xgae 0.2.1__tar.gz → 0.2.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xgae might be problematic. Click here for more details.

Files changed (51) hide show
  1. {xgae-0.2.1 → xgae-0.2.3}/CHANGELOG.md +7 -2
  2. {xgae-0.2.1 → xgae-0.2.3}/PKG-INFO +1 -3
  3. {xgae-0.2.1 → xgae-0.2.3}/pyproject.toml +6 -4
  4. xgae-0.2.3/src/examples/agent/langgraph/react/custom_prompt_rag.py +107 -0
  5. {xgae-0.2.1 → xgae-0.2.3}/src/examples/agent/langgraph/react/react_agent.py +10 -4
  6. {xgae-0.2.1 → xgae-0.2.3}/src/examples/agent/langgraph/react/run_react_agent.py +1 -1
  7. xgae-0.2.3/test/test_chroma.py +31 -0
  8. xgae-0.2.3/uv.lock +2436 -0
  9. xgae-0.2.1/src/examples/agent/langgraph/react/custom_prompt_rag.py +0 -68
  10. xgae-0.2.1/uv.lock +0 -2556
  11. {xgae-0.2.1 → xgae-0.2.3}/.env +0 -0
  12. {xgae-0.2.1 → xgae-0.2.3}/.python-version +0 -0
  13. {xgae-0.2.1 → xgae-0.2.3}/README.md +0 -0
  14. {xgae-0.2.1 → xgae-0.2.3}/mcpservers/custom_servers.json +0 -0
  15. {xgae-0.2.1 → xgae-0.2.3}/mcpservers/xga_server.json +0 -0
  16. {xgae-0.2.1 → xgae-0.2.3}/mcpservers/xga_server_sse.json +0 -0
  17. {xgae-0.2.1 → xgae-0.2.3}/src/examples/agent/langgraph/react/agent_base.py +0 -0
  18. {xgae-0.2.1 → xgae-0.2.3}/src/examples/agent/langgraph/react/result_eval_agent.py +0 -0
  19. {xgae-0.2.1 → xgae-0.2.3}/src/examples/engine/run_custom_and_agent_tools.py +0 -0
  20. {xgae-0.2.1 → xgae-0.2.3}/src/examples/engine/run_general_tools.py +0 -0
  21. {xgae-0.2.1 → xgae-0.2.3}/src/examples/engine/run_human_in_loop.py +0 -0
  22. {xgae-0.2.1 → xgae-0.2.3}/src/examples/engine/run_simple.py +0 -0
  23. {xgae-0.2.1 → xgae-0.2.3}/src/examples/tools/custom_fault_tools_app.py +0 -0
  24. {xgae-0.2.1 → xgae-0.2.3}/src/examples/tools/simu_a2a_tools_app.py +0 -0
  25. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/__init__.py +0 -0
  26. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/engine_base.py +0 -0
  27. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/mcp_tool_box.py +0 -0
  28. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/prompt_builder.py +0 -0
  29. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/responser/non_stream_responser.py +0 -0
  30. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/responser/responser_base.py +0 -0
  31. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/responser/stream_responser.py +0 -0
  32. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/task_engine.py +0 -0
  33. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine/task_langfuse.py +0 -0
  34. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/engine_cli_app.py +0 -0
  35. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/tools/without_general_tools_app.py +0 -0
  36. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/__init__.py +0 -0
  37. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/json_helpers.py +0 -0
  38. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/llm_client.py +0 -0
  39. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/misc.py +0 -0
  40. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/setup_env.py +0 -0
  41. {xgae-0.2.1 → xgae-0.2.3}/src/xgae/utils/xml_tool_parser.py +0 -0
  42. {xgae-0.2.1 → xgae-0.2.3}/templates/agent_tool_prompt_template.txt +0 -0
  43. {xgae-0.2.1 → xgae-0.2.3}/templates/custom_tool_prompt_template.txt +0 -0
  44. {xgae-0.2.1 → xgae-0.2.3}/templates/example/fault_user_prompt.txt +0 -0
  45. {xgae-0.2.1 → xgae-0.2.3}/templates/example/result_eval_template.txt +0 -0
  46. {xgae-0.2.1 → xgae-0.2.3}/templates/gemini_system_prompt_template.txt +0 -0
  47. {xgae-0.2.1 → xgae-0.2.3}/templates/general_tool_prompt_template.txt +0 -0
  48. {xgae-0.2.1 → xgae-0.2.3}/templates/system_prompt_response_sample.txt +0 -0
  49. {xgae-0.2.1 → xgae-0.2.3}/templates/system_prompt_template.txt +0 -0
  50. {xgae-0.2.1 → xgae-0.2.3}/test/test_langfuse.py +0 -0
  51. {xgae-0.2.1 → xgae-0.2.3}/test/test_litellm_langfuse.py +0 -0
@@ -1,10 +1,15 @@
1
- # Release Changelog
1
+ ## [0.2.3] - 2025-9-19
2
+ ### Modified
3
+ - CustomPromptRag: remove FastEmbedEmbeddings, use 'text-embedding-v3' model for chinese, avoid download 'bge-small-zh-v1.5'
4
+
5
+
2
6
  ## [0.2.1] - 2025-9-17
3
7
  ### Added
4
- - Example Langgraph ReactAgent: add Chromadb for custom prompt RAG
8
+ - Example ReactAgent: add CustomPromptRag, use FastEmbedEmbeddings and 'BAAI/bge-small-zh-v1.5' model
5
9
  ### Modified
6
10
  - pyproject.toml: add [project.optional-dependencies] 'examples'
7
11
 
12
+
8
13
  ## [0.2.0] - 2025-9-10
9
14
  ### Added
10
15
  - Agent Engine release 0.2
@@ -1,16 +1,14 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: xgae
3
- Version: 0.2.1
3
+ Version: 0.2.3
4
4
  Summary: Extreme General Agent Engine
5
5
  Requires-Python: >=3.13
6
6
  Requires-Dist: colorlog==6.9.0
7
7
  Requires-Dist: langchain-mcp-adapters==0.1.9
8
- Requires-Dist: langchain==0.3.27
9
8
  Requires-Dist: langfuse==2.60.9
10
9
  Requires-Dist: litellm==1.74.15
11
10
  Requires-Dist: mcp==1.13.0
12
11
  Provides-Extra: examples
13
12
  Requires-Dist: chromadb==1.1.0; extra == 'examples'
14
- Requires-Dist: fastembed==0.7.3; extra == 'examples'
15
13
  Requires-Dist: langchain-community==0.3.29; extra == 'examples'
16
14
  Requires-Dist: langgraph==0.6.5; extra == 'examples'
@@ -1,33 +1,35 @@
1
1
  [project]
2
2
  name = "xgae"
3
- version = "0.2.1"
3
+ version = "0.2.3"
4
4
  description = "Extreme General Agent Engine"
5
5
  readme = "README.md"
6
6
  requires-python = ">=3.13"
7
7
  dependencies = [
8
8
  "colorlog==6.9.0",
9
- "langchain-mcp-adapters==0.1.9",
10
9
  "litellm==1.74.15",
11
10
  "mcp==1.13.0",
12
11
  "langfuse==2.60.9",
13
- "langchain==0.3.27",
12
+ "langchain-mcp-adapters==0.1.9",
14
13
  ]
15
14
 
15
+
16
16
  [project.optional-dependencies]
17
17
  examples = [
18
18
  "langgraph==0.6.5",
19
19
  "langchain-community==0.3.29",
20
- "fastembed==0.7.3",
21
20
  "chromadb==1.1.0",
22
21
  ]
23
22
 
23
+
24
24
  [build-system]
25
25
  requires = ["hatchling"]
26
26
  build-backend = "hatchling.build"
27
27
 
28
+
28
29
  [tool.hatch.build]
29
30
  exclude = ["log/*", ".idea/*"]
30
31
 
32
+
31
33
  [project.scripts]
32
34
  xgae = "xgae.engine_cli_app:main"
33
35
  xgae-tools = "xgae.tools.without_general_tools_app:main"
@@ -0,0 +1,107 @@
1
+ import logging
2
+ import os
3
+ from typing import override, List
4
+
5
+ from langchain_core.documents import Document
6
+ from langchain_core.embeddings import Embeddings
7
+ from langchain_core.vectorstores import VectorStore
8
+
9
+ from langchain_community.vectorstores import Chroma
10
+ from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
11
+
12
+ class ChromaEmbedding(Embeddings):
13
+ embedding_model_name = "text-embedding-v3"
14
+
15
+ def __init__(self):
16
+ api_key = os.getenv('LLM_API_KEY')
17
+ api_base = os.getenv('LLM_API_BASE', "https://dashscope.aliyuncs.com/compatible-mode/v1")
18
+
19
+ self.embedding_function = OpenAIEmbeddingFunction(
20
+ api_key = api_key,
21
+ api_base = api_base,
22
+ model_name = self.embedding_model_name,
23
+ )
24
+
25
+
26
+ @override
27
+ def embed_documents(self, texts: List[str]) -> List[List[float]]:
28
+ return self.embedding_function(texts)
29
+
30
+
31
+ @override
32
+ def embed_query(self, text: str) -> List[float]:
33
+ return self.embed_documents([text])[0]
34
+
35
+
36
+ class CustomPromptRag:
37
+ PROMPT_SIMILAR_SCORE = 0.85 # need tune-up score based on different embedding model
38
+
39
+ def __init__(self):
40
+ prompt_docs = self._load_prompts()
41
+ self.vector_store = self._init_vector_store(prompt_docs)
42
+
43
+
44
+ # should read from DB, load all custom prompt or COT
45
+ def _load_prompts(self) -> List[Document]:
46
+ prompt_docs = []
47
+ prompt_docs.append(self._create_prompt_doc(
48
+ prompt_summary="Fault location and analysis of fault causes",
49
+ prompt_path="templates/example/fault_user_prompt.txt"
50
+ ))
51
+ return prompt_docs
52
+
53
+
54
+ def _create_prompt_doc(self, prompt_summary: str, prompt_path: str)-> Document:
55
+ return Document(
56
+ page_content=prompt_summary,
57
+ metadata={
58
+ "source": prompt_path,
59
+ }
60
+ )
61
+
62
+
63
+ def _init_vector_store(self, docs: List[Document]) -> VectorStore:
64
+ embeddings = ChromaEmbedding()
65
+ return Chroma.from_documents(
66
+ documents=docs,
67
+ embedding=embeddings,
68
+ persist_directory=None
69
+ )
70
+
71
+
72
+ def search_prompt(self, query:str)-> str:
73
+ prompt_path = None
74
+ results = self.vector_store.similarity_search_with_score(query=query, k=1)
75
+ if results and len(results) > 0:
76
+ doc, score = results[0]
77
+ if score > self.PROMPT_SIMILAR_SCORE:
78
+ logging.info(f"CustomPromptRag search: SIMILAR_SCORE: {score} > {self.PROMPT_SIMILAR_SCORE}, "
79
+ f"\nquery: '{query}' \nprompt_summary: '{doc.page_content}'\n")
80
+ else:
81
+ prompt_path = doc.metadata['source']
82
+ logging.info(f"CustomPromptRag search: SIMILAR_SCORE: {score}, prompt_path: '{prompt_path}'")
83
+
84
+ return prompt_path
85
+
86
+
87
+ if __name__ == "__main__":
88
+ from xgae.utils.setup_env import setup_logging
89
+
90
+ setup_logging()
91
+
92
+ custom_prompt_rag = CustomPromptRag()
93
+
94
+ querys = ["locate 10.2.3.4 fault and solution", # 0.79
95
+ "定位 10.2.3.4 故障,并给出解决方案", # 0.81
96
+ "locate fault and solution", # 0.42
97
+ "locate fault", # 0.40
98
+ "定位故障", # 0.64
99
+ "fault solution", # 0.47
100
+ "locate", # 0.95
101
+ "5+7" # 1.12
102
+ ]
103
+
104
+ for query in querys:
105
+ logging.info("*"*50)
106
+ logging.info(f"query: '{query}'")
107
+ custom_prompt_rag.search_prompt(query)
@@ -7,7 +7,6 @@ from uuid import uuid4
7
7
  from langfuse.callback import CallbackHandler
8
8
  from langfuse import Langfuse
9
9
 
10
-
11
10
  from langgraph.graph import END, START, StateGraph
12
11
  from langgraph.types import interrupt, Command
13
12
  from langgraph.checkpoint.memory import MemorySaver
@@ -24,6 +23,7 @@ from examples.agent.langgraph.react.agent_base import AgentContext, TaskState, E
24
23
  from examples.agent.langgraph.react.result_eval_agent import TaskResultEvalAgent
25
24
  from examples.agent.langgraph.react.custom_prompt_rag import CustomPromptRag
26
25
 
26
+
27
27
  class XGAReactAgent:
28
28
  MAX_TASK_RETRY = 2
29
29
  QUALIFIED_RESULT_SCORE = 0.7
@@ -89,18 +89,24 @@ class XGAReactAgent:
89
89
 
90
90
 
91
91
  def _search_system_prompt(self, user_input: str) -> str:
92
+ system_prompt = None
92
93
  if hasattr(self, 'custom_prompt_rag'):
93
- system_prompt = self.custom_prompt_rag.search_prompt(user_input)
94
+ system_prompt_path = self.custom_prompt_rag.search_prompt(user_input)
95
+ if system_prompt_path:
96
+ system_prompt = read_file(system_prompt_path)
94
97
  else:
95
- system_prompt = None if "fault" not in user_input else read_file("templates/example/fault_user_prompt.txt")
98
+ if "fault" in user_input: # only for example
99
+ system_prompt = read_file("templates/example/fault_user_prompt.txt")
96
100
  return system_prompt
97
101
 
98
102
 
99
103
  async def _supervisor_node(self, state: TaskState) -> Dict[str, Any]:
100
104
  user_input = state['user_inputs'][0]
101
105
  eval_result = state.get('eval_result', None)
106
+ system_prompt = state.get('system_prompt', None)
102
107
 
103
- system_prompt = self._search_system_prompt(user_input)
108
+ if system_prompt is None and eval_result is None:
109
+ system_prompt = self._search_system_prompt(user_input)
104
110
  is_system_prompt = True if system_prompt is not None else False
105
111
 
106
112
  general_tools = [] if system_prompt else ["*"]
@@ -17,7 +17,7 @@ async def main():
17
17
  ]
18
18
 
19
19
  for user_input in user_inputs:
20
- agent = XGAReactAgent(use_prompt_rag=False)
20
+ agent = XGAReactAgent(use_prompt_rag=True)
21
21
  task_no += 1
22
22
  context: AgentContext = {
23
23
  'task_id': f"agent_task_{uuid4()}", # can be set with request_id, must be unique
@@ -0,0 +1,31 @@
1
+ import chromadb
2
+
3
+ chroma_client = chromadb.EphemeralClient()
4
+
5
+ # default use 'ONNXMiniLM_L6_V2' embedding function
6
+ collection = chroma_client.get_or_create_collection(name="fault_collection")
7
+
8
+ collection.upsert(
9
+ documents=[
10
+ "Fault location and analysis of fault causes",
11
+ "This is a analyse about alarm"
12
+ ],
13
+ ids=["id1", "id2"],
14
+ metadatas=[{"type": 1}, {"type": 2}]
15
+ )
16
+
17
+ querys = ["locate fault and solution",
18
+ "alarm search"
19
+ ]
20
+
21
+ for query in querys:
22
+ results = collection.query(
23
+ query_texts=query,
24
+ n_results=2,
25
+ #where={"type": 1},
26
+ where={"type": {"$gt": 0}},
27
+ where_document = {"$contains": "fault"}
28
+ )
29
+ print("*"*50)
30
+ print(f"query='{query}', id={results['ids'][0]}, score={results['distances'][0]}")
31
+