ytcollector 1.0.7__tar.gz → 1.0.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. ytcollector-1.0.9/PKG-INFO +207 -0
  2. ytcollector-1.0.9/README.md +174 -0
  3. ytcollector-1.0.9/pyproject.toml +67 -0
  4. ytcollector-1.0.9/ytcollector/__init__.py +39 -0
  5. ytcollector-1.0.9/ytcollector/analyzer.py +205 -0
  6. ytcollector-1.0.9/ytcollector/cli.py +202 -0
  7. ytcollector-1.0.9/ytcollector/config.py +71 -0
  8. ytcollector-1.0.9/ytcollector/dataset_builder.py +136 -0
  9. ytcollector-1.0.9/ytcollector/downloader.py +341 -0
  10. ytcollector-1.0.9/ytcollector.egg-info/PKG-INFO +207 -0
  11. {ytcollector-1.0.7 → ytcollector-1.0.9}/ytcollector.egg-info/SOURCES.txt +2 -3
  12. ytcollector-1.0.9/ytcollector.egg-info/entry_points.txt +4 -0
  13. ytcollector-1.0.9/ytcollector.egg-info/requires.txt +14 -0
  14. {ytcollector-1.0.7 → ytcollector-1.0.9}/ytcollector.egg-info/top_level.txt +0 -1
  15. ytcollector-1.0.7/PKG-INFO +0 -105
  16. ytcollector-1.0.7/README.md +0 -93
  17. ytcollector-1.0.7/config/settings.py +0 -39
  18. ytcollector-1.0.7/pyproject.toml +0 -24
  19. ytcollector-1.0.7/ytcollector/__init__.py +0 -14
  20. ytcollector-1.0.7/ytcollector/cli.py +0 -232
  21. ytcollector-1.0.7/ytcollector/config.py +0 -67
  22. ytcollector-1.0.7/ytcollector/downloader.py +0 -466
  23. ytcollector-1.0.7/ytcollector/utils.py +0 -144
  24. ytcollector-1.0.7/ytcollector/verifier.py +0 -187
  25. ytcollector-1.0.7/ytcollector.egg-info/PKG-INFO +0 -105
  26. ytcollector-1.0.7/ytcollector.egg-info/entry_points.txt +0 -2
  27. ytcollector-1.0.7/ytcollector.egg-info/requires.txt +0 -5
  28. {ytcollector-1.0.7 → ytcollector-1.0.9}/setup.cfg +0 -0
  29. {ytcollector-1.0.7 → ytcollector-1.0.9}/ytcollector.egg-info/dependency_links.txt +0 -0
@@ -0,0 +1,207 @@
1
+ Metadata-Version: 2.4
2
+ Name: ytcollector
3
+ Version: 1.0.9
4
+ Summary: YouTube 콘텐츠 수집기 - 얼굴, 번호판, 타투, 텍스트 감지
5
+ Author: YTCollector Team
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/yourusername/ytcollector
8
+ Project-URL: Documentation, https://github.com/yourusername/ytcollector#readme
9
+ Project-URL: Repository, https://github.com/yourusername/ytcollector
10
+ Keywords: youtube,downloader,video-analysis,face-detection,ocr
11
+ Classifier: Development Status :: 4 - Beta
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Programming Language :: Python :: 3.8
16
+ Classifier: Programming Language :: Python :: 3.9
17
+ Classifier: Programming Language :: Python :: 3.10
18
+ Classifier: Programming Language :: Python :: 3.11
19
+ Classifier: Programming Language :: Python :: 3.12
20
+ Requires-Python: >=3.8
21
+ Description-Content-Type: text/markdown
22
+ Requires-Dist: yt-dlp>=2024.0.0
23
+ Provides-Extra: analysis
24
+ Requires-Dist: opencv-python>=4.5.0; extra == "analysis"
25
+ Requires-Dist: easyocr>=1.6.0; extra == "analysis"
26
+ Requires-Dist: numpy>=1.20.0; extra == "analysis"
27
+ Provides-Extra: dev
28
+ Requires-Dist: pytest>=7.0.0; extra == "dev"
29
+ Requires-Dist: black>=23.0.0; extra == "dev"
30
+ Requires-Dist: ruff>=0.1.0; extra == "dev"
31
+ Provides-Extra: all
32
+ Requires-Dist: ytcollector[analysis,dev]; extra == "all"
33
+
34
+ # YouTube 콘텐츠 수집기
35
+
36
+ 유튜브에서 특정 카테고리(얼굴, 번호판, 타투, 텍스트)의 영상을 자동으로 검색, 다운로드, 분석하여 수집하는 CLI 도구입니다.
37
+
38
+ ## 설치
39
+
40
+ ### 필수 패키지
41
+
42
+ ```bash
43
+ pip install yt-dlp
44
+ ```
45
+
46
+ ### 분석 기능용 패키지 (권장)
47
+
48
+ ```bash
49
+ pip install opencv-python easyocr numpy
50
+ ```
51
+
52
+ ## 사용법
53
+
54
+ ### 기본 실행
55
+
56
+ ```bash
57
+ python main.py
58
+ ```
59
+
60
+ 기본값: 얼굴 카테고리 5개, 최대 3분 영상
61
+
62
+ ### 옵션
63
+
64
+ | 옵션 | 설명 | 기본값 |
65
+ |------|------|--------|
66
+ | `-c`, `--categories` | 수집할 카테고리 | `face` |
67
+ | `-n`, `--count` | 카테고리당 다운로드 수 | `5` |
68
+ | `-d`, `--duration` | 최대 영상 길이(분) | `3` |
69
+ | `-o`, `--output` | 저장 경로 | `~/Downloads/youtube_collection` |
70
+ | `--fast` | 고속 모드 (병렬 다운로드) | 비활성화 |
71
+ | `-w`, `--workers` | 병렬 다운로드 수 | `3` |
72
+ | `--proxy` | 프록시 주소 | 없음 |
73
+
74
+ ### 카테고리 종류
75
+
76
+ | 카테고리 | 설명 | 검색 소스 |
77
+ |----------|------|-----------|
78
+ | `face` | 얼굴/인물 | SBS 인터뷰, 런닝맨, 미운우리새끼 등 |
79
+ | `license_plate` | 자동차 번호판 | 중고차 매물, 세차 영상, 신차 출고 등 |
80
+ | `tattoo` | 타투/문신 | 타투 시술, 타투이스트 작업 영상 |
81
+ | `text` | 텍스트/자막 | SBS 예능 (런닝맨, 골목식당 등) |
82
+
83
+ ## 예시
84
+
85
+ ### 단일 카테고리
86
+
87
+ ```bash
88
+ # 얼굴 영상 10개 수집
89
+ python main.py -c face -n 10
90
+
91
+ # 번호판 영상 수집 (최대 5분)
92
+ python main.py -c license_plate -d 5
93
+
94
+ # 타투 영상 수집
95
+ python main.py -c tattoo -n 5
96
+ ```
97
+
98
+ ### 여러 카테고리
99
+
100
+ ```bash
101
+ # 얼굴과 텍스트 각 10개씩
102
+ python main.py -c face text -n 10
103
+
104
+ # 모든 카테고리 수집
105
+ python main.py -c face license_plate tattoo text -n 5
106
+ ```
107
+
108
+ ### 고속 모드
109
+
110
+ ```bash
111
+ # 병렬 다운로드 (기본 3개 동시)
112
+ python main.py -c face -n 10 --fast
113
+
114
+ # 5개 동시 다운로드
115
+ python main.py -c face -n 10 --fast -w 5
116
+ ```
117
+
118
+ ### 저장 경로 지정
119
+
120
+ ```bash
121
+ python main.py -c face -o /path/to/save
122
+ ```
123
+
124
+ ### 프록시 사용
125
+
126
+ ```bash
127
+ python main.py -c face --proxy http://proxy.server:8080
128
+ ```
129
+
130
+ ## SBS Dataset 구축 (URL 리스트 기반)
131
+
132
+ URL 리스트를 기반으로 영상을 수집하고 특정 시점을 기준으로 자동으로 클리핑(3분 미만)하는 기능입니다.
133
+
134
+ ### 실행 방법
135
+
136
+ ```bash
137
+ ytc-dataset youtube_url.txt
138
+ ```
139
+
140
+ ### youtube_url.txt 형식
141
+
142
+ `URL, MM:SS, TaskName` 형식으로 작성합니다.
143
+ ```text
144
+ https://www.youtube.com/watch?v=aqz-KE-bpKQ, 00:10, sample_task
145
+ ```
146
+
147
+ ### 상세 옵션
148
+
149
+ | 옵션 | 설명 | 기본값 |
150
+ |------|------|--------|
151
+ | `file` | URL 리스트 파일 경로 | (필수) |
152
+ | `-o`, `--output` | 저장 루트 경로 | `.` |
153
+
154
+ ### 특징
155
+ - **자동 트리밍**: 지정된 MM:SS 시점 기준 $\pm$ 1.5분(총 3분)을 자동으로 자릅니다.
156
+ - **중복 방지**: 인덱스 기반으로 이미 다운로드/클리핑된 영상은 건너뜁니다.
157
+ - **저장 구조**: `./video/` (원본), `./video_clips/` (클립) 폴더가 생성됩니다.
158
+
159
+ ## 출력 폴더 구조
160
+
161
+ ```
162
+ 저장경로/
163
+ ├── 얼굴/ # 얼굴 감지된 영상
164
+ ├── 번호판/ # 번호판 감지된 영상
165
+ ├── 번호판_미감지/ # 번호판 미감지 (수동 확인용)
166
+ ├── 타투/ # 타투 감지된 영상
167
+ ├── 텍스트/ # 텍스트 감지된 영상
168
+ └── .archive.txt # 다운로드 기록 (중복 방지)
169
+ ```
170
+
171
+ ## 파일 구조
172
+
173
+ ```
174
+ 260202_test/
175
+ ├── main.py # CLI 진입점
176
+ ├── config.py # 설정 (검색어, UA 등)
177
+ ├── analyzer.py # 영상 분석 (OpenCV, EasyOCR)
178
+ ├── downloader.py # 다운로드 로직
179
+ └── README.md # 사용설명서
180
+ ```
181
+
182
+ ## 분석 기능
183
+
184
+ | 감지 항목 | 사용 기술 | 설명 |
185
+ |-----------|-----------|------|
186
+ | 얼굴 | OpenCV Haar Cascade | 정면 얼굴 감지 |
187
+ | 텍스트 | EasyOCR | 한국어/영어 문자 인식 |
188
+ | 번호판 | EasyOCR + 정규식 | 번호판 패턴 매칭 |
189
+ | 타투 | OpenCV HSV 분석 | 피부 영역 내 잉크 패턴 |
190
+
191
+ ## 주의사항
192
+
193
+ - 영상은 다운로드 후 분석하여 해당 카테고리가 감지된 경우에만 저장됩니다
194
+ - 번호판 카테고리는 미감지 영상도 별도 폴더에 보관됩니다 (수동 확인용)
195
+ - 이미 다운로드한 영상은 자동으로 스킵됩니다 (`.archive.txt` 기록)
196
+ - 비공개/삭제/저작권 영상은 자동 스킵됩니다
197
+
198
+ ## 고속 모드 vs 일반 모드
199
+
200
+ | 항목 | 일반 모드 | 고속 모드 |
201
+ |------|-----------|-----------|
202
+ | 다운로드 | 순차 | 병렬 |
203
+ | 딜레이 | 0.5~1.5초 | 없음 |
204
+ | 재시도 | 3회 | 1회 |
205
+ | 타임아웃 | 30초 | 10초 |
206
+
207
+ 고속 모드는 빠르지만 YouTube 차단 위험이 높아질 수 있습니다.
@@ -0,0 +1,174 @@
1
+ # YouTube 콘텐츠 수집기
2
+
3
+ 유튜브에서 특정 카테고리(얼굴, 번호판, 타투, 텍스트)의 영상을 자동으로 검색, 다운로드, 분석하여 수집하는 CLI 도구입니다.
4
+
5
+ ## 설치
6
+
7
+ ### 필수 패키지
8
+
9
+ ```bash
10
+ pip install yt-dlp
11
+ ```
12
+
13
+ ### 분석 기능용 패키지 (권장)
14
+
15
+ ```bash
16
+ pip install opencv-python easyocr numpy
17
+ ```
18
+
19
+ ## 사용법
20
+
21
+ ### 기본 실행
22
+
23
+ ```bash
24
+ python main.py
25
+ ```
26
+
27
+ 기본값: 얼굴 카테고리 5개, 최대 3분 영상
28
+
29
+ ### 옵션
30
+
31
+ | 옵션 | 설명 | 기본값 |
32
+ |------|------|--------|
33
+ | `-c`, `--categories` | 수집할 카테고리 | `face` |
34
+ | `-n`, `--count` | 카테고리당 다운로드 수 | `5` |
35
+ | `-d`, `--duration` | 최대 영상 길이(분) | `3` |
36
+ | `-o`, `--output` | 저장 경로 | `~/Downloads/youtube_collection` |
37
+ | `--fast` | 고속 모드 (병렬 다운로드) | 비활성화 |
38
+ | `-w`, `--workers` | 병렬 다운로드 수 | `3` |
39
+ | `--proxy` | 프록시 주소 | 없음 |
40
+
41
+ ### 카테고리 종류
42
+
43
+ | 카테고리 | 설명 | 검색 소스 |
44
+ |----------|------|-----------|
45
+ | `face` | 얼굴/인물 | SBS 인터뷰, 런닝맨, 미운우리새끼 등 |
46
+ | `license_plate` | 자동차 번호판 | 중고차 매물, 세차 영상, 신차 출고 등 |
47
+ | `tattoo` | 타투/문신 | 타투 시술, 타투이스트 작업 영상 |
48
+ | `text` | 텍스트/자막 | SBS 예능 (런닝맨, 골목식당 등) |
49
+
50
+ ## 예시
51
+
52
+ ### 단일 카테고리
53
+
54
+ ```bash
55
+ # 얼굴 영상 10개 수집
56
+ python main.py -c face -n 10
57
+
58
+ # 번호판 영상 수집 (최대 5분)
59
+ python main.py -c license_plate -d 5
60
+
61
+ # 타투 영상 수집
62
+ python main.py -c tattoo -n 5
63
+ ```
64
+
65
+ ### 여러 카테고리
66
+
67
+ ```bash
68
+ # 얼굴과 텍스트 각 10개씩
69
+ python main.py -c face text -n 10
70
+
71
+ # 모든 카테고리 수집
72
+ python main.py -c face license_plate tattoo text -n 5
73
+ ```
74
+
75
+ ### 고속 모드
76
+
77
+ ```bash
78
+ # 병렬 다운로드 (기본 3개 동시)
79
+ python main.py -c face -n 10 --fast
80
+
81
+ # 5개 동시 다운로드
82
+ python main.py -c face -n 10 --fast -w 5
83
+ ```
84
+
85
+ ### 저장 경로 지정
86
+
87
+ ```bash
88
+ python main.py -c face -o /path/to/save
89
+ ```
90
+
91
+ ### 프록시 사용
92
+
93
+ ```bash
94
+ python main.py -c face --proxy http://proxy.server:8080
95
+ ```
96
+
97
+ ## SBS Dataset 구축 (URL 리스트 기반)
98
+
99
+ URL 리스트를 기반으로 영상을 수집하고 특정 시점을 기준으로 자동으로 클리핑(3분 미만)하는 기능입니다.
100
+
101
+ ### 실행 방법
102
+
103
+ ```bash
104
+ ytc-dataset youtube_url.txt
105
+ ```
106
+
107
+ ### youtube_url.txt 형식
108
+
109
+ `URL, MM:SS, TaskName` 형식으로 작성합니다.
110
+ ```text
111
+ https://www.youtube.com/watch?v=aqz-KE-bpKQ, 00:10, sample_task
112
+ ```
113
+
114
+ ### 상세 옵션
115
+
116
+ | 옵션 | 설명 | 기본값 |
117
+ |------|------|--------|
118
+ | `file` | URL 리스트 파일 경로 | (필수) |
119
+ | `-o`, `--output` | 저장 루트 경로 | `.` |
120
+
121
+ ### 특징
122
+ - **자동 트리밍**: 지정된 MM:SS 시점 기준 $\pm$ 1.5분(총 3분)을 자동으로 자릅니다.
123
+ - **중복 방지**: 인덱스 기반으로 이미 다운로드/클리핑된 영상은 건너뜁니다.
124
+ - **저장 구조**: `./video/` (원본), `./video_clips/` (클립) 폴더가 생성됩니다.
125
+
126
+ ## 출력 폴더 구조
127
+
128
+ ```
129
+ 저장경로/
130
+ ├── 얼굴/ # 얼굴 감지된 영상
131
+ ├── 번호판/ # 번호판 감지된 영상
132
+ ├── 번호판_미감지/ # 번호판 미감지 (수동 확인용)
133
+ ├── 타투/ # 타투 감지된 영상
134
+ ├── 텍스트/ # 텍스트 감지된 영상
135
+ └── .archive.txt # 다운로드 기록 (중복 방지)
136
+ ```
137
+
138
+ ## 파일 구조
139
+
140
+ ```
141
+ 260202_test/
142
+ ├── main.py # CLI 진입점
143
+ ├── config.py # 설정 (검색어, UA 등)
144
+ ├── analyzer.py # 영상 분석 (OpenCV, EasyOCR)
145
+ ├── downloader.py # 다운로드 로직
146
+ └── README.md # 사용설명서
147
+ ```
148
+
149
+ ## 분석 기능
150
+
151
+ | 감지 항목 | 사용 기술 | 설명 |
152
+ |-----------|-----------|------|
153
+ | 얼굴 | OpenCV Haar Cascade | 정면 얼굴 감지 |
154
+ | 텍스트 | EasyOCR | 한국어/영어 문자 인식 |
155
+ | 번호판 | EasyOCR + 정규식 | 번호판 패턴 매칭 |
156
+ | 타투 | OpenCV HSV 분석 | 피부 영역 내 잉크 패턴 |
157
+
158
+ ## 주의사항
159
+
160
+ - 영상은 다운로드 후 분석하여 해당 카테고리가 감지된 경우에만 저장됩니다
161
+ - 번호판 카테고리는 미감지 영상도 별도 폴더에 보관됩니다 (수동 확인용)
162
+ - 이미 다운로드한 영상은 자동으로 스킵됩니다 (`.archive.txt` 기록)
163
+ - 비공개/삭제/저작권 영상은 자동 스킵됩니다
164
+
165
+ ## 고속 모드 vs 일반 모드
166
+
167
+ | 항목 | 일반 모드 | 고속 모드 |
168
+ |------|-----------|-----------|
169
+ | 다운로드 | 순차 | 병렬 |
170
+ | 딜레이 | 0.5~1.5초 | 없음 |
171
+ | 재시도 | 3회 | 1회 |
172
+ | 타임아웃 | 30초 | 10초 |
173
+
174
+ 고속 모드는 빠르지만 YouTube 차단 위험이 높아질 수 있습니다.
@@ -0,0 +1,67 @@
1
+ [build-system]
2
+ requires = ["setuptools>=61.0", "wheel"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "ytcollector"
7
+ version = "1.0.9"
8
+ description = "YouTube 콘텐츠 수집기 - 얼굴, 번호판, 타투, 텍스트 감지"
9
+ readme = "README.md"
10
+ requires-python = ">=3.8"
11
+ license = {text = "MIT"}
12
+ authors = [
13
+ {name = "YTCollector Team"}
14
+ ]
15
+ keywords = ["youtube", "downloader", "video-analysis", "face-detection", "ocr"]
16
+ classifiers = [
17
+ "Development Status :: 4 - Beta",
18
+ "Intended Audience :: Developers",
19
+ "License :: OSI Approved :: MIT License",
20
+ "Programming Language :: Python :: 3",
21
+ "Programming Language :: Python :: 3.8",
22
+ "Programming Language :: Python :: 3.9",
23
+ "Programming Language :: Python :: 3.10",
24
+ "Programming Language :: Python :: 3.11",
25
+ "Programming Language :: Python :: 3.12",
26
+ ]
27
+
28
+ dependencies = [
29
+ "yt-dlp>=2024.0.0",
30
+ ]
31
+
32
+ [project.optional-dependencies]
33
+ analysis = [
34
+ "opencv-python>=4.5.0",
35
+ "easyocr>=1.6.0",
36
+ "numpy>=1.20.0",
37
+ ]
38
+ dev = [
39
+ "pytest>=7.0.0",
40
+ "black>=23.0.0",
41
+ "ruff>=0.1.0",
42
+ ]
43
+ all = [
44
+ "ytcollector[analysis,dev]",
45
+ ]
46
+
47
+ [project.scripts]
48
+ ytcollector = "ytcollector.cli:main"
49
+ ytc = "ytcollector.cli:main"
50
+ ytc-dataset = "ytcollector.dataset_builder:main"
51
+
52
+ [project.urls]
53
+ Homepage = "https://github.com/yourusername/ytcollector"
54
+ Documentation = "https://github.com/yourusername/ytcollector#readme"
55
+ Repository = "https://github.com/yourusername/ytcollector"
56
+
57
+ [tool.setuptools.packages.find]
58
+ where = ["."]
59
+ include = ["ytcollector*"]
60
+
61
+ [tool.black]
62
+ line-length = 100
63
+ target-version = ['py38']
64
+
65
+ [tool.ruff]
66
+ line-length = 100
67
+ select = ["E", "F", "W"]
@@ -0,0 +1,39 @@
1
+ """YouTube 콘텐츠 수집기 라이브러리
2
+
3
+ 외부에서 라이브러리로 사용하거나 CLI로 실행할 수 있습니다.
4
+
5
+ 라이브러리 사용 예시:
6
+ from ytcollector import YouTubeDownloader, run
7
+
8
+ # 방법 1: YouTubeDownloader 직접 사용
9
+ downloader = YouTubeDownloader(output_path="./videos")
10
+ count = downloader.collect("face", max_videos=5)
11
+
12
+ # 방법 2: run() 함수 사용 (간단한 방법)
13
+ results = run(categories=["face", "text"], count=3)
14
+
15
+ CLI 사용 예시:
16
+ ytcollector -c face -n 5
17
+ ytc -c face text --fast
18
+ """
19
+
20
+ from .config import CATEGORY_NAMES, CATEGORY_QUERIES, USER_AGENTS, LICENSE_PLATE_PATTERNS
21
+ from .analyzer import VideoAnalyzer, check_dependencies
22
+ from .downloader import YouTubeDownloader
23
+ from .cli import run, main as cli_main
24
+
25
+ __version__ = "1.0.0"
26
+ __all__ = [
27
+ # 주요 클래스
28
+ "VideoAnalyzer",
29
+ "YouTubeDownloader",
30
+ # 설정
31
+ "CATEGORY_NAMES",
32
+ "CATEGORY_QUERIES",
33
+ "USER_AGENTS",
34
+ "LICENSE_PLATE_PATTERNS",
35
+ # 유틸리티
36
+ "check_dependencies",
37
+ "run",
38
+ "cli_main",
39
+ ]
@@ -0,0 +1,205 @@
1
+ import re
2
+ from .config import LICENSE_PLATE_PATTERNS
3
+
4
+ # 선택적 import
5
+ try:
6
+ import cv2
7
+ CV2_AVAILABLE = True
8
+ except ImportError:
9
+ CV2_AVAILABLE = False
10
+
11
+ try:
12
+ import easyocr
13
+ EASYOCR_AVAILABLE = True
14
+ except ImportError:
15
+ EASYOCR_AVAILABLE = False
16
+
17
+ try:
18
+ import numpy as np
19
+ NUMPY_AVAILABLE = True
20
+ except ImportError:
21
+ NUMPY_AVAILABLE = False
22
+
23
+
24
+ class VideoAnalyzer:
25
+ """영상 분석 클래스 - 얼굴, 텍스트, 번호판, 타투 감지"""
26
+
27
+ def __init__(self):
28
+ self.ocr_reader = None
29
+ self.face_cascade = None
30
+
31
+ if CV2_AVAILABLE:
32
+ cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
33
+ self.face_cascade = cv2.CascadeClassifier(cascade_path)
34
+
35
+ def _init_ocr(self):
36
+ """OCR 리더 초기화 (필요할 때만)"""
37
+ if EASYOCR_AVAILABLE and self.ocr_reader is None:
38
+ print(" OCR 엔진 초기화 중...")
39
+ self.ocr_reader = easyocr.Reader(['ko', 'en'], gpu=False, verbose=False)
40
+
41
+ def extract_frames(self, video_path, num_frames=10):
42
+ """영상에서 균등 간격으로 프레임 추출"""
43
+ if not CV2_AVAILABLE:
44
+ return []
45
+
46
+ cap = cv2.VideoCapture(video_path)
47
+ if not cap.isOpened():
48
+ return []
49
+
50
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
51
+ if total_frames <= 0:
52
+ cap.release()
53
+ return []
54
+
55
+ frame_indices = [int(i * total_frames / (num_frames + 1)) for i in range(1, num_frames + 1)]
56
+ frames = []
57
+
58
+ for idx in frame_indices:
59
+ cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
60
+ ret, frame = cap.read()
61
+ if ret:
62
+ frames.append(frame)
63
+
64
+ cap.release()
65
+ return frames
66
+
67
+ def detect_faces(self, frame):
68
+ """Haar Cascade로 얼굴 감지"""
69
+ if not CV2_AVAILABLE or self.face_cascade is None:
70
+ return []
71
+
72
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
73
+ return self.face_cascade.detectMultiScale(
74
+ gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)
75
+ )
76
+
77
+ def detect_text(self, frame):
78
+ """EasyOCR로 텍스트 감지"""
79
+ if not EASYOCR_AVAILABLE:
80
+ return []
81
+
82
+ self._init_ocr()
83
+ try:
84
+ h, w = frame.shape[:2]
85
+ if w > 640:
86
+ scale = 640 / w
87
+ frame = cv2.resize(frame, (640, int(h * scale)))
88
+
89
+ results = self.ocr_reader.readtext(frame)
90
+ return [r[1] for r in results if r[2] > 0.3]
91
+ except:
92
+ return []
93
+
94
+ def detect_license_plate(self, texts):
95
+ """텍스트에서 번호판 패턴 감지"""
96
+ for text in texts:
97
+ text_clean = text.replace(' ', '').upper()
98
+ for pattern in LICENSE_PLATE_PATTERNS:
99
+ if re.search(pattern, text_clean):
100
+ return True
101
+ return False
102
+
103
+ def detect_tattoo(self, frame):
104
+ """피부 영역에서 타투(어두운 잉크 패턴) 감지"""
105
+ if not CV2_AVAILABLE or not NUMPY_AVAILABLE:
106
+ return False
107
+
108
+ try:
109
+ hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
110
+
111
+ # 피부색 범위
112
+ lower_skin = np.array([0, 30, 80], dtype=np.uint8)
113
+ upper_skin = np.array([17, 170, 255], dtype=np.uint8)
114
+ skin_mask = cv2.inRange(hsv, lower_skin, upper_skin)
115
+
116
+ # 노이즈 제거
117
+ kernel = np.ones((5, 5), np.uint8)
118
+ skin_mask = cv2.morphologyEx(skin_mask, cv2.MORPH_OPEN, kernel)
119
+ skin_mask = cv2.morphologyEx(skin_mask, cv2.MORPH_CLOSE, kernel)
120
+
121
+ skin_pixels = cv2.countNonZero(skin_mask)
122
+ total_pixels = frame.shape[0] * frame.shape[1]
123
+
124
+ # 피부 영역 최소 10% 필요
125
+ if skin_pixels < total_pixels * 0.10:
126
+ return False
127
+
128
+ # 피부 영역 내 어두운 픽셀(타투) 감지
129
+ gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
130
+ skin_gray = cv2.bitwise_and(gray, gray, mask=skin_mask)
131
+ dark_mask = cv2.inRange(skin_gray, 1, 80)
132
+
133
+ dark_pixels = cv2.countNonZero(dark_mask)
134
+ dark_ratio = dark_pixels / max(skin_pixels, 1)
135
+
136
+ # 어두운 영역이 3~35%일 때 타투로 판정
137
+ if 0.03 < dark_ratio < 0.35:
138
+ contours, _ = cv2.findContours(dark_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
139
+ significant = [c for c in contours if cv2.contourArea(c) > 100]
140
+ return len(significant) >= 1
141
+
142
+ return False
143
+ except:
144
+ return False
145
+
146
+ def analyze(self, video_path):
147
+ """영상 전체 분석"""
148
+ results = {
149
+ 'face': False,
150
+ 'text': False,
151
+ 'license_plate': False,
152
+ 'tattoo': False,
153
+ 'face_count': 0,
154
+ 'detected_texts': []
155
+ }
156
+
157
+ if not CV2_AVAILABLE:
158
+ print(" ⚠ OpenCV 미설치")
159
+ return results
160
+
161
+ frames = self.extract_frames(video_path, num_frames=8)
162
+ if not frames:
163
+ print(" ⚠ 프레임 추출 실패")
164
+ return results
165
+
166
+ all_texts = []
167
+ total_faces = 0
168
+
169
+ for i, frame in enumerate(frames):
170
+ # 얼굴
171
+ faces = self.detect_faces(frame)
172
+ if len(faces) > 0:
173
+ results['face'] = True
174
+ total_faces += len(faces)
175
+
176
+ # 텍스트 (일부 프레임만)
177
+ if i % 2 == 0 and EASYOCR_AVAILABLE:
178
+ texts = self.detect_text(frame)
179
+ if texts:
180
+ results['text'] = True
181
+ all_texts.extend(texts)
182
+
183
+ # 타투
184
+ if self.detect_tattoo(frame):
185
+ results['tattoo'] = True
186
+
187
+ # 번호판 (텍스트에서)
188
+ if all_texts:
189
+ results['license_plate'] = self.detect_license_plate(all_texts)
190
+ results['detected_texts'] = list(set(all_texts))[:10]
191
+
192
+ results['face_count'] = total_faces
193
+ return results
194
+
195
+
196
+ def check_dependencies():
197
+ """의존성 체크"""
198
+ missing = []
199
+ if not CV2_AVAILABLE:
200
+ missing.append("opencv-python")
201
+ if not EASYOCR_AVAILABLE:
202
+ missing.append("easyocr")
203
+ if not NUMPY_AVAILABLE:
204
+ missing.append("numpy")
205
+ return missing