yomitoku 0.9.0__tar.gz → 0.9.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {yomitoku-0.9.0 → yomitoku-0.9.2}/PKG-INFO +6 -2
- {yomitoku-0.9.0 → yomitoku-0.9.2}/README.md +3 -1
- {yomitoku-0.9.0 → yomitoku-0.9.2}/README_EN.md +1 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/demo/simple_ocr.py +4 -1
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/cli.en.md +22 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/cli.ja.md +20 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/index.en.md +1 -1
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/index.ja.md +1 -1
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/mcp.en.md +16 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/mcp.ja.md +14 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/pyproject.toml +3 -1
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/cli/main.py +36 -10
- yomitoku-0.9.0/src/yomitoku/cli/mcp.py → yomitoku-0.9.2/src/yomitoku/cli/mcp_server.py +37 -6
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/data/dataset.py +20 -10
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/data/functions.py +19 -20
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/document_analyzer.py +21 -6
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/reading_order.py +38 -8
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/utils/misc.py +49 -2
- yomitoku-0.9.2/src/yomitoku/utils/searchable_pdf.py +116 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery4_p1.html +6 -6
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery4_p1.md +9 -9
- yomitoku-0.9.2/static/out/in_gallery4_p1_layout.jpg +0 -0
- yomitoku-0.9.2/static/out/in_gallery4_p1_ocr.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/test_data.py +14 -31
- yomitoku-0.9.2/uv.lock +1898 -0
- yomitoku-0.9.0/static/out/in_gallery4_p1_layout.jpg +0 -0
- yomitoku-0.9.0/static/out/in_gallery4_p1_ocr.jpg +0 -0
- yomitoku-0.9.0/uv.lock +0 -1815
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.github/FUNDING.yml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.github/release-drafter.yml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.github/workflows/build-and-publish-docs.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.github/workflows/build-and-publish.yml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.github/workflows/create-release.yml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.github/workflows/lint-and-test.yml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.gitignore +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.pre-commit-config.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/.python-version +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/configs/yomitoku-layout-parser-rtdtrv2-open-beta.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/configs/yomitoku-table-structure-recognizer-rtdtrv2-open-beta.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/configs/yomitoku-text-detector-dbnet-open-beta.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/configs/yomitoku-text-recognizer-parseq-open-beta.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/configs/yomitoku-text-recognizer-parseq-small-open-beta.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/demo/sample.pdf +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/demo/setting_document_anaysis.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/demo/simple_document_analysis.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/demo/simple_layout.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/demo/text_detector.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/dockerfile +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/assets/logo.svg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/configuration.en.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/configuration.ja.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/installation.en.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/installation.ja.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/module.en.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/docs/module.ja.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/gallery.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/mkdocs.yml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/pytest.ini +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/scripts/register_hugging_face_hub.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/base.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/cli/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/cfg_layout_parser_rtdtrv2.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/cfg_layout_parser_rtdtrv2_v2.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/cfg_table_structure_recognizer_rtdtrv2.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/cfg_text_detector_dbnet.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/cfg_text_detector_dbnet_v2.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/cfg_text_recognizer_parseq.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/cfg_text_recognizer_parseq_small.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/configs/cfg_text_recognizer_parseq_v2.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/constants.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/data/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/export/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/export/export_csv.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/export/export_html.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/export/export_json.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/export/export_markdown.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/layout_analyzer.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/layout_parser.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/dbnet_plus.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/layers/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/layers/activate.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/layers/dbnet_feature_attention.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/layers/parseq_transformer.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/layers/rtdetr_backbone.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/layers/rtdetr_hybrid_encoder.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/layers/rtdetrv2_decoder.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/parseq.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/models/rtdetr.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/ocr.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/onnx/.gitkeep +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/postprocessor/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/postprocessor/dbnet_postporcessor.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/postprocessor/parseq_tokenizer.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/postprocessor/rtdetr_postprocessor.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/resource/MPLUS1p-Medium.ttf +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/resource/charset.txt +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/table_structure_recognizer.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/text_detector.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/text_recognizer.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/utils/__init__.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/utils/graph.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/utils/logger.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/src/yomitoku/utils/visualizer.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/in/demo.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/in/gallery1.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/in/gallery2.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/in/gallery3.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/in/gallery4.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/in/gallery5.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/in/gallery6.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/in/gallery7.jpeg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/logo/horizontal.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/demo_html.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_demo_p1_figure_0.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_0.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_1.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_10.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_2.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_3.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_4.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_5.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_6.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_7.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_8.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery1_p1_figure_9.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery3_p1_figure_0.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery3_p1_figure_1.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery5_p1_figure_0.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery5_p1_figure_1.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery6_p1_figure_0.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery6_p1_figure_1.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/figures/in_gallery7_p1_figure_0.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_demo_p1.html +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_demo_p1.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_demo_p1_layout.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_demo_p1_ocr.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery1_p1.html +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery1_p1.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery1_p1_layout.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery1_p1_ocr.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery2_p1.html +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery2_p1.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery2_p1_layout.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery2_p1_ocr.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery3_p1.html +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery3_p1.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery3_p1_layout.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery3_p1_ocr.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery5_p1.html +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery5_p1.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery5_p1_layout.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery5_p1_ocr.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery6_p1.html +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery6_p1.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery6_p1_layout.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery6_p1_ocr.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery7_p1.html +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery7_p1.md +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery7_p1_layout.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/static/out/in_gallery7_p1_ocr.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/invalid.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/invalid.pdf +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/rgba.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/sampldoc.tif +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/small.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/subdir/test.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/test.bmp +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/test.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/test.pdf +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/test.png +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/test.tiff +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/test.txt +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/data/test_gray.jpg +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/test_base.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/test_cli.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/test_document_analyzer.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/test_export.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/test_layout_analyzer.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/test_ocr.py +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/yaml/layout_parser.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/yaml/table_structure_recognizer.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/yaml/text_detector.yaml +0 -0
- {yomitoku-0.9.0 → yomitoku-0.9.2}/tests/yaml/text_recognizer.yaml +0 -0
@@ -1,12 +1,13 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: yomitoku
|
3
|
-
Version: 0.9.
|
3
|
+
Version: 0.9.2
|
4
4
|
Summary: Yomitoku is an AI-powered document image analysis package designed specifically for the Japanese language.
|
5
5
|
Author-email: Kotaro Kinoshita <kotaro.kinoshita@mlism.com>
|
6
6
|
License: CC BY-NC-SA 4.0
|
7
7
|
Keywords: Deep Learning,Japanese,OCR
|
8
8
|
Requires-Python: <3.13,>=3.10
|
9
9
|
Requires-Dist: huggingface-hub>=0.26.1
|
10
|
+
Requires-Dist: jaconv>=0.4.0
|
10
11
|
Requires-Dist: lxml>=5.3.0
|
11
12
|
Requires-Dist: omegaconf>=2.3.0
|
12
13
|
Requires-Dist: onnx>=1.17.0
|
@@ -15,6 +16,7 @@ Requires-Dist: opencv-python>=4.10.0.84
|
|
15
16
|
Requires-Dist: pyclipper>=1.3.0.post6
|
16
17
|
Requires-Dist: pydantic>=2.9.2
|
17
18
|
Requires-Dist: pypdfium2>=4.30.0
|
19
|
+
Requires-Dist: reportlab>=4.4.1
|
18
20
|
Requires-Dist: shapely>=2.0.6
|
19
21
|
Requires-Dist: timm>=1.0.11
|
20
22
|
Requires-Dist: torch>=2.5.0
|
@@ -41,7 +43,7 @@ YomiToku は日本語に特化した AI 文章画像解析エンジン(Document
|
|
41
43
|
- 🤖 日本語データセットで学習した 4 種類(文字位置の検知、文字列認識、レイアウト解析、表の構造認識)の AI モデルを搭載しています。4 種類のモデルはすべて独自に学習されたモデルで日本語文書に対して、高精度に推論可能です。
|
42
44
|
- 🇯🇵 各モデルは日本語の文書画像に特化して学習されており、7000 文字を超える日本語文字の認識をサーポート、手書き文字、縦書きなど日本語特有のレイアウト構造の文書画像の解析も可能です。(日本語以外にも英語の文書に対しても対応しています)。
|
43
45
|
- 📈 レイアウト解析、表の構造解析, 読み順推定機能により、文書画像のレイアウトの意味的構造を壊さずに情報を抽出することが可能です。
|
44
|
-
- 📄 多様な出力形式をサポートしています。html やマークダウン、json、csv
|
46
|
+
- 📄 多様な出力形式をサポートしています。html やマークダウン、json、csv のいずれかのフォーマットに変換可能です。また、文書内に含まれる図表、画像の抽出の出力も可能です。文書画像をサーチャブルPDFに変換する処理もサポートしています。
|
45
47
|
- ⚡ GPU 環境で高速に動作し、効率的に文書の文字起こし解析が可能です。また、VRAM も 8GB 以内で動作し、ハイエンドな GPU を用意する必要はありません。
|
46
48
|
|
47
49
|
## 🖼️ デモ
|
@@ -66,6 +68,7 @@ Markdown でエクスポートした結果は関してはリポジトリ内の[s
|
|
66
68
|
|
67
69
|
## 📣 リリース情報
|
68
70
|
|
71
|
+
- 2025 年 4 月 4 日 YomiToku v0.8.0 手書き文字認識のサポート
|
69
72
|
- 2024 年 11 月 26 日 YomiToku v0.5.1 (beta) を公開
|
70
73
|
|
71
74
|
## 💡 インストールの方法
|
@@ -95,6 +98,7 @@ yomitoku ${path_data} -f md -o results -v --figure --lite
|
|
95
98
|
- `--encoding` エクスポートする出力ファイルの文字エンコーディングを指定します。サポートされていない文字コードが含まれる場合は、その文字を無視します。(utf-8, utf-8-sig, shift-jis, enc-jp, cp932)
|
96
99
|
- `--combine` PDFを入力に与えたときに、複数ページが含まれる場合に、それらの予測結果を一つのファイルに統合してエクスポートします。
|
97
100
|
- `--ignore_meta` 文章のheater, fotterなどの文字情報を出力ファイルに含めません。
|
101
|
+
- `--searchable_pdf` 読み取った文字情報をPDFに埋め込み全文検索可能なPDFを出力します。
|
98
102
|
|
99
103
|
その他のオプションに関しては、ヘルプを参照
|
100
104
|
|
@@ -16,7 +16,7 @@ YomiToku は日本語に特化した AI 文章画像解析エンジン(Document
|
|
16
16
|
- 🤖 日本語データセットで学習した 4 種類(文字位置の検知、文字列認識、レイアウト解析、表の構造認識)の AI モデルを搭載しています。4 種類のモデルはすべて独自に学習されたモデルで日本語文書に対して、高精度に推論可能です。
|
17
17
|
- 🇯🇵 各モデルは日本語の文書画像に特化して学習されており、7000 文字を超える日本語文字の認識をサーポート、手書き文字、縦書きなど日本語特有のレイアウト構造の文書画像の解析も可能です。(日本語以外にも英語の文書に対しても対応しています)。
|
18
18
|
- 📈 レイアウト解析、表の構造解析, 読み順推定機能により、文書画像のレイアウトの意味的構造を壊さずに情報を抽出することが可能です。
|
19
|
-
- 📄 多様な出力形式をサポートしています。html やマークダウン、json、csv
|
19
|
+
- 📄 多様な出力形式をサポートしています。html やマークダウン、json、csv のいずれかのフォーマットに変換可能です。また、文書内に含まれる図表、画像の抽出の出力も可能です。文書画像をサーチャブルPDFに変換する処理もサポートしています。
|
20
20
|
- ⚡ GPU 環境で高速に動作し、効率的に文書の文字起こし解析が可能です。また、VRAM も 8GB 以内で動作し、ハイエンドな GPU を用意する必要はありません。
|
21
21
|
|
22
22
|
## 🖼️ デモ
|
@@ -41,6 +41,7 @@ Markdown でエクスポートした結果は関してはリポジトリ内の[s
|
|
41
41
|
|
42
42
|
## 📣 リリース情報
|
43
43
|
|
44
|
+
- 2025 年 4 月 4 日 YomiToku v0.8.0 手書き文字認識のサポート
|
44
45
|
- 2024 年 11 月 26 日 YomiToku v0.5.1 (beta) を公開
|
45
46
|
|
46
47
|
## 💡 インストールの方法
|
@@ -70,6 +71,7 @@ yomitoku ${path_data} -f md -o results -v --figure --lite
|
|
70
71
|
- `--encoding` エクスポートする出力ファイルの文字エンコーディングを指定します。サポートされていない文字コードが含まれる場合は、その文字を無視します。(utf-8, utf-8-sig, shift-jis, enc-jp, cp932)
|
71
72
|
- `--combine` PDFを入力に与えたときに、複数ページが含まれる場合に、それらの予測結果を一つのファイルに統合してエクスポートします。
|
72
73
|
- `--ignore_meta` 文章のheater, fotterなどの文字情報を出力ファイルに含めません。
|
74
|
+
- `--searchable_pdf` 読み取った文字情報をPDFに埋め込み全文検索可能なPDFを出力します。
|
73
75
|
|
74
76
|
その他のオプションに関しては、ヘルプを参照
|
75
77
|
|
@@ -70,6 +70,7 @@ yomitoku ${path_data} -f md -o results -v --figure --lite
|
|
70
70
|
- `--encoding` Specifies the character encoding for the output file to be exported. If unsupported characters are included, they will be ignored. (utf-8, utf-8-sig, shift-jis, enc-jp, cp932)
|
71
71
|
- `--combine` When a PDF is provided as input and contains multiple pages, this option combines their prediction results into a single file for export.
|
72
72
|
- `--ignore_meta` Excludes text information such as headers and footers from the output file.
|
73
|
+
- `--searchable_pdf` Embeds the recognized text into the PDF and outputs a fully searchable PDF.
|
73
74
|
|
74
75
|
For other options, please refer to the help documentation.
|
75
76
|
|
@@ -4,9 +4,12 @@ from yomitoku import OCR
|
|
4
4
|
from yomitoku.data.functions import load_pdf
|
5
5
|
|
6
6
|
if __name__ == "__main__":
|
7
|
-
ocr = OCR(visualize=True, device="
|
7
|
+
ocr = OCR(visualize=True, device="cuda")
|
8
8
|
# PDFファイルを読み込み
|
9
9
|
imgs = load_pdf("demo/sample.pdf")
|
10
|
+
import time
|
11
|
+
|
12
|
+
start = time.time()
|
10
13
|
for i, img in enumerate(imgs):
|
11
14
|
results, ocr_vis = ocr(img)
|
12
15
|
|
@@ -107,4 +107,26 @@ If the PDF contains multiple pages, you can export them as a single file.
|
|
107
107
|
|
108
108
|
```
|
109
109
|
yomitoku ${path_data} -f md --combine
|
110
|
+
```
|
111
|
+
|
112
|
+
## Specifying Reading Order
|
113
|
+
|
114
|
+
By default, *Auto* mode automatically detects whether a document is written horizontally or vertically and estimates the appropriate reading order. However, you can explicitly specify a custom reading order. For horizontal documents, the default is `top2left`, and for vertical documents, it is `top2bottom`.
|
115
|
+
|
116
|
+
```
|
117
|
+
yomitoku ${path_data} --reading_order left2right
|
118
|
+
```
|
119
|
+
|
120
|
+
* `top2bottom`: Prioritizes reading from top to bottom. Useful for multi-column documents such as word processor files with vertical flow.
|
121
|
+
|
122
|
+
* `left2right`: Prioritizes reading from left to right. Suitable for layouts like receipts or health insurance cards, where key-value text pairs are arranged in columns.
|
123
|
+
|
124
|
+
* `right2left`: Prioritizes reading from right to left. Effective for vertically written documents.
|
125
|
+
|
126
|
+
## Create a searchable PDF
|
127
|
+
|
128
|
+
Detect the text in the image and embed it into the PDF as invisible text, converting the file into a searchable PDF.
|
129
|
+
|
130
|
+
```
|
131
|
+
yomitoku ${path_data} --searchable_pdf
|
110
132
|
```
|
@@ -104,4 +104,24 @@ PDFに複数ページが含まれる場合に複数ページを一つのファ
|
|
104
104
|
|
105
105
|
```
|
106
106
|
yomitoku ${path_data} -f md --combine
|
107
|
+
```
|
108
|
+
|
109
|
+
## 読み取り順を指定する
|
110
|
+
Autoでは、横書きのドキュメント、縦書きのドキュメントを識別し、自動で読み取り順を推定しますが、任意の読み取り順の指定することが可能です。デフォルトでは横書きの文書は`top2left`, 縦書きは`top2bottom`になります。
|
111
|
+
|
112
|
+
```
|
113
|
+
yomitoku ${path_data} --reading_order left2right
|
114
|
+
```
|
115
|
+
|
116
|
+
- `top2bottom`: 上から下方向に優先的に読み取り順を推定します。段組みのワードドキュメントなどに対して、有効です。
|
117
|
+
|
118
|
+
- `left2right`: 左から右方向に優先的に読み取り順を推定します。レシートや保険証などキーに対して、値を示すテキストが段組みになっているようなレイアウトに有効です。
|
119
|
+
|
120
|
+
- `right2left:` 右から左方向に優先的に読み取り順を推定します。縦書きのドキュメントに対して有効です。
|
121
|
+
|
122
|
+
## 検索可能なPDFを作成する
|
123
|
+
画像内の文字情報を認識し、文字情報を透明テキストとして、PDFに埋め込むことで、サーチャブルPDFに変換します。
|
124
|
+
|
125
|
+
```
|
126
|
+
yomitoku ${path_data} --searchable_pdf
|
107
127
|
```
|
@@ -5,7 +5,7 @@ YomiToku is a Document AI engine specialized in Japanese document image analysis
|
|
5
5
|
- 🤖 Equipped with four AI models trained on Japanese datasets: text detection, text recognition, layout analysis, and table structure recognition. All models are independently trained and optimized for Japanese documents, delivering high-precision inference.
|
6
6
|
- 🇯🇵 Each model is specifically trained for Japanese document images, supporting the recognition of over 7,000 Japanese characters, including vertical text and other layout structures unique to Japanese documents. (It also supports English documents.)
|
7
7
|
- 📈 By leveraging layout analysis, table structure parsing, and reading order estimation, it extracts information while preserving the semantic structure of the document layout.
|
8
|
-
- 📄 Supports a variety of output formats, including HTML, Markdown, JSON, and CSV. It also allows for the extraction of diagrams and images contained within the documents.
|
8
|
+
- 📄 Supports a variety of output formats, including HTML, Markdown, JSON, and CSV. It also allows for the extraction of diagrams and images contained within the documents.It also supports converting document images into fully text-searchable PDFs.
|
9
9
|
- ⚡ Operates efficiently in GPU environments, enabling fast document transcription and analysis. It requires less than 8GB of VRAM, eliminating the need for high-end GPUs.。
|
10
10
|
|
11
11
|
## 🙋 FAQ
|
@@ -5,7 +5,7 @@ YomiToku は日本語に特化した AI 文章画像解析エンジン(Document
|
|
5
5
|
- 🤖 日本語データセットで学習した 4 種類(文字位置の検知、文字列認識、レイアウト解析、表の構造認識)の AI モデルを搭載しています。4 種類のモデルはすべて独自に学習されたモデルで日本語文書に対して、高精度に推論可能です。
|
6
6
|
- 🇯🇵 各モデルは日本語の文書画像に特化して学習されており、7000 文字を超える日本語文字の認識をサーポート、手書き文字、縦書きなど日本語特有のレイアウト構造の文書画像の解析も可能です。(日本語以外にも英語の文書に対しても対応しています)。
|
7
7
|
- 📈 レイアウト解析、表の構造解析, 読み順推定機能により、文書画像のレイアウトの意味的構造を壊さずに情報を抽出することが可能です。
|
8
|
-
- 📄 多様な出力形式をサポートしています。html やマークダウン、json、csv
|
8
|
+
- 📄 多様な出力形式をサポートしています。html やマークダウン、json、csv のいずれかのフォーマットに変換可能です。また、文書内に含まれる図表、画像の抽出の出力も可能です。文書画像を全文検索可能なサーチャブルPDFに変換する処理もサポートしています。
|
9
9
|
- ⚡ GPU 環境で高速に動作し、効率的に文書の文字起こし解析が可能です。また、VRAM も 8GB 以内で動作し、ハイエンドな GPU を用意する必要はありません。
|
10
10
|
|
11
11
|
## 🙋 FAQ
|
@@ -46,3 +46,19 @@ For example, if you use `yomitoku/demo/sample.pdf` as a sample, instruct as foll
|
|
46
46
|
```txt
|
47
47
|
Analyze sample.pdf using OCR and translate it into English.
|
48
48
|
```
|
49
|
+
|
50
|
+
## Starting the SSE Server
|
51
|
+
|
52
|
+
Set the path to the folder containing the images to be processed by OCR in the resource directory.
|
53
|
+
|
54
|
+
```
|
55
|
+
export RESOURCE_DIR="path of dataset"
|
56
|
+
```
|
57
|
+
|
58
|
+
Start the SSE server using the following command:
|
59
|
+
|
60
|
+
```
|
61
|
+
uv run yomitoku_mcp -t sse
|
62
|
+
```
|
63
|
+
|
64
|
+
The SSE server endpoint will be available at `http://127.0.0.1:8000/sse`.
|
@@ -13,6 +13,7 @@
|
|
13
13
|
uv sync --extra mcp
|
14
14
|
```
|
15
15
|
|
16
|
+
|
16
17
|
## Claude Desktopの設定
|
17
18
|
|
18
19
|
次にClaude Desktopの設定ファイルの`mcpServers`に以下ように設定を追加します。(設定ファイルの開き方は[こちら](https://modelcontextprotocol.io/quickstart/user)を参照してください)
|
@@ -48,3 +49,16 @@ uv sync --extra mcp
|
|
48
49
|
```txt
|
49
50
|
sample.pdfをOCRで解析して要約してください。
|
50
51
|
```
|
52
|
+
|
53
|
+
## SSEサーバーの起動
|
54
|
+
環境変数の`RESOURCE_DIR`にOCRの対象画像が含まれたフォルダのパスを設定してください。
|
55
|
+
```
|
56
|
+
export RESOURCE_DIR="path of dataset"
|
57
|
+
```
|
58
|
+
|
59
|
+
以下のコマンドでSSEサーバーを起動します。
|
60
|
+
```
|
61
|
+
uv run yomitoku_mcp -t sse
|
62
|
+
```
|
63
|
+
|
64
|
+
` http://127.0.0.1:8000/sse`がSSEサーバーのエンドポイントになります。
|
@@ -30,6 +30,8 @@ dependencies = [
|
|
30
30
|
"torch>=2.5.0",
|
31
31
|
"torchvision>=0.20.0",
|
32
32
|
"onnxruntime>=1.20.1",
|
33
|
+
"reportlab>=4.4.1",
|
34
|
+
"jaconv>=0.4.0",
|
33
35
|
]
|
34
36
|
|
35
37
|
[tool.uv-dynamic-versioning]
|
@@ -70,7 +72,7 @@ explicit = true
|
|
70
72
|
|
71
73
|
[project.scripts]
|
72
74
|
yomitoku = "yomitoku.cli.main:main"
|
73
|
-
yomitoku_mcp = "yomitoku.cli.
|
75
|
+
yomitoku_mcp = "yomitoku.cli.mcp_server:main"
|
74
76
|
|
75
77
|
[project.optional-dependencies]
|
76
78
|
mcp = [
|
@@ -9,6 +9,7 @@ from ..constants import SUPPORT_OUTPUT_FORMAT
|
|
9
9
|
from ..data.functions import load_image, load_pdf
|
10
10
|
from ..document_analyzer import DocumentAnalyzer
|
11
11
|
from ..utils.logger import set_logger
|
12
|
+
from ..utils.searchable_pdf import create_searchable_pdf
|
12
13
|
|
13
14
|
from ..export import save_csv, save_html, save_json, save_markdown
|
14
15
|
from ..export import convert_json, convert_csv, convert_html, convert_markdown
|
@@ -80,11 +81,13 @@ def process_single_file(args, analyzer, path, format):
|
|
80
81
|
else:
|
81
82
|
imgs = load_image(path)
|
82
83
|
|
84
|
+
format_results = []
|
83
85
|
results = []
|
84
86
|
for page, img in enumerate(imgs):
|
85
87
|
result, ocr, layout = analyzer(img)
|
86
88
|
dirname = path.parent.name
|
87
89
|
filename = path.stem
|
90
|
+
results.append(result)
|
88
91
|
|
89
92
|
# cv2.imwrite(
|
90
93
|
# os.path.join(args.outdir, f"{dirname}_{filename}_p{page+1}.jpg"), img
|
@@ -92,7 +95,7 @@ def process_single_file(args, analyzer, path, format):
|
|
92
95
|
|
93
96
|
if ocr is not None:
|
94
97
|
out_path = os.path.join(
|
95
|
-
args.outdir, f"{dirname}_{filename}_p{page+1}_ocr.jpg"
|
98
|
+
args.outdir, f"{dirname}_{filename}_p{page + 1}_ocr.jpg"
|
96
99
|
)
|
97
100
|
|
98
101
|
save_image(ocr, out_path)
|
@@ -100,13 +103,15 @@ def process_single_file(args, analyzer, path, format):
|
|
100
103
|
|
101
104
|
if layout is not None:
|
102
105
|
out_path = os.path.join(
|
103
|
-
args.outdir, f"{dirname}_{filename}_p{page+1}_layout.jpg"
|
106
|
+
args.outdir, f"{dirname}_{filename}_p{page + 1}_layout.jpg"
|
104
107
|
)
|
105
108
|
|
106
109
|
save_image(layout, out_path)
|
107
110
|
logger.info(f"Output file: {out_path}")
|
108
111
|
|
109
|
-
out_path = os.path.join(
|
112
|
+
out_path = os.path.join(
|
113
|
+
args.outdir, f"{dirname}_{filename}_p{page + 1}.{format}"
|
114
|
+
)
|
110
115
|
|
111
116
|
if format == "json":
|
112
117
|
if args.combine:
|
@@ -128,7 +133,7 @@ def process_single_file(args, analyzer, path, format):
|
|
128
133
|
figure_dir=args.figure_dir,
|
129
134
|
)
|
130
135
|
|
131
|
-
|
136
|
+
format_results.append(
|
132
137
|
{
|
133
138
|
"format": format,
|
134
139
|
"data": json.model_dump(),
|
@@ -155,7 +160,7 @@ def process_single_file(args, analyzer, path, format):
|
|
155
160
|
figure_dir=args.figure_dir,
|
156
161
|
)
|
157
162
|
|
158
|
-
|
163
|
+
format_results.append(
|
159
164
|
{
|
160
165
|
"format": format,
|
161
166
|
"data": csv,
|
@@ -186,7 +191,7 @@ def process_single_file(args, analyzer, path, format):
|
|
186
191
|
encoding=args.encoding,
|
187
192
|
)
|
188
193
|
|
189
|
-
|
194
|
+
format_results.append(
|
190
195
|
{
|
191
196
|
"format": format,
|
192
197
|
"data": html,
|
@@ -217,14 +222,14 @@ def process_single_file(args, analyzer, path, format):
|
|
217
222
|
encoding=args.encoding,
|
218
223
|
)
|
219
224
|
|
220
|
-
|
225
|
+
format_results.append(
|
221
226
|
{
|
222
227
|
"format": format,
|
223
228
|
"data": md,
|
224
229
|
}
|
225
230
|
)
|
226
231
|
|
227
|
-
out = merge_all_pages(
|
232
|
+
out = merge_all_pages(format_results)
|
228
233
|
if args.combine:
|
229
234
|
out_path = os.path.join(args.outdir, f"{dirname}_{filename}.{format}")
|
230
235
|
save_merged_file(
|
@@ -233,6 +238,15 @@ def process_single_file(args, analyzer, path, format):
|
|
233
238
|
out,
|
234
239
|
)
|
235
240
|
|
241
|
+
if args.searchable_pdf:
|
242
|
+
pdf_path = os.path.join(args.outdir, f"{filename}.pdf")
|
243
|
+
create_searchable_pdf(
|
244
|
+
imgs,
|
245
|
+
results,
|
246
|
+
output_path=pdf_path,
|
247
|
+
)
|
248
|
+
logger.info(f"Output SearchablePDF: {pdf_path}")
|
249
|
+
|
236
250
|
|
237
251
|
def main():
|
238
252
|
parser = argparse.ArgumentParser()
|
@@ -341,6 +355,17 @@ def main():
|
|
341
355
|
action="store_true",
|
342
356
|
help="if set, ignore meta information(header, footer) in the output",
|
343
357
|
)
|
358
|
+
parser.add_argument(
|
359
|
+
"--reading_order",
|
360
|
+
default="auto",
|
361
|
+
type=str,
|
362
|
+
choices=["auto", "left2right", "top2bottom", "right2left"],
|
363
|
+
)
|
364
|
+
parser.add_argument(
|
365
|
+
"--searchable_pdf",
|
366
|
+
action="store_true",
|
367
|
+
help="if set, create searchable PDF",
|
368
|
+
)
|
344
369
|
|
345
370
|
args = parser.parse_args()
|
346
371
|
|
@@ -394,6 +419,7 @@ def main():
|
|
394
419
|
visualize=args.vis,
|
395
420
|
device=args.device,
|
396
421
|
ignore_meta=args.ignore_meta,
|
422
|
+
reading_order=args.reading_order,
|
397
423
|
)
|
398
424
|
|
399
425
|
os.makedirs(args.outdir, exist_ok=True)
|
@@ -408,7 +434,7 @@ def main():
|
|
408
434
|
logger.info(f"Processing file: {file_path}")
|
409
435
|
process_single_file(args, analyzer, file_path, format)
|
410
436
|
end = time.time()
|
411
|
-
logger.info(f"Total Processing time: {end-start:.2f} sec")
|
437
|
+
logger.info(f"Total Processing time: {end - start:.2f} sec")
|
412
438
|
except Exception:
|
413
439
|
continue
|
414
440
|
else:
|
@@ -416,7 +442,7 @@ def main():
|
|
416
442
|
logger.info(f"Processing file: {path}")
|
417
443
|
process_single_file(args, analyzer, path, format)
|
418
444
|
end = time.time()
|
419
|
-
logger.info(f"Total Processing time: {end-start:.2f} sec")
|
445
|
+
logger.info(f"Total Processing time: {end - start:.2f} sec")
|
420
446
|
|
421
447
|
|
422
448
|
if __name__ == "__main__":
|
@@ -1,14 +1,20 @@
|
|
1
|
-
import json
|
2
|
-
import io
|
3
1
|
import csv
|
2
|
+
import io
|
3
|
+
import json
|
4
4
|
import os
|
5
|
+
from argparse import ArgumentParser
|
5
6
|
from pathlib import Path
|
6
7
|
|
7
8
|
from mcp.server.fastmcp import Context, FastMCP
|
8
9
|
|
9
10
|
from yomitoku import DocumentAnalyzer
|
10
11
|
from yomitoku.data.functions import load_image, load_pdf
|
11
|
-
from yomitoku.export import
|
12
|
+
from yomitoku.export import (
|
13
|
+
convert_csv,
|
14
|
+
convert_html,
|
15
|
+
convert_json,
|
16
|
+
convert_markdown,
|
17
|
+
)
|
12
18
|
|
13
19
|
try:
|
14
20
|
RESOURCE_DIR = os.environ["RESOURCE_DIR"]
|
@@ -154,12 +160,37 @@ async def get_file_list() -> list[str]:
|
|
154
160
|
return os.listdir(RESOURCE_DIR)
|
155
161
|
|
156
162
|
|
157
|
-
def run_mcp_server():
|
163
|
+
def run_mcp_server(transport="stdio", mount_path=None):
|
158
164
|
"""
|
159
165
|
Run the MCP server.
|
160
166
|
"""
|
161
|
-
|
167
|
+
|
168
|
+
if transport == "stdio":
|
169
|
+
mcp.run()
|
170
|
+
elif transport == "sse":
|
171
|
+
mcp.run(transport=transport, mount_path=mount_path)
|
172
|
+
|
173
|
+
|
174
|
+
def main():
|
175
|
+
parser = ArgumentParser(description="Run the MCP server.")
|
176
|
+
parser.add_argument(
|
177
|
+
"--transport",
|
178
|
+
"-t",
|
179
|
+
type=str,
|
180
|
+
default="stdio",
|
181
|
+
choices=["stdio", "sse"],
|
182
|
+
help="Transport method for the MCP server.",
|
183
|
+
)
|
184
|
+
parser.add_argument(
|
185
|
+
"--mount_path",
|
186
|
+
"-m",
|
187
|
+
type=str,
|
188
|
+
default=None,
|
189
|
+
help="Mount path for the MCP server (only used with SSE transport).",
|
190
|
+
)
|
191
|
+
args = parser.parse_args()
|
192
|
+
run_mcp_server(transport=args.transport, mount_path=args.mount_path)
|
162
193
|
|
163
194
|
|
164
195
|
if __name__ == "__main__":
|
165
|
-
|
196
|
+
main()
|
@@ -8,9 +8,11 @@ from .functions import (
|
|
8
8
|
validate_quads,
|
9
9
|
)
|
10
10
|
|
11
|
+
from concurrent.futures import ThreadPoolExecutor
|
12
|
+
|
11
13
|
|
12
14
|
class ParseqDataset(Dataset):
|
13
|
-
def __init__(self, cfg, img, quads):
|
15
|
+
def __init__(self, cfg, img, quads, num_workers=8):
|
14
16
|
self.img = img[:, :, ::-1]
|
15
17
|
self.quads = quads
|
16
18
|
self.cfg = cfg
|
@@ -22,19 +24,27 @@ class ParseqDataset(Dataset):
|
|
22
24
|
]
|
23
25
|
)
|
24
26
|
|
25
|
-
|
27
|
+
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
28
|
+
data = list(executor.map(self.preprocess, self.quads))
|
26
29
|
|
27
|
-
|
28
|
-
|
30
|
+
self.data = [tensor for tensor in data if tensor is not None]
|
31
|
+
|
32
|
+
def preprocess(self, quad):
|
33
|
+
if validate_quads(self.img, quad) is None:
|
34
|
+
return None
|
35
|
+
|
36
|
+
roi_img = extract_roi_with_perspective(self.img, quad)
|
29
37
|
|
30
|
-
def __getitem__(self, index):
|
31
|
-
polygon = self.quads[index]
|
32
|
-
roi_img = extract_roi_with_perspective(self.img, polygon)
|
33
38
|
if roi_img is None:
|
34
|
-
return
|
39
|
+
return None
|
35
40
|
|
36
41
|
roi_img = rotate_text_image(roi_img, thresh_aspect=2)
|
37
42
|
resized = resize_with_padding(roi_img, self.cfg.data.img_size)
|
38
|
-
tensor = self.transform(resized)
|
39
43
|
|
40
|
-
return
|
44
|
+
return resized
|
45
|
+
|
46
|
+
def __len__(self):
|
47
|
+
return len(self.data)
|
48
|
+
|
49
|
+
def __getitem__(self, index):
|
50
|
+
return self.transform(self.data[index])
|
@@ -191,7 +191,7 @@ def array_to_tensor(img: np.ndarray) -> torch.Tensor:
|
|
191
191
|
return tensor
|
192
192
|
|
193
193
|
|
194
|
-
def validate_quads(img: np.ndarray,
|
194
|
+
def validate_quads(img: np.ndarray, quad: list[list[list[int]]]):
|
195
195
|
"""
|
196
196
|
Validate the vertices of the quadrilateral.
|
197
197
|
|
@@ -204,23 +204,23 @@ def validate_quads(img: np.ndarray, quads: list[list[list[int]]]):
|
|
204
204
|
"""
|
205
205
|
|
206
206
|
h, w = img.shape[:2]
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
207
|
+
if len(quad) != 4:
|
208
|
+
# raise ValueError("The number of vertices must be 4.")
|
209
|
+
return None
|
210
|
+
|
211
|
+
for point in quad:
|
212
|
+
if len(point) != 2:
|
213
|
+
return None
|
214
|
+
|
215
|
+
quad = np.array(quad, dtype=int)
|
216
|
+
x1 = np.min(quad[:, 0])
|
217
|
+
x2 = np.max(quad[:, 0])
|
218
|
+
y1 = np.min(quad[:, 1])
|
219
|
+
y2 = np.max(quad[:, 1])
|
220
|
+
h, w = img.shape[:2]
|
221
221
|
|
222
|
-
|
223
|
-
|
222
|
+
if x1 < 0 or x2 > w or y1 < 0 or y2 > h:
|
223
|
+
return None
|
224
224
|
|
225
225
|
return True
|
226
226
|
|
@@ -237,19 +237,18 @@ def extract_roi_with_perspective(img, quad):
|
|
237
237
|
np.ndarray: extracted image
|
238
238
|
"""
|
239
239
|
dst = img.copy()
|
240
|
-
quad = np.array(quad, dtype=np.
|
240
|
+
quad = np.array(quad, dtype=np.int64)
|
241
|
+
|
241
242
|
width = np.linalg.norm(quad[0] - quad[1])
|
242
243
|
height = np.linalg.norm(quad[1] - quad[2])
|
243
244
|
|
244
245
|
width = int(width)
|
245
246
|
height = int(height)
|
246
|
-
|
247
247
|
pts1 = np.float32(quad)
|
248
248
|
pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
|
249
249
|
|
250
250
|
M = cv2.getPerspectiveTransform(pts1, pts2)
|
251
251
|
dst = cv2.warpPerspective(dst, M, (width, height))
|
252
|
-
|
253
252
|
return dst
|
254
253
|
|
255
254
|
|
@@ -86,8 +86,12 @@ def extract_paragraph_within_figure(paragraphs, figures):
|
|
86
86
|
check_list[i] = True
|
87
87
|
|
88
88
|
figure["direction"] = judge_page_direction(contained_paragraphs)
|
89
|
+
reading_order = (
|
90
|
+
"left2right" if figure["direction"] == "horizontal" else "right2left"
|
91
|
+
)
|
92
|
+
|
89
93
|
figure_paragraphs = prediction_reading_order(
|
90
|
-
contained_paragraphs,
|
94
|
+
contained_paragraphs, reading_order
|
91
95
|
)
|
92
96
|
figure["paragraphs"] = sorted(figure_paragraphs, key=lambda x: x.order)
|
93
97
|
figure = FigureSchema(**figure)
|
@@ -126,8 +130,8 @@ def extract_words_within_element(pred_words, element):
|
|
126
130
|
cnt_vertical = word_direction.count("vertical")
|
127
131
|
|
128
132
|
element_direction = "horizontal" if cnt_horizontal > cnt_vertical else "vertical"
|
129
|
-
|
130
|
-
prediction_reading_order(contained_words,
|
133
|
+
order = "left2right" if element_direction == "horizontal" else "right2left"
|
134
|
+
prediction_reading_order(contained_words, order)
|
131
135
|
contained_words = sorted(contained_words, key=lambda x: x.order)
|
132
136
|
|
133
137
|
contained_words = "\n".join([content.contents for content in contained_words])
|
@@ -328,6 +332,7 @@ class DocumentAnalyzer:
|
|
328
332
|
device="cuda",
|
329
333
|
visualize=False,
|
330
334
|
ignore_meta=False,
|
335
|
+
reading_order="auto",
|
331
336
|
):
|
332
337
|
default_configs = {
|
333
338
|
"ocr": {
|
@@ -352,6 +357,8 @@ class DocumentAnalyzer:
|
|
352
357
|
},
|
353
358
|
}
|
354
359
|
|
360
|
+
self.reading_order = reading_order
|
361
|
+
|
355
362
|
if isinstance(configs, dict):
|
356
363
|
recursive_update(default_configs, configs)
|
357
364
|
else:
|
@@ -452,9 +459,17 @@ class DocumentAnalyzer:
|
|
452
459
|
|
453
460
|
elements = page_contents + layout_res.tables + figures
|
454
461
|
|
455
|
-
prediction_reading_order(headers,
|
456
|
-
prediction_reading_order(footers,
|
457
|
-
|
462
|
+
prediction_reading_order(headers, "left2right")
|
463
|
+
prediction_reading_order(footers, "left2right")
|
464
|
+
|
465
|
+
if self.reading_order == "auto":
|
466
|
+
reading_order = (
|
467
|
+
"right2left" if page_direction == "vertical" else "top2bottom"
|
468
|
+
)
|
469
|
+
else:
|
470
|
+
reading_order = self.reading_order
|
471
|
+
|
472
|
+
prediction_reading_order(elements, reading_order, self.img)
|
458
473
|
|
459
474
|
for i, element in enumerate(elements):
|
460
475
|
element.order += len(headers)
|