yomitoku 0.7.2__tar.gz → 0.7.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {yomitoku-0.7.2 → yomitoku-0.7.3}/PKG-INFO +1 -1
- {yomitoku-0.7.2 → yomitoku-0.7.3}/demo/simple_ocr.py +1 -1
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/index.en.md +4 -1
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/index.ja.md +2 -2
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/data/functions.py +2 -2
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/export/export_markdown.py +1 -1
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/parseq.py +7 -1
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/table_structure_recognizer.py +5 -2
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/text_recognizer.py +1 -0
- yomitoku-0.7.3/static/out/in_demo_p1.html +84 -0
- yomitoku-0.7.3/static/out/in_demo_p1.md +38 -0
- yomitoku-0.7.3/static/out/in_demo_p1_ocr.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery1_p1.html +71 -0
- yomitoku-0.7.3/static/out/in_gallery1_p1.md +70 -0
- yomitoku-0.7.3/static/out/in_gallery1_p1_layout.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery1_p1_ocr.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery2_p1.html +229 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/in_gallery2_p1.md +12 -10
- yomitoku-0.7.3/static/out/in_gallery2_p1_layout.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery2_p1_ocr.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery3_p1.html +29 -0
- yomitoku-0.7.3/static/out/in_gallery3_p1.md +47 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/in_gallery3_p1_layout.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery3_p1_ocr.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery4_p1.html +42 -0
- yomitoku-0.7.3/static/out/in_gallery4_p1.md +23 -0
- yomitoku-0.7.3/static/out/in_gallery4_p1_ocr.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery5_p1.html +42 -0
- yomitoku-0.7.3/static/out/in_gallery5_p1.md +39 -0
- yomitoku-0.7.3/static/out/in_gallery5_p1_layout.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery5_p1_ocr.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery6_p1.html +76 -0
- yomitoku-0.7.3/static/out/in_gallery6_p1.md +33 -0
- yomitoku-0.7.3/static/out/in_gallery6_p1_layout.jpg +0 -0
- yomitoku-0.7.3/static/out/in_gallery6_p1_ocr.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/test_document_analyzer.py +16 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/test_export.py +47 -2
- yomitoku-0.7.2/static/out/in_demo_p1.html +0 -86
- yomitoku-0.7.2/static/out/in_demo_p1.md +0 -38
- yomitoku-0.7.2/static/out/in_demo_p1_ocr.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery1_p1.html +0 -92
- yomitoku-0.7.2/static/out/in_gallery1_p1.md +0 -78
- yomitoku-0.7.2/static/out/in_gallery1_p1_layout.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery1_p1_ocr.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery2_p1.html +0 -230
- yomitoku-0.7.2/static/out/in_gallery2_p1_layout.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery2_p1_ocr.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery3_p1.html +0 -36
- yomitoku-0.7.2/static/out/in_gallery3_p1.md +0 -49
- yomitoku-0.7.2/static/out/in_gallery3_p1_ocr.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery4_p1.html +0 -44
- yomitoku-0.7.2/static/out/in_gallery4_p1.md +0 -23
- yomitoku-0.7.2/static/out/in_gallery4_p1_ocr.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery5_p1.html +0 -50
- yomitoku-0.7.2/static/out/in_gallery5_p1.md +0 -45
- yomitoku-0.7.2/static/out/in_gallery5_p1_layout.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery5_p1_ocr.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery6_p1.html +0 -79
- yomitoku-0.7.2/static/out/in_gallery6_p1.md +0 -32
- yomitoku-0.7.2/static/out/in_gallery6_p1_layout.jpg +0 -0
- yomitoku-0.7.2/static/out/in_gallery6_p1_ocr.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/.github/release-drafter.yml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/.github/workflows/build-and-publish-docs.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/.github/workflows/build-and-publish.yml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/.github/workflows/create-release.yml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/.github/workflows/lint-and-test.yml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/.gitignore +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/.pre-commit-config.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/.python-version +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/README.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/README_EN.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/configs/yomitoku-layout-parser-rtdtrv2-open-beta.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/configs/yomitoku-table-structure-recognizer-rtdtrv2-open-beta.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/configs/yomitoku-text-detector-dbnet-open-beta.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/configs/yomitoku-text-recognizer-parseq-open-beta.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/configs/yomitoku-text-recognizer-parseq-small-open-beta.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/demo/sample.pdf +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/demo/setting_document_anaysis.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/demo/simple_document_analysis.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/demo/simple_layout.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/demo/text_detector.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/dockerfile +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/assets/logo.svg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/cli.en.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/cli.ja.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/configuration.en.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/configuration.ja.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/installation.en.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/installation.ja.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/module.en.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/docs/module.ja.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/gallery.md +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/mkdocs.yml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/pyproject.toml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/pytest.ini +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/scripts/register_hugging_face_hub.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/base.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/cli/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/cli/main.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/configs/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/configs/cfg_layout_parser_rtdtrv2.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/configs/cfg_table_structure_recognizer_rtdtrv2.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/configs/cfg_text_detector_dbnet.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/configs/cfg_text_recognizer_parseq.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/configs/cfg_text_recognizer_parseq_small.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/constants.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/data/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/data/dataset.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/document_analyzer.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/export/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/export/export_csv.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/export/export_html.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/export/export_json.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/layout_analyzer.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/layout_parser.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/dbnet_plus.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/layers/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/layers/activate.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/layers/dbnet_feature_attention.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/layers/parseq_transformer.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/layers/rtdetr_backbone.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/layers/rtdetr_hybrid_encoder.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/layers/rtdetrv2_decoder.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/models/rtdetr.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/ocr.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/onnx/.gitkeep +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/postprocessor/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/postprocessor/dbnet_postporcessor.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/postprocessor/parseq_tokenizer.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/postprocessor/rtdetr_postprocessor.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/reading_order.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/resource/MPLUS1p-Medium.ttf +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/resource/charset.txt +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/text_detector.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/utils/__init__.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/utils/graph.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/utils/logger.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/utils/misc.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/src/yomitoku/utils/visualizer.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/in/demo.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/in/gallery1.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/in/gallery2.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/in/gallery3.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/in/gallery4.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/in/gallery5.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/in/gallery6.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/logo/horizontal.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/demo_html.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_demo_p1_figure_0.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_0.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_1.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_10.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_2.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_3.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_4.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_5.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_6.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_7.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_8.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery1_p1_figure_9.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery3_p1_figure_0.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery3_p1_figure_1.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery5_p1_figure_0.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery5_p1_figure_1.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery6_p1_figure_0.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/figures/in_gallery6_p1_figure_1.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/in_demo_p1_layout.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/static/out/in_gallery4_p1_layout.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/invalid.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/invalid.pdf +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/rgba.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/small.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/subdir/test.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/test.bmp +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/test.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/test.pdf +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/test.png +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/test.tiff +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/test.txt +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/data/test_gray.jpg +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/test_base.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/test_cli.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/test_data.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/test_layout_analyzer.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/test_ocr.py +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/yaml/layout_parser.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/yaml/table_structure_recognizer.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/yaml/text_detector.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/tests/yaml/text_recognizer.yaml +0 -0
- {yomitoku-0.7.2 → yomitoku-0.7.3}/uv.lock +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: yomitoku
|
3
|
-
Version: 0.7.
|
3
|
+
Version: 0.7.3
|
4
4
|
Summary: Yomitoku is an AI-powered document image analysis package designed specifically for the Japanese language.
|
5
5
|
Author-email: Kotaro Kinoshita <kotaro.kinoshita@mlism.com>
|
6
6
|
License: CC BY-NC-SA 4.0
|
@@ -4,7 +4,7 @@ from yomitoku import OCR
|
|
4
4
|
from yomitoku.data.functions import load_pdf
|
5
5
|
|
6
6
|
if __name__ == "__main__":
|
7
|
-
ocr = OCR(visualize=True, device="
|
7
|
+
ocr = OCR(visualize=True, device="cpu")
|
8
8
|
# PDFファイルを読み込み
|
9
9
|
imgs = load_pdf("demo/sample.pdf")
|
10
10
|
for i, img in enumerate(imgs):
|
@@ -11,11 +11,14 @@ YomiToku is a Document AI engine specialized in Japanese document image analysis
|
|
11
11
|
## 🙋 FAQ
|
12
12
|
|
13
13
|
### Q. Is it possible to use YomiToku in an environment without internet access?
|
14
|
+
|
14
15
|
A. Yes, it is possible.
|
15
|
-
YomiToku connects to Hugging Face Hub to automatically download model files during the first execution, requiring internet access at that time. However, you can manually download the files in advance, allowing YomiToku to operate in an offline environment. For details, please refer to Usage under the section "Using YomiToku in an Offline Environment."
|
16
|
+
YomiToku connects to Hugging Face Hub to automatically download model files during the first execution, requiring internet access at that time. However, you can manually download the files in advance, allowing YomiToku to operate in an offline environment. For details, please refer to [Module Usage](module.en.md) under the section "Using YomiToku in an Offline Environment."
|
16
17
|
|
17
18
|
### Q. Is commercial use allowed?
|
19
|
+
|
18
20
|
A. This package is licensed under CC BY-NC 4.0. It is available for free for personal and research purposes. For commercial use, a paid commercial license is required. Please contact the developers for further details.
|
19
21
|
|
20
22
|
### Q. Can handwritten text be recognized?
|
23
|
+
|
21
24
|
A. Only printed text recognition is supported. While handwritten text may occasionally be recognized, it is not officially supported.
|
@@ -6,13 +6,13 @@ YomiToku は日本語に特化した AI 文章画像解析エンジン(Document
|
|
6
6
|
- 🇯🇵 各モデルは日本語の文書画像に特化して学習されており、7000 文字を超える日本語文字の認識をサーポート、縦書きなど日本語特有のレイアウト構造の文書画像の解析も可能です。(日本語以外にも英語の文書に対しても対応しています)。
|
7
7
|
- 📈 レイアウト解析、表の構造解析, 読み順推定機能により、文書画像のレイアウトの意味的構造を壊さずに情報を抽出することが可能です。
|
8
8
|
- 📄 多様な出力形式をサポートしています。html やマークダウン、json、csv のいずれかのフォーマットに変換可能です。また、文書内に含まれる図表、画像の抽出の出力も可能です。
|
9
|
-
- ⚡ GPU環境で高速に動作し、効率的に文書の文字起こし解析が可能です。また、VRAMも8GB以内で動作し、ハイエンドなGPUを用意する必要はありません。
|
9
|
+
- ⚡ GPU 環境で高速に動作し、効率的に文書の文字起こし解析が可能です。また、VRAM も 8GB 以内で動作し、ハイエンドな GPU を用意する必要はありません。
|
10
10
|
|
11
11
|
## 🙋 FAQ
|
12
12
|
|
13
13
|
### Q. インターネットに接続できない環境での動作は可能ですか?
|
14
14
|
|
15
|
-
A. 可能です。Yomitoku は初回実行時に HuggingFaceHub にアクセスし、自動でモデルファイルのダウンロードを行いますが、この際にインターネットに接続します。しかし、事前に手動でダウンロードすることでインターネットへ接続できない環境でも動作可能です。詳しくは[Usase](
|
15
|
+
A. 可能です。Yomitoku は初回実行時に HuggingFaceHub にアクセスし、自動でモデルファイルのダウンロードを行いますが、この際にインターネットに接続します。しかし、事前に手動でダウンロードすることでインターネットへ接続できない環境でも動作可能です。詳しくは[Module Usase](module.ja.md)の「インターネットに接続できない環境での利用」を参照してください。
|
16
16
|
|
17
17
|
### Q. 商用利用は可能ですか?
|
18
18
|
|
@@ -132,7 +132,7 @@ def resize_shortest_edge(
|
|
132
132
|
neww = max(int(new_w / 32) * 32, 32)
|
133
133
|
newh = max(int(new_h / 32) * 32, 32)
|
134
134
|
|
135
|
-
img = cv2.resize(img, (neww, newh))
|
135
|
+
img = cv2.resize(img, (neww, newh), interpolation=cv2.INTER_AREA)
|
136
136
|
return img
|
137
137
|
|
138
138
|
|
@@ -275,7 +275,7 @@ def resize_with_padding(img, target_size, background_color=(0, 0, 0)):
|
|
275
275
|
new_w = int(w * min(scale_w, scale_h))
|
276
276
|
new_h = int(h * min(scale_w, scale_h))
|
277
277
|
|
278
|
-
resized = cv2.resize(img, (new_w, new_h), interpolation=cv2.
|
278
|
+
resized = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
279
279
|
|
280
280
|
canvas = np.zeros((target_size[0], target_size[1], 3), dtype=np.uint8)
|
281
281
|
canvas[:, :] = background_color
|
@@ -81,6 +81,8 @@ class PARSeq(nn.Module, PyTorchModelHubMixin):
|
|
81
81
|
named_apply(partial(init_weights, exclude=["encoder"]), self)
|
82
82
|
nn.init.trunc_normal_(self.pos_queries, std=0.02)
|
83
83
|
|
84
|
+
self.export_onnx = False
|
85
|
+
|
84
86
|
@property
|
85
87
|
def _device(self) -> torch.device:
|
86
88
|
return next(self.head.parameters(recurse=False)).device
|
@@ -175,7 +177,11 @@ class PARSeq(nn.Module, PyTorchModelHubMixin):
|
|
175
177
|
# greedy decode. add the next token index to the target input
|
176
178
|
tgt_in[:, j] = p_i.squeeze().argmax(-1)
|
177
179
|
# Efficient batch decoding: If all output words have at least one EOS token, end decoding.
|
178
|
-
if
|
180
|
+
if (
|
181
|
+
not self.export_onnx
|
182
|
+
and testing
|
183
|
+
and (tgt_in == self.tokenizer.eos_id).any(dim=-1).all()
|
184
|
+
):
|
179
185
|
break
|
180
186
|
|
181
187
|
logits = torch.cat(logits, dim=1)
|
@@ -47,6 +47,7 @@ class TableStructureRecognizerSchema(BaseSchema):
|
|
47
47
|
rows: List[TableLineSchema]
|
48
48
|
cols: List[TableLineSchema]
|
49
49
|
cells: List[TableCellSchema]
|
50
|
+
spans: List[TableLineSchema]
|
50
51
|
order: int
|
51
52
|
|
52
53
|
|
@@ -242,7 +243,7 @@ class TableStructureRecognizer(BaseModule):
|
|
242
243
|
category_elements
|
243
244
|
)
|
244
245
|
|
245
|
-
cells, rows, cols = self.extract_cell_elements(category_elements)
|
246
|
+
cells, rows, cols, spans = self.extract_cell_elements(category_elements)
|
246
247
|
|
247
248
|
table_x, table_y = data["offset"]
|
248
249
|
table_x2 = table_x + data["size"][1]
|
@@ -255,6 +256,7 @@ class TableStructureRecognizer(BaseModule):
|
|
255
256
|
"n_col": len(cols),
|
256
257
|
"rows": rows,
|
257
258
|
"cols": cols,
|
259
|
+
"spans": spans,
|
258
260
|
"cells": cells,
|
259
261
|
"order": 0,
|
260
262
|
}
|
@@ -276,8 +278,9 @@ class TableStructureRecognizer(BaseModule):
|
|
276
278
|
|
277
279
|
rows = sorted(elements["row"], key=lambda x: x["box"][1])
|
278
280
|
cols = sorted(elements["col"], key=lambda x: x["box"][0])
|
281
|
+
spans = sorted(elements["span"], key=lambda x: x["box"][1])
|
279
282
|
|
280
|
-
return cells, rows, cols
|
283
|
+
return cells, rows, cols, spans
|
281
284
|
|
282
285
|
def __call__(self, img, table_boxes, vis=None):
|
283
286
|
img_tensors = self.preprocess(img, table_boxes)
|
@@ -0,0 +1,84 @@
|
|
1
|
+
<div>
|
2
|
+
<p>Al の進化に伴う課題と現状の取組</p>
|
3
|
+
<p>第1節</p>
|
4
|
+
<table border="1" style="border-collapse: collapse">
|
5
|
+
<tr>
|
6
|
+
<td rowspan="1" colspan="4">図表 I-4-1-1<br/>生成AIの課題</td>
|
7
|
+
</tr>
|
8
|
+
<tr>
|
9
|
+
<td rowspan="1" colspan="3">リスク</td>
|
10
|
+
<td rowspan="1" colspan="1">事例</td>
|
11
|
+
</tr>
|
12
|
+
<tr>
|
13
|
+
<td rowspan="8" colspan="1">従来型AI<br/>から存在<br/>するリスク</td>
|
14
|
+
<td rowspan="1" colspan="2">バイアスのある結果及び差別的な結果の出力</td>
|
15
|
+
<td rowspan="1" colspan="1">●IT企業が自社で開発したAI人材採用システムが女性を差別するという機械学習面の欠陥を持<br/>ち合わせていた</td>
|
16
|
+
</tr>
|
17
|
+
<tr>
|
18
|
+
<td rowspan="1" colspan="2">フィルターバブル及びエコーチェンバー現象</td>
|
19
|
+
<td rowspan="1" colspan="1">●SNS等によるレコメンドを通じた社会の分断が生じている</td>
|
20
|
+
</tr>
|
21
|
+
<tr>
|
22
|
+
<td rowspan="1" colspan="2">多様性の喪失</td>
|
23
|
+
<td rowspan="1" colspan="1">●社会全体が同じモデルを、同じ温度感で使った場合、導かれる意見及び回答がLLMによって<br/>収束してしまい、多様性が失われる可能性がある</td>
|
24
|
+
</tr>
|
25
|
+
<tr>
|
26
|
+
<td rowspan="1" colspan="2">不適切な個人情報の取扱い</td>
|
27
|
+
<td rowspan="1" colspan="1">●透明性を欠く個人情報の利用及び個人情報の政治利用も問題視されている</td>
|
28
|
+
</tr>
|
29
|
+
<tr>
|
30
|
+
<td rowspan="1" colspan="2">生命、身体、財産の侵害</td>
|
31
|
+
<td rowspan="1" colspan="1">●Alが不適切な判断を下すことで、自動運転車が事故を引き起こし、生命や財産に深刻な損害<br/>を与える可能性がある<br/>●トリアージにおいては、AIが順位を決定する際に倫理的なバイアスを持つことで、公平性の<br/>喪失等が生じる可能性がある</td>
|
32
|
+
</tr>
|
33
|
+
<tr>
|
34
|
+
<td rowspan="1" colspan="2">データ汚染攻撃</td>
|
35
|
+
<td rowspan="1" colspan="1">●AIの学習実施時及びサービス運用時には学習データへの不正データ混入、サービス運用時で<br/>はアプリケーション自体を狙ったサイバー攻撃等のリスクが存在する</td>
|
36
|
+
</tr>
|
37
|
+
<tr>
|
38
|
+
<td rowspan="1" colspan="2">ブラックボックス化、判断に関する説明の要求</td>
|
39
|
+
<td rowspan="1" colspan="1">● AIの判断のブラックボックス化に起因する問題も生じている<br/>●AIの判断に関する透明性を求める動きも上がっている</td>
|
40
|
+
</tr>
|
41
|
+
<tr>
|
42
|
+
<td rowspan="1" colspan="2">エネルギー使用量及び環境の負荷</td>
|
43
|
+
<td rowspan="1" colspan="1">●AIの利用拡大により、計算リソースの需要も拡大しており、結果として、データセンターが<br/>増大しエネルギー使用量の増加が懸念されている</td>
|
44
|
+
</tr>
|
45
|
+
<tr>
|
46
|
+
<td rowspan="7" colspan="1">生成AIで<br/>特に顕在化<br/>したリスク</td>
|
47
|
+
<td rowspan="1" colspan="2">悪用</td>
|
48
|
+
<td rowspan="1" colspan="1">●AIの詐欺目的での利用も問題視されている</td>
|
49
|
+
</tr>
|
50
|
+
<tr>
|
51
|
+
<td rowspan="1" colspan="2">機密情報の流出</td>
|
52
|
+
<td rowspan="1" colspan="1">●AIの利用においては、個人情報や機密情報がプロンプトとして入力され、そのAIからの出力<br/>等を通じて流出してしまうリスクがある</td>
|
53
|
+
</tr>
|
54
|
+
<tr>
|
55
|
+
<td rowspan="1" colspan="2">ハルシネーション</td>
|
56
|
+
<td rowspan="1" colspan="1">●生成AIが事実と異なることをもっともらしく回答する「ハルシネーション」に関してはAI開<br/>発者·提供者への訴訟も起きている</td>
|
57
|
+
</tr>
|
58
|
+
<tr>
|
59
|
+
<td rowspan="1" colspan="2">偽情報、誤情報を鵜呑みにすること</td>
|
60
|
+
<td rowspan="1" colspan="1">●生成AIが生み出す誤情報を鵜呑みにすることがリスクとなりうる<br/>●ディープフェイクは、各国で悪用例が相次いでいる</td>
|
61
|
+
</tr>
|
62
|
+
<tr>
|
63
|
+
<td rowspan="1" colspan="2">著作権との関係</td>
|
64
|
+
<td rowspan="1" colspan="1">●知的財産権の取扱いへの議論が提起されている</td>
|
65
|
+
</tr>
|
66
|
+
<tr>
|
67
|
+
<td rowspan="1" colspan="2">資格等との関係</td>
|
68
|
+
<td rowspan="1" colspan="1">●生成AIの活用を通じた業法免許や資格等の侵害リスクも考えうる</td>
|
69
|
+
</tr>
|
70
|
+
<tr>
|
71
|
+
<td rowspan="1" colspan="2">バイアスの再生成</td>
|
72
|
+
<td rowspan="1" colspan="1">●生成AIは既存の情報に基づいて回答を作るため既存の情報に含まれる偏見を増幅し、不公平<br/>や差別的な出力が継続/拡大する可能性がある</td>
|
73
|
+
</tr>
|
74
|
+
</table>
|
75
|
+
<p/>
|
76
|
+
<h1>1 主要なLLMの概要</h1>
|
77
|
+
<p>(出典)「AI事業者ガイドライン(第1.0版)」別添(概要)</p>
|
78
|
+
<p>生成AIの基盤となる大規模言語モデル(LLM) の開発では、マイクロソフトやグーグルなど米<br/>国ビックテック企業などが先行している状況にある。</p>
|
79
|
+
<p>しかし、日本以外の企業·研究機関がクローズに研究開発を進めたLLM を活用するだけでは、<br/>LLM構築の過程がブラックボックス化してしまい、LLMを活用する際の権利侵害や情報漏えいな<br/>どの懸念を払拭できない。日本語に強いLLMの利活用のためには、構築の過程や用いるデータが<br/>明らかな、透明性の高い安心して利活用できる国産のLLM構築が必要となる*3。すでに日本の企業<br/>においても、独自にLLM開発に取り組んでおり、ここではその動向を紹介する。</p>
|
80
|
+
<p>ビッグテック企業が開発したLLMと比べると、日本では、中規模モデルのLLMが開発されてい<br/>る傾向が見られる(図表1-4-1-2)。</p>
|
81
|
+
<p>*3 産業技術総合研究所プレスリリース「産総研の計算資源ABCIを用いて世界トップレベルの生成AIの開発を開始一産総研·東京工業大学·<br/>LLM-jp (国立情報学研究所主宰)が協力ー」(2023年10月17日),<https://www.aist.go.jp/aist_j/news/pr20231017.html> (2024/3/<br/>参照)</p>
|
82
|
+
<p>令和6年版 情報通信白書 第1部 47</p>
|
83
|
+
<p>第4章<br/>デジタルテクノロジーの課題と現状の対応策</p>
|
84
|
+
</div>
|
@@ -0,0 +1,38 @@
|
|
1
|
+
Al の進化に伴う課題と現状の取組
|
2
|
+
|
3
|
+
第1節
|
4
|
+
|
5
|
+
|図表 I\-4\-1\-1<br>生成AIの課題||||
|
6
|
+
|-|-|-|-|
|
7
|
+
|リスク|||事例|
|
8
|
+
|従来型AI<br>から存在<br>するリスク|バイアスのある結果及び差別的な結果の出力||●IT企業が自社で開発したAI人材採用システムが女性を差別するという機械学習面の欠陥を持<br>ち合わせていた|
|
9
|
+
||フィルターバブル及びエコーチェンバー現象||●SNS等によるレコメンドを通じた社会の分断が生じている|
|
10
|
+
||多様性の喪失||●社会全体が同じモデルを、同じ温度感で使った場合、導かれる意見及び回答がLLMによって<br>収束してしまい、多様性が失われる可能性がある|
|
11
|
+
||不適切な個人情報の取扱い||●透明性を欠く個人情報の利用及び個人情報の政治利用も問題視されている|
|
12
|
+
||生命、身体、財産の侵害||●Alが不適切な判断を下すことで、自動運転車が事故を引き起こし、生命や財産に深刻な損害<br>を与える可能性がある<br>●トリアージにおいては、AIが順位を決定する際に倫理的なバイアスを持つことで、公平性の<br>喪失等が生じる可能性がある|
|
13
|
+
||データ汚染攻撃||●AIの学習実施時及びサービス運用時には学習データへの不正データ混入、サービス運用時で<br>はアプリケーション自体を狙ったサイバー攻撃等のリスクが存在する|
|
14
|
+
||ブラックボックス化、判断に関する説明の要求||● AIの判断のブラックボックス化に起因する問題も生じている<br>●AIの判断に関する透明性を求める動きも上がっている|
|
15
|
+
||エネルギー使用量及び環境の負荷||●AIの利用拡大により、計算リソースの需要も拡大しており、結果として、データセンターが<br>増大しエネルギー使用量の増加が懸念されている|
|
16
|
+
|生成AIで<br>特に顕在化<br>したリスク|悪用||●AIの詐欺目的での利用も問題視されている|
|
17
|
+
||機密情報の流出||●AIの利用においては、個人情報や機密情報がプロンプトとして入力され、そのAIからの出力<br>等を通じて流出してしまうリスクがある|
|
18
|
+
||ハルシネーション||●生成AIが事実と異なることをもっともらしく回答する「ハルシネーション」に関してはAI開<br>発者·提供者への訴訟も起きている|
|
19
|
+
||偽情報、誤情報を鵜呑みにすること||●生成AIが生み出す誤情報を鵜呑みにすることがリスクとなりうる<br>●ディープフェイクは、各国で悪用例が相次いでいる|
|
20
|
+
||著作権との関係||●知的財産権の取扱いへの議論が提起されている|
|
21
|
+
||資格等との関係||●生成AIの活用を通じた業法免許や資格等の侵害リスクも考えうる|
|
22
|
+
||バイアスの再生成||●生成AIは既存の情報に基づいて回答を作るため既存の情報に含まれる偏見を増幅し、不公平<br>や差別的な出力が継続/拡大する可能性がある|
|
23
|
+
|
24
|
+
# 1 主要なLLMの概要
|
25
|
+
|
26
|
+
\(出典\)「AI事業者ガイドライン\(第1.0版\)」別添\(概要\)
|
27
|
+
|
28
|
+
生成AIの基盤となる大規模言語モデル\(LLM\) の開発では、マイクロソフトやグーグルなど米<br>国ビックテック企業などが先行している状況にある。
|
29
|
+
|
30
|
+
しかし、日本以外の企業·研究機関がクローズに研究開発を進めたLLM を活用するだけでは、<br>LLM構築の過程がブラックボックス化してしまい、LLMを活用する際の権利侵害や情報漏えいな<br>どの懸念を払拭できない。日本語に強いLLMの利活用のためには、構築の過程や用いるデータが<br>明らかな、透明性の高い安心して利活用できる国産のLLM構築が必要となる\*3。すでに日本の企業<br>においても、独自にLLM開発に取り組んでおり、ここではその動向を紹介する。
|
31
|
+
|
32
|
+
ビッグテック企業が開発したLLMと比べると、日本では、中規模モデルのLLMが開発されてい<br>る傾向が見られる\(図表1\-4\-1\-2\)。
|
33
|
+
|
34
|
+
\*3 産業技術総合研究所プレスリリース「産総研の計算資源ABCIを用いて世界トップレベルの生成AIの開発を開始一産総研·東京工業大学·<br>LLM\-jp \(国立情報学研究所主宰\)が協力ー」\(2023年10月17日\),<https://www.aist.go.jp/aist_j/news/pr20231017.html> \(2024/3/<br>参照\)
|
35
|
+
|
36
|
+
令和6年版 情報通信白書 第1部 47
|
37
|
+
|
38
|
+
第4章<br>デジタルテクノロジーの課題と現状の対応策
|
Binary file
|
@@ -0,0 +1,71 @@
|
|
1
|
+
<div>
|
2
|
+
<p>TELEWORK TELEWORK TELEWORK</p>
|
3
|
+
<p>特集</p>
|
4
|
+
<p>テレワークのさらなる普及·定着に向け「テレワーク月間」を実施します! TELEWORK</p>
|
5
|
+
<p>ORK TELEWORK TELEWORK TELEW</p>
|
6
|
+
<p/>
|
7
|
+
<h1>テレワークのさらなる普及·定着に向け<br/>「テレワーク月間」<br/>を実施します!</h1>
|
8
|
+
<p>今年度は育児·介護休業法の改正法が成立し、<br/>来年度以降は3歳未満の子を育てる社員がテレ<br/>ワークを選択できるように措置を講ずることが、<br/>事業主の努力義務になります。</p>
|
9
|
+
<p>総務省では、地方や中小企業等を含め、テレ<br/>ワークの活用により、多様な働き手が活躍の機<br/>会を持てるよう、テレビ番組とのタイアップを<br/>通じて、テレワークの必要性を改めて実感でき<br/>るような情報発信を行います。また、全国の総<br/>合通信局等では、それぞれの地域における取組<br/>やテレワーク活用を進める先進企業を紹介する<br/>催しを実施します。</p>
|
10
|
+
<p>総務省は、内閣官房、内閣府、デジタル庁、<br/>厚生労働省、経済産業省、国土交通省、観光庁、<br/>環境省、日本テレワーク協会、日本テレワーク<br/>学会と連携して、11月をテレワーク月間とし、<br/>テレワークのさらなる普及·定着に向けた各種<br/>イベント等を集中的に開催します。テレワーク<br/>月間期間中は駅構内やイベント会場等にポス<br/>ターを掲出するほか、ホームページ(※)にて、テ<br/>レワーク実施団体·実施者の登録受付や、テレ<br/>ワーク活用に関するトピック·コンテンツの掲<br/>載、各種イベントに係る情報発信等を行います。</p>
|
11
|
+
<p>令和6年度テレワーク月間ポスター</p>
|
12
|
+
<p>※テレワーク月間ホームページ</p>
|
13
|
+
<p>https://teleworkgekkan.go.jp/</p>
|
14
|
+
<p>TELEWORK</p>
|
15
|
+
<p>特集</p>
|
16
|
+
<p>テレワーク月間最終週の11月25日(月)には、内閣府、総務省、厚生労働省、<br/>経済産業省、国土交通省主催で「働く、を変える」テレワークイベントを開催し、<br/>テレワークトップランナー 2024(総務大臣賞)、輝くテレワーク大賞(厚生労<br/>働大臣)および地方創生テレワークアワード(地方創生担当大臣賞)の合同表彰<br/>式を実施予定です。</p>
|
17
|
+
<p>総務省では、平成27年度から、テレワークの導入·活用を進めている企業·<br/>団体を「テレワーク先駆者」とし、その中から十分な実績を持つ企業·団体等を<br/>「テレワーク先駆者百選」として公表するとともに、平成28年度には「テレワー<br/>ク先駆者百選 総務大臣賞」を創設し、「テレワーク先駆者百選」の中から特に優<br/>れた取組を表彰してきました。</p>
|
18
|
+
<p>新型コロナウイルス感染症の拡大に際して、企業·団体等においてテレワー<br/>クの導入が進んだ経緯を踏まえ、令和5年度からは、名称や一部の審査基準を<br/>見直したうえで、新たに「テレワークトップランナー」として先進企業の公表、<br/>表彰を開始しました。本年は、テレワークの活用による経営効果の発揮やテレ<br/>ワーク導入が馴染まないと思われている業態の企業におけるテレワーク活用·<br/>業務改革等について、特色ある優れた取組等を実施している企業·団体を「テ<br/>レワークトップランナー 2024」として選定·公表し、その中から特に優れた取<br/>組を「テレワークトップランナー 2024総務大臣賞」として表彰します 。※今年度の<br/>表彰団体の募集は、すでに終了しています。</p>
|
19
|
+
<p>表彰式は、会場(御茶ノ水ソラシティ、東京都)での観覧の他、オンライン配<br/>信も実施予定です。</p>
|
20
|
+
<p>テレワークの必要性について考え直すきっかけとなるよう、各種イベントに<br/>ご参加いただくとともに、テレワーク月間実施団体·実施者としての登録の呼<br/>びかけについても、是非、ご協力をお願いします。</p>
|
21
|
+
<p>テレワークトップランナー 2023 総務大臣賞受賞企業</p>
|
22
|
+
<table border="1" style="border-collapse: collapse">
|
23
|
+
<tr>
|
24
|
+
<td rowspan="1" colspan="1">企業名<br/>(五十音順)</td>
|
25
|
+
<td rowspan="1" colspan="1">業種、所在地、<br/>従業員数</td>
|
26
|
+
<td rowspan="1" colspan="1">取組の特徴</td>
|
27
|
+
</tr>
|
28
|
+
<tr>
|
29
|
+
<td rowspan="1" colspan="1">アフラック生命<br/>保険株式会社</td>
|
30
|
+
<td rowspan="1" colspan="1">金融 ·保険業<br/>東京都、4,910人</td>
|
31
|
+
<td rowspan="1" colspan="1">·20-30 代の女性の離職率が半減、育児に関わる短時間勤務制度を利用<br/>する社員の人数が 27.9%減少(フルタイムの増加)など、女性の仕事<br/>と家庭の両立、キャリア形成に寄与<br/>·通勤手当 39.3%削減、紙帳票のペーパレス化等により、コストダウンの<br/>効果も顕在化</td>
|
32
|
+
</tr>
|
33
|
+
<tr>
|
34
|
+
<td rowspan="1" colspan="1">株式会社<br/>キャリア・マム</td>
|
35
|
+
<td rowspan="1" colspan="1">サービス業<br/>東京都、38人</td>
|
36
|
+
<td rowspan="1" colspan="1">·11万人の主婦会員のうち、年間約3,000 人の地方在住テレワーカーに<br/>業務発注を行い、就労支援を実施するとともに、在宅ワーカーとしての<br/>人材育成を実施、<br/>·地方自治体と連携し、地域でのテレワーカーの創出、テレワーク活用の<br/>裾野拡大に貢献</td>
|
37
|
+
</tr>
|
38
|
+
<tr>
|
39
|
+
<td rowspan="1" colspan="1">シェイプウィン<br/>株式会社</td>
|
40
|
+
<td rowspan="1" colspan="1">専門·<br/>技術サービス業<br/>東京都、17人</td>
|
41
|
+
<td rowspan="1" colspan="1">·フルリモートでの勤務も可能とし、求人応募数が約7倍に増加。東京<br/>では人材獲得の競争が激しい PR·マーケティング系の専門人材を地方<br/>や海外から採用<br/>·離職率は約80%から約 14%まで低下</td>
|
42
|
+
</tr>
|
43
|
+
<tr>
|
44
|
+
<td rowspan="1" colspan="1">株式会社<br/>スタッフサービス·<br/>クラウドワーク</td>
|
45
|
+
<td rowspan="1" colspan="1">サービス業<br/>神奈川県、454人</td>
|
46
|
+
<td rowspan="1" colspan="1">·通勤が困難な 454 名の重度身体障がい者の雇用を創出。入社1年後の<br/>定着率は97.3%。<br/>・入社後、配属前2ヶ月間のコミュニケーション研修を実施する他、自<br/>主性を重んじた1日3回の定時ミーティングにより、社員による主体的<br/>なチーム運営を実現</td>
|
47
|
+
</tr>
|
48
|
+
<tr>
|
49
|
+
<td rowspan="1" colspan="1">株式会社<br/>テレワーク<br/>マネジメント</td>
|
50
|
+
<td rowspan="1" colspan="1">専門·<br/>技術サービス業<br/>北海道、11人</td>
|
51
|
+
<td rowspan="1" colspan="1">·社内SNS 及びバーチャルオフィスにて社内コミュニケーションを統一し、<br/>全員が同じルールの下で活用することを徹底することで、効率の良い意<br/>思疎通、社員の一体感の醸成を図っている<br/>·簡単な操作で細かく労働時間を記録できるシステムの運用により、フェ<br/>アに働ける環境を実現</td>
|
52
|
+
</tr>
|
53
|
+
<tr>
|
54
|
+
<td rowspan="1" colspan="1">株式会社<br/>プログレス</td>
|
55
|
+
<td rowspan="1" colspan="1">情報通信業<br/>東京都、86人</td>
|
56
|
+
<td rowspan="1" colspan="1">·コミュニケーションの促進に向け、対面でのチームビルディング、バーチャ<br/>ルオフィスの活用等、多数の取り組みを進める他、コミュニケーション<br/>時の留意点等を示したガイドを全社員に向けて公開<br/>·リーダー間でのメンバー状態の共有、社員への毎月サーベイを実施し、<br/>社員の変化に対し、きめ細やか且つ早期にフォローできる仕組みを構築</td>
|
57
|
+
</tr>
|
58
|
+
</table>
|
59
|
+
<p>主催者代表挨拶<br/>(小森総務大臣政務官)</p>
|
60
|
+
<p>表彰状授与</p>
|
61
|
+
<p>受賞企業集合写真(3府省合同)</p>
|
62
|
+
<p>テレワークトップランナー 2023<br/>ロゴマーク</p>
|
63
|
+
<p>テレワーク月間関連イベントの様子</p>
|
64
|
+
<p>※総務省主催セミナー「ニューノー<br/>マル時代に求められる働き方·<br/>環境整備の実態」</p>
|
65
|
+
<p>セミナーのアーカイブ動画を、<br/>テレワーク月間ホームページに<br/>て公開しております。</p>
|
66
|
+
<p>https://teleworkgekkan.go.jp/events/<br/>telework-seminar-202403.html</p>
|
67
|
+
<p>3</p>
|
68
|
+
<p>2</p>
|
69
|
+
<p>MIC 2024 November Vol.287</p>
|
70
|
+
<p>2024 November Vol.287 MIC </p>
|
71
|
+
</div>
|
@@ -0,0 +1,70 @@
|
|
1
|
+
TELEWORK TELEWORK TELEWORK
|
2
|
+
|
3
|
+
特集
|
4
|
+
|
5
|
+
テレワークのさらなる普及·定着に向け「テレワーク月間」を実施します\! TELEWORK
|
6
|
+
|
7
|
+
ORK TELEWORK TELEWORK TELEW
|
8
|
+
|
9
|
+
# テレワークのさらなる普及·定着に向け<br>「テレワーク月間」<br>を実施します\!
|
10
|
+
|
11
|
+
今年度は育児·介護休業法の改正法が成立し、<br>来年度以降は3歳未満の子を育てる社員がテレ<br>ワークを選択できるように措置を講ずることが、<br>事業主の努力義務になります。
|
12
|
+
|
13
|
+
総務省では、地方や中小企業等を含め、テレ<br>ワークの活用により、多様な働き手が活躍の機<br>会を持てるよう、テレビ番組とのタイアップを<br>通じて、テレワークの必要性を改めて実感でき<br>るような情報発信を行います。また、全国の総<br>合通信局等では、それぞれの地域における取組<br>やテレワーク活用を進める先進企業を紹介する<br>催しを実施します。
|
14
|
+
|
15
|
+
総務省は、内閣官房、内閣府、デジタル庁、<br>厚生労働省、経済産業省、国土交通省、観光庁、<br>環境省、日本テレワーク協会、日本テレワーク<br>学会と連携して、11月をテレワーク月間とし、<br>テレワークのさらなる普及·定着に向けた各種<br>イベント等を集中的に開催します。テレワーク<br>月間期間中は駅構内やイベント会場等にポス<br>ターを掲出するほか、ホームページ\(※\)にて、テ<br>レワーク実施団体·実施者の登録受付や、テレ<br>ワーク活用に関するトピック·コンテンツの掲<br>載、各種イベントに係る情報発信等を行います。
|
16
|
+
|
17
|
+
令和6年度テレワーク月間ポスター
|
18
|
+
|
19
|
+
※テレワーク月間ホームページ
|
20
|
+
|
21
|
+
https://teleworkgekkan.go.jp/
|
22
|
+
|
23
|
+
TELEWORK
|
24
|
+
|
25
|
+
特集
|
26
|
+
|
27
|
+
テレワーク月間最終週の11月25日\(月\)には、内閣府、総務省、厚生労働省、<br>経済産業省、国土交通省主催で「働く、を変える」テレワークイベントを開催し、<br>テレワークトップランナー 2024\(総務大臣賞\)、輝くテレワーク大賞\(厚生労<br>働大臣\)および地方創生テレワークアワード\(地方創生担当大臣賞\)の合同表彰<br>式を実施予定です。
|
28
|
+
|
29
|
+
総務省では、平成27年度から、テレワークの導入·活用を進めている企業·<br>団体を「テレワーク先駆者」とし、その中から十分な実績を持つ企業·団体等を<br>「テレワーク先駆者百選」として公表するとともに、平成28年度には「テレワー<br>ク先駆者百選 総務大臣賞」を創設し、「テレワーク先駆者百選」の中から特に優<br>れた取組を表彰してきました。
|
30
|
+
|
31
|
+
新型コロナウイルス感染症の拡大に際して、企業·団体等においてテレワー<br>クの導入が進んだ経緯を踏まえ、令和5年度からは、名称や一部の審査基準を<br>見直したうえで、新たに「テレワークトップランナー」として先進企業の公表、<br>表彰を開始しました。本年は、テレワークの活用による経営効果の発揮やテレ<br>ワーク導入が馴染まないと思われている業態の企業におけるテレワーク活用·<br>業務改革等について、特色ある優れた取組等を実施している企業·団体を「テ<br>レワークトップランナー 2024」として選定·公表し、その中から特に優れた取<br>組を「テレワークトップランナー 2024総務大臣賞」として表彰します 。※今年度の<br>表彰団体の募集は、すでに終了しています。
|
32
|
+
|
33
|
+
表彰式は、会場\(御茶ノ水ソラシティ、東京都\)での観覧の他、オンライン配<br>信も実施予定です。
|
34
|
+
|
35
|
+
テレワークの必要性について考え直すきっかけとなるよう、各種イベントに<br>ご参加いただくとともに、テレワーク月間実施団体·実施者としての登録の呼<br>びかけについても、是非、ご協力をお願いします。
|
36
|
+
|
37
|
+
テレワークトップランナー 2023 総務大臣賞受賞企業
|
38
|
+
|
39
|
+
|企業名<br>\(五十音順\)|業種、所在地、<br>従業員数|取組の特徴|
|
40
|
+
|-|-|-|
|
41
|
+
|アフラック生命<br>保険株式会社|金融 ·保険業<br>東京都、4,910人|·20\-30 代の女性の離職率が半減、育児に関わる短時間勤務制度を利用<br>する社員の人数が 27.9%減少\(フルタイムの増加\)など、女性の仕事<br>と家庭の両立、キャリア形成に寄与<br>·通勤手当 39.3%削減、紙帳票のペーパレス化等により、コストダウンの<br>効果も顕在化|
|
42
|
+
|株式会社<br>キャリア・マム|サービス業<br>東京都、38人|·11万人の主婦会員のうち、年間約3,000 人の地方在住テレワーカーに<br>業務発注を行い、就労支援を実施するとともに、在宅ワーカーとしての<br>人材育成を実施、<br>·地方自治体と連携し、地域でのテレワーカーの創出、テレワーク活用の<br>裾野拡大に貢献|
|
43
|
+
|シェイプウィン<br>株式会社|専門·<br>技術サービス業<br>東京都、17人|·フルリモートでの勤務も可能とし、求人応募数が約7倍に増加。東京<br>では人材獲得の競争が激しい PR·マーケティング系の専門人材を地方<br>や海外から採用<br>·離職率は約80%から約 14%まで低下|
|
44
|
+
|株式会社<br>スタッフサービス·<br>クラウドワーク|サービス業<br>神奈川県、454人|·通勤が困難な 454 名の重度身体障がい者の雇用を創出。入社1年後の<br>定着率は97.3%。<br>・入社後、配属前2ヶ月間のコミュニケーション研修を実施する他、自<br>主性を重んじた1日3回の定時ミーティングにより、社員による主体的<br>なチーム運営を実現|
|
45
|
+
|株式会社<br>テレワーク<br>マネジメント|専門·<br>技術サービス業<br>北海道、11人|·社内SNS 及びバーチャルオフィスにて社内コミュニケーションを統一し、<br>全員が同じルールの下で活用することを徹底することで、効率の良い意<br>思疎通、社員の一体感の醸成を図っている<br>·簡単な操作で細かく労働時間を記録できるシステムの運用により、フェ<br>アに働ける環境を実現|
|
46
|
+
|株式会社<br>プログレス|情報通信業<br>東京都、86人|·コミュニケーションの促進に向け、対面でのチームビルディング、バーチャ<br>ルオフィスの活用等、多数の取り組みを進める他、コミュニケーション<br>時の留意点等を示したガイドを全社員に向けて公開<br>·リーダー間でのメンバー状態の共有、社員への毎月サーベイを実施し、<br>社員の変化に対し、きめ細やか且つ早期にフォローできる仕組みを構築|
|
47
|
+
|
48
|
+
主催者代表挨拶<br>\(小森総務大臣政務官\)
|
49
|
+
|
50
|
+
表彰状授与
|
51
|
+
|
52
|
+
受賞企業集合写真\(3府省合同\)
|
53
|
+
|
54
|
+
テレワークトップランナー 2023<br>ロゴマーク
|
55
|
+
|
56
|
+
テレワーク月間関連イベントの様子
|
57
|
+
|
58
|
+
※総務省主催セミナー「ニューノー<br>マル時代に求められる働き方·<br>環境整備の実態」
|
59
|
+
|
60
|
+
セミナーのアーカイブ動画を、<br>テレワーク月間ホームページに<br>て公開しております。
|
61
|
+
|
62
|
+
https://teleworkgekkan.go.jp/events/<br>telework\-seminar\-202403.html
|
63
|
+
|
64
|
+
3
|
65
|
+
|
66
|
+
2
|
67
|
+
|
68
|
+
MIC 2024 November Vol.287
|
69
|
+
|
70
|
+
2024 November Vol.287 MIC
|
Binary file
|
Binary file
|