xgae 0.2.1__tar.gz → 0.2.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xgae might be problematic. Click here for more details.
- {xgae-0.2.1 → xgae-0.2.3}/CHANGELOG.md +7 -2
- {xgae-0.2.1 → xgae-0.2.3}/PKG-INFO +1 -3
- {xgae-0.2.1 → xgae-0.2.3}/pyproject.toml +6 -4
- xgae-0.2.3/src/examples/agent/langgraph/react/custom_prompt_rag.py +107 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/agent/langgraph/react/react_agent.py +10 -4
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/agent/langgraph/react/run_react_agent.py +1 -1
- xgae-0.2.3/test/test_chroma.py +31 -0
- xgae-0.2.3/uv.lock +2436 -0
- xgae-0.2.1/src/examples/agent/langgraph/react/custom_prompt_rag.py +0 -68
- xgae-0.2.1/uv.lock +0 -2556
- {xgae-0.2.1 → xgae-0.2.3}/.env +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/.python-version +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/README.md +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/mcpservers/custom_servers.json +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/mcpservers/xga_server.json +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/mcpservers/xga_server_sse.json +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/agent/langgraph/react/agent_base.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/agent/langgraph/react/result_eval_agent.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/engine/run_custom_and_agent_tools.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/engine/run_general_tools.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/engine/run_human_in_loop.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/engine/run_simple.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/tools/custom_fault_tools_app.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/examples/tools/simu_a2a_tools_app.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/__init__.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/engine_base.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/mcp_tool_box.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/prompt_builder.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/responser/non_stream_responser.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/responser/responser_base.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/responser/stream_responser.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/task_engine.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/task_langfuse.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine_cli_app.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/tools/without_general_tools_app.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/__init__.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/json_helpers.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/llm_client.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/misc.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/setup_env.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/xml_tool_parser.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/templates/agent_tool_prompt_template.txt +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/templates/custom_tool_prompt_template.txt +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/templates/example/fault_user_prompt.txt +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/templates/example/result_eval_template.txt +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/templates/gemini_system_prompt_template.txt +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/templates/general_tool_prompt_template.txt +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/templates/system_prompt_response_sample.txt +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/templates/system_prompt_template.txt +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/test/test_langfuse.py +0 -0
- {xgae-0.2.1 → xgae-0.2.3}/test/test_litellm_langfuse.py +0 -0
|
@@ -1,10 +1,15 @@
|
|
|
1
|
-
|
|
1
|
+
## [0.2.3] - 2025-9-19
|
|
2
|
+
### Modified
|
|
3
|
+
- CustomPromptRag: remove FastEmbedEmbeddings, use 'text-embedding-v3' model for chinese, avoid download 'bge-small-zh-v1.5'
|
|
4
|
+
|
|
5
|
+
|
|
2
6
|
## [0.2.1] - 2025-9-17
|
|
3
7
|
### Added
|
|
4
|
-
- Example
|
|
8
|
+
- Example ReactAgent: add CustomPromptRag, use FastEmbedEmbeddings and 'BAAI/bge-small-zh-v1.5' model
|
|
5
9
|
### Modified
|
|
6
10
|
- pyproject.toml: add [project.optional-dependencies] 'examples'
|
|
7
11
|
|
|
12
|
+
|
|
8
13
|
## [0.2.0] - 2025-9-10
|
|
9
14
|
### Added
|
|
10
15
|
- Agent Engine release 0.2
|
|
@@ -1,16 +1,14 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: xgae
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.3
|
|
4
4
|
Summary: Extreme General Agent Engine
|
|
5
5
|
Requires-Python: >=3.13
|
|
6
6
|
Requires-Dist: colorlog==6.9.0
|
|
7
7
|
Requires-Dist: langchain-mcp-adapters==0.1.9
|
|
8
|
-
Requires-Dist: langchain==0.3.27
|
|
9
8
|
Requires-Dist: langfuse==2.60.9
|
|
10
9
|
Requires-Dist: litellm==1.74.15
|
|
11
10
|
Requires-Dist: mcp==1.13.0
|
|
12
11
|
Provides-Extra: examples
|
|
13
12
|
Requires-Dist: chromadb==1.1.0; extra == 'examples'
|
|
14
|
-
Requires-Dist: fastembed==0.7.3; extra == 'examples'
|
|
15
13
|
Requires-Dist: langchain-community==0.3.29; extra == 'examples'
|
|
16
14
|
Requires-Dist: langgraph==0.6.5; extra == 'examples'
|
|
@@ -1,33 +1,35 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "xgae"
|
|
3
|
-
version = "0.2.
|
|
3
|
+
version = "0.2.3"
|
|
4
4
|
description = "Extreme General Agent Engine"
|
|
5
5
|
readme = "README.md"
|
|
6
6
|
requires-python = ">=3.13"
|
|
7
7
|
dependencies = [
|
|
8
8
|
"colorlog==6.9.0",
|
|
9
|
-
"langchain-mcp-adapters==0.1.9",
|
|
10
9
|
"litellm==1.74.15",
|
|
11
10
|
"mcp==1.13.0",
|
|
12
11
|
"langfuse==2.60.9",
|
|
13
|
-
"langchain==0.
|
|
12
|
+
"langchain-mcp-adapters==0.1.9",
|
|
14
13
|
]
|
|
15
14
|
|
|
15
|
+
|
|
16
16
|
[project.optional-dependencies]
|
|
17
17
|
examples = [
|
|
18
18
|
"langgraph==0.6.5",
|
|
19
19
|
"langchain-community==0.3.29",
|
|
20
|
-
"fastembed==0.7.3",
|
|
21
20
|
"chromadb==1.1.0",
|
|
22
21
|
]
|
|
23
22
|
|
|
23
|
+
|
|
24
24
|
[build-system]
|
|
25
25
|
requires = ["hatchling"]
|
|
26
26
|
build-backend = "hatchling.build"
|
|
27
27
|
|
|
28
|
+
|
|
28
29
|
[tool.hatch.build]
|
|
29
30
|
exclude = ["log/*", ".idea/*"]
|
|
30
31
|
|
|
32
|
+
|
|
31
33
|
[project.scripts]
|
|
32
34
|
xgae = "xgae.engine_cli_app:main"
|
|
33
35
|
xgae-tools = "xgae.tools.without_general_tools_app:main"
|
|
@@ -0,0 +1,107 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import os
|
|
3
|
+
from typing import override, List
|
|
4
|
+
|
|
5
|
+
from langchain_core.documents import Document
|
|
6
|
+
from langchain_core.embeddings import Embeddings
|
|
7
|
+
from langchain_core.vectorstores import VectorStore
|
|
8
|
+
|
|
9
|
+
from langchain_community.vectorstores import Chroma
|
|
10
|
+
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
|
|
11
|
+
|
|
12
|
+
class ChromaEmbedding(Embeddings):
|
|
13
|
+
embedding_model_name = "text-embedding-v3"
|
|
14
|
+
|
|
15
|
+
def __init__(self):
|
|
16
|
+
api_key = os.getenv('LLM_API_KEY')
|
|
17
|
+
api_base = os.getenv('LLM_API_BASE', "https://dashscope.aliyuncs.com/compatible-mode/v1")
|
|
18
|
+
|
|
19
|
+
self.embedding_function = OpenAIEmbeddingFunction(
|
|
20
|
+
api_key = api_key,
|
|
21
|
+
api_base = api_base,
|
|
22
|
+
model_name = self.embedding_model_name,
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@override
|
|
27
|
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
28
|
+
return self.embedding_function(texts)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@override
|
|
32
|
+
def embed_query(self, text: str) -> List[float]:
|
|
33
|
+
return self.embed_documents([text])[0]
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class CustomPromptRag:
|
|
37
|
+
PROMPT_SIMILAR_SCORE = 0.85 # need tune-up score based on different embedding model
|
|
38
|
+
|
|
39
|
+
def __init__(self):
|
|
40
|
+
prompt_docs = self._load_prompts()
|
|
41
|
+
self.vector_store = self._init_vector_store(prompt_docs)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
# should read from DB, load all custom prompt or COT
|
|
45
|
+
def _load_prompts(self) -> List[Document]:
|
|
46
|
+
prompt_docs = []
|
|
47
|
+
prompt_docs.append(self._create_prompt_doc(
|
|
48
|
+
prompt_summary="Fault location and analysis of fault causes",
|
|
49
|
+
prompt_path="templates/example/fault_user_prompt.txt"
|
|
50
|
+
))
|
|
51
|
+
return prompt_docs
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def _create_prompt_doc(self, prompt_summary: str, prompt_path: str)-> Document:
|
|
55
|
+
return Document(
|
|
56
|
+
page_content=prompt_summary,
|
|
57
|
+
metadata={
|
|
58
|
+
"source": prompt_path,
|
|
59
|
+
}
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def _init_vector_store(self, docs: List[Document]) -> VectorStore:
|
|
64
|
+
embeddings = ChromaEmbedding()
|
|
65
|
+
return Chroma.from_documents(
|
|
66
|
+
documents=docs,
|
|
67
|
+
embedding=embeddings,
|
|
68
|
+
persist_directory=None
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def search_prompt(self, query:str)-> str:
|
|
73
|
+
prompt_path = None
|
|
74
|
+
results = self.vector_store.similarity_search_with_score(query=query, k=1)
|
|
75
|
+
if results and len(results) > 0:
|
|
76
|
+
doc, score = results[0]
|
|
77
|
+
if score > self.PROMPT_SIMILAR_SCORE:
|
|
78
|
+
logging.info(f"CustomPromptRag search: SIMILAR_SCORE: {score} > {self.PROMPT_SIMILAR_SCORE}, "
|
|
79
|
+
f"\nquery: '{query}' \nprompt_summary: '{doc.page_content}'\n")
|
|
80
|
+
else:
|
|
81
|
+
prompt_path = doc.metadata['source']
|
|
82
|
+
logging.info(f"CustomPromptRag search: SIMILAR_SCORE: {score}, prompt_path: '{prompt_path}'")
|
|
83
|
+
|
|
84
|
+
return prompt_path
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
if __name__ == "__main__":
|
|
88
|
+
from xgae.utils.setup_env import setup_logging
|
|
89
|
+
|
|
90
|
+
setup_logging()
|
|
91
|
+
|
|
92
|
+
custom_prompt_rag = CustomPromptRag()
|
|
93
|
+
|
|
94
|
+
querys = ["locate 10.2.3.4 fault and solution", # 0.79
|
|
95
|
+
"定位 10.2.3.4 故障,并给出解决方案", # 0.81
|
|
96
|
+
"locate fault and solution", # 0.42
|
|
97
|
+
"locate fault", # 0.40
|
|
98
|
+
"定位故障", # 0.64
|
|
99
|
+
"fault solution", # 0.47
|
|
100
|
+
"locate", # 0.95
|
|
101
|
+
"5+7" # 1.12
|
|
102
|
+
]
|
|
103
|
+
|
|
104
|
+
for query in querys:
|
|
105
|
+
logging.info("*"*50)
|
|
106
|
+
logging.info(f"query: '{query}'")
|
|
107
|
+
custom_prompt_rag.search_prompt(query)
|
|
@@ -7,7 +7,6 @@ from uuid import uuid4
|
|
|
7
7
|
from langfuse.callback import CallbackHandler
|
|
8
8
|
from langfuse import Langfuse
|
|
9
9
|
|
|
10
|
-
|
|
11
10
|
from langgraph.graph import END, START, StateGraph
|
|
12
11
|
from langgraph.types import interrupt, Command
|
|
13
12
|
from langgraph.checkpoint.memory import MemorySaver
|
|
@@ -24,6 +23,7 @@ from examples.agent.langgraph.react.agent_base import AgentContext, TaskState, E
|
|
|
24
23
|
from examples.agent.langgraph.react.result_eval_agent import TaskResultEvalAgent
|
|
25
24
|
from examples.agent.langgraph.react.custom_prompt_rag import CustomPromptRag
|
|
26
25
|
|
|
26
|
+
|
|
27
27
|
class XGAReactAgent:
|
|
28
28
|
MAX_TASK_RETRY = 2
|
|
29
29
|
QUALIFIED_RESULT_SCORE = 0.7
|
|
@@ -89,18 +89,24 @@ class XGAReactAgent:
|
|
|
89
89
|
|
|
90
90
|
|
|
91
91
|
def _search_system_prompt(self, user_input: str) -> str:
|
|
92
|
+
system_prompt = None
|
|
92
93
|
if hasattr(self, 'custom_prompt_rag'):
|
|
93
|
-
|
|
94
|
+
system_prompt_path = self.custom_prompt_rag.search_prompt(user_input)
|
|
95
|
+
if system_prompt_path:
|
|
96
|
+
system_prompt = read_file(system_prompt_path)
|
|
94
97
|
else:
|
|
95
|
-
|
|
98
|
+
if "fault" in user_input: # only for example
|
|
99
|
+
system_prompt = read_file("templates/example/fault_user_prompt.txt")
|
|
96
100
|
return system_prompt
|
|
97
101
|
|
|
98
102
|
|
|
99
103
|
async def _supervisor_node(self, state: TaskState) -> Dict[str, Any]:
|
|
100
104
|
user_input = state['user_inputs'][0]
|
|
101
105
|
eval_result = state.get('eval_result', None)
|
|
106
|
+
system_prompt = state.get('system_prompt', None)
|
|
102
107
|
|
|
103
|
-
system_prompt
|
|
108
|
+
if system_prompt is None and eval_result is None:
|
|
109
|
+
system_prompt = self._search_system_prompt(user_input)
|
|
104
110
|
is_system_prompt = True if system_prompt is not None else False
|
|
105
111
|
|
|
106
112
|
general_tools = [] if system_prompt else ["*"]
|
|
@@ -17,7 +17,7 @@ async def main():
|
|
|
17
17
|
]
|
|
18
18
|
|
|
19
19
|
for user_input in user_inputs:
|
|
20
|
-
agent = XGAReactAgent(use_prompt_rag=
|
|
20
|
+
agent = XGAReactAgent(use_prompt_rag=True)
|
|
21
21
|
task_no += 1
|
|
22
22
|
context: AgentContext = {
|
|
23
23
|
'task_id': f"agent_task_{uuid4()}", # can be set with request_id, must be unique
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
import chromadb
|
|
2
|
+
|
|
3
|
+
chroma_client = chromadb.EphemeralClient()
|
|
4
|
+
|
|
5
|
+
# default use 'ONNXMiniLM_L6_V2' embedding function
|
|
6
|
+
collection = chroma_client.get_or_create_collection(name="fault_collection")
|
|
7
|
+
|
|
8
|
+
collection.upsert(
|
|
9
|
+
documents=[
|
|
10
|
+
"Fault location and analysis of fault causes",
|
|
11
|
+
"This is a analyse about alarm"
|
|
12
|
+
],
|
|
13
|
+
ids=["id1", "id2"],
|
|
14
|
+
metadatas=[{"type": 1}, {"type": 2}]
|
|
15
|
+
)
|
|
16
|
+
|
|
17
|
+
querys = ["locate fault and solution",
|
|
18
|
+
"alarm search"
|
|
19
|
+
]
|
|
20
|
+
|
|
21
|
+
for query in querys:
|
|
22
|
+
results = collection.query(
|
|
23
|
+
query_texts=query,
|
|
24
|
+
n_results=2,
|
|
25
|
+
#where={"type": 1},
|
|
26
|
+
where={"type": {"$gt": 0}},
|
|
27
|
+
where_document = {"$contains": "fault"}
|
|
28
|
+
)
|
|
29
|
+
print("*"*50)
|
|
30
|
+
print(f"query='{query}', id={results['ids'][0]}, score={results['distances'][0]}")
|
|
31
|
+
|