xrtm-train 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- xrtm_train-0.1.0/LICENSE +201 -0
- xrtm_train-0.1.0/PKG-INFO +66 -0
- xrtm_train-0.1.0/README.md +43 -0
- xrtm_train-0.1.0/pyproject.toml +60 -0
- xrtm_train-0.1.0/setup.cfg +4 -0
- xrtm_train-0.1.0/src/xrtm/train/__init__.py +22 -0
- xrtm_train-0.1.0/src/xrtm/train/core/__init__.py +6 -0
- xrtm_train-0.1.0/src/xrtm/train/core/eval/__init__.py +3 -0
- xrtm_train-0.1.0/src/xrtm/train/core/eval/calibration.py +82 -0
- xrtm_train-0.1.0/src/xrtm/train/kit/memory/__init__.py +3 -0
- xrtm_train-0.1.0/src/xrtm/train/kit/memory/learner.py +29 -0
- xrtm_train-0.1.0/src/xrtm/train/kit/optimization/__init__.py +3 -0
- xrtm_train-0.1.0/src/xrtm/train/kit/optimization/compiler.py +32 -0
- xrtm_train-0.1.0/src/xrtm/train/simulation/backtester.py +64 -0
- xrtm_train-0.1.0/src/xrtm/train/simulation/replayer.py +81 -0
- xrtm_train-0.1.0/src/xrtm/train/simulation/runner.py +157 -0
- xrtm_train-0.1.0/src/xrtm_train.egg-info/PKG-INFO +66 -0
- xrtm_train-0.1.0/src/xrtm_train.egg-info/SOURCES.txt +20 -0
- xrtm_train-0.1.0/src/xrtm_train.egg-info/dependency_links.txt +1 -0
- xrtm_train-0.1.0/src/xrtm_train.egg-info/requires.txt +13 -0
- xrtm_train-0.1.0/src/xrtm_train.egg-info/top_level.txt +1 -0
- xrtm_train-0.1.0/tests/test_backtester.py +60 -0
xrtm_train-0.1.0/LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
Apache License
|
|
2
|
+
Version 2.0, January 2004
|
|
3
|
+
http://www.apache.org/licenses/
|
|
4
|
+
|
|
5
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
6
|
+
|
|
7
|
+
1. Definitions.
|
|
8
|
+
|
|
9
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
10
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
11
|
+
|
|
12
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
13
|
+
the copyright owner that is granting the License.
|
|
14
|
+
|
|
15
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
16
|
+
other entities that control, are controlled by, or are under common
|
|
17
|
+
control with that entity. For the purposes of this definition,
|
|
18
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
19
|
+
direction or management of such entity, whether by contract or
|
|
20
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
21
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
22
|
+
|
|
23
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
24
|
+
exercising permissions granted by this License.
|
|
25
|
+
|
|
26
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
27
|
+
including but not limited to software source code, documentation
|
|
28
|
+
source, and configuration files.
|
|
29
|
+
|
|
30
|
+
"Object" form shall mean any form resulting from mechanical
|
|
31
|
+
transformation or translation of a Source form, including but
|
|
32
|
+
not limited to compiled object code, generated documentation,
|
|
33
|
+
and conversions to other media types.
|
|
34
|
+
|
|
35
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
36
|
+
Object form, made available under the License, as indicated by a
|
|
37
|
+
copyright notice that is included in or attached to the work
|
|
38
|
+
(an example is provided in the Appendix below).
|
|
39
|
+
|
|
40
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
41
|
+
form, that is based on (or derived from) the Work and for which the
|
|
42
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
43
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
44
|
+
of this License, Derivative Works shall not include works that remain
|
|
45
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
46
|
+
the Work and Derivative Works thereof.
|
|
47
|
+
|
|
48
|
+
"Contribution" shall mean any work of authorship, including
|
|
49
|
+
the original version of the Work and any modifications or additions
|
|
50
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
51
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
52
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
53
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
54
|
+
means any form of electronic, verbal, or written communication sent
|
|
55
|
+
to the Licensor or its representatives, including but not limited to
|
|
56
|
+
communication on electronic mailing lists, source code control systems,
|
|
57
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
58
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
59
|
+
excluding communication that is conspicuously marked or otherwise
|
|
60
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
61
|
+
|
|
62
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
63
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
64
|
+
subsequently incorporated within the Work.
|
|
65
|
+
|
|
66
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
67
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
68
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
69
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
70
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
71
|
+
Work and such Derivative Works in Source or Object form.
|
|
72
|
+
|
|
73
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
74
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
75
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
76
|
+
(except as stated in this section) patent license to make, have made,
|
|
77
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
78
|
+
where such license applies only to those patent claims licensable
|
|
79
|
+
by such Contributor that are necessarily infringed by their
|
|
80
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
81
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
82
|
+
institute patent litigation against any entity (including a
|
|
83
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
84
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
85
|
+
or contributory patent infringement, then any patent licenses
|
|
86
|
+
granted to You under this License for that Work shall terminate
|
|
87
|
+
as of the date such litigation is filed.
|
|
88
|
+
|
|
89
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
90
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
91
|
+
modifications, and in Source or Object form, provided that You
|
|
92
|
+
meet the following conditions:
|
|
93
|
+
|
|
94
|
+
(a) You must give any other recipients of the Work or
|
|
95
|
+
Derivative Works a copy of this License; and
|
|
96
|
+
|
|
97
|
+
(b) You must cause any modified files to carry prominent notices
|
|
98
|
+
stating that you changed the files; and
|
|
99
|
+
|
|
100
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
101
|
+
that You distribute, all copyright, patent, trademark, and
|
|
102
|
+
attribution notices from the Source form of the Work,
|
|
103
|
+
excluding those notices that do not pertain to any part of
|
|
104
|
+
the Derivative Works; and
|
|
105
|
+
|
|
106
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
107
|
+
distribution, then any Derivative Works that You distribute must
|
|
108
|
+
include a readable copy of the attribution notices contained
|
|
109
|
+
within such NOTICE file, excluding those notices that do not
|
|
110
|
+
pertain to any part of the Derivative Works, in at least one
|
|
111
|
+
of the following places: within a NOTICE text file distributed
|
|
112
|
+
as part of the Derivative Works; within the Source form or
|
|
113
|
+
documentation, if provided along with the Derivative Works; or,
|
|
114
|
+
within a display generated by the Derivative Works, if and
|
|
115
|
+
wherever such third-party notices normally appear. The contents
|
|
116
|
+
of the NOTICE file are for informational purposes only and
|
|
117
|
+
do not modify the License. You may add Your own attribution
|
|
118
|
+
notices within Derivative Works that You distribute, alongside
|
|
119
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
120
|
+
that such additional attribution notices cannot be construed
|
|
121
|
+
as modifying the License.
|
|
122
|
+
|
|
123
|
+
You may add Your own copyright statement to Your modifications and
|
|
124
|
+
may provide additional or different license terms and conditions
|
|
125
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
126
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
127
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
128
|
+
the conditions stated in this License.
|
|
129
|
+
|
|
130
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
131
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
132
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
133
|
+
this License, without any additional terms or conditions.
|
|
134
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
135
|
+
the terms of any separate license agreement you may have executed
|
|
136
|
+
with Licensor regarding such Contributions.
|
|
137
|
+
|
|
138
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
139
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
140
|
+
except as required for reasonable and customary use in describing the
|
|
141
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
142
|
+
|
|
143
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
144
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
145
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
146
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
147
|
+
implied, including, without limitation, any warranties or conditions
|
|
148
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
149
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
150
|
+
appropriateness of using or redistributing the Work and assume any
|
|
151
|
+
risks associated with Your exercise of permissions under this License.
|
|
152
|
+
|
|
153
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
154
|
+
whether in tour (including negligence), contract, or otherwise,
|
|
155
|
+
unless required by applicable law (such as deliberate and grossly
|
|
156
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
157
|
+
liable to You for damages, including any direct, indirect, special,
|
|
158
|
+
incidental, or consequential damages of any character arising as a
|
|
159
|
+
result of this License or out of the use or inability to use the
|
|
160
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
161
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
162
|
+
other commercial damages or losses), even if such Contributor
|
|
163
|
+
has been advised of the possibility of such damages.
|
|
164
|
+
|
|
165
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
166
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
167
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
168
|
+
or other liability obligations and/or rights consistent with this
|
|
169
|
+
License. However, in accepting such obligations, You may act only
|
|
170
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
171
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
172
|
+
defend, and hold each Contributor harmless for any liability
|
|
173
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
174
|
+
of your accepting any such warranty or additional liability.
|
|
175
|
+
|
|
176
|
+
END OF TERMS AND CONDITIONS
|
|
177
|
+
|
|
178
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
179
|
+
|
|
180
|
+
To apply the Apache License to your work, attach the following
|
|
181
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
182
|
+
replaced with your own identifying information. (Don't include
|
|
183
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
184
|
+
comment syntax for the file format. We also recommend that a
|
|
185
|
+
file or class name and description of purpose be included on the
|
|
186
|
+
same "printed page" as the copyright notice for easier
|
|
187
|
+
identification within third-party archives.
|
|
188
|
+
|
|
189
|
+
Copyright 2026 XRTM Team
|
|
190
|
+
|
|
191
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
192
|
+
you may not use this file except in compliance with the License.
|
|
193
|
+
You may obtain a copy of the License at
|
|
194
|
+
|
|
195
|
+
http://www.apache.org/licenses/
|
|
196
|
+
|
|
197
|
+
Unless required by applicable law or agreed to in writing, software
|
|
198
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
199
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
200
|
+
See the License for the specific language governing permissions and
|
|
201
|
+
limitations under the License.
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: xrtm-train
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: The Learning/Optimization layer for XRTM.
|
|
5
|
+
Author-email: XRTM Team <moy@xrtm.org>
|
|
6
|
+
License: Apache-2.0
|
|
7
|
+
Requires-Python: >=3.11
|
|
8
|
+
Description-Content-Type: text/markdown
|
|
9
|
+
License-File: LICENSE
|
|
10
|
+
Requires-Dist: pydantic>=2.0.0
|
|
11
|
+
Requires-Dist: numpy>=1.24.0
|
|
12
|
+
Requires-Dist: scikit-learn>=1.3.0
|
|
13
|
+
Requires-Dist: xrtm-data
|
|
14
|
+
Requires-Dist: xrtm-eval
|
|
15
|
+
Requires-Dist: xrtm-forecast
|
|
16
|
+
Provides-Extra: dev
|
|
17
|
+
Requires-Dist: pytest>=7.0.0; extra == "dev"
|
|
18
|
+
Requires-Dist: pytest-asyncio>=0.21.0; extra == "dev"
|
|
19
|
+
Requires-Dist: pytest-cov>=4.1.0; extra == "dev"
|
|
20
|
+
Requires-Dist: ruff>=0.1.0; extra == "dev"
|
|
21
|
+
Requires-Dist: mypy>=1.0.0; extra == "dev"
|
|
22
|
+
Dynamic: license-file
|
|
23
|
+
|
|
24
|
+
# xrtm-train
|
|
25
|
+
|
|
26
|
+
[](https://opensource.org/licenses/Apache-2.0)
|
|
27
|
+
[](https://www.python.org/downloads/)
|
|
28
|
+
|
|
29
|
+
**The Optimization Layer for XRTM.**
|
|
30
|
+
|
|
31
|
+
`xrtm-train` is the engine that closes the loop. It simulates history by replaying agents against past "Ground Truth" snapshots stored in `xrtm-data`, scoring them with `xrtm-eval`, and optimizing their reasoning parameters.
|
|
32
|
+
|
|
33
|
+
## Installation
|
|
34
|
+
|
|
35
|
+
```bash
|
|
36
|
+
uv pip install xrtm-train
|
|
37
|
+
```
|
|
38
|
+
|
|
39
|
+
## Core Primitives
|
|
40
|
+
|
|
41
|
+
### The Simulation Loop
|
|
42
|
+
The `Backtester` orchestrates the simulation. It ensures strict temporal isolation—agents are never exposed to data from the future.
|
|
43
|
+
|
|
44
|
+
```python
|
|
45
|
+
from xrtm.train import Backtester
|
|
46
|
+
|
|
47
|
+
# Initialize components
|
|
48
|
+
backtester = Backtester(agent=my_agent, evaluator=my_evaluator)
|
|
49
|
+
|
|
50
|
+
# Run simulation
|
|
51
|
+
results = await backtester.run(dataset=historical_questions)
|
|
52
|
+
print(f"Mean Brier Score: {results.mean_score}")
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
## Development
|
|
56
|
+
|
|
57
|
+
Prerequisites:
|
|
58
|
+
- [uv](https://github.com/astral-sh/uv)
|
|
59
|
+
|
|
60
|
+
```bash
|
|
61
|
+
# Install dependencies
|
|
62
|
+
uv sync
|
|
63
|
+
|
|
64
|
+
# Run tests
|
|
65
|
+
uv run pytest
|
|
66
|
+
```
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
# xrtm-train
|
|
2
|
+
|
|
3
|
+
[](https://opensource.org/licenses/Apache-2.0)
|
|
4
|
+
[](https://www.python.org/downloads/)
|
|
5
|
+
|
|
6
|
+
**The Optimization Layer for XRTM.**
|
|
7
|
+
|
|
8
|
+
`xrtm-train` is the engine that closes the loop. It simulates history by replaying agents against past "Ground Truth" snapshots stored in `xrtm-data`, scoring them with `xrtm-eval`, and optimizing their reasoning parameters.
|
|
9
|
+
|
|
10
|
+
## Installation
|
|
11
|
+
|
|
12
|
+
```bash
|
|
13
|
+
uv pip install xrtm-train
|
|
14
|
+
```
|
|
15
|
+
|
|
16
|
+
## Core Primitives
|
|
17
|
+
|
|
18
|
+
### The Simulation Loop
|
|
19
|
+
The `Backtester` orchestrates the simulation. It ensures strict temporal isolation—agents are never exposed to data from the future.
|
|
20
|
+
|
|
21
|
+
```python
|
|
22
|
+
from xrtm.train import Backtester
|
|
23
|
+
|
|
24
|
+
# Initialize components
|
|
25
|
+
backtester = Backtester(agent=my_agent, evaluator=my_evaluator)
|
|
26
|
+
|
|
27
|
+
# Run simulation
|
|
28
|
+
results = await backtester.run(dataset=historical_questions)
|
|
29
|
+
print(f"Mean Brier Score: {results.mean_score}")
|
|
30
|
+
```
|
|
31
|
+
|
|
32
|
+
## Development
|
|
33
|
+
|
|
34
|
+
Prerequisites:
|
|
35
|
+
- [uv](https://github.com/astral-sh/uv)
|
|
36
|
+
|
|
37
|
+
```bash
|
|
38
|
+
# Install dependencies
|
|
39
|
+
uv sync
|
|
40
|
+
|
|
41
|
+
# Run tests
|
|
42
|
+
uv run pytest
|
|
43
|
+
```
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "xrtm-train"
|
|
7
|
+
version = "0.1.0"
|
|
8
|
+
description = "The Learning/Optimization layer for XRTM."
|
|
9
|
+
readme = "README.md"
|
|
10
|
+
requires-python = ">=3.11"
|
|
11
|
+
license = {text = "Apache-2.0"}
|
|
12
|
+
authors = [
|
|
13
|
+
{name = "XRTM Team", email = "moy@xrtm.org"}
|
|
14
|
+
]
|
|
15
|
+
dependencies = [
|
|
16
|
+
"pydantic>=2.0.0",
|
|
17
|
+
"numpy>=1.24.0",
|
|
18
|
+
"scikit-learn>=1.3.0",
|
|
19
|
+
"xrtm-data",
|
|
20
|
+
"xrtm-eval",
|
|
21
|
+
"xrtm-forecast",
|
|
22
|
+
]
|
|
23
|
+
|
|
24
|
+
[project.optional-dependencies]
|
|
25
|
+
dev = [
|
|
26
|
+
"pytest>=7.0.0",
|
|
27
|
+
"pytest-asyncio>=0.21.0",
|
|
28
|
+
"pytest-cov>=4.1.0",
|
|
29
|
+
"ruff>=0.1.0",
|
|
30
|
+
"mypy>=1.0.0",
|
|
31
|
+
]
|
|
32
|
+
|
|
33
|
+
[tool.setuptools]
|
|
34
|
+
package-dir = {"" = "src"}
|
|
35
|
+
packages = {find = {where = ["src"], include = ["xrtm*"], namespaces = true}}
|
|
36
|
+
|
|
37
|
+
[tool.uv.sources]
|
|
38
|
+
xrtm-data = { git = "https://github.com/xrtm-org/data.git", branch = "main" }
|
|
39
|
+
xrtm-eval = { git = "https://github.com/xrtm-org/eval.git", branch = "main" }
|
|
40
|
+
xrtm-forecast = { git = "https://github.com/xrtm-org/forecast.git", branch = "refactor/split-architecture" }
|
|
41
|
+
|
|
42
|
+
[tool.pytest.ini_options]
|
|
43
|
+
pythonpath = ["."]
|
|
44
|
+
testpaths = ["tests"]
|
|
45
|
+
asyncio_mode = "strict"
|
|
46
|
+
|
|
47
|
+
[tool.ruff]
|
|
48
|
+
line-length = 120
|
|
49
|
+
target-version = "py311"
|
|
50
|
+
exclude = [".git", ".venv", "build", "dist"]
|
|
51
|
+
|
|
52
|
+
[tool.ruff.lint]
|
|
53
|
+
select = ["E", "F", "I", "W"]
|
|
54
|
+
ignore = ["E501"]
|
|
55
|
+
|
|
56
|
+
[tool.mypy]
|
|
57
|
+
python_version = "3.11"
|
|
58
|
+
ignore_missing_imports = true
|
|
59
|
+
strict = false
|
|
60
|
+
explicit_package_bases = true
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2026 XRTM Team. All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
from xrtm.train.simulation.backtester import Backtester
|
|
17
|
+
from xrtm.train.simulation.replayer import TraceReplayer
|
|
18
|
+
|
|
19
|
+
__all__ = [
|
|
20
|
+
"Backtester",
|
|
21
|
+
"TraceReplayer",
|
|
22
|
+
]
|
|
@@ -0,0 +1,82 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2026 XRTM Team. All rights reserved.
|
|
3
|
+
|
|
4
|
+
import pickle
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from typing import List, Union
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
from pydantic import BaseModel, ConfigDict
|
|
10
|
+
from sklearn.linear_model import LogisticRegression
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class PlattScaler(BaseModel):
|
|
14
|
+
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
15
|
+
a: float = 1.0
|
|
16
|
+
b: float = 0.0
|
|
17
|
+
fitted: bool = False
|
|
18
|
+
|
|
19
|
+
def fit(self, y_true: List[int], y_prob: List[float]) -> "PlattScaler":
|
|
20
|
+
eps = 1e-15
|
|
21
|
+
p = np.clip(y_prob, eps, 1 - eps)
|
|
22
|
+
logits = np.log(p / (1 - p)).reshape(-1, 1)
|
|
23
|
+
clf = LogisticRegression(C=1e10, solver="lbfgs")
|
|
24
|
+
clf.fit(logits, y_true)
|
|
25
|
+
self.a = float(clf.coef_[0][0])
|
|
26
|
+
self.b = float(clf.intercept_[0])
|
|
27
|
+
self.fitted = True
|
|
28
|
+
return self
|
|
29
|
+
|
|
30
|
+
def transform(self, y_prob: Union[float, List[float]]) -> Union[float, List[float]]:
|
|
31
|
+
if not self.fitted:
|
|
32
|
+
return y_prob
|
|
33
|
+
is_scalar = isinstance(y_prob, (float, int))
|
|
34
|
+
y_prob_arr = np.array([y_prob]) if is_scalar else np.array(y_prob)
|
|
35
|
+
eps = 1e-15
|
|
36
|
+
p = np.clip(y_prob_arr, eps, 1 - eps)
|
|
37
|
+
logits = np.log(p / (1 - p))
|
|
38
|
+
scaled_logits = self.a * logits + self.b
|
|
39
|
+
p_calib = 1.0 / (1.0 + np.exp(-scaled_logits))
|
|
40
|
+
return float(p_calib[0]) if is_scalar else p_calib.tolist()
|
|
41
|
+
|
|
42
|
+
def save(self, path: Union[str, Path]) -> None:
|
|
43
|
+
with open(path, "wb") as f:
|
|
44
|
+
pickle.dump({"a": self.a, "b": self.b, "fitted": self.fitted}, f)
|
|
45
|
+
|
|
46
|
+
def load(self, path: Union[str, Path]) -> "PlattScaler":
|
|
47
|
+
with open(path, "rb") as f:
|
|
48
|
+
data = pickle.load(f)
|
|
49
|
+
self.a, self.b, self.fitted = data["a"], data["b"], data["fitted"]
|
|
50
|
+
return self
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
class BetaScaler(BaseModel):
|
|
54
|
+
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
55
|
+
a: float = 1.0
|
|
56
|
+
b: float = 1.0
|
|
57
|
+
c: float = 0.0
|
|
58
|
+
fitted: bool = False
|
|
59
|
+
|
|
60
|
+
def fit(self, y_true: List[int], y_prob: List[float]) -> "BetaScaler":
|
|
61
|
+
eps = 1e-15
|
|
62
|
+
p = np.clip(y_prob, eps, 1 - eps)
|
|
63
|
+
X = np.stack([np.log(p), -np.log(1 - p)], axis=1)
|
|
64
|
+
clf = LogisticRegression(C=1e10, solver="lbfgs")
|
|
65
|
+
clf.fit(X, y_true)
|
|
66
|
+
self.a, self.b, self.c = float(clf.coef_[0][0]), float(clf.coef_[0][1]), float(clf.intercept_[0])
|
|
67
|
+
self.fitted = True
|
|
68
|
+
return self
|
|
69
|
+
|
|
70
|
+
def transform(self, y_prob: Union[float, List[float]]) -> Union[float, List[float]]:
|
|
71
|
+
if not self.fitted:
|
|
72
|
+
return y_prob
|
|
73
|
+
is_scalar = isinstance(y_prob, (float, int))
|
|
74
|
+
y_prob_arr = np.array([y_prob]) if is_scalar else np.array(y_prob)
|
|
75
|
+
eps = 1e-15
|
|
76
|
+
p = np.clip(y_prob_arr, eps, 1 - eps)
|
|
77
|
+
scaled_logits = self.a * np.log(p) - self.b * np.log(1 - p) + self.c
|
|
78
|
+
p_calib = 1.0 / (1.0 + np.exp(-scaled_logits))
|
|
79
|
+
return float(p_calib[0]) if is_scalar else p_calib.tolist()
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
__all__ = ["PlattScaler", "BetaScaler"]
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2026 XRTM Team. All rights reserved.
|
|
3
|
+
|
|
4
|
+
import logging
|
|
5
|
+
|
|
6
|
+
# From xrtm-forecast
|
|
7
|
+
from xrtm.forecast.kit.memory.unified import Memory as UnifiedMemory
|
|
8
|
+
|
|
9
|
+
logger = logging.getLogger(__name__)
|
|
10
|
+
|
|
11
|
+
class EpisodicLearner:
|
|
12
|
+
def __init__(self, memory: UnifiedMemory):
|
|
13
|
+
self.memory = memory
|
|
14
|
+
|
|
15
|
+
def get_lessons_for_subject(self, subject_id: str, n_results: int = 3) -> str:
|
|
16
|
+
try:
|
|
17
|
+
query = f"Past performance and lessons for {subject_id}"
|
|
18
|
+
experiences = self.memory.retrieve_similar(query, n_results=n_results)
|
|
19
|
+
if not experiences:
|
|
20
|
+
return "No relevant past experiences found."
|
|
21
|
+
formatted_lessons = "\n--- PAST LESSONS LEARNED ---\n"
|
|
22
|
+
for i, doc in enumerate(experiences, 1):
|
|
23
|
+
formatted_lessons += f"Experience {i}:\n{doc.strip()}\n"
|
|
24
|
+
return formatted_lessons
|
|
25
|
+
except Exception as e:
|
|
26
|
+
logger.error(f"[LEARNER] Failed to retrieve lessons: {e}")
|
|
27
|
+
return "Error retrieving past lessons."
|
|
28
|
+
|
|
29
|
+
__all__ = ["EpisodicLearner"]
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2026 XRTM Team. All rights reserved.
|
|
3
|
+
|
|
4
|
+
import logging
|
|
5
|
+
from typing import Any, List, Tuple
|
|
6
|
+
|
|
7
|
+
# From xrtm-forecast
|
|
8
|
+
from xrtm.forecast.kit.agents.prompting import CompiledAgent, PromptTemplate
|
|
9
|
+
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
12
|
+
class BrierOptimizer:
|
|
13
|
+
def __init__(self, optimizer_model: Any):
|
|
14
|
+
self.optimizer_model = optimizer_model
|
|
15
|
+
|
|
16
|
+
async def optimize(self, agent: CompiledAgent, dataset: List[Tuple[Any, float, int]]) -> PromptTemplate:
|
|
17
|
+
total_error = sum((p - g) ** 2 for _, p, g in dataset) / len(dataset)
|
|
18
|
+
meta_prompt = f"""
|
|
19
|
+
You are a Prompt Optimizer for a forecasting engine.
|
|
20
|
+
Current Goal: Minimize Brier Score (Current: {total_error:.4f}).
|
|
21
|
+
Current Instruction: "{agent.template.instruction}"
|
|
22
|
+
Performance Snippets (Input -> Pred vs Truth):
|
|
23
|
+
"""
|
|
24
|
+
for inp, pred, truth in dataset[:5]:
|
|
25
|
+
meta_prompt += f"- {str(inp)[:50]}... -> {pred} (Actual: {truth})\n"
|
|
26
|
+
meta_prompt += "\nSuggest a NEW system instruction that corrects for these errors.\nReturn ONLY the new instruction string."
|
|
27
|
+
new_instruction = await self.optimizer_model.generate(meta_prompt)
|
|
28
|
+
return PromptTemplate(
|
|
29
|
+
instruction=new_instruction.strip(), examples=agent.template.examples, version=agent.template.version + 1
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
__all__ = ["BrierOptimizer"]
|
|
@@ -0,0 +1,64 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2026 XRTM Team. All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import logging
|
|
17
|
+
from typing import List, Tuple
|
|
18
|
+
|
|
19
|
+
# From xrtm-data
|
|
20
|
+
from xrtm.data.schemas.forecast import ForecastQuestion
|
|
21
|
+
|
|
22
|
+
# From xrtm-eval
|
|
23
|
+
from xrtm.eval.core.eval.definitions import EvaluationReport, EvaluationResult, Evaluator
|
|
24
|
+
from xrtm.eval.schemas.forecast import ForecastResolution
|
|
25
|
+
|
|
26
|
+
# From xrtm-forecast (Internal)
|
|
27
|
+
from xrtm.forecast.kit.agents.base import Agent
|
|
28
|
+
|
|
29
|
+
logger = logging.getLogger(__name__)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class Backtester:
|
|
33
|
+
"""Orchestrates the backtesting process for a specific agent and evaluator."""
|
|
34
|
+
|
|
35
|
+
def __init__(self, agent: Agent, evaluator: Evaluator):
|
|
36
|
+
self.agent = agent
|
|
37
|
+
self.evaluator = evaluator
|
|
38
|
+
|
|
39
|
+
async def run(self, dataset: List[Tuple[ForecastQuestion, ForecastResolution]]) -> EvaluationReport:
|
|
40
|
+
results: List[EvaluationResult] = []
|
|
41
|
+
total_score = 0.0
|
|
42
|
+
|
|
43
|
+
for question, resolution in dataset:
|
|
44
|
+
try:
|
|
45
|
+
logger.info(f"Backtesting question: {question.id}")
|
|
46
|
+
prediction = await self.agent.run(question)
|
|
47
|
+
conf = getattr(prediction, "confidence", prediction)
|
|
48
|
+
eval_res = self.evaluator.evaluate(
|
|
49
|
+
prediction=conf, ground_truth=resolution.outcome, subject_id=question.id
|
|
50
|
+
)
|
|
51
|
+
results.append(eval_res)
|
|
52
|
+
total_score += eval_res.score
|
|
53
|
+
except Exception as e:
|
|
54
|
+
logger.error(f"Failed to evaluate question {question.id}: {e}")
|
|
55
|
+
|
|
56
|
+
count = len(results)
|
|
57
|
+
mean_score = total_score / count if count > 0 else 0.0
|
|
58
|
+
|
|
59
|
+
return EvaluationReport(
|
|
60
|
+
metric_name="Brier Score", mean_score=mean_score, total_evaluations=count, results=results
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
__all__ = ["Backtester"]
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2026 XRTM Team. All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import logging
|
|
17
|
+
from typing import Optional
|
|
18
|
+
|
|
19
|
+
# From xrtm-eval
|
|
20
|
+
from xrtm.eval.core.eval.definitions import EvaluationResult, Evaluator
|
|
21
|
+
from xrtm.eval.schemas.forecast import ForecastResolution
|
|
22
|
+
|
|
23
|
+
# From xrtm-data
|
|
24
|
+
# From xrtm-forecast (Internal)
|
|
25
|
+
from xrtm.forecast.core.orchestrator import Orchestrator
|
|
26
|
+
from xrtm.forecast.core.schemas.graph import BaseGraphState
|
|
27
|
+
|
|
28
|
+
from xrtm.train.simulation.runner import BacktestRunner
|
|
29
|
+
|
|
30
|
+
__all__ = ["TraceReplayer"]
|
|
31
|
+
logger = logging.getLogger(__name__)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class TraceReplayer:
|
|
35
|
+
"""Utility class for saving, loading, and replaying evaluation traces."""
|
|
36
|
+
|
|
37
|
+
@staticmethod
|
|
38
|
+
def save_trace(state: BaseGraphState, path: str) -> None:
|
|
39
|
+
try:
|
|
40
|
+
json_str = state.model_dump_json(indent=2)
|
|
41
|
+
with open(path, "w", encoding="utf-8") as f:
|
|
42
|
+
f.write(json_str)
|
|
43
|
+
logger.info(f"Trace saved to {path}")
|
|
44
|
+
except Exception as e:
|
|
45
|
+
logger.error(f"Failed to save trace to {path}: {e}")
|
|
46
|
+
raise
|
|
47
|
+
|
|
48
|
+
@staticmethod
|
|
49
|
+
def load_trace(path: str) -> BaseGraphState:
|
|
50
|
+
try:
|
|
51
|
+
with open(path, "r", encoding="utf-8") as f:
|
|
52
|
+
json_str = f.read()
|
|
53
|
+
state = BaseGraphState.model_validate_json(json_str)
|
|
54
|
+
return state
|
|
55
|
+
except Exception as e:
|
|
56
|
+
logger.error(f"Failed to load trace from {path}: {e}")
|
|
57
|
+
raise
|
|
58
|
+
|
|
59
|
+
def replay_evaluation(
|
|
60
|
+
self,
|
|
61
|
+
trace_path: str,
|
|
62
|
+
resolution: ForecastResolution | float | str,
|
|
63
|
+
evaluator: Optional[Evaluator] = None,
|
|
64
|
+
subject_id_override: Optional[str] = None,
|
|
65
|
+
) -> EvaluationResult:
|
|
66
|
+
state = self.load_trace(trace_path)
|
|
67
|
+
subject_id = subject_id_override or state.subject_id
|
|
68
|
+
if not isinstance(resolution, ForecastResolution):
|
|
69
|
+
resolution = ForecastResolution(
|
|
70
|
+
question_id=subject_id, outcome=str(resolution), metadata={"source": "replay_override"}
|
|
71
|
+
)
|
|
72
|
+
dummy_orch: Orchestrator[BaseGraphState] = Orchestrator()
|
|
73
|
+
runner = BacktestRunner(orchestrator=dummy_orch, evaluator=evaluator)
|
|
74
|
+
result = runner.evaluate_state(
|
|
75
|
+
state=state,
|
|
76
|
+
resolution=resolution,
|
|
77
|
+
subject_id=subject_id,
|
|
78
|
+
reference_time=state.temporal_context.reference_time if state.temporal_context else None,
|
|
79
|
+
)
|
|
80
|
+
result.metadata["is_replay"] = True
|
|
81
|
+
return result
|
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2026 XRTM Team. All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import asyncio
|
|
17
|
+
import logging
|
|
18
|
+
from datetime import datetime
|
|
19
|
+
from typing import List, Optional
|
|
20
|
+
|
|
21
|
+
from pydantic import BaseModel
|
|
22
|
+
|
|
23
|
+
# From xrtm-data
|
|
24
|
+
from xrtm.data.schemas.forecast import ForecastOutput, ForecastQuestion
|
|
25
|
+
|
|
26
|
+
# From xrtm-eval
|
|
27
|
+
from xrtm.eval.core.eval.definitions import EvaluationReport, EvaluationResult, Evaluator
|
|
28
|
+
from xrtm.eval.kit.eval.analytics import SliceAnalytics
|
|
29
|
+
from xrtm.eval.kit.eval.metrics import BrierScoreEvaluator, ExpectedCalibrationErrorEvaluator
|
|
30
|
+
from xrtm.eval.schemas.forecast import ForecastResolution
|
|
31
|
+
|
|
32
|
+
# From xrtm-forecast (Internal)
|
|
33
|
+
from xrtm.forecast.core.orchestrator import Orchestrator
|
|
34
|
+
from xrtm.forecast.core.schemas.graph import BaseGraphState, TemporalContext
|
|
35
|
+
|
|
36
|
+
logger = logging.getLogger(__name__)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class BacktestInstance(BaseModel):
|
|
40
|
+
"""Represents a single instance in a backtest dataset."""
|
|
41
|
+
|
|
42
|
+
question: ForecastQuestion
|
|
43
|
+
resolution: ForecastResolution
|
|
44
|
+
reference_time: datetime
|
|
45
|
+
tags: Optional[List[str]] = None
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class BacktestDataset(BaseModel):
|
|
49
|
+
"""A collection of backtest instances representing an evaluation dataset."""
|
|
50
|
+
|
|
51
|
+
name: str = "default_backtest"
|
|
52
|
+
items: List[BacktestInstance]
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class BacktestRunner:
|
|
56
|
+
"""Executes backtests on a dataset using a provided orchestrator."""
|
|
57
|
+
|
|
58
|
+
def __init__(
|
|
59
|
+
self,
|
|
60
|
+
orchestrator: Orchestrator,
|
|
61
|
+
evaluator: Optional[Evaluator] = None,
|
|
62
|
+
entry_node: str = "ingestion",
|
|
63
|
+
concurrency: int = 5,
|
|
64
|
+
):
|
|
65
|
+
self.orchestrator = orchestrator
|
|
66
|
+
self.evaluator = evaluator or BrierScoreEvaluator()
|
|
67
|
+
self.entry_node = entry_node
|
|
68
|
+
self.semaphore = asyncio.Semaphore(concurrency)
|
|
69
|
+
|
|
70
|
+
async def _run_single(self, instance: BacktestInstance) -> EvaluationResult:
|
|
71
|
+
async with self.semaphore:
|
|
72
|
+
state = BaseGraphState(
|
|
73
|
+
subject_id=instance.question.id,
|
|
74
|
+
temporal_context=TemporalContext(reference_time=instance.reference_time, is_backtest=True),
|
|
75
|
+
)
|
|
76
|
+
state.context["question_title"] = instance.question.title
|
|
77
|
+
if instance.question.content:
|
|
78
|
+
state.context["question_content"] = instance.question.content
|
|
79
|
+
|
|
80
|
+
try:
|
|
81
|
+
await self.orchestrator.run(state, entry_node=self.entry_node)
|
|
82
|
+
return self.evaluate_state(
|
|
83
|
+
state, instance.resolution, instance.question.id, instance.reference_time, instance.tags
|
|
84
|
+
)
|
|
85
|
+
except Exception as e:
|
|
86
|
+
logger.error(f"Backtest error on {instance.question.id}: {e}")
|
|
87
|
+
return EvaluationResult(
|
|
88
|
+
subject_id=instance.question.id,
|
|
89
|
+
score=1.0,
|
|
90
|
+
ground_truth=instance.resolution.outcome,
|
|
91
|
+
prediction=0.5,
|
|
92
|
+
metadata={"error": str(e)},
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
def evaluate_state(
|
|
96
|
+
self,
|
|
97
|
+
state: BaseGraphState,
|
|
98
|
+
resolution: ForecastResolution,
|
|
99
|
+
subject_id: str,
|
|
100
|
+
reference_time: Optional[datetime] = None,
|
|
101
|
+
tags: Optional[List[str]] = None,
|
|
102
|
+
) -> EvaluationResult:
|
|
103
|
+
prediction_val = 0.5
|
|
104
|
+
for report in reversed(list(state.node_reports.values())):
|
|
105
|
+
if isinstance(report, ForecastOutput):
|
|
106
|
+
prediction_val = report.confidence
|
|
107
|
+
break
|
|
108
|
+
elif isinstance(report, dict) and "confidence" in report:
|
|
109
|
+
prediction_val = float(report["confidence"])
|
|
110
|
+
break
|
|
111
|
+
elif isinstance(report, (int, float)):
|
|
112
|
+
prediction_val = float(report)
|
|
113
|
+
break
|
|
114
|
+
|
|
115
|
+
outcome_raw = resolution.outcome
|
|
116
|
+
if isinstance(outcome_raw, str):
|
|
117
|
+
if outcome_raw.lower() in ["true", "yes", "1", "pass"]:
|
|
118
|
+
gt_val = 1.0
|
|
119
|
+
elif outcome_raw.lower() in ["false", "no", "0", "fail"]:
|
|
120
|
+
gt_val = 0.0
|
|
121
|
+
else:
|
|
122
|
+
try:
|
|
123
|
+
gt_val = float(outcome_raw)
|
|
124
|
+
except ValueError:
|
|
125
|
+
gt_val = 0.0
|
|
126
|
+
else:
|
|
127
|
+
gt_val = float(outcome_raw)
|
|
128
|
+
|
|
129
|
+
eval_res = self.evaluator.evaluate(prediction=prediction_val, ground_truth=gt_val, subject_id=subject_id)
|
|
130
|
+
if reference_time:
|
|
131
|
+
eval_res.metadata["reference_time"] = reference_time.isoformat()
|
|
132
|
+
eval_res.metadata["total_latency"] = sum(state.latencies.values())
|
|
133
|
+
if tags:
|
|
134
|
+
eval_res.metadata["tags"] = tags
|
|
135
|
+
return eval_res
|
|
136
|
+
|
|
137
|
+
async def run(self, dataset: BacktestDataset) -> EvaluationReport:
|
|
138
|
+
tasks = [self._run_single(item) for item in dataset.items]
|
|
139
|
+
results = await asyncio.gather(*tasks)
|
|
140
|
+
total_score = sum(r.score for r in results)
|
|
141
|
+
count = len(results)
|
|
142
|
+
mean_score = total_score / count if count > 0 else 0.0
|
|
143
|
+
ece_evaluator = ExpectedCalibrationErrorEvaluator()
|
|
144
|
+
ece_score, ece_bins = ece_evaluator.compute_calibration_data(results)
|
|
145
|
+
slices = SliceAnalytics.compute_slices(results)
|
|
146
|
+
return EvaluationReport(
|
|
147
|
+
metric_name=getattr(self.evaluator, "name", "Brier Score"),
|
|
148
|
+
mean_score=mean_score,
|
|
149
|
+
total_evaluations=count,
|
|
150
|
+
results=results,
|
|
151
|
+
reliability_bins=ece_bins,
|
|
152
|
+
summary_statistics={"ece": ece_score},
|
|
153
|
+
slices=slices,
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
__all__ = ["BacktestInstance", "BacktestDataset", "BacktestRunner"]
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: xrtm-train
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: The Learning/Optimization layer for XRTM.
|
|
5
|
+
Author-email: XRTM Team <moy@xrtm.org>
|
|
6
|
+
License: Apache-2.0
|
|
7
|
+
Requires-Python: >=3.11
|
|
8
|
+
Description-Content-Type: text/markdown
|
|
9
|
+
License-File: LICENSE
|
|
10
|
+
Requires-Dist: pydantic>=2.0.0
|
|
11
|
+
Requires-Dist: numpy>=1.24.0
|
|
12
|
+
Requires-Dist: scikit-learn>=1.3.0
|
|
13
|
+
Requires-Dist: xrtm-data
|
|
14
|
+
Requires-Dist: xrtm-eval
|
|
15
|
+
Requires-Dist: xrtm-forecast
|
|
16
|
+
Provides-Extra: dev
|
|
17
|
+
Requires-Dist: pytest>=7.0.0; extra == "dev"
|
|
18
|
+
Requires-Dist: pytest-asyncio>=0.21.0; extra == "dev"
|
|
19
|
+
Requires-Dist: pytest-cov>=4.1.0; extra == "dev"
|
|
20
|
+
Requires-Dist: ruff>=0.1.0; extra == "dev"
|
|
21
|
+
Requires-Dist: mypy>=1.0.0; extra == "dev"
|
|
22
|
+
Dynamic: license-file
|
|
23
|
+
|
|
24
|
+
# xrtm-train
|
|
25
|
+
|
|
26
|
+
[](https://opensource.org/licenses/Apache-2.0)
|
|
27
|
+
[](https://www.python.org/downloads/)
|
|
28
|
+
|
|
29
|
+
**The Optimization Layer for XRTM.**
|
|
30
|
+
|
|
31
|
+
`xrtm-train` is the engine that closes the loop. It simulates history by replaying agents against past "Ground Truth" snapshots stored in `xrtm-data`, scoring them with `xrtm-eval`, and optimizing their reasoning parameters.
|
|
32
|
+
|
|
33
|
+
## Installation
|
|
34
|
+
|
|
35
|
+
```bash
|
|
36
|
+
uv pip install xrtm-train
|
|
37
|
+
```
|
|
38
|
+
|
|
39
|
+
## Core Primitives
|
|
40
|
+
|
|
41
|
+
### The Simulation Loop
|
|
42
|
+
The `Backtester` orchestrates the simulation. It ensures strict temporal isolation—agents are never exposed to data from the future.
|
|
43
|
+
|
|
44
|
+
```python
|
|
45
|
+
from xrtm.train import Backtester
|
|
46
|
+
|
|
47
|
+
# Initialize components
|
|
48
|
+
backtester = Backtester(agent=my_agent, evaluator=my_evaluator)
|
|
49
|
+
|
|
50
|
+
# Run simulation
|
|
51
|
+
results = await backtester.run(dataset=historical_questions)
|
|
52
|
+
print(f"Mean Brier Score: {results.mean_score}")
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
## Development
|
|
56
|
+
|
|
57
|
+
Prerequisites:
|
|
58
|
+
- [uv](https://github.com/astral-sh/uv)
|
|
59
|
+
|
|
60
|
+
```bash
|
|
61
|
+
# Install dependencies
|
|
62
|
+
uv sync
|
|
63
|
+
|
|
64
|
+
# Run tests
|
|
65
|
+
uv run pytest
|
|
66
|
+
```
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
LICENSE
|
|
2
|
+
README.md
|
|
3
|
+
pyproject.toml
|
|
4
|
+
src/xrtm/train/__init__.py
|
|
5
|
+
src/xrtm/train/core/__init__.py
|
|
6
|
+
src/xrtm/train/core/eval/__init__.py
|
|
7
|
+
src/xrtm/train/core/eval/calibration.py
|
|
8
|
+
src/xrtm/train/kit/memory/__init__.py
|
|
9
|
+
src/xrtm/train/kit/memory/learner.py
|
|
10
|
+
src/xrtm/train/kit/optimization/__init__.py
|
|
11
|
+
src/xrtm/train/kit/optimization/compiler.py
|
|
12
|
+
src/xrtm/train/simulation/backtester.py
|
|
13
|
+
src/xrtm/train/simulation/replayer.py
|
|
14
|
+
src/xrtm/train/simulation/runner.py
|
|
15
|
+
src/xrtm_train.egg-info/PKG-INFO
|
|
16
|
+
src/xrtm_train.egg-info/SOURCES.txt
|
|
17
|
+
src/xrtm_train.egg-info/dependency_links.txt
|
|
18
|
+
src/xrtm_train.egg-info/requires.txt
|
|
19
|
+
src/xrtm_train.egg-info/top_level.txt
|
|
20
|
+
tests/test_backtester.py
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
xrtm
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2026 XRTM Team. All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
from unittest.mock import AsyncMock, MagicMock
|
|
17
|
+
|
|
18
|
+
import pytest
|
|
19
|
+
from xrtm.data import ForecastOutput, ForecastQuestion
|
|
20
|
+
from xrtm.eval import EvaluationResult
|
|
21
|
+
|
|
22
|
+
from xrtm.train import Backtester
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@pytest.mark.asyncio
|
|
26
|
+
async def test_backtester_flow():
|
|
27
|
+
"""Verify that Backtester correctly calls agent and evaluator."""
|
|
28
|
+
|
|
29
|
+
# Mocks
|
|
30
|
+
mock_agent = AsyncMock()
|
|
31
|
+
mock_evaluator = MagicMock()
|
|
32
|
+
|
|
33
|
+
# Setup Data
|
|
34
|
+
question = MagicMock(spec=ForecastQuestion)
|
|
35
|
+
question.id = "q1"
|
|
36
|
+
resolution = MagicMock()
|
|
37
|
+
resolution.outcome = 1
|
|
38
|
+
|
|
39
|
+
prediction = MagicMock(spec=ForecastOutput)
|
|
40
|
+
prediction.confidence = 0.8
|
|
41
|
+
mock_agent.run.return_value = prediction
|
|
42
|
+
|
|
43
|
+
eval_result = EvaluationResult(
|
|
44
|
+
subject_id="q1",
|
|
45
|
+
score=0.04,
|
|
46
|
+
ground_truth=1,
|
|
47
|
+
prediction=0.8
|
|
48
|
+
)
|
|
49
|
+
mock_evaluator.evaluate.return_value = eval_result
|
|
50
|
+
|
|
51
|
+
# Run Backtester
|
|
52
|
+
backtester = Backtester(agent=mock_agent, evaluator=mock_evaluator)
|
|
53
|
+
report = await backtester.run([(question, resolution)])
|
|
54
|
+
|
|
55
|
+
# Assertions
|
|
56
|
+
assert report.total_evaluations == 1
|
|
57
|
+
assert report.mean_score == 0.04
|
|
58
|
+
|
|
59
|
+
mock_agent.run.assert_awaited_once_with(question)
|
|
60
|
+
mock_evaluator.evaluate.assert_called_once()
|