors-shield]][contributors-url]
|
166
|
+
[![License][license-shield]][license-url]
|
167
|
+
|
168
|
+
</div>
|
169
|
+
|
170
|
+
<!-- MARKDOWN LINKS & IMAGES -->
|
171
|
+
[pypi-shield]: https://img.shields.io/pypi/pyversions/zenml?color=281158
|
172
|
+
[pypi-url]: https://pypi.org/project/zenml/
|
173
|
+
[pypiversion-shield]: https://img.shields.io/pypi/v/zenml?color=361776
|
174
|
+
[downloads-shield]: https://img.shields.io/pypi/dm/zenml?color=431D93
|
175
|
+
[downloads-url]: https://pypi.org/project/zenml/
|
176
|
+
[contributors-shield]: https://img.shields.io/github/contributors/zenml-io/zenml?color=7A3EF4
|
177
|
+
[contributors-url]: https://github.com/zenml-io/zenml/graphs/contributors
|
178
|
+
[license-shield]: https://img.shields.io/github/license/zenml-io/zenml?color=9565F6
|
179
|
+
[license-url]: https://github.com/zenml-io/zenml/blob/main/LICENSE
|
180
|
+
|
181
|
+
<div align="center">
|
182
|
+
<p>
|
183
|
+
<a href="https://zenml.io/features">Features</a> •
|
184
|
+
<a href="https://zenml.io/roadmap">Roadmap</a> •
|
185
|
+
<a href="https://github.com/zenml-io/zenml/issues">Report Bug</a> •
|
186
|
+
<a href="https://zenml.io/pro">Sign up for ZenML Pro</a> •
|
187
|
+
<a href="https://www.zenml.io/blog">Blog</a> •
|
188
|
+
<a href="https://zenml.io/podcast">Podcast</a>
|
189
|
+
<br />
|
190
|
+
<br />
|
191
|
+
🎉 For the latest release, see the <a href="https://github.com/zenml-io/zenml/releases">release notes</a>.
|
192
|
+
</p>
|
193
|
+
</div>
|
194
|
+
|
195
|
+
---
|
196
|
+
|
197
|
+
## 🚨 The Problem: MLOps Works for Models, But What About AI?
|
198
|
+
|
199
|
+

|
200
|
+
|
201
|
+
You're an ML engineer. You've perfected deploying scikit-learn models and wrangling TensorFlow jobs. Your MLOps stack is dialed in. But now, you're being asked to build and ship AI agents, and suddenly your trusted toolkit is starting to crack.
|
202
|
+
|
203
|
+
- **The Adaptation Struggle:** Your MLOps habits—rigorous testing, versioning, CI/CD—don’t map cleanly onto agent development. How do you version a prompt? How do you regression test a non-deterministic system? The tools that gave you confidence for models now create friction for agents.
|
204
|
+
|
205
|
+
- **The Divided Stack:** To cope, teams are building a second, parallel stack just for LLM-based systems. Now you’re maintaining two sets of tools, two deployment pipelines, and two mental models. Your classical models live in one world, your agents in another. It's expensive, complex, and slows everyone down.
|
206
|
+
|
207
|
+
- **The Broken Feedback Loop:** Getting an agent from your local environment to production is a slow, painful journey. By the time you get feedback on performance, cost, or quality, the requirements have already changed. Iteration is a guessing game, not a data-driven process.
|
208
|
+
|
209
|
+
## 💡 The Solution: One Framework for your Entire AI Stack
|
210
|
+
|
211
|
+
Stop maintaining two separate worlds. ZenML is a unified MLOps framework that extends the battle-tested principles you rely on for classical ML to the new world of AI agents. It’s one platform to develop, evaluate, and deploy your entire AI portfolio.
|
212
|
+
|
213
|
+
```python
|
214
|
+
# Morning: Your sklearn pipeline is still versioned and reproducible.
|
215
|
+
train_and_deploy_classifier()
|
216
|
+
|
217
|
+
# Afternoon: Your new agent evaluation pipeline uses the same logic.
|
218
|
+
evaluate_and_deploy_agent()
|
219
|
+
|
220
|
+
# Same platform. Same principles. New possibilities.
|
221
|
+
```
|
222
|
+
|
223
|
+
With ZenML, you're not replacing your knowledge; you're extending it. Use the pipelines and practices you already know to version, test, deploy, and monitor everything from classic models to the most advanced agents.
|
224
|
+
|
225
|
+
## 💻 See It In Action: Multi-Agent Architecture Comparison
|
226
|
+
|
227
|
+
**The Challenge:** Your team built three different customer service agents. Which one should go to production? With ZenML, you can build a reproducible pipeline to test them on real data and make a data-driven decision.
|
228
|
+
|
229
|
+
```python
|
230
|
+
from zenml import pipeline, step
|
231
|
+
import pandas as pd
|
232
|
+
|
233
|
+
@step
|
234
|
+
def load_real_conversations() -> pd.DataFrame:
|
235
|
+
"""Load actual customer queries from a feature store."""
|
236
|
+
return load_from_feature_store("customer_queries_sample_1k")
|
237
|
+
|
238
|
+
@step
|
239
|
+
def run_architecture_comparison(queries: pd.DataFrame) -> dict:
|
240
|
+
"""Test three different agent architectures on the same data."""
|
241
|
+
architectures = {
|
242
|
+
"single_agent": SingleAgentRAG(),
|
243
|
+
"multi_specialist": MultiSpecialistAgents(),
|
244
|
+
"hierarchical": HierarchicalAgentTeam()
|
245
|
+
}
|
246
|
+
|
247
|
+
results = {}
|
248
|
+
for name, agent in architectures.items():
|
249
|
+
# ZenML automatically versions the agent's code, prompts, and tools
|
250
|
+
results[name] = agent.batch_process(queries)
|
251
|
+
return results
|
252
|
+
|
253
|
+
@step
|
254
|
+
def evaluate_and_decide(results: dict) -> str:
|
255
|
+
"""Evaluate results and generate a recommendation report."""
|
256
|
+
# Compare architectures on quality, cost, latency, etc.
|
257
|
+
evaluation_df = evaluate_results(results)
|
258
|
+
|
259
|
+
# Generate a rich report comparing the architectures
|
260
|
+
report = create_comparison_report(evaluation_df)
|
261
|
+
|
262
|
+
# Automatically tag the winning architecture for a staging deployment
|
263
|
+
winner = evaluation_df.sort_values("overall_score").iloc[0]
|
264
|
+
tag_for_staging(winner["architecture_name"])
|
265
|
+
|
266
|
+
return report
|
267
|
+
|
268
|
+
@pipeline
|
269
|
+
def compare_agent_architectures():
|
270
|
+
"""Your new Friday afternoon ritual: data-driven agent decisions."""
|
271
|
+
queries = load_real_conversations()
|
272
|
+
results = run_architecture_comparison(queries)
|
273
|
+
report = evaluate_and_decide(results)
|
274
|
+
|
275
|
+
if __name__ == "__main__":
|
276
|
+
# Run locally, compare results in the ZenML dashboard
|
277
|
+
compare_agent_architectures()
|
278
|
+
```
|
279
|
+
|
280
|
+
**The Result:** A clear winner is selected based on data, not opinions. You have full lineage from the test data and agent versions to the final report and deployment decision.
|
281
|
+
|
282
|
+
## 🔄 The AI Development Lifecycle with ZenML
|
283
|
+
|
284
|
+
### From Chaos to Process
|
285
|
+
|
286
|
+

|
287
|
+
|
288
|
+
<details>
|
289
|
+
<summary><b>Click to see your new, structured workflow</b></summary>
|
290
|
+
|
291
|
+
### Your New Workflow
|
292
|
+
|
293
|
+
**Monday: Quick Prototype**
|
294
|
+
```python
|
295
|
+
# Start with a local script, just like always
|
296
|
+
agent = LangGraphAgent(prompt="You are a helpful assistant...")
|
297
|
+
response = agent.chat("Help me with my order")
|
298
|
+
```
|
299
|
+
|
300
|
+
**Tuesday: Make it a Pipeline**
|
301
|
+
```python
|
302
|
+
# Wrap your code in a ZenML step to make it reproducible
|
303
|
+
@step
|
304
|
+
def customer_service_agent(query: str) -> str:
|
305
|
+
return agent.chat(query)
|
306
|
+
```
|
307
|
+
|
308
|
+
**Wednesday: Add Evaluation**
|
309
|
+
```python
|
310
|
+
# Test on real data, not toy examples
|
311
|
+
@pipeline
|
312
|
+
def eval_pipeline():
|
313
|
+
test_data = load_production_samples()
|
314
|
+
responses = customer_service_agent.map(test_data)
|
315
|
+
scores = evaluate_responses(responses)
|
316
|
+
track_experiment(scores)
|
317
|
+
```
|
318
|
+
|
319
|
+
**Thursday: Compare Architectures**
|
320
|
+
```python
|
321
|
+
# Make data-driven architecture decisions
|
322
|
+
results = compare_architectures(
|
323
|
+
baseline="current_prod",
|
324
|
+
challenger="new_multiagent_v2"
|
325
|
+
)
|
326
|
+
```
|
327
|
+
|
328
|
+
**Friday: Ship with Confidence**
|
329
|
+
```python
|
330
|
+
# Deploy the new agent with the same command you use for ML models
|
331
|
+
zenml stack deploy agent-prod --model="customer_service:challenger"
|
332
|
+
```
|
333
|
+
</details>
|
334
|
+
|
335
|
+
## 🚀 Get Started (5 minutes)
|
336
|
+
|
337
|
+
### For ML Engineers Ready to Tame AI
|
338
|
+
|
339
|
+
```bash
|
340
|
+
# You know this drill
|
341
|
+
pip install "zenml[llm]" # Includes LangChain, LlamaIndex integrations
|
342
|
+
|
343
|
+
# Initialize (your ML pipelines still work!)
|
344
|
+
zenml init
|
345
|
+
|
346
|
+
# Pull our agent evaluation template
|
347
|
+
zenml init --template agent-evaluation-starter
|
348
|
+
```
|
349
|
+
|
350
|
+
### Your First AI Pipeline
|
351
|
+
|
352
|
+
```python
|
353
|
+
# look_familiar.py
|
354
|
+
from zenml import pipeline, step
|
355
|
+
|
356
|
+
@step
|
357
|
+
def run_my_agent(test_queries: list[str]) -> list[str]:
|
358
|
+
"""Your existing agent code, now with MLOps superpowers."""
|
359
|
+
# Use ANY framework - LangGraph, CrewAI, raw OpenAI
|
360
|
+
agent = YourExistingAgent()
|
361
|
+
|
362
|
+
# Automatic versioning of prompts, tools, code, and configs
|
363
|
+
return [agent.run(q) for q in test_queries]
|
364
|
+
|
365
|
+
@step
|
366
|
+
def evaluate_responses(queries: list[str], responses: list[str]) -> dict:
|
367
|
+
"""LLM judges + your custom business metrics."""
|
368
|
+
quality = llm_judge(queries, responses)
|
369
|
+
latency = measure_response_times()
|
370
|
+
costs = calculate_token_usage()
|
371
|
+
|
372
|
+
return {
|
373
|
+
"quality": quality.mean(),
|
374
|
+
"p95_latency": latency.quantile(0.95),
|
375
|
+
"cost_per_query": costs.mean()
|
376
|
+
}
|
377
|
+
|
378
|
+
@pipeline
|
379
|
+
def my_first_agent_pipeline():
|
380
|
+
# Look ma, no YAML!
|
381
|
+
queries = ["How do I return an item?", "What's your refund policy?"]
|
382
|
+
responses = run_my_agent(queries)
|
383
|
+
metrics = evaluate_responses(queries, responses)
|
384
|
+
|
385
|
+
# Metrics are auto-logged, versioned, and comparable in the dashboard
|
386
|
+
return metrics
|
387
|
+
|
388
|
+
if __name__ == "__main__":
|
389
|
+
my_first_agent_pipeline()
|
390
|
+
print("Check your dashboard: http://localhost:8080")
|
391
|
+
```
|
392
|
+
|
393
|
+
## 📚 Learn More
|
394
|
+
|
395
|
+
### 🖼️ Getting Started Resources
|
396
|
+
|
397
|
+
The best way to learn about ZenML is through our comprehensive documentation and tutorials:
|
398
|
+
|
399
|
+
- **[Starter Guide](https://docs.zenml.io/user-guides/starter-guide)** - From zero to production in 30 minutes
|
400
|
+
- **[LLMOps Guide](https://docs.zenml.io/user-guides/llmops-guide)** - Specific patterns for LLM applications
|
401
|
+
- **[SDK Reference](https://sdkdocs.zenml.io/)** - Complete API documentation
|
402
|
+
|
403
|
+
For visual learners, start with this 11-minute introduction:
|
404
|
+
|
405
|
+
[](https://www.youtube.com/watch?v=wEVwIkDvUPs)
|
406
|
+
|
407
|
+
### 📖 Production Examples
|
408
|
+
|
409
|
+
1. **[E2E Batch Inference](examples/e2e/)** - Complete MLOps pipeline with feature engineering
|
410
|
+
2. **[LLM RAG Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide)** - Production RAG with evaluation loops
|
411
|
+
3. **[Agentic Workflow (Deep Research)](https://github.com/zenml-io/zenml-projects/tree/main/deep_research)** - Orchestrate your agents with ZenML
|
412
|
+
4. **[Fine-tuning Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/gamesense)** - Fine-tune and deploy LLMs
|
413
|
+
|
414
|
+
### 🏢 Deployment Options
|
415
|
+
|
416
|
+
**For Teams:**
|
417
|
+
- **[Self-hosted](https://docs.zenml.io/getting-started/deploying-zenml)** - Deploy on your infrastructure with Helm/Docker
|
418
|
+
- **[ZenML Pro](https://cloud.zenml.io/?utm_source=readme)** - Managed service with enterprise support (free trial)
|
419
|
+
|
420
|
+
**Infrastructure Requirements:**
|
421
|
+
- Kubernetes cluster (or local Docker)
|
422
|
+
- Object storage (S3/GCS/Azure)
|
423
|
+
- PostgreSQL database
|
424
|
+
- _[Complete requirements](https://docs.zenml.io/getting-started/deploying-zenml/deploy-with-helm)_
|
425
|
+
|
426
|
+
### 🎓 Books & Resources
|
427
|
+
|
428
|
+
<div align="center">
|
429
|
+
<a href="https://www.amazon.com/LLM-Engineers-Handbook-engineering-production/dp/1836200072">
|
430
|
+
<img src="docs/book/.gitbook/assets/llm_engineering_handbook_cover.jpg" alt="LLM Engineer's Handbook Cover" width="200"/>
|
431
|
+
</a>
|
432
|
+
<a href="https://www.amazon.com/-/en/Andrew-McMahon/dp/1837631964">
|
433
|
+
<img src="docs/book/.gitbook/assets/ml_engineering_with_python.jpg" alt="Machine Learning Engineering with Python Cover" width="200"/>
|
434
|
+
</a>
|
435
|
+
</div>
|
436
|
+
|
437
|
+
ZenML is featured in these comprehensive guides to production AI systems.
|
438
|
+
|
439
|
+
## 🤝 Join ML Engineers Building the Future of AI
|
440
|
+
|
441
|
+
**You're Not Alone:**
|
442
|
+
- 💬 [Slack Community](https://zenml.io/slack) - 3000+ ML engineers building with ZenML.
|
443
|
+
- 🐛 [GitHub Issues](https://github.com/zenml-io/zenml/issues) - Bug reports and feature requests.
|
444
|
+
- 📧 [Enterprise Support](https://zenml.io/pro) - SLAs, dedicated support, professional services.
|
445
|
+
|
446
|
+
**Real Engineers, Real Stories:**
|
447
|
+
> "Same platform for our sklearn models and our RAG pipeline. DevOps loves us now."
|
448
|
+
> - ML Platform Lead, European Bank
|
449
|
+
|
450
|
+
> "We went from 'YOLO prompt updates' to proper evaluation pipelines. Game changer."
|
451
|
+
> - Senior ML Engineer, Fortune 500 Retailer
|
452
|
+
|
453
|
+
> "Finally, I can explain to my PM why agent v2 is actually worse than v1. With data!"
|
454
|
+
> - Staff Engineer, Series B Startup
|
455
|
+
|
456
|
+
**Contribute:**
|
457
|
+
- 🌟 [Star us on GitHub](https://github.com/zenml-io/zenml/stargazers) - Help others discover ZenML
|
458
|
+
- 🤝 [Contributing Guide](CONTRIBUTING.md) - Start with [`good-first-issue`](https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22)
|
459
|
+
- 💻 [Write Integrations](https://docs.zenml.io/how-to/stack-deployment/implement-a-custom-integration) - Add your favorite tools
|
460
|
+
|
461
|
+
**Stay Updated:**
|
462
|
+
- 🗺 [Public Roadmap](https://zenml.io/roadmap) - See what's coming next
|
463
|
+
- 📰 [Blog](https://zenml.io/blog) - Best practices and case studies
|
464
|
+
- 🎙 [Podcast](https://zenml.io/podcast) - Interviews with ML practitioners
|
465
|
+
|
466
|
+
## ❓ FAQs from ML Engineers Like You
|
467
|
+
|
468
|
+
**Q: "Do I need to rewrite my agents or models to use ZenML?"**
|
469
|
+
A: No. Wrap your existing code in a `@step`. Keep using Scikit-Learn, PyTorch, LangGraph, LlamaIndex, or raw API calls. ZenML orchestrates your tools, it doesn't replace them.
|
470
|
+
|
471
|
+
**Q: "How is this different from LangSmith/Langfuse?"**
|
472
|
+
A: They provide excellent observability for LLM applications. We orchestrate the **full MLOps lifecycle for your entire AI stack**. With ZenML, you manage both your classical ML models and your AI agents in one unified framework, from development and evaluation all the way to production deployment.
|
473
|
+
|
474
|
+
**Q: "Can I use my existing MLflow/W&B setup?"**
|
475
|
+
A: Yes! We integrate with both. Your experiments, our pipelines.
|
476
|
+
|
477
|
+
**Q: "Is this just MLflow with extra steps?"**
|
478
|
+
A: No. MLflow tracks experiments. We orchestrate the entire development process – from training and evaluation to deployment and monitoring – for both models and agents.
|
479
|
+
|
480
|
+
**Q: "What about cost? I can't afford another platform."**
|
481
|
+
A: ZenML's open-source version is free forever. You likely already have the required infrastructure (like a Kubernetes cluster and object storage). We just help you make better use of it for MLOps.
|
482
|
+
|
483
|
+
### 🛠 VS Code Extension
|
484
|
+
|
485
|
+
Manage pipelines directly from your editor:
|
486
|
+
|
487
|
+
<details>
|
488
|
+
<summary>🖥️ VS Code Extension in Action!</summary>
|
489
|
+
<div align="center">
|
490
|
+
<img width="60%" src="docs/book/.gitbook/assets/zenml-extension-shortened.gif" alt="ZenML Extension">
|
491
|
+
</div>
|
492
|
+
</details>
|
493
|
+
|
494
|
+
Install from [VS Code Marketplace](https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode).
|
495
|
+
|
496
|
+
## 📜 License
|
497
|
+
|
498
|
+
ZenML is distributed under the terms of the Apache License Version 2.0. See
|
499
|
+
[LICENSE](LICENSE) for details.
|