xpk 0.4.0__tar.gz → 0.6.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (65) hide show
  1. {xpk-0.4.0 → xpk-0.6.0}/PKG-INFO +304 -35
  2. xpk-0.4.0/xpk.egg-info/PKG-INFO → xpk-0.6.0/README.md +294 -51
  3. {xpk-0.4.0 → xpk-0.6.0}/pyproject.toml +15 -4
  4. xpk-0.6.0/src/xpk/__init__.py +15 -0
  5. xpk-0.6.0/src/xpk/commands/__init__.py +15 -0
  6. xpk-0.6.0/src/xpk/commands/batch.py +109 -0
  7. xpk-0.6.0/src/xpk/commands/cluster.py +784 -0
  8. xpk-0.6.0/src/xpk/commands/cluster_gcluster.py +185 -0
  9. xpk-0.6.0/src/xpk/commands/info.py +245 -0
  10. xpk-0.6.0/src/xpk/commands/inspector.py +363 -0
  11. xpk-0.6.0/src/xpk/commands/job.py +197 -0
  12. xpk-0.6.0/src/xpk/commands/kind.py +253 -0
  13. xpk-0.6.0/src/xpk/commands/shell.py +120 -0
  14. xpk-0.6.0/src/xpk/commands/version.py +39 -0
  15. xpk-0.6.0/src/xpk/commands/workload.py +692 -0
  16. xpk-0.6.0/src/xpk/core/__init__.py +15 -0
  17. xpk-0.6.0/src/xpk/core/blueprint/__init__.py +15 -0
  18. xpk-0.6.0/src/xpk/core/blueprint/blueprint_definitions.py +61 -0
  19. xpk-0.6.0/src/xpk/core/blueprint/blueprint_generator.py +652 -0
  20. xpk-0.6.0/src/xpk/core/cluster_private.py +197 -0
  21. xpk-0.6.0/src/xpk/core/commands.py +352 -0
  22. xpk-0.6.0/src/xpk/core/core.py +2824 -0
  23. xpk-0.6.0/src/xpk/core/docker_manager.py +308 -0
  24. xpk-0.6.0/src/xpk/core/gcluster_manager.py +158 -0
  25. xpk-0.6.0/src/xpk/core/kjob.py +205 -0
  26. xpk-0.6.0/src/xpk/core/kueue.py +352 -0
  27. xpk-0.6.0/src/xpk/core/nap.py +349 -0
  28. xpk-0.6.0/src/xpk/core/pathways.py +298 -0
  29. xpk-0.6.0/src/xpk/core/ray.py +222 -0
  30. xpk-0.6.0/src/xpk/core/system_characteristics.py +1395 -0
  31. xpk-0.6.0/src/xpk/core/workload.py +133 -0
  32. xpk-0.6.0/src/xpk/core/workload_decorators/__init__.py +15 -0
  33. xpk-0.6.0/src/xpk/core/workload_decorators/rdma_decorator.py +109 -0
  34. xpk-0.6.0/src/xpk/core/workload_decorators/tcpxo_decorator.py +157 -0
  35. xpk-0.6.0/src/xpk/main.py +73 -0
  36. xpk-0.6.0/src/xpk/parser/__init__.py +15 -0
  37. xpk-0.6.0/src/xpk/parser/batch.py +184 -0
  38. xpk-0.6.0/src/xpk/parser/cluster.py +621 -0
  39. xpk-0.6.0/src/xpk/parser/common.py +71 -0
  40. xpk-0.6.0/src/xpk/parser/core.py +109 -0
  41. xpk-0.6.0/src/xpk/parser/info.py +63 -0
  42. xpk-0.6.0/src/xpk/parser/inspector.py +65 -0
  43. xpk-0.6.0/src/xpk/parser/job.py +126 -0
  44. xpk-0.6.0/src/xpk/parser/kind.py +94 -0
  45. xpk-0.6.0/src/xpk/parser/shell.py +50 -0
  46. xpk-0.6.0/src/xpk/parser/validators.py +39 -0
  47. xpk-0.6.0/src/xpk/parser/version.py +23 -0
  48. xpk-0.6.0/src/xpk/parser/workload.py +684 -0
  49. xpk-0.6.0/src/xpk/utils/__init__.py +15 -0
  50. xpk-0.6.0/src/xpk/utils/console.py +55 -0
  51. xpk-0.6.0/src/xpk/utils/file.py +82 -0
  52. xpk-0.6.0/src/xpk/utils/network.py +168 -0
  53. xpk-0.6.0/src/xpk/utils/objects.py +85 -0
  54. xpk-0.6.0/src/xpk/utils/yaml.py +30 -0
  55. xpk-0.4.0/README.md → xpk-0.6.0/src/xpk.egg-info/PKG-INFO +320 -32
  56. xpk-0.6.0/src/xpk.egg-info/SOURCES.txt +60 -0
  57. xpk-0.6.0/src/xpk.egg-info/entry_points.txt +2 -0
  58. {xpk-0.4.0 → xpk-0.6.0/src}/xpk.egg-info/requires.txt +7 -0
  59. xpk-0.4.0/xpk.egg-info/SOURCES.txt +0 -10
  60. xpk-0.4.0/xpk.egg-info/entry_points.txt +0 -2
  61. xpk-0.4.0/xpk.py +0 -7218
  62. {xpk-0.4.0 → xpk-0.6.0}/LICENSE +0 -0
  63. {xpk-0.4.0 → xpk-0.6.0}/setup.cfg +0 -0
  64. {xpk-0.4.0 → xpk-0.6.0/src}/xpk.egg-info/dependency_links.txt +0 -0
  65. {xpk-0.4.0 → xpk-0.6.0/src}/xpk.egg-info/top_level.txt +0 -0
@@ -1,8 +1,8 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: xpk
3
- Version: 0.4.0
3
+ Version: 0.6.0
4
4
  Summary: xpk helps Cloud developers to orchestrate training jobs on accelerators on GKE.
5
- Author-email: Cloud TPU Team <cloud-tpu-eng@google.com>
5
+ Author-email: XPK team <xpk-code-reviewers@google.com>
6
6
  License: Apache-2.0
7
7
  Project-URL: Homepage, https://github.com/google/xpk
8
8
  Project-URL: Bug Tracker, https://github.com/google/xpk/issues
@@ -12,10 +12,17 @@ Requires-Python: >=3.10
12
12
  Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  Requires-Dist: cloud-accelerator-diagnostics
15
+ Requires-Dist: tabulate
16
+ Requires-Dist: ruamel.yaml
17
+ Requires-Dist: pyyaml
18
+ Requires-Dist: docker
19
+ Requires-Dist: packaging
15
20
  Provides-Extra: dev
16
21
  Requires-Dist: pyink==24.3.0; extra == "dev"
17
22
  Requires-Dist: pylint>=2.6.0; extra == "dev"
18
23
  Requires-Dist: pre-commit; extra == "dev"
24
+ Requires-Dist: pytest; extra == "dev"
25
+ Requires-Dist: docker; extra == "dev"
19
26
 
20
27
  <!--
21
28
  Copyright 2023 Google LLC
@@ -62,31 +69,73 @@ xpk supports the following TPU types:
62
69
  * v4
63
70
  * v5e
64
71
  * v5p
72
+ * Trillium (v6e)
65
73
 
66
74
  and the following GPU types:
67
- * a100
68
- * h100
75
+ * A100
76
+ * A3-Highgpu (h100)
77
+ * A3-Mega (h100-mega) - [Create cluster](#provisioning-a3-ultra-and-a3-mega-clusters-gpu-machines), [Create workloads](#workloads-for-a3-ultra-and-a3-mega-clusters-gpu-machines)
78
+ * A3-Ultra (h200) - [Create cluster](#provisioning-a3-ultra-and-a3-mega-clusters-gpu-machines), [Create workloads](#workloads-for-a3-ultra-and-a3-mega-clusters-gpu-machines)
69
79
 
70
80
  and the following CPU types:
71
81
  * n2-standard-32
72
82
 
83
+ # Cloud Console Permissions on the user or service account needed to run XPK:
84
+
85
+ * Artifact Registry Writer
86
+ * Compute Admin
87
+ * Kubernetes Engine Admin
88
+ * Logging Admin
89
+ * Monitoring Admin
90
+ * Service Account User
91
+ * Storage Admin
92
+ * Vertex AI Administrator
93
+
94
+ # Prerequisites
95
+
96
+ Following tools must be installed:
97
+
98
+ - python >= 3.10 (download from [here](https://www.python.org/downloads/))
99
+ - pip ([installation instruction](https://pip.pypa.io/en/stable/installation/))
100
+ - python venv ([installation instruction](https://virtualenv.pypa.io/en/latest/installation.html))
101
+ (all three of above can be installed at once from [here](https://packaging.python.org/en/latest/guides/installing-using-linux-tools/#installing-pip-setuptools-wheel-with-linux-package-managers))
102
+ - gcloud (install from [here](https://cloud.google.com/sdk/gcloud#download_and_install_the))
103
+ - Run `gcloud init`
104
+ - [Authenticate](https://cloud.google.com/sdk/gcloud/reference/auth/application-default/login) to Google Cloud
105
+ - kubectl (install from [here](https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl#install_kubectl))
106
+ - Install `gke-gcloud-auth-plugin` from [here](https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl#install_plugin)
107
+ - docker ([installation instruction](https://docs.docker.com/engine/install/))
108
+ - Run `gcloud auth configure-docker` to ensure images can be uploaded to registry
109
+ - make - please run below command.
110
+ ```shell
111
+ # sudo may be required
112
+ apt-get -y install make
113
+ ```
114
+ In addition, below dependencies will be installed with `make install` command:
115
+ - kueuectl (install from [here](https://kueue.sigs.k8s.io/docs/reference/kubectl-kueue/installation/))
116
+ - kjob (installation instructions [here](https://github.com/kubernetes-sigs/kjob/blob/main/docs/installation.md))
117
+
73
118
  # Installation
74
- To install xpk, run the following command:
119
+ To install xpk, run the following command and install additional tools, mentioned in [prerequisites](#prerequisites). [Makefile](https://github.com/AI-Hypercomputer/xpk/blob/main/Makefile) provides a way to install all neccessary tools:
75
120
 
76
121
  ```shell
77
122
  pip install xpk
78
123
  ```
79
124
 
125
+
80
126
  If you are running XPK by cloning GitHub repository, first run the
81
127
  following commands to begin using XPK commands:
82
128
 
83
129
  ```shell
84
130
  git clone https://github.com/google/xpk.git
85
131
  cd xpk
86
- # Install dependencies such as cloud-accelerator-diagnostics
87
- pip install .
132
+ # Install required dependencies with make
133
+ make install && export PATH=$PATH:$PWD/bin
88
134
  ```
89
135
 
136
+ If you want to have installed dependecies persist in your PATH please run:
137
+ `echo $PWD/bin` and add its value to `PATH` in .bashrc or .zshrc
138
+
90
139
  If you see an error saying: `This environment is externally managed`, please use a virtual environment.
91
140
 
92
141
  Example:
@@ -100,8 +149,8 @@ Example:
100
149
  ## Clone the repository and installing dependencies.
101
150
  git clone https://github.com/google/xpk.git
102
151
  cd xpk
103
- # Install dependencies such as cloud-accelerator-diagnostics
104
- pip install .
152
+ # Install required dependencies with make
153
+ make install && export PATH=$PATH:$PWD/bin
105
154
  ```
106
155
 
107
156
  # XPK for Large Scale (>1k VMs)
@@ -139,14 +188,6 @@ gcloud config set compute/zone $ZONE
139
188
  xpk .. --zone $ZONE --project $PROJECT_ID
140
189
  ```
141
190
 
142
- `Cluster Create` command will create a project-specific Service Account. Note that only one service
143
- account will be created per project. This service account will be attached to the node pools instead of default
144
- [Compute Engine Service Account](https://cloud.google.com/compute/docs/access/service-accounts#default_service_account).
145
- All the required permissions will be assigned to this service account by XPK. Make sure you have
146
- [Service Account Admin](https://cloud.google.com/iam/docs/understanding-roles#iam.serviceAccountAdmin) and
147
- [Project IAM Admin](https://cloud.google.com/iam/docs/understanding-roles#resourcemanager.projectIamAdmin)
148
- roles assigned to your user account.
149
-
150
191
  The cluster created is a regional cluster to enable the GKE control plane across
151
192
  all zones.
152
193
 
@@ -179,13 +220,22 @@ all zones.
179
220
  ```
180
221
 
181
222
  * Cluster Create for Pathways:
182
- Pathways compatible cluster can be created using `--enable-pathways`
223
+ Pathways compatible cluster can be created using `cluster create-pathways`.
183
224
  ```shell
184
- python3 xpk.py cluster create \
225
+ python3 xpk.py cluster create-pathways \
185
226
  --cluster xpk-pw-test \
186
227
  --num-slices=4 --on-demand \
187
- --tpu-type=v5litepod-16 \
188
- --enable-pathways
228
+ --tpu-type=v5litepod-16
229
+ ```
230
+
231
+ * Cluster Create for Ray:
232
+ A cluster with KubeRay enabled and a RayCluster can be created using `cluster create-ray`.
233
+ ```shell
234
+ python3 xpk.py cluster create-ray \
235
+ --cluster xpk-rc-test \
236
+ --ray-version=2.39.0 \
237
+ --num-slices=4 --on-demand \
238
+ --tpu-type=v5litepod-8
189
239
  ```
190
240
 
191
241
  * Cluster Create can be called again with the same `--cluster name` to modify
@@ -222,11 +272,77 @@ all zones.
222
272
  python3 xpk.py cluster create --force \
223
273
  --cluster xpk-test --tpu-type=v5litepod-16 \
224
274
  --num-slices=6 --reservation=$RESERVATION_ID
275
+ ```
276
+
277
+ and recreates the cluster with 4 slices of v4-8. The command will rerun to delete
278
+ 6 slices of v5litepod-16 and create 4 slices of v4-8. The command will warn the
279
+ user when deleting slices. Use `--force` to skip prompts.
225
280
 
281
+ ```shell
282
+ python3 xpk.py cluster create \
283
+ --cluster xpk-test --tpu-type=v4-8 \
284
+ --num-slices=4 --reservation=$RESERVATION_ID
285
+
286
+ # Skip delete prompts using --force.
287
+
288
+ python3 xpk.py cluster create --force \
289
+ --cluster xpk-test --tpu-type=v4-8 \
290
+ --num-slices=4 --reservation=$RESERVATION_ID
226
291
  ```
227
292
 
293
+ ### Create Private Cluster
294
+
295
+ XPK allows you to create a private GKE cluster for enhanced security. In a private cluster, nodes and pods are isolated from the public internet, providing an additional layer of protection for your workloads.
296
+
297
+ To create a private cluster, use the following arguments:
298
+
299
+ **`--private`**
300
+
301
+ This flag enables the creation of a private GKE cluster. When this flag is set:
302
+
303
+ * Nodes and pods are isolated from the direct internet access.
304
+ * `master_authorized_networks` is automatically enabled.
305
+ * Access to the cluster's control plane is restricted to your current machine's IP address by default.
306
+
307
+ **`--authorized-networks`**
308
+
309
+ This argument allows you to specify additional IP ranges (in CIDR notation) that are authorized to access the private cluster's control plane and perform `kubectl` commands.
310
+
311
+ * Even if this argument is not set when you have `--private`, your current machine's IP address will always be given access to the control plane.
312
+ * If this argument is used with an existing private cluster, it will replace the existing authorized networks.
313
+
314
+ **Example Usage:**
315
+
316
+ * To create a private cluster and allow access to Control Plane only to your current machine:
317
+
318
+ ```shell
319
+ python3 xpk.py cluster create \
320
+ --cluster=xpk-private-cluster \
321
+ --tpu-type=v4-8 --num-slices=2 \
322
+ --private
323
+ ```
324
+
325
+ * To create a private cluster and allow access to Control Plane only to your current machine and the IP ranges `1.2.3.0/24` and `1.2.4.5/32`:
326
+
327
+ ```shell
328
+ python3 xpk.py cluster create \
329
+ --cluster=xpk-private-cluster \
330
+ --tpu-type=v4-8 --num-slices=2 \
331
+ --authorized-networks 1.2.3.0/24 1.2.4.5/32
332
+
333
+ # --private is optional when you set --authorized-networks
334
+ ```
335
+
336
+ > **Important Notes:**
337
+ > * The argument `--private` is only applicable when creating new clusters. You cannot convert an existing public cluster to a private cluster using these flags.
338
+ > * The argument `--authorized-networks` is applicable when creating new clusters or using an existing _*private*_ cluster. You cannot convert an existing public cluster to a private cluster using these flags.
339
+ > * You need to [set up a Cluster NAT for your VPC network](https://cloud.google.com/nat/docs/set-up-manage-network-address-translation#creating_nat) so that the Nodes and Pods have outbound access to the internet. This is required because XPK installs and configures components such as kueue that need access to external sources like `registry.k8.io`.
340
+
341
+
228
342
  ### Create Vertex AI Tensorboard
229
- *Note: This feature is available in XPK >= 0.4.0. Enable [Vertex AI API](https://cloud.google.com/vertex-ai/docs/start/cloud-environment#enable_vertexai_apis) in your Google Cloud console to use this feature.*
343
+ *Note: This feature is available in XPK >= 0.4.0. Enable [Vertex AI API](https://cloud.google.com/vertex-ai/docs/start/cloud-environment#enable_vertexai_apis) in your Google Cloud console to use this feature. Make sure you have
344
+ [Vertex AI Administrator](https://cloud.google.com/vertex-ai/docs/general/access-control#aiplatform.admin) role
345
+ assigned to your user account.*
230
346
 
231
347
  Vertex AI Tensorboard is a fully managed version of open-source Tensorboard. To learn more about Vertex AI Tensorboard, visit [this](https://cloud.google.com/vertex-ai/docs/experiments/tensorboard-introduction). Note that Vertex AI Tensorboard is only available in [these](https://cloud.google.com/vertex-ai/docs/general/locations#available-regions) regions.
232
348
 
@@ -312,6 +428,26 @@ will fail the cluster creation process because Vertex AI Tensorboard is not supp
312
428
  --tpu-type=v5litepod-16
313
429
  ```
314
430
 
431
+ ## Provisioning A3-Ultra and A3-Mega clusters (GPU machines)
432
+ To create a cluster with A3 machines, run the below command. To create workloads on these clusters see [here](#workloads-for-a3-ultra-and-a3-mega-clusters-gpu-machines).
433
+ * For A3-Ultra: --device-type=h200-141gb-8
434
+ * For A3-Mega: --device-type=h100-mega-80gb-8
435
+
436
+ ```shell
437
+ python3 xpk.py cluster create \
438
+ --cluster CLUSTER_NAME --device-type=h200-141gb-8 \
439
+ --zone=$COMPUTE_ZONE --project=$PROJECT_ID \
440
+ --num-nodes=4 --reservation=$RESERVATION_ID
441
+ ```
442
+ Currently, the below flags/arguments are supported for A3-Mega and A3-Ultra machines:
443
+ * --num-nodes
444
+ * --default-pool-cpu-machine-type
445
+ * --default-pool-cpu-num-nodes
446
+ * --reservation
447
+ * --spot
448
+ * --on-demand (only A3-Mega)
449
+
450
+
315
451
  ## Workload Create
316
452
  * Workload Create (submit training job):
317
453
 
@@ -323,26 +459,25 @@ will fail the cluster creation process because Vertex AI Tensorboard is not supp
323
459
  ```
324
460
 
325
461
  * Workload Create for Pathways:
326
- Pathways workload can be submitted using `--use-pathways` on a Pathways enabled cluster (created with `--enable-pathways`)
462
+ Pathways workload can be submitted using `workload create-pathways` on a Pathways enabled cluster (created with `cluster create-pathways`)
327
463
 
328
464
  Pathways workload example:
329
465
  ```shell
330
- python3 xpk.py workload create \
466
+ python3 xpk.py workload create-pathways \
331
467
  --workload xpk-pw-test \
332
468
  --num-slices=1 \
333
469
  --tpu-type=v5litepod-16 \
334
- --use-pathways \
335
470
  --cluster xpk-pw-test \
336
471
  --docker-name='user-workload' \
337
472
  --docker-image=<maxtext docker image> \
338
473
  --command='python3 MaxText/train.py MaxText/configs/base.yml base_output_directory=<output directory> dataset_path=<dataset path> per_device_batch_size=1 enable_checkpointing=false enable_profiler=false remat_policy=full global_parameter_scale=4 steps=300 max_target_length=2048 use_iota_embed=true reuse_example_batch=1 dataset_type=synthetic attention=flash gcs_metrics=True run_name=$(USER)-pw-xpk-test-1'
339
474
  ```
340
475
 
341
- Regular workload can also be submitted on a Pathways enabled cluster (created with `--enable-pathways`)
476
+ Regular workload can also be submitted on a Pathways enabled cluster (created with `cluster create-pathways`)
342
477
 
343
478
  Pathways workload example:
344
479
  ```shell
345
- python3 xpk.py workload create \
480
+ python3 xpk.py workload create-pathways \
346
481
  --workload xpk-regular-test \
347
482
  --num-slices=1 \
348
483
  --tpu-type=v5litepod-16 \
@@ -352,6 +487,25 @@ will fail the cluster creation process because Vertex AI Tensorboard is not supp
352
487
  --command='python3 MaxText/train.py MaxText/configs/base.yml base_output_directory=<output directory> dataset_path=<dataset path> per_device_batch_size=1 enable_checkpointing=false enable_profiler=false remat_policy=full global_parameter_scale=4 steps=300 max_target_length=2048 use_iota_embed=true reuse_example_batch=1 dataset_type=synthetic attention=flash gcs_metrics=True run_name=$(USER)-pw-xpk-test-1'
353
488
  ```
354
489
 
490
+ Pathways in headless mode - Pathways now offers the capability to run JAX workloads in Vertex AI notebooks or in GCE VMs!
491
+ Specify `--headless` with `workload create-pathways` when the user workload is not provided in a docker container.
492
+ ```shell
493
+ python3 xpk.py workload create-pathways --headless \
494
+ --workload xpk-pw-headless \
495
+ --num-slices=1 \
496
+ --tpu-type=v5litepod-16 \
497
+ --cluster xpk-pw-test
498
+ ```
499
+ Executing the command above would provide the address of the proxy that the user job should connect to.
500
+ ```shell
501
+ kubectl get pods
502
+ kubectl port-forward pod/<proxy-pod-name> 29000:29000
503
+ ```
504
+ ```shell
505
+ JAX_PLATFORMS=proxy JAX_BACKEND_TARGET=grpc://127.0.0.1:29000 python -c 'import pathwaysutils; import jax; print(jax.devices())'
506
+ ```
507
+ Specify `JAX_PLATFORMS=proxy` and `JAX_BACKEND_TARGET=<proxy address from above>` and `import pathwaysutils` to establish this connection between the user's JAX code and the Pathways proxy. Execute Pathways workloads interactively on Vertex AI notebooks!
508
+
355
509
  ### Set `max-restarts` for production jobs
356
510
 
357
511
  * `--max-restarts <value>`: By default, this is 0. This will restart the job ""
@@ -360,6 +514,20 @@ increase this to a large number, say 50. Real jobs can be interrupted due to
360
514
  hardware failures and software updates. We assume your job has implemented
361
515
  checkpointing so the job restarts near where it was interrupted.
362
516
 
517
+ ### Workloads for A3-Ultra and A3-Mega clusters (GPU machines)
518
+ To submit jobs on a cluster with A3 machines, run the below command. To create a cluster with A3 machines see [here](#provisioning-a3-ultra-and-a3-mega-clusters-gpu-machines).
519
+ * For A3-Ultra: --device-type=h200-141gb-8
520
+ * For A3-Mega: --device-type=h100-mega-80gb-8
521
+
522
+ ```shell
523
+ python3 xpk.py workload create \
524
+ --workload=$WORKLOAD_NAME --command="echo goodbye" \
525
+ --cluster=$CLUSTER_NAME --device-type=h200-141gb-8 \
526
+ --zone=$COMPUTE_ZONE --project=$PROJECT_ID \
527
+ --num-nodes=$WOKRKLOAD_NUM_NODES
528
+ ```
529
+ > The docker image flags/arguments introduced in [workloads section](#workload-create) can be used with A3 machines as well.
530
+
363
531
  ### Workload Priority and Preemption
364
532
  * Set the priority level of your workload with `--priority=LEVEL`
365
533
 
@@ -386,7 +554,9 @@ checkpointing so the job restarts near where it was interrupted.
386
554
  ```
387
555
 
388
556
  ### Create Vertex AI Experiment to upload data to Vertex AI Tensorboard
389
- *Note: This feature is available in XPK >= 0.4.0. Enable [Vertex AI API](https://cloud.google.com/vertex-ai/docs/start/cloud-environment#enable_vertexai_apis) in your Google Cloud console to use this feature.*
557
+ *Note: This feature is available in XPK >= 0.4.0. Enable [Vertex AI API](https://cloud.google.com/vertex-ai/docs/start/cloud-environment#enable_vertexai_apis) in your Google Cloud console to use this feature. Make sure you have
558
+ [Vertex AI Administrator](https://cloud.google.com/vertex-ai/docs/general/access-control#aiplatform.admin) role
559
+ assigned to your user account and to the [Compute Engine Service account](https://cloud.google.com/compute/docs/access/service-accounts#default_service_account) attached to the node pools in the cluster.*
390
560
 
391
561
  Vertex AI Experiment is a tool that helps to track and analyze an experiment run on Vertex AI Tensorboard. To learn more about Vertex AI Experiments, visit [this](https://cloud.google.com/vertex-ai/docs/experiments/intro-vertex-ai-experiments).
392
562
 
@@ -495,7 +665,7 @@ Check out [MaxText example](https://github.com/google/maxtext/pull/570) on how t
495
665
  --cluster xpk-test --filter-by-job=$USER
496
666
  ```
497
667
 
498
- * Workload List supports waiting for the completion of a specific job. XPK will follow an existing job until it has finished or the `timeout`, if provided, has been reached and then list the job. If no `timeout` is specified, the default value is set to the max value, 1 week. You may also set `timeout=0` to poll the job once.
668
+ * Workload List supports waiting for the completion of a specific job. XPK will follow an existing job until it has finished or the `timeout`, if provided, has been reached and then list the job. If no `timeout` is specified, the default value is set to the max value, 1 week. You may also set `timeout=0` to poll the job once.
499
669
  (Note: `restart-on-user-code-failure` must be set
500
670
  when creating the workload otherwise the workload will always finish with `Completed` status.)
501
671
 
@@ -514,11 +684,37 @@ when creating the workload otherwise the workload will always finish with `Compl
514
684
  --timeout=300
515
685
  ```
516
686
 
517
- Return codes
518
- `0`: Workload finished and completed successfully.
519
- `124`: Timeout was reached before workload finished.
520
- `125`: Workload finished but did not complete successfully.
521
- `1`: Other failure.
687
+ Return codes
688
+ `0`: Workload finished and completed successfully.
689
+ `124`: Timeout was reached before workload finished.
690
+ `125`: Workload finished but did not complete successfully.
691
+ `1`: Other failure.
692
+
693
+ ## Job List
694
+
695
+ * Job List (see jobs submitted via batch command):
696
+
697
+ ```shell
698
+ python3 xpk.py job ls --cluster xpk-test
699
+ ```
700
+
701
+ * Example Job List Output:
702
+
703
+ ```
704
+ NAME PROFILE LOCAL QUEUE COMPLETIONS DURATION AGE
705
+ xpk-def-app-profile-slurm-74kbv xpk-def-app-profile 1/1 15s 17h
706
+ xpk-def-app-profile-slurm-brcsg xpk-def-app-profile 1/1 9s 3h56m
707
+ xpk-def-app-profile-slurm-kw99l xpk-def-app-profile 1/1 5s 3h54m
708
+ xpk-def-app-profile-slurm-x99nx xpk-def-app-profile 3/3 29s 17h
709
+ ```
710
+
711
+ ## Job Cancel
712
+
713
+ * Job Cancel (delete job submitted via batch command):
714
+
715
+ ```shell
716
+ python3 xpk.py job cancel xpk-def-app-profile-slurm-74kbv --cluster xpk-test
717
+ ```
522
718
 
523
719
  ## Inspector
524
720
  * Inspector provides debug info to understand cluster health, and why workloads are not running.
@@ -975,6 +1171,14 @@ gcloud compute machine-types list --zones=$ZONE_LIST
975
1171
  python3 xpk.py cluster create --default-pool-cpu-machine-type=CPU_TYPE ...
976
1172
  ```
977
1173
 
1174
+ ## Workload creation fails
1175
+
1176
+ Some XPK cluster configuration might be missing, if workload creation fails with the below error.
1177
+
1178
+ `[XPK] b'error: the server doesn\'t have a resource type "workloads"\n'`
1179
+
1180
+ Mitigate this error by re-running your `xpk.py cluster create ...` command, to refresh the cluster configurations.
1181
+
978
1182
  ## Permission Issues: `requires one of ["permission_name"] permission(s)`.
979
1183
 
980
1184
  1) Determine the role needed based on the permission error:
@@ -1035,6 +1239,9 @@ gcloud beta compute reservations list --project=$PROJECT_ID
1035
1239
  gcloud beta compute reservations describe $RESERVATION --project=$PROJECT_ID --zone=$ZONE
1036
1240
  ```
1037
1241
 
1242
+ ## 403 error on workload create when using `--base-docker-image` flag
1243
+ You need authority to push to the registry from your local machine. Try running `gcloud auth configure-docker`.
1244
+
1038
1245
  # TPU Workload Debugging
1039
1246
 
1040
1247
  ## Verbose Logging
@@ -1076,3 +1283,65 @@ To explore the stack traces collected in a temporary directory in Kubernetes Pod
1076
1283
  --workload xpk-test-workload --command "python3 main.py" --cluster \
1077
1284
  xpk-test --tpu-type=v5litepod-16 --deploy-stacktrace-sidecar
1078
1285
  ```
1286
+
1287
+ ### Get information about jobs, queues and resources.
1288
+
1289
+ To list available resources and queues use ```xpk info``` command. It allows to see localqueues and clusterqueues and check for available resources.
1290
+
1291
+ To see queues with usage and workload info use:
1292
+ ```shell
1293
+ python3 xpk.py info --cluster my-cluster
1294
+ ```
1295
+
1296
+ You can specify what kind of resources(clusterqueue or localqueue) you want to see using flags --clusterqueue or --localqueue.
1297
+ ```shell
1298
+ python3 xpk.py info --cluster my-cluster --localqueue
1299
+ ```
1300
+
1301
+ # Local testing with Kind
1302
+
1303
+ To facilitate development and testing locally, we have integrated support for testing with `kind`. This enables you to simulate a Kubernetes environment on your local machine.
1304
+
1305
+ ## Prerequisites
1306
+
1307
+ - Install kind on your local machine. Follow the official documentation here: [Kind Installation Guide.](https://kind.sigs.k8s.io/docs/user/quick-start#installation)
1308
+
1309
+ ## Usage
1310
+
1311
+ xpk interfaces seamlessly with kind to manage Kubernetes clusters locally, facilitating the orchestration and management of workloads. Below are the commands for managing clusters:
1312
+
1313
+ ### Cluster Create
1314
+ * Cluster create:
1315
+
1316
+ ```shell
1317
+ python3 xpk.py kind create \
1318
+ --cluster xpk-test
1319
+ ```
1320
+
1321
+ ### Cluster Delete
1322
+ * Cluster Delete:
1323
+
1324
+ ```shell
1325
+ python3 xpk.py kind delete \
1326
+ --cluster xpk-test
1327
+ ```
1328
+
1329
+ ### Cluster List
1330
+ * Cluster List:
1331
+
1332
+ ```shell
1333
+ python3 xpk.py kind list
1334
+ ```
1335
+
1336
+ ## Local Testing Basics
1337
+
1338
+ Local testing is available exclusively through the `batch` and `job` commands of xpk with the `--kind-cluster` flag. This allows you to simulate training jobs locally:
1339
+
1340
+ ```shell
1341
+ python xpk.py batch [other-options] --kind-cluster script
1342
+ ```
1343
+
1344
+ Please note that all other xpk subcommands are intended for use with cloud systems on Google Cloud Engine (GCE) and don't support local testing. This includes commands like cluster, info, inspector, etc.
1345
+
1346
+ # Other advanced usage
1347
+ [Use a Jupyter notebook to interact with a Cloud TPU cluster](xpk-notebooks.md)