yeref 0.24.69__tar.gz → 0.24.70__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: yeref
3
- Version: 0.24.69
3
+ Version: 0.24.70
4
4
  Summary: desc-f
5
5
  Author: john smith
6
6
  Dynamic: author
@@ -2,7 +2,7 @@ from setuptools import setup
2
2
 
3
3
  setup(
4
4
  name='yeref',
5
- version='0.24.69',
5
+ version='0.24.70',
6
6
  description='desc-f',
7
7
  author='john smith',
8
8
  packages=['yeref'],
@@ -16240,7 +16240,7 @@ async def return_cohort_metrics(bot, PROJECT_USERNAME, EXTRA_D, BASE_P):
16240
16240
 
16241
16241
  months = ["2025-06", "2025-07", "2025-08", "2025-09"]
16242
16242
  data_users = []
16243
- for _ in range(20):
16243
+ for _ in range(30):
16244
16244
  # дата входа
16245
16245
  entry_month = random.choice(months)
16246
16246
  entry_day = random.randint(1, 28)
@@ -16302,7 +16302,6 @@ async def return_cohort_metrics(bot, PROJECT_USERNAME, EXTRA_D, BASE_P):
16302
16302
  ))
16303
16303
  print(f"gen {data_users=}")
16304
16304
 
16305
-
16306
16305
  cohorts = defaultdict(set)
16307
16306
  activity_months = defaultdict(set)
16308
16307
 
@@ -16365,7 +16364,7 @@ async def return_cohort_metrics(bot, PROJECT_USERNAME, EXTRA_D, BASE_P):
16365
16364
  row.append(str(val))
16366
16365
  row_sum += val
16367
16366
  else:
16368
- row.append("")
16367
+ row.append("0")
16369
16368
 
16370
16369
  row.append(str(row_sum))
16371
16370
  table.append(row)
@@ -16391,7 +16390,7 @@ async def return_cohort_metrics(bot, PROJECT_USERNAME, EXTRA_D, BASE_P):
16391
16390
  for r in table:
16392
16391
  writer.writerow(r)
16393
16392
  writer.writerow([])
16394
- writer.writerow([f"Churn ~ ×{avg_churn:.1f} monthly"])
16393
+ writer.writerow([f"Churn ~ ×{avg_churn:.0f} monthly"])
16395
16394
 
16396
16395
  thumb = types.FSInputFile(os.path.join(EXTRA_D, "parse.jpg"))
16397
16396
  await bot.send_document(chat_id=my_tid, document=types.FSInputFile(path), thumbnail=thumb)
@@ -16401,7 +16400,6 @@ async def return_cohort_metrics(bot, PROJECT_USERNAME, EXTRA_D, BASE_P):
16401
16400
  await asyncio.sleep(round(random.uniform(0, 1), 2))
16402
16401
 
16403
16402
 
16404
-
16405
16403
  async def return_retention_metrics(bot, PROJECT_USERNAME, EXTRA_D, BASE_P):
16406
16404
  try:
16407
16405
  sql = 'SELECT USER_TID, USER_VARS, USER_LSTS FROM "USER"'
@@ -16409,7 +16407,7 @@ async def return_retention_metrics(bot, PROJECT_USERNAME, EXTRA_D, BASE_P):
16409
16407
 
16410
16408
  months = ["2025-06", "2025-07", "2025-08", "2025-09"]
16411
16409
  data_users = []
16412
- for _ in range(20):
16410
+ for _ in range(30):
16413
16411
  # дата входа
16414
16412
  entry_month = random.choice(months)
16415
16413
  entry_day = random.randint(1, 28)
@@ -16471,57 +16469,89 @@ async def return_retention_metrics(bot, PROJECT_USERNAME, EXTRA_D, BASE_P):
16471
16469
  ))
16472
16470
  print(f"gen {data_users=}")
16473
16471
 
16474
- # собираем выручку по пользователю и месяцу
16475
- user_month_rev = defaultdict(lambda: defaultdict(float))
16472
+ # Собираем платежи и дату входа для каждого пользователя
16473
+ rev_by_cohort = defaultdict(lambda: defaultdict(float))
16474
+ cohort_users = defaultdict(set)
16475
+
16476
16476
  for USER_TID, USER_VARS, USER_LSTS in data_users:
16477
+ USER_VARS = json.loads(USER_VARS or "{}")
16477
16478
  USER_LSTS = json.loads(USER_LSTS or "{}")
16479
+ dt_entry_raw = USER_VARS.get("USER_DT", "").split("_")[0]
16480
+ if not dt_entry_raw:
16481
+ continue
16482
+ cohort_mo = datetime.strptime(dt_entry_raw, "%d-%m-%Y").strftime("%Y-%m")
16483
+ cohort_users[cohort_mo].add(USER_TID)
16484
+
16478
16485
  for pay in USER_LSTS.get("USER_PAYMENTS", []):
16479
- dt_p = datetime.strptime(pay.get("DT_START", ""), "%d-%m-%Y_%H-%M-%S")
16480
- mo = dt_p.strftime("%Y-%m")
16486
+ dt_pay = datetime.strptime(pay.get("DT_START", ""), "%d-%m-%Y_%H-%M-%S")
16487
+ pay_mo = dt_pay.strftime("%Y-%m")
16488
+ # вычисляем разницу в месяцах
16489
+ y0, m0 = map(int, cohort_mo.split("-"))
16490
+ y1, m1 = map(int, pay_mo.split("-"))
16491
+ offset = (y1 - y0) * 12 + (m1 - m0)
16492
+ if offset < 0:
16493
+ continue
16481
16494
  amt = float(pay.get("AMOUNT", 0)) * 0.013
16482
- user_month_rev[USER_TID][mo] += amt
16495
+ rev_by_cohort[cohort_mo][offset] += amt
16483
16496
 
16484
- # список всех месяцев с выручкой, отсортированный
16485
- all_months = sorted({mo for revs in user_month_rev.values() for mo in revs.keys()})
16486
-
16487
- results = []
16488
- for idx, mo in enumerate(all_months):
16489
- if idx == 0:
16490
- results.append({"MO": mo, "NRR": ""})
16491
- continue
16492
- prev_mo = all_months[idx - 1]
16493
- # общая выручка в prev_mo
16494
- prev_total = sum(user_month_rev[u][prev_mo] for u in user_month_rev if prev_mo in user_month_rev[u])
16495
- if prev_total == 0:
16496
- results.append({"MO": mo, "NRR": ""})
16497
- continue
16498
- # выручка текущего месяца от тех же пользователей
16499
- curr_existing = sum(
16500
- user_month_rev[u][mo]
16501
- for u in user_month_rev
16502
- if prev_mo in user_month_rev[u] and mo in user_month_rev[u]
16503
- )
16504
- nrr = curr_existing / prev_total
16505
- results.append({"MO": mo, "NRR": f"{nrr * 100:.2f}"})
16497
+ cohort_months = sorted(cohort_users.keys())
16498
+ # Определяем максимальный период
16499
+ max_offset = 0
16500
+ for c in cohort_months:
16501
+ if rev_by_cohort[c]:
16502
+ max_offset = max(max_offset, max(rev_by_cohort[c].keys()))
16506
16503
 
16507
- # средний NRR (арифметическое по ненулевым)
16508
- vals = [float(r["NRR"]) for r in results if r["NRR"]]
16509
- avg_nrr = f"{(sum(vals) / len(vals)):.2f}" if vals else ""
16504
+ # Сумма выручки M1 для каждой когорты
16505
+ base_rev = {c: rev_by_cohort[c].get(0, 0.0) for c in cohort_months}
16510
16506
 
16507
+ # Формируем CSV-таблицу
16511
16508
  path = os.path.join(EXTRA_D, "4_retention_metrics.csv")
16512
16509
  with open(path, "w", newline="", encoding="utf-8") as f:
16513
16510
  writer = csv.writer(f)
16514
- writer.writerow(["MO", "NRR (%)"])
16515
- for r in results:
16516
- writer.writerow([r["MO"], r["NRR"]])
16511
+ # Заголовок
16512
+ header = ["Месяц / Когорта"]
16513
+ for c in cohort_months:
16514
+ header.append(f"{c} ({len(cohort_users[c])})")
16515
+ header.append("∑")
16516
+ writer.writerow(header)
16517
+
16518
+ # Строки M1..M{max_offset+1}
16519
+ for i in range(max_offset + 1):
16520
+ row_label = f"M{i+1} ({i} мес)"
16521
+ row = [row_label]
16522
+ row_sum = 0.0
16523
+ for c in cohort_months:
16524
+ rev = rev_by_cohort[c].get(i, 0.0)
16525
+ if rev > 0 and base_rev[c] > 0:
16526
+ pct = rev / base_rev[c] * 100
16527
+ cell = f"{rev:.1f} ({pct:.0f}%)"
16528
+ row.append(cell)
16529
+ row_sum += rev
16530
+ else:
16531
+ row.append("")
16532
+ row.append(f"{row_sum:.1f}")
16533
+ writer.writerow(row)
16534
+
16535
+ # Средний рост NRR
16536
+ growths = []
16537
+ for c in cohort_months:
16538
+ for i in range(1, max_offset + 1):
16539
+ prev = rev_by_cohort[c].get(i - 1, 0.0)
16540
+ curr = rev_by_cohort[c].get(i, 0.0)
16541
+ if prev > 0:
16542
+ growths.append((curr - prev) / prev)
16543
+ avg_growth = (sum(growths) / len(growths) * 100) if growths else 0.0
16544
+
16517
16545
  writer.writerow([])
16518
- writer.writerow([f"Avg NRR (%)", avg_nrr])
16546
+ writer.writerow([f"Avg monthly NRR growth:", f"{avg_growth:.2f}%"])
16519
16547
 
16520
16548
  thumb = types.FSInputFile(os.path.join(EXTRA_D, "parse.jpg"))
16521
16549
  await bot.send_document(chat_id=my_tid, document=types.FSInputFile(path), thumbnail=thumb)
16550
+
16522
16551
  except Exception as e:
16523
16552
  logger.info(log_ % str(e))
16524
16553
  await asyncio.sleep(round(random.uniform(0, 1), 2))
16554
+
16525
16555
  # endregion
16526
16556
 
16527
16557
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: yeref
3
- Version: 0.24.69
3
+ Version: 0.24.70
4
4
  Summary: desc-f
5
5
  Author: john smith
6
6
  Dynamic: author
File without changes
File without changes
File without changes
File without changes
File without changes