xradio 0.0.23__tar.gz → 0.0.25__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (80) hide show
  1. {xradio-0.0.23/src/xradio.egg-info → xradio-0.0.25}/PKG-INFO +3 -3
  2. {xradio-0.0.23 → xradio-0.0.25}/pyproject.toml +3 -3
  3. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/_utils/zarr/common.py +45 -0
  4. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_zarr/zarr_low_level.py +42 -10
  5. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/zarr.py +3 -3
  6. xradio-0.0.25/src/xradio/vis/_processing_set.py +112 -0
  7. xradio-0.0.25/src/xradio/vis/load_processing_set.py +127 -0
  8. xradio-0.0.25/src/xradio/vis/read_processing_set.py +85 -0
  9. {xradio-0.0.23 → xradio-0.0.25/src/xradio.egg-info}/PKG-INFO +3 -3
  10. xradio-0.0.23/src/xradio/vis/_processing_set.py +0 -84
  11. xradio-0.0.23/src/xradio/vis/load_processing_set.py +0 -127
  12. xradio-0.0.23/src/xradio/vis/read_processing_set.py +0 -43
  13. {xradio-0.0.23 → xradio-0.0.25}/LICENSE.txt +0 -0
  14. {xradio-0.0.23 → xradio-0.0.25}/MANIFEST.in +0 -0
  15. {xradio-0.0.23 → xradio-0.0.25}/README.md +0 -0
  16. {xradio-0.0.23 → xradio-0.0.25}/setup.cfg +0 -0
  17. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/__init__.py +0 -0
  18. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/_utils/__init__.py +0 -0
  19. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/_utils/_casacore/tables.py +0 -0
  20. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/_utils/common.py +0 -0
  21. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/_utils/zarr/__init__.py +0 -0
  22. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/__init__.py +0 -0
  23. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/__init__.py +0 -0
  24. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_casacore/__init__.py +0 -0
  25. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_casacore/common.py +0 -0
  26. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_casacore/xds_from_casacore.py +0 -0
  27. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_casacore/xds_to_casacore.py +0 -0
  28. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_fits/xds_from_fits.py +0 -0
  29. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_zarr/common.py +0 -0
  30. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_zarr/xds_from_zarr.py +0 -0
  31. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/_zarr/xds_to_zarr.py +0 -0
  32. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/casacore.py +0 -0
  33. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/common.py +0 -0
  34. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/fits.py +0 -0
  35. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/_util/image_factory.py +0 -0
  36. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/image/image.py +0 -0
  37. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/schema/__init__.py +0 -0
  38. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/schema/bases.py +0 -0
  39. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/schema/check.py +0 -0
  40. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/schema/dataclass.py +0 -0
  41. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/schema/metamodel.py +0 -0
  42. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/schema/typing.py +0 -0
  43. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/__init__.py +0 -0
  44. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/__init__.py +0 -0
  45. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/_tables/load.py +0 -0
  46. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/_tables/load_main_table.py +0 -0
  47. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/_tables/read.py +0 -0
  48. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/_tables/read_main_table.py +0 -0
  49. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/_tables/read_subtables.py +0 -0
  50. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/_tables/table_query.py +0 -0
  51. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/_tables/write.py +0 -0
  52. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/_tables/write_exp_api.py +0 -0
  53. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/chunks.py +0 -0
  54. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/conversion.py +0 -0
  55. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/descr.py +0 -0
  56. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/msv2_msv3.py +0 -0
  57. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/msv2_to_msv4_meta.py +0 -0
  58. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/msv4_infos.py +0 -0
  59. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/msv4_sub_xdss.py +0 -0
  60. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/optimised_functions.py +0 -0
  61. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/partition_queries.py +0 -0
  62. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/partitions.py +0 -0
  63. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_ms/subtables.py +0 -0
  64. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_utils/cds.py +0 -0
  65. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_utils/partition_attrs.py +0 -0
  66. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_utils/stokes_types.py +0 -0
  67. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_utils/xds_helper.py +0 -0
  68. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_zarr/encoding.py +0 -0
  69. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_zarr/read.py +0 -0
  70. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/_zarr/write.py +0 -0
  71. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/ms.py +0 -0
  72. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/ms_column_descriptions_dicts.py +0 -0
  73. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/_vis_utils/zarr.py +0 -0
  74. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/convert_msv2_to_processing_set.py +0 -0
  75. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/model.py +0 -0
  76. {xradio-0.0.23 → xradio-0.0.25}/src/xradio/vis/vis_io.py +0 -0
  77. {xradio-0.0.23 → xradio-0.0.25}/src/xradio.egg-info/SOURCES.txt +0 -0
  78. {xradio-0.0.23 → xradio-0.0.25}/src/xradio.egg-info/dependency_links.txt +0 -0
  79. {xradio-0.0.23 → xradio-0.0.25}/src/xradio.egg-info/requires.txt +0 -0
  80. {xradio-0.0.23 → xradio-0.0.25}/src/xradio.egg-info/top_level.txt +0 -0
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: xradio
3
- Version: 0.0.23
4
- Summary: Xarray Radio Astronomy Data IO
3
+ Version: 0.0.25
4
+ Summary: Xarray Radio Astronomy Data IO
5
5
  Author-email: Jan-Willem Steeb <jsteeb@nrao.edu>
6
6
  License: BSD 3-Clause License
7
7
 
@@ -32,7 +32,7 @@ License: BSD 3-Clause License
32
32
  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33
33
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34
34
 
35
- Requires-Python: <3.12,>=3.8
35
+ Requires-Python: <3.12,>=3.9
36
36
  Description-Content-Type: text/markdown
37
37
  License-File: LICENSE.txt
38
38
  Requires-Dist: astropy
@@ -1,13 +1,13 @@
1
1
  [project]
2
2
  name = "xradio"
3
- version = "0.0.23"
4
- description = "Xarray Radio Astronomy Data IO "
3
+ version = "0.0.25"
4
+ description = "Xarray Radio Astronomy Data IO"
5
5
  authors = [
6
6
  {name = "Jan-Willem Steeb", email="jsteeb@nrao.edu"},
7
7
  ]
8
8
  license = {file = "LICENSE.txt"}
9
9
  readme = "README.md"
10
- requires-python = ">= 3.8, < 3.12"
10
+ requires-python = ">= 3.9, < 3.12"
11
11
 
12
12
  dependencies = [
13
13
  'astropy',
@@ -3,6 +3,47 @@ import xarray as xr
3
3
  import zarr
4
4
 
5
5
 
6
+ def _open_dataset(store, xds_isel=None, data_variables=None, load=False):
7
+ """
8
+
9
+ Parameters
10
+ ----------
11
+ store : _type_
12
+ _description_
13
+ xds_isel : _type_, optional
14
+ Example {'time':slice(0,10), 'frequency':slice(5,7)}, by default None
15
+ data_variables : _type_, optional
16
+ Example ['VISIBILITY','WEIGHT'], by default None
17
+ load : bool, optional
18
+ _description_, by default False
19
+
20
+ Returns
21
+ -------
22
+ _type_
23
+ _description_
24
+ """
25
+
26
+ import dask
27
+
28
+ xds = xr.open_zarr(store)
29
+
30
+ if xds_isel is not None:
31
+ xds = xds.isel(xds_isel)
32
+
33
+ if data_variables is not None:
34
+ xds_sub = xr.Dataset()
35
+ for dv in data_variables:
36
+ xds_sub[dv] = xds[dv]
37
+ xds_sub.attrs = xds.attrs
38
+ xds = xds_sub
39
+
40
+ if load:
41
+ with dask.config.set(scheduler="synchronous"):
42
+ xds = xds.load()
43
+ return xds
44
+
45
+
46
+ # Code to depricate:
6
47
  def _get_attrs(zarr_obj):
7
48
  """
8
49
  get attributes of zarr obj (groups or arrays)
@@ -33,6 +74,7 @@ def _load_no_dask_zarr(zarr_name, slice_dict={}):
33
74
  coords = {}
34
75
  xds = xr.Dataset()
35
76
  for var_name, var in zarr_group.arrays():
77
+ print("Hallo 3", var_name, var.shape)
36
78
  var_attrs = _get_attrs(var)
37
79
 
38
80
  for dim in var_attrs[DIMENSION_KEY]:
@@ -54,6 +96,9 @@ def _load_no_dask_zarr(zarr_name, slice_dict={}):
54
96
  for dim in var_attrs[DIMENSION_KEY]:
55
97
  slicing_list.append(slice_dict_complete[dim])
56
98
  slicing_tuple = tuple(slicing_list)
99
+
100
+ print(var_attrs[DIMENSION_KEY])
101
+
57
102
  xds[var_name] = xr.DataArray(
58
103
  var[slicing_tuple], dims=var_attrs[DIMENSION_KEY]
59
104
  )
@@ -70,7 +70,6 @@ image_data_variables_and_dims_single_precision = {
70
70
  }
71
71
 
72
72
 
73
-
74
73
  def pad_array_with_nans(input_array, output_shape, dtype):
75
74
  """
76
75
  Pad an integer array with NaN values to match the specified output shape.
@@ -110,19 +109,55 @@ def write_binary_blob_to_disk(arr, file_path, compressor):
110
109
  Returns:
111
110
  - None
112
111
  """
112
+ import graphviper.utils.logger as logger
113
113
  # Encode the NumPy array using the codec
114
+ logger.debug('1. Before compressor ' + file_path)
114
115
  compressed_arr = compressor.encode(np.ascontiguousarray(arr))
115
116
 
117
+ logger.debug('2. Before makedir')
116
118
  # Ensure the directory exists before saving the file
117
119
  os.makedirs(os.path.dirname(file_path), exist_ok=True)
118
120
 
119
- # Save the compressed array to disk
120
- with open(file_path, "wb") as file:
121
- file.write(compressed_arr)
121
+ arr_len = len(compressed_arr)
122
+ logger.debug('3. Before write the len is: ' + str(arr_len))
123
+ #Save the compressed array to disk
124
+ # with open(file_path, "wb") as file:
125
+ # file.write(compressed_arr)
126
+
127
+ logger.debug('4. Using new writer: ' + str(arr_len))
128
+ write_to_lustre_chunked(file_path, compressed_arr)
129
+
130
+ # /.lustre/aoc/sciops/pford/CHILES/cube_image/uid___A002_Xee7674_X2844_Cube_3.img.zarr/SKY/0.0.110.0.0
131
+ # 348192501 bytes
132
+ # 332.0622453689575 M
133
+
134
+ # from io import BufferedWriter
135
+ # # Calculate buffer size based on compressed_arr size (adjust multiplier)
136
+ # buffer_size = min(len(compressed_arr), 1024 * 1024 * 4) # Max 4 MB buffer
137
+ # with BufferedWriter(open(file_path, "wb"), buffer_size) as f:
138
+ # f.write(compressed_arr)
139
+ # f.flush() # Ensure data gets written to disk
140
+
141
+
142
+ logger.debug('4. Write completed')
122
143
 
123
144
  # print(f"Compressed array saved to {file_path}")
124
145
 
125
146
 
147
+ def write_to_lustre_chunked(file_path, compressed_arr, chunk_size=1024 * 1024 * 128): # 128 MiB chunks
148
+ """
149
+ Writes compressed data to a Lustre file path with chunking.
150
+
151
+ Args:
152
+ file_path: Path to the file for writing.
153
+ compressed_arr: Compressed data array to write.
154
+ chunk_size: Size of each data chunk in bytes (default: 128 MiB).
155
+ """
156
+ with open(file_path, "wb") as f:
157
+ for i in range(0, len(compressed_arr), chunk_size):
158
+ chunk = compressed_arr[i:i + chunk_size]
159
+ f.write(chunk)
160
+
126
161
  def read_binary_blob_from_disk(file_path, compressor, dtype=np.float64):
127
162
  """
128
163
  Read a compressed binary blob from disk and decode it using Blosc.
@@ -277,8 +312,7 @@ def create_data_variable_meta_data_on_disk(
277
312
  return zarr_meta
278
313
 
279
314
 
280
-
281
- def write_chunk(img_xds,meta,parallel_dims_chunk_id,compressor,image_file):
315
+ def write_chunk(img_xds, meta, parallel_dims_chunk_id, compressor, image_file):
282
316
  dims = meta["dims"]
283
317
  dtype = meta["dtype"]
284
318
  data_varaible_name = meta["name"]
@@ -304,8 +338,6 @@ def write_chunk(img_xds,meta,parallel_dims_chunk_id,compressor,image_file):
304
338
 
305
339
  write_binary_blob_to_disk(
306
340
  array,
307
- file_path=os.path.join(
308
- image_file, data_varaible_name, chunk_name
309
- ),
341
+ file_path=os.path.join(image_file, data_varaible_name, chunk_name),
310
342
  compressor=compressor,
311
- )
343
+ )
@@ -3,7 +3,7 @@ from ._zarr.xds_from_zarr import _read_zarr
3
3
  import numpy as np
4
4
  import os
5
5
  import xarray as xr
6
- from ..._utils.zarr.common import _load_no_dask_zarr
6
+ from ..._utils.zarr.common import _open_dataset
7
7
 
8
8
 
9
9
  def _xds_to_zarr(xds: xr.Dataset, zarr_store: str):
@@ -25,11 +25,11 @@ def _xds_from_zarr(
25
25
 
26
26
 
27
27
  def _load_image_from_zarr_no_dask(zarr_file: str, selection: dict) -> xr.Dataset:
28
- image_xds = _load_no_dask_zarr(zarr_file, selection)
28
+ image_xds = _open_dataset(zarr_file, selection, load=True)
29
29
  for h in ["HISTORY", "_attrs_xds_history"]:
30
30
  history = os.sep.join([zarr_file, h])
31
31
  if os.path.isdir(history):
32
- image_xds.attrs["history"] = _load_no_dask_zarr(history)
32
+ image_xds.attrs["history"] = _open_dataset(history, load=True)
33
33
  break
34
34
  _iter_dict(image_xds.attrs)
35
35
  return image_xds
@@ -0,0 +1,112 @@
1
+ import pandas as pd
2
+
3
+
4
+ class processing_set(dict):
5
+ def __init__(self, *args, **kwargs):
6
+ super().__init__(*args, **kwargs)
7
+ self.meta = {"summary": {}}
8
+
9
+ # generate_meta(self)
10
+
11
+ # def generate_meta(self):
12
+ # self.meta['summary'] = {"base": _summary(self)}
13
+ # self.meta['max_dims'] = _get_ps_max_dims(self)
14
+
15
+ def summary(self, data_group="base"):
16
+ if data_group in self.meta["summary"]:
17
+ return self.meta["summary"][data_group]
18
+ else:
19
+ self.meta["summary"][data_group] = self._summary(data_group)
20
+ return self.meta["summary"][data_group]
21
+
22
+ def get_ps_max_dims(self):
23
+ if "max_dims" in self.meta:
24
+ return self.meta["max_dims"]
25
+ else:
26
+ self.meta["max_dims"] = self._get_ps_max_dims()
27
+ return self.meta["max_dims"]
28
+
29
+ def get_ps_freq_axis(self):
30
+ if "freq_axis" in self.meta:
31
+ return self.meta["freq_axis"]
32
+ else:
33
+ self.meta["freq_axis"] = self._get_ps_freq_axis()
34
+ return self.meta["freq_axis"]
35
+
36
+ def _summary(self, data_group="base"):
37
+ summary_data = {
38
+ "name": [],
39
+ "ddi": [],
40
+ "intent": [],
41
+ "field_id": [],
42
+ "field_name": [],
43
+ "start_frequency": [],
44
+ "end_frequency": [],
45
+ "shape": [],
46
+ "field_coords": []
47
+ }
48
+ from astropy.coordinates import SkyCoord
49
+ import astropy.units as u
50
+ for key, value in self.items():
51
+ summary_data["name"].append(key)
52
+ summary_data["ddi"].append(value.attrs["ddi"])
53
+ summary_data["intent"].append(value.attrs["intent"])
54
+
55
+ if "visibility" in value.attrs["data_groups"][data_group]:
56
+ data_name = value.attrs["data_groups"][data_group]["visibility"]
57
+
58
+ if "spectrum" in value.attrs["data_groups"][data_group]:
59
+ data_name = value.attrs["data_groups"][data_group]["spectrum"]
60
+
61
+ summary_data["shape"].append(value[data_name].shape)
62
+
63
+ summary_data["field_id"].append(
64
+ value[data_name].attrs["field_info"]["field_id"]
65
+ )
66
+ summary_data["field_name"].append(
67
+ value[data_name].attrs["field_info"]["name"]
68
+ )
69
+ summary_data["start_frequency"].append(value["frequency"].values[0])
70
+ summary_data["end_frequency"].append(value["frequency"].values[-1])
71
+
72
+ ra_dec_rad = value[data_name].attrs["field_info"]['phase_direction']['data']
73
+ frame = value[data_name].attrs["field_info"]['phase_direction']['attrs']['frame'].lower()
74
+ coord = SkyCoord(ra=ra_dec_rad[0]*u.rad, dec=ra_dec_rad[1]*u.rad, frame=frame)
75
+
76
+ summary_data["field_coords"].append([frame, coord.ra.to_string(unit=u.hour), coord.dec.to_string(unit=u.deg)])
77
+ summary_df = pd.DataFrame(summary_data)
78
+ return summary_df
79
+
80
+ def _get_ps_freq_axis(self):
81
+ import xarray as xr
82
+
83
+ spw_ids = []
84
+ freq_axis_list = []
85
+ frame = self.get(0).frequency.attrs["frame"]
86
+ for ms_xds in self.values():
87
+ assert (
88
+ frame == ms_xds.frequency.attrs["frame"]
89
+ ), "Frequency reference frame not consistent in processing set."
90
+ if ms_xds.frequency.attrs["spw_id"] not in spw_ids:
91
+ spw_ids.append(ms_xds.frequency.attrs["spw_id"])
92
+ freq_axis_list.append(ms_xds.frequency)
93
+
94
+ freq_axis = xr.concat(freq_axis_list, dim="frequency").sortby("frequency")
95
+ return freq_axis
96
+
97
+ def _get_ps_max_dims(self):
98
+ max_dims = None
99
+ for ms_xds in self.values():
100
+ if max_dims is None:
101
+ max_dims = dict(ms_xds.sizes)
102
+ else:
103
+ for dim_name, size in ms_xds.sizes.items():
104
+ if dim_name in max_dims:
105
+ if max_dims[dim_name] < size:
106
+ max_dims[dim_name] = size
107
+ else:
108
+ max_dims[dim_name] = size
109
+ return max_dims
110
+
111
+ def get(self, id):
112
+ return self[list(self.keys())[id]]
@@ -0,0 +1,127 @@
1
+ import xarray as xr
2
+ import zarr
3
+ import copy
4
+ import os
5
+ from ._processing_set import processing_set
6
+ from typing import Dict, Union
7
+
8
+
9
+ def load_processing_set(
10
+ ps_store: str,
11
+ sel_parms: dict,
12
+ data_variables: Union[list, None] = None,
13
+ load_sub_datasets: bool = True,
14
+ )->processing_set:
15
+ """Loads a processing set into memory.
16
+
17
+ Parameters
18
+ ----------
19
+ ps_store : str
20
+ String of the path and name of the processing set. For example '/users/user_1/uid___A002_Xf07bba_Xbe5c_target.lsrk.vis.zarr'.
21
+ sel_parms : dict
22
+ A dictionary where the keys are the names of the ms_xds's and the values are slice_dicts.
23
+ slice_dicts: A dictionary where the keys are the dimension names and the values are slices.
24
+ For example::
25
+
26
+ {
27
+ 'ms_v4_name_1': {'frequency': slice(0, 160, None),'time':slice(0,100)},
28
+ ...
29
+ 'ms_v4_name_n': {'frequency': slice(0, 160, None),'time':slice(0,100)},
30
+ }
31
+
32
+ data_variables : Union[list, None], optional
33
+ The list of data variables to load into memory for example ['VISIBILITY', 'WEIGHT, 'FLAGS']. By default None which will load all data variables into memory.
34
+ load_sub_datasets : bool, optional
35
+ If true sub-datasets (for example weather_xds, antenna_xds, pointing_xds, ...) will be loaded into memory, by default True.
36
+
37
+ Returns
38
+ -------
39
+ processing_set
40
+ In memory representation of processing set (data is represented by Dask.arrays).
41
+ """
42
+ from xradio._utils.zarr.common import _open_dataset
43
+
44
+ ps = processing_set()
45
+ for ms_dir_name, ms_xds_isel in sel_parms.items():
46
+ xds = _open_dataset(
47
+ os.path.join(ps_store, ms_dir_name, "MAIN"),
48
+ ms_xds_isel,
49
+ data_variables,
50
+ load=True,
51
+ )
52
+
53
+ if load_sub_datasets:
54
+ from xradio.vis.read_processing_set import _read_sub_xds
55
+
56
+ xds.attrs = {
57
+ **xds.attrs,
58
+ **_read_sub_xds(os.path.join(ps_store, ms_dir_name), load=True),
59
+ }
60
+
61
+ ps[ms_dir_name] = xds
62
+ return ps
63
+
64
+
65
+ class processing_set_iterator:
66
+
67
+ def __init__(
68
+ self,
69
+ sel_parms: dict,
70
+ input_data_store: str,
71
+ input_data: Union[Dict, processing_set, None] = None,
72
+ data_variables: list = None,
73
+ load_sub_datasets: bool = True,
74
+ ):
75
+ """An iterator that will go through a processing set one MS v4 at a time.
76
+
77
+ Parameters
78
+ ----------
79
+ sel_parms : dict
80
+ A dictionary where the keys are the names of the ms_xds's and the values are slice_dicts.
81
+ slice_dicts: A dictionary where the keys are the dimension names and the values are slices.
82
+ For example::
83
+
84
+ {
85
+ 'ms_v4_name_1': {'frequency': slice(0, 160, None),'time':slice(0,100)},
86
+ ...
87
+ 'ms_v4_name_n': {'frequency': slice(0, 160, None),'time':slice(0,100)},
88
+ }
89
+ input_data_store : str
90
+ String of the path and name of the processing set. For example '/users/user_1/uid___A002_Xf07bba_Xbe5c_target.lsrk.vis.zarr'.
91
+ input_data : Union[Dict, processing_set, None], optional
92
+ If the processing set is in memory already it can be supplied here. By default None which will make the iterator load data using the supplied input_data_store.
93
+ data_variables : list, optional
94
+ The list of data variables to load into memory for example ['VISIBILITY', 'WEIGHT, 'FLAGS']. By default None which will load all data variables into memory.
95
+ load_sub_datasets : bool, optional
96
+ If true sub-datasets (for example weather_xds, antenna_xds, pointing_xds, ...) will be loaded into memory, by default True.
97
+ """
98
+
99
+ self.input_data = input_data
100
+ self.input_data_store = input_data_store
101
+ self.sel_parms = sel_parms
102
+ self.xds_name_iter = iter(sel_parms.keys())
103
+ self.data_variables = data_variables
104
+ self.load_sub_datasets = load_sub_datasets
105
+
106
+ def __iter__(self):
107
+ return self
108
+
109
+ def __next__(self):
110
+ try:
111
+ xds_name = next(self.xds_name_iter)
112
+ except Exception as e:
113
+ raise StopIteration
114
+
115
+ if self.input_data is None:
116
+ slice_description = self.sel_parms[xds_name]
117
+ ps = load_processing_set(
118
+ ps_store=self.input_data_store,
119
+ sel_parms={xds_name: slice_description},
120
+ data_variables=self.data_variables,
121
+ load_sub_datasets=self.load_sub_datasets,
122
+ )
123
+ xds = ps.get(0)
124
+ else:
125
+ xds = self.input_data[xds_name] # In memory
126
+
127
+ return xds
@@ -0,0 +1,85 @@
1
+ import os
2
+ import xarray as xr
3
+ from ._processing_set import processing_set
4
+ import graphviper.utils.logger as logger
5
+ from xradio._utils.zarr.common import _open_dataset
6
+
7
+
8
+ def read_processing_set(
9
+ ps_store: str, intents: list = None, fields: str = None
10
+ )->processing_set:
11
+ """Creates a lazy representation of a Processing Set (only meta-data is loaded into memory).
12
+
13
+ Parameters
14
+ ----------
15
+ ps_store : str
16
+ String of the path and name of the processing set. For example '/users/user_1/uid___A002_Xf07bba_Xbe5c_target.lsrk.vis.zarr'.
17
+ intents : list, optional
18
+ A list of the intents to be read for example ['OBSERVE_TARGET#ON_SOURCE']. The intents in a processing set can be seem by calling processing_set.summary().
19
+ By default None, which will read all intents.
20
+ fields : str, optional
21
+ The list of field names that will be read, by default None which will read all fields.
22
+
23
+ Returns
24
+ -------
25
+ processing_set
26
+ Lazy representation of processing set (data is represented by Dask.arrays).
27
+ """
28
+ items = os.listdir(ps_store)
29
+ ms_xds = xr.Dataset()
30
+ ps = processing_set()
31
+ data_group = 'base'
32
+ for ms_dir_name in items:
33
+ if "ddi" in ms_dir_name:
34
+ xds = _open_dataset(os.path.join(ps_store, ms_dir_name, "MAIN"))
35
+ if (intents is None) or (xds.attrs["intent"] in intents):
36
+ data_name = _get_data_name(xds, data_group)
37
+
38
+ if (fields is None) or (
39
+ xds[data_name].attrs["field_info"]["name"] in fields
40
+ ):
41
+ xds.attrs = {
42
+ **xds.attrs,
43
+ **_read_sub_xds(os.path.join(ps_store, ms_dir_name)),
44
+ }
45
+ ps[ms_dir_name] = xds
46
+ return ps
47
+
48
+
49
+ def _read_sub_xds(ms_store, load=False):
50
+ sub_xds_dict = {}
51
+
52
+ sub_xds = {
53
+ "antenna_xds": "ANTENNA",
54
+ }
55
+ for sub_xds_key, sub_xds_name in sub_xds.items():
56
+ sub_xds_dict[sub_xds_key] = _open_dataset(
57
+ os.path.join(ms_store, sub_xds_name), load=load
58
+ )
59
+
60
+ optional_sub_xds = {
61
+ "weather_xds": "WEATHER",
62
+ "pointing_xds": "POINTING",
63
+ }
64
+ for sub_xds_key, sub_xds_name in optional_sub_xds.items():
65
+ sub_xds_path = os.path.join(ms_store, sub_xds_name)
66
+ if os.path.isdir(sub_xds_path):
67
+ sub_xds_dict[sub_xds_key] = _open_dataset(sub_xds_path, load=load)
68
+
69
+ return sub_xds_dict
70
+
71
+
72
+ def _get_data_name(xds, data_group):
73
+ if "visibility" in xds.attrs["data_groups"][data_group]:
74
+ data_name = xds.attrs["data_groups"][data_group]["visibility"]
75
+ elif "spectrum" in xds.attrs["data_groups"][data_group]:
76
+ data_name = xds.attrs["data_groups"][data_group]["spectrum"]
77
+ else:
78
+ error_message = (
79
+ "No Visibility or Spectrum data variable found in data_group "
80
+ + data_group
81
+ + "."
82
+ )
83
+ logger.exception(error_message)
84
+ raise ValueError(error_message)
85
+ return data_name
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: xradio
3
- Version: 0.0.23
4
- Summary: Xarray Radio Astronomy Data IO
3
+ Version: 0.0.25
4
+ Summary: Xarray Radio Astronomy Data IO
5
5
  Author-email: Jan-Willem Steeb <jsteeb@nrao.edu>
6
6
  License: BSD 3-Clause License
7
7
 
@@ -32,7 +32,7 @@ License: BSD 3-Clause License
32
32
  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33
33
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34
34
 
35
- Requires-Python: <3.12,>=3.8
35
+ Requires-Python: <3.12,>=3.9
36
36
  Description-Content-Type: text/markdown
37
37
  License-File: LICENSE.txt
38
38
  Requires-Dist: astropy
@@ -1,84 +0,0 @@
1
- import pandas as pd
2
-
3
-
4
- class processing_set(dict):
5
- def __init__(self, *args, **kwargs):
6
- super().__init__(*args, **kwargs)
7
- self.meta = {'summary':{}}
8
- # generate_meta(self)
9
-
10
- # def generate_meta(self):
11
- # self.meta['summary'] = {"base": _summary(self)}
12
- # self.meta['max_dims'] = _get_ps_max_dims(self)
13
-
14
- def summary(self, data_group="base"):
15
- if data_group in self.meta['summary']:
16
- return self.meta['summary'][data_group]
17
- else:
18
- self.meta['summary'][data_group] = self._summary(data_group)
19
- return self.meta['summary'][data_group]
20
-
21
- def get_ps_max_dims(self):
22
- if 'max_dims' in self.meta:
23
- return self.meta['max_dims']
24
- else:
25
- self.meta['max_dims'] = self._get_ps_max_dims()
26
- return self.meta['max_dims']
27
-
28
- def _summary(self, data_group="base"):
29
- summary_data = {
30
- "name": [],
31
- "ddi": [],
32
- "intent": [],
33
- "field_id": [],
34
- "field_name": [],
35
- "start_frequency": [],
36
- "end_frequency": [],
37
- "shape": []
38
- }
39
- for key, value in self.items():
40
- summary_data["name"].append(key)
41
- summary_data["ddi"].append(value.attrs["ddi"])
42
- summary_data["intent"].append(value.attrs["intent"])
43
-
44
- if "visibility" in value.attrs["data_groups"][data_group]:
45
- data_name = value.attrs["data_groups"][data_group]["visibility"]
46
-
47
- if "spectrum" in value.attrs["data_groups"][data_group]:
48
- data_name = value.attrs["data_groups"][data_group]["spectrum"]
49
-
50
- summary_data["shape"].append(
51
- value[data_name].shape
52
- )
53
-
54
- summary_data["field_id"].append(
55
- value[data_name].attrs[
56
- "field_info"
57
- ]["field_id"]
58
- )
59
- summary_data["field_name"].append(
60
- value[data_name].attrs[
61
- "field_info"
62
- ]["name"]
63
- )
64
- summary_data["start_frequency"].append(value["frequency"].values[0])
65
- summary_data["end_frequency"].append(value["frequency"].values[-1])
66
- summary_df = pd.DataFrame(summary_data)
67
- return summary_df
68
-
69
- def _get_ps_max_dims(self):
70
- max_dims = None
71
- for ms_xds in self.values():
72
- if max_dims is None:
73
- max_dims = dict(ms_xds.sizes)
74
- else:
75
- for dim_name, size in ms_xds.sizes.items():
76
- if dim_name in max_dims:
77
- if max_dims[dim_name] < size:
78
- max_dims[dim_name] = size
79
- else:
80
- max_dims[dim_name] = size
81
- return max_dims
82
-
83
- def get(self, id):
84
- return self[list(self.keys())[id]]
@@ -1,127 +0,0 @@
1
- import xarray as xr
2
- import zarr
3
- import copy
4
- import os
5
- from ._processing_set import processing_set
6
- from .._utils.zarr.common import _load_no_dask_zarr
7
-
8
- # from xradio._utils._logger import _get_logger
9
-
10
-
11
- def _load_ms_xds(
12
- ps_name, ms_xds_name, slice_dict={}, cache_dir=None, chunk_id=None, date_time=""
13
- ):
14
- # logger = _get_logger()
15
- if cache_dir:
16
- xds_cached_name = (
17
- os.path.join(cache_dir, ms_xds_name) + "_" + str(chunk_id) + "_" + date_time
18
- )
19
-
20
- # Check if already chached:
21
- try:
22
- ms_xds = _load_ms_xds_core(
23
- ms_xds_name=xds_cached_name, slice_dict=slice_dict
24
- )
25
-
26
- # logger.debug(ms_xds_name + ' chunk ' + str(slice_dict) + ' was found in cache: ' + xds_cached)
27
- found_in_cache = True
28
- return xds, found_in_cache
29
- except:
30
- # logger.debug(xds_cached + ' chunk ' + str(slice_dict) + ' was not found in cache or failed to load. Retrieving chunk from ' + ms_xds_name + ' .')
31
- ms_xds = _load_ms_xds_core(
32
- ms_xds_name=os.path.join(ps_name, ms_xds_name), slice_dict=slice_dict
33
- )
34
- write_ms_xds(ms_xds, xds_cached_name)
35
-
36
- found_in_cache = False
37
- return xds, found_in_cache
38
- else:
39
- found_in_cache = None
40
- ms_xds = _load_ms_xds_core(
41
- ms_xds_name=os.path.join(ps_name, ms_xds_name), slice_dict=slice_dict
42
- )
43
- return ms_xds, found_in_cache
44
-
45
-
46
- def _write_ms_xds(ms_xds, ms_xds_name):
47
- ms_xds_temp = ms_xds
48
- xr.Dataset.to_zarr(
49
- ms_xds.attrs["ANTENNA"],
50
- os.path.join(xds_cached_name, "ANTENNA"),
51
- consolidated=True,
52
- )
53
- ms_xds_temp = ms_xds
54
- ms_xds_temp.attrs["ANTENNA"] = {}
55
- xr.Dataset.to_zarr(
56
- ms_xds_temp, os.path.join(xds_cached_name, "MAIN"), consolidated=True
57
- )
58
-
59
-
60
- def _load_ms_xds_core(ms_xds_name, slice_dict):
61
- ms_xds = _load_no_dask_zarr(
62
- zarr_name=os.path.join(ms_xds_name, "MAIN"), slice_dict=slice_dict
63
- )
64
- ms_xds.attrs["antenna_xds"] = _load_no_dask_zarr(
65
- zarr_name=os.path.join(ms_xds_name, "ANTENNA")
66
- )
67
- sub_xds = {
68
- "antenna_xds": "ANTENNA",
69
- }
70
- for sub_xds_key, sub_xds_name in sub_xds.items():
71
- ms_xds.attrs[sub_xds_key] = _load_no_dask_zarr(
72
- zarr_name=os.path.join(ms_xds_name, sub_xds_name)
73
- )
74
- optional_sub_xds = {
75
- "weather_xds": "WEATHER",
76
- "pointing_xds": "POINTING",
77
- }
78
- for sub_xds_key, sub_xds_name in sub_xds.items():
79
- sub_xds_path = os.path.join(ms_xds_name, sub_xds_name)
80
- if os.path.isdir(sub_xds_path):
81
- ms_xds.attrs[sub_xds_key] = _load_no_dask_zarr(
82
- zarr_name=os.path.join(ms_xds_name, sub_xds_name)
83
- )
84
-
85
- return ms_xds
86
-
87
-
88
- def load_processing_set(ps_name, sel_parms):
89
- """
90
- sel_parms
91
- A dictionary where the keys are the names of the ms_xds's and the values are slice_dicts.
92
- slice_dicts: A dictionary where the keys are the dimension names and the values are slices.
93
- """
94
- ps = processing_set()
95
- for name_ms_xds, ms_xds_sel_parms in sel_parms.items():
96
- ps[name_ms_xds] = _load_ms_xds(ps_name, name_ms_xds, ms_xds_sel_parms)[0]
97
- return ps
98
-
99
-
100
- class processing_set_iterator:
101
-
102
- def __init__(self, data_selection, input_data_store, input_data=None):
103
- self.input_data = input_data
104
- self.input_data_store = input_data_store
105
- self.data_selection = data_selection
106
- self.xds_name_iter = iter(data_selection.keys())
107
-
108
- def __iter__(self):
109
- return self
110
-
111
- def __next__(self):
112
- try:
113
- xds_name = next(self.xds_name_iter)
114
- except Exception as e:
115
- raise StopIteration
116
-
117
- if self.input_data is None:
118
- slice_description = self.data_selection[xds_name]
119
- ps = load_processing_set(
120
- ps_name=self.input_data_store,
121
- sel_parms={xds_name: slice_description},
122
- )
123
- xds = ps.get(0)
124
- else:
125
- xds = self.input_data[xds_name] # In memory
126
-
127
- return xds
@@ -1,43 +0,0 @@
1
- import os
2
-
3
- import xarray as xr
4
-
5
- from ._processing_set import processing_set
6
-
7
-
8
- def read_processing_set(ps_name, intents=None, data_group='base', fields=None):
9
- items = os.listdir(ps_name)
10
- ms_xds = xr.Dataset()
11
- ps = processing_set()
12
- for i in items:
13
- if "ddi" in i:
14
- xds = xr.open_zarr(ps_name + "/" + i + "/MAIN")
15
-
16
- if (intents is None) or (xds.attrs["intent"] in intents):
17
-
18
- if "visibility" in xds.attrs["data_groups"][data_group]:
19
- data_name = xds.attrs["data_groups"][data_group]["visibility"]
20
-
21
- if "spectrum" in xds.attrs["data_groups"][data_group]:
22
- data_name = xds.attrs["data_groups"][data_group]["spectrum"]
23
-
24
- if (fields is None) or (xds[data_name].attrs["field_info"]["name"] in fields):
25
- ps[i] = xds
26
- sub_xds = {
27
- "antenna_xds": "ANTENNA",
28
- }
29
- for sub_xds_key, sub_xds_name in sub_xds.items():
30
- ps[i].attrs[sub_xds_key] = xr.open_zarr(
31
- ps_name + "/" + i + "/" + sub_xds_name
32
- )
33
-
34
- optional_sub_xds = {
35
- "weather_xds": "WEATHER",
36
- "pointing_xds": "POINTING",
37
- }
38
- for sub_xds_key, sub_xds_name in optional_sub_xds.items():
39
- sub_xds_path = ps_name + "/" + i + "/" + sub_xds_name
40
- if os.path.isdir(sub_xds_path):
41
- ps[i].attrs[sub_xds_key] = xr.open_zarr(sub_xds_path)
42
-
43
- return ps
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes