xax 0.2.20__tar.gz → 0.2.21__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {xax-0.2.20/xax.egg-info → xax-0.2.21}/PKG-INFO +1 -17
- {xax-0.2.20 → xax-0.2.21}/pyproject.toml +0 -1
- {xax-0.2.20 → xax-0.2.21}/setup.py +0 -8
- {xax-0.2.20 → xax-0.2.21}/xax/__init__.py +1 -23
- {xax-0.2.20 → xax-0.2.21}/xax/cli/edit_config.py +16 -6
- {xax-0.2.20 → xax-0.2.21}/xax/nn/metrics.py +0 -3
- {xax-0.2.20 → xax-0.2.21/xax.egg-info}/PKG-INFO +1 -17
- {xax-0.2.20 → xax-0.2.21}/xax.egg-info/SOURCES.txt +0 -2
- {xax-0.2.20 → xax-0.2.21}/xax.egg-info/requires.txt +0 -18
- xax-0.2.20/xax/nn/equinox.py +0 -183
- xax-0.2.20/xax/nn/export.py +0 -154
- {xax-0.2.20 → xax-0.2.21}/LICENSE +0 -0
- {xax-0.2.20 → xax-0.2.21}/MANIFEST.in +0 -0
- {xax-0.2.20 → xax-0.2.21}/README.md +0 -0
- {xax-0.2.20 → xax-0.2.21}/setup.cfg +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/cli/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/core/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/core/conf.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/core/state.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/nn/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/nn/embeddings.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/nn/functions.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/nn/geom.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/nn/losses.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/nn/parallel.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/nn/ssm.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/py.typed +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/requirements-dev.txt +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/requirements.txt +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/base.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/launchers/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/launchers/base.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/launchers/cli.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/launchers/single_process.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/logger.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/loggers/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/loggers/callback.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/loggers/json.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/loggers/state.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/loggers/stdout.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/loggers/tensorboard.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/artifacts.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/checkpointing.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/compile.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/cpu_stats.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/data_loader.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/gpu_stats.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/logger.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/process.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/runnable.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/step_wrapper.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/mixins/train.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/script.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/task/task.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/data/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/data/collate.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/debugging.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/experiments.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/jax.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/jaxpr.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/logging.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/numpy.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/profile.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/pytree.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/tensorboard.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/text.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/types/__init__.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/types/frozen_dict.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax/utils/types/hashable_array.py +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax.egg-info/dependency_links.txt +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax.egg-info/entry_points.txt +0 -0
- {xax-0.2.20 → xax-0.2.21}/xax.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: xax
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.21
|
4
4
|
Summary: A library for fast Jax experimentation
|
5
5
|
Home-page: https://github.com/kscalelabs/xax
|
6
6
|
Author: Benjamin Bolte
|
@@ -31,22 +31,6 @@ Requires-Dist: pytest; extra == "dev"
|
|
31
31
|
Requires-Dist: types-pillow; extra == "dev"
|
32
32
|
Requires-Dist: types-psutil; extra == "dev"
|
33
33
|
Requires-Dist: types-requests; extra == "dev"
|
34
|
-
Provides-Extra: exportable
|
35
|
-
Requires-Dist: flax; extra == "exportable"
|
36
|
-
Requires-Dist: orbax-export; extra == "exportable"
|
37
|
-
Requires-Dist: tensorflow; extra == "exportable"
|
38
|
-
Provides-Extra: all
|
39
|
-
Requires-Dist: black; extra == "all"
|
40
|
-
Requires-Dist: darglint; extra == "all"
|
41
|
-
Requires-Dist: mypy; extra == "all"
|
42
|
-
Requires-Dist: ruff; extra == "all"
|
43
|
-
Requires-Dist: pytest; extra == "all"
|
44
|
-
Requires-Dist: types-pillow; extra == "all"
|
45
|
-
Requires-Dist: types-psutil; extra == "all"
|
46
|
-
Requires-Dist: types-requests; extra == "all"
|
47
|
-
Requires-Dist: flax; extra == "all"
|
48
|
-
Requires-Dist: orbax-export; extra == "all"
|
49
|
-
Requires-Dist: tensorflow; extra == "all"
|
50
34
|
Dynamic: author
|
51
35
|
Dynamic: description
|
52
36
|
Dynamic: description-content-type
|
@@ -14,12 +14,6 @@ with open("xax/requirements.txt", "r", encoding="utf-8") as f:
|
|
14
14
|
with open("xax/requirements-dev.txt", "r", encoding="utf-8") as f:
|
15
15
|
requirements_dev: list[str] = f.read().splitlines()
|
16
16
|
|
17
|
-
requirements_export: list[str] = [
|
18
|
-
"flax",
|
19
|
-
"orbax-export",
|
20
|
-
"tensorflow",
|
21
|
-
]
|
22
|
-
|
23
17
|
with open("xax/__init__.py", "r", encoding="utf-8") as fh:
|
24
18
|
version_re = re.search(r"^__version__ = \"([^\"]*)\"", fh.read(), re.MULTILINE)
|
25
19
|
assert version_re is not None, "Could not find version in xax/__init__.py"
|
@@ -39,8 +33,6 @@ setup(
|
|
39
33
|
tests_require=requirements_dev,
|
40
34
|
extras_require={
|
41
35
|
"dev": requirements_dev,
|
42
|
-
"exportable": requirements_export,
|
43
|
-
"all": requirements_dev + requirements_export,
|
44
36
|
},
|
45
37
|
package_data={
|
46
38
|
"xax": [
|
@@ -12,7 +12,7 @@ and running the update script:
|
|
12
12
|
python -m scripts.update_api --inplace
|
13
13
|
"""
|
14
14
|
|
15
|
-
__version__ = "0.2.
|
15
|
+
__version__ = "0.2.21"
|
16
16
|
|
17
17
|
# This list shouldn't be modified by hand; instead, run the update script.
|
18
18
|
__all__ = [
|
@@ -34,12 +34,6 @@ __all__ = [
|
|
34
34
|
"get_positional_embeddings",
|
35
35
|
"get_rotary_embeddings",
|
36
36
|
"rotary_embeddings",
|
37
|
-
"MLPHyperParams",
|
38
|
-
"export_eqx_mlp",
|
39
|
-
"load_eqx",
|
40
|
-
"load_eqx_mlp",
|
41
|
-
"make_eqx_mlp",
|
42
|
-
"save_eqx",
|
43
37
|
"cubic_bezier_interpolation",
|
44
38
|
"euler_to_quat",
|
45
39
|
"get_projected_gravity_vector_from_quat",
|
@@ -215,12 +209,6 @@ NAME_MAP: dict[str, str] = {
|
|
215
209
|
"get_positional_embeddings": "nn.embeddings",
|
216
210
|
"get_rotary_embeddings": "nn.embeddings",
|
217
211
|
"rotary_embeddings": "nn.embeddings",
|
218
|
-
"MLPHyperParams": "nn.equinox",
|
219
|
-
"export_eqx_mlp": "nn.equinox",
|
220
|
-
"load_eqx": "nn.equinox",
|
221
|
-
"load_eqx_mlp": "nn.equinox",
|
222
|
-
"make_eqx_mlp": "nn.equinox",
|
223
|
-
"save_eqx": "nn.equinox",
|
224
212
|
"cubic_bezier_interpolation": "nn.geom",
|
225
213
|
"euler_to_quat": "nn.geom",
|
226
214
|
"get_projected_gravity_vector_from_quat": "nn.geom",
|
@@ -392,16 +380,6 @@ if IMPORT_ALL or TYPE_CHECKING:
|
|
392
380
|
get_rotary_embeddings,
|
393
381
|
rotary_embeddings,
|
394
382
|
)
|
395
|
-
from xax.nn.equinox import (
|
396
|
-
DTYPE,
|
397
|
-
ActivationFunction,
|
398
|
-
MLPHyperParams,
|
399
|
-
export_eqx_mlp,
|
400
|
-
load_eqx,
|
401
|
-
load_eqx_mlp,
|
402
|
-
make_eqx_mlp,
|
403
|
-
save_eqx,
|
404
|
-
)
|
405
383
|
from xax.nn.geom import (
|
406
384
|
cubic_bezier_interpolation,
|
407
385
|
euler_to_quat,
|
@@ -52,14 +52,24 @@ def main() -> None:
|
|
52
52
|
print(colored(line, "light-cyan"), flush=True)
|
53
53
|
|
54
54
|
# Saves the edited config to the checkpoint.
|
55
|
-
with
|
55
|
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
56
|
+
with tarfile.open(args.ckpt_path, "r:gz") as src_tar:
|
57
|
+
for member in src_tar.getmembers():
|
58
|
+
if member.name != "config": # Skip the old config file
|
59
|
+
src_tar.extract(member, tmp_dir)
|
56
60
|
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
+
with tarfile.open(args.ckpt_path, "w:gz") as tar:
|
62
|
+
for root, _, files in os.walk(tmp_dir):
|
63
|
+
for file in files:
|
64
|
+
file_path = os.path.join(root, file)
|
65
|
+
arcname = os.path.relpath(file_path, tmp_dir)
|
66
|
+
tar.add(file_path, arcname=arcname)
|
61
67
|
|
62
|
-
|
68
|
+
# Add the new config file
|
69
|
+
info = tarfile.TarInfo(name="config")
|
70
|
+
config_bytes = edited_config_str.encode()
|
71
|
+
info.size = len(config_bytes)
|
72
|
+
tar.addfile(info, io.BytesIO(config_bytes))
|
63
73
|
|
64
74
|
|
65
75
|
if __name__ == "__main__":
|
@@ -7,8 +7,6 @@ import jax
|
|
7
7
|
import jax.numpy as jnp
|
8
8
|
from jaxtyping import Array
|
9
9
|
|
10
|
-
from xax.utils.jax import jit as xax_jit
|
11
|
-
|
12
10
|
NormType = Literal["l1", "l2"]
|
13
11
|
|
14
12
|
|
@@ -36,7 +34,6 @@ def dynamic_time_warping(distance_matrix_nm: Array) -> Array: ...
|
|
36
34
|
def dynamic_time_warping(distance_matrix_nm: Array, return_path: Literal[True]) -> tuple[Array, Array]: ...
|
37
35
|
|
38
36
|
|
39
|
-
@xax_jit(static_argnames=["return_path"])
|
40
37
|
def dynamic_time_warping(distance_matrix_nm: Array, return_path: bool = False) -> Array | tuple[Array, Array]:
|
41
38
|
"""Dynamic Time Warping.
|
42
39
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: xax
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.21
|
4
4
|
Summary: A library for fast Jax experimentation
|
5
5
|
Home-page: https://github.com/kscalelabs/xax
|
6
6
|
Author: Benjamin Bolte
|
@@ -31,22 +31,6 @@ Requires-Dist: pytest; extra == "dev"
|
|
31
31
|
Requires-Dist: types-pillow; extra == "dev"
|
32
32
|
Requires-Dist: types-psutil; extra == "dev"
|
33
33
|
Requires-Dist: types-requests; extra == "dev"
|
34
|
-
Provides-Extra: exportable
|
35
|
-
Requires-Dist: flax; extra == "exportable"
|
36
|
-
Requires-Dist: orbax-export; extra == "exportable"
|
37
|
-
Requires-Dist: tensorflow; extra == "exportable"
|
38
|
-
Provides-Extra: all
|
39
|
-
Requires-Dist: black; extra == "all"
|
40
|
-
Requires-Dist: darglint; extra == "all"
|
41
|
-
Requires-Dist: mypy; extra == "all"
|
42
|
-
Requires-Dist: ruff; extra == "all"
|
43
|
-
Requires-Dist: pytest; extra == "all"
|
44
|
-
Requires-Dist: types-pillow; extra == "all"
|
45
|
-
Requires-Dist: types-psutil; extra == "all"
|
46
|
-
Requires-Dist: types-requests; extra == "all"
|
47
|
-
Requires-Dist: flax; extra == "all"
|
48
|
-
Requires-Dist: orbax-export; extra == "all"
|
49
|
-
Requires-Dist: tensorflow; extra == "all"
|
50
34
|
Dynamic: author
|
51
35
|
Dynamic: description
|
52
36
|
Dynamic: description-content-type
|
@@ -14,19 +14,6 @@ tensorboard
|
|
14
14
|
psutil
|
15
15
|
requests
|
16
16
|
|
17
|
-
[all]
|
18
|
-
black
|
19
|
-
darglint
|
20
|
-
mypy
|
21
|
-
ruff
|
22
|
-
pytest
|
23
|
-
types-pillow
|
24
|
-
types-psutil
|
25
|
-
types-requests
|
26
|
-
flax
|
27
|
-
orbax-export
|
28
|
-
tensorflow
|
29
|
-
|
30
17
|
[dev]
|
31
18
|
black
|
32
19
|
darglint
|
@@ -36,8 +23,3 @@ pytest
|
|
36
23
|
types-pillow
|
37
24
|
types-psutil
|
38
25
|
types-requests
|
39
|
-
|
40
|
-
[exportable]
|
41
|
-
flax
|
42
|
-
orbax-export
|
43
|
-
tensorflow
|
xax-0.2.20/xax/nn/equinox.py
DELETED
@@ -1,183 +0,0 @@
|
|
1
|
-
"""Equinox utilities."""
|
2
|
-
|
3
|
-
import json
|
4
|
-
import logging
|
5
|
-
from pathlib import Path
|
6
|
-
from typing import Callable, Literal, TypedDict, cast
|
7
|
-
|
8
|
-
import equinox as eqx
|
9
|
-
import jax
|
10
|
-
from jaxtyping import PRNGKeyArray
|
11
|
-
|
12
|
-
logger = logging.getLogger(__name__)
|
13
|
-
|
14
|
-
ActivationFunction = Literal[
|
15
|
-
"relu",
|
16
|
-
"tanh",
|
17
|
-
"celu",
|
18
|
-
"elu",
|
19
|
-
"gelu",
|
20
|
-
"glu",
|
21
|
-
"hard_sigmoid",
|
22
|
-
"hard_silu",
|
23
|
-
"hard_swish",
|
24
|
-
"hard_tanh",
|
25
|
-
"leaky_relu",
|
26
|
-
"log_sigmoid",
|
27
|
-
"log_softmax",
|
28
|
-
"logsumexp",
|
29
|
-
"relu6",
|
30
|
-
"selu",
|
31
|
-
"sigmoid",
|
32
|
-
"soft_sign",
|
33
|
-
"softmax",
|
34
|
-
"softplus",
|
35
|
-
"sparse_plus",
|
36
|
-
"sparse_sigmoid",
|
37
|
-
"silu",
|
38
|
-
"swish",
|
39
|
-
"squareplus",
|
40
|
-
"mish",
|
41
|
-
"identity",
|
42
|
-
]
|
43
|
-
|
44
|
-
DTYPE = Literal["float32", "float64"]
|
45
|
-
|
46
|
-
DTYPE_MAP: dict[DTYPE, jax.numpy.dtype] = {
|
47
|
-
"float32": jax.numpy.float32,
|
48
|
-
"float64": jax.numpy.float64,
|
49
|
-
}
|
50
|
-
|
51
|
-
|
52
|
-
class MLPHyperParams(TypedDict):
|
53
|
-
"""Hyperparameters of an Equinox MLP."""
|
54
|
-
|
55
|
-
in_size: int | Literal["scalar"]
|
56
|
-
out_size: int | Literal["scalar"]
|
57
|
-
width_size: int
|
58
|
-
depth: int
|
59
|
-
activation: ActivationFunction
|
60
|
-
final_activation: ActivationFunction
|
61
|
-
use_bias: bool
|
62
|
-
use_final_bias: bool
|
63
|
-
dtype: DTYPE
|
64
|
-
|
65
|
-
|
66
|
-
def _infer_activation(activation: ActivationFunction) -> Callable:
|
67
|
-
if activation == "identity":
|
68
|
-
return lambda x: x
|
69
|
-
try:
|
70
|
-
return getattr(jax.nn, activation)
|
71
|
-
except AttributeError as err:
|
72
|
-
raise ValueError(f"Activation function `{activation}` not found in `jax.nn`") from err
|
73
|
-
|
74
|
-
|
75
|
-
def make_eqx_mlp(hyperparams: MLPHyperParams, *, key: PRNGKeyArray) -> eqx.nn.MLP:
|
76
|
-
"""Create an Equinox MLP from a set of hyperparameters.
|
77
|
-
|
78
|
-
Args:
|
79
|
-
hyperparams: The hyperparameters of the MLP.
|
80
|
-
key: The PRNG key to use for the MLP.
|
81
|
-
"""
|
82
|
-
activation = _infer_activation(hyperparams["activation"])
|
83
|
-
final_activation = _infer_activation(hyperparams["final_activation"])
|
84
|
-
dtype = DTYPE_MAP[hyperparams["dtype"]]
|
85
|
-
|
86
|
-
return eqx.nn.MLP(
|
87
|
-
in_size=hyperparams["in_size"],
|
88
|
-
out_size=hyperparams["out_size"],
|
89
|
-
width_size=hyperparams["width_size"],
|
90
|
-
depth=hyperparams["depth"],
|
91
|
-
activation=activation,
|
92
|
-
final_activation=final_activation,
|
93
|
-
use_bias=hyperparams["use_bias"],
|
94
|
-
use_final_bias=hyperparams["use_final_bias"],
|
95
|
-
dtype=dtype,
|
96
|
-
key=key,
|
97
|
-
)
|
98
|
-
|
99
|
-
|
100
|
-
def export_eqx_mlp(
|
101
|
-
model: eqx.nn.MLP,
|
102
|
-
output_path: str | Path,
|
103
|
-
dtype: jax.numpy.dtype | None = None,
|
104
|
-
) -> None:
|
105
|
-
"""Serialize an Equinox MLP to a .eqx file.
|
106
|
-
|
107
|
-
Args:
|
108
|
-
model: The JAX MLP to export.
|
109
|
-
output_path: The path to save the exported model.
|
110
|
-
dtype: The dtype of the model.
|
111
|
-
"""
|
112
|
-
if dtype is None:
|
113
|
-
dtype = eqx._misc.default_floating_dtype()
|
114
|
-
|
115
|
-
activation = model.activation.__name__
|
116
|
-
final_activation = model.final_activation.__name__
|
117
|
-
|
118
|
-
if final_activation == "<lambda>":
|
119
|
-
logger.warning("Final activation is a lambda function. Assuming identity.")
|
120
|
-
final_activation = "identity"
|
121
|
-
|
122
|
-
# cast strings to ActivationFunction for type checking
|
123
|
-
activation = cast(ActivationFunction, activation)
|
124
|
-
final_activation = cast(ActivationFunction, final_activation)
|
125
|
-
|
126
|
-
if dtype not in DTYPE_MAP.values():
|
127
|
-
raise ValueError(f"Invalid dtype: {dtype}. Must be one of {DTYPE_MAP.values()}")
|
128
|
-
|
129
|
-
dtype = {v: k for k, v in DTYPE_MAP.items()}[dtype]
|
130
|
-
|
131
|
-
hyperparams: MLPHyperParams = {
|
132
|
-
"in_size": model.in_size,
|
133
|
-
"out_size": model.out_size,
|
134
|
-
"width_size": model.width_size,
|
135
|
-
"depth": model.depth,
|
136
|
-
"activation": activation,
|
137
|
-
"final_activation": final_activation,
|
138
|
-
"use_bias": model.use_bias,
|
139
|
-
"use_final_bias": model.use_final_bias,
|
140
|
-
"dtype": dtype,
|
141
|
-
}
|
142
|
-
|
143
|
-
with open(output_path, "wb") as f:
|
144
|
-
hyperparam_str = json.dumps(hyperparams)
|
145
|
-
f.write((hyperparam_str + "\n").encode(encoding="utf-8"))
|
146
|
-
eqx.tree_serialise_leaves(f, model)
|
147
|
-
|
148
|
-
|
149
|
-
def save_eqx(
|
150
|
-
model: eqx.Module,
|
151
|
-
output_path: str | Path,
|
152
|
-
) -> None:
|
153
|
-
"""Serialize an Equinox module to a .eqx file.
|
154
|
-
|
155
|
-
Args:
|
156
|
-
model: The Equinox module to export.
|
157
|
-
output_path: The path to save the exported model.
|
158
|
-
"""
|
159
|
-
with open(output_path, "wb") as f:
|
160
|
-
eqx.tree_serialise_leaves(f, model)
|
161
|
-
|
162
|
-
|
163
|
-
def load_eqx(
|
164
|
-
model: eqx.Module,
|
165
|
-
eqx_file: str | Path,
|
166
|
-
) -> eqx.Module:
|
167
|
-
"""Deserialize an Equinox module from a .eqx file.
|
168
|
-
|
169
|
-
Args:
|
170
|
-
model: The Equinox module to load into.
|
171
|
-
eqx_file: The path to the .eqx file to load.
|
172
|
-
"""
|
173
|
-
with open(eqx_file, "rb") as f:
|
174
|
-
return eqx.tree_deserialise_leaves(f, model)
|
175
|
-
|
176
|
-
|
177
|
-
def load_eqx_mlp(
|
178
|
-
eqx_file: str | Path,
|
179
|
-
) -> eqx.nn.MLP:
|
180
|
-
with open(eqx_file, "rb") as f:
|
181
|
-
hyperparams = json.loads(f.readline().decode(encoding="utf-8"))
|
182
|
-
model = make_eqx_mlp(hyperparams=hyperparams, key=jax.random.PRNGKey(0))
|
183
|
-
return eqx.tree_deserialise_leaves(f, model)
|
xax-0.2.20/xax/nn/export.py
DELETED
@@ -1,154 +0,0 @@
|
|
1
|
-
"""Export JAX functions to TensorFlow SavedModel format."""
|
2
|
-
|
3
|
-
import logging
|
4
|
-
from pathlib import Path
|
5
|
-
from typing import Callable
|
6
|
-
|
7
|
-
import jax
|
8
|
-
from jaxtyping import Array, PyTree
|
9
|
-
|
10
|
-
try:
|
11
|
-
import flax
|
12
|
-
import tensorflow as tf
|
13
|
-
from jax.experimental import jax2tf
|
14
|
-
from orbax.export import ExportManager, JaxModule, ServingConfig
|
15
|
-
except ImportError as e:
|
16
|
-
raise ImportError(
|
17
|
-
"In order to export models, please install Xax with exportable dependencies, "
|
18
|
-
"using 'xax[exportable]` to install the required dependencies."
|
19
|
-
) from e
|
20
|
-
|
21
|
-
logger = logging.getLogger(__name__)
|
22
|
-
|
23
|
-
|
24
|
-
def _run_infer(tf_module: tf.Module, input_shapes: list[tuple[int, ...]], batch_size: int | None) -> tf.Tensor:
|
25
|
-
"""Warm up the model by running it once."""
|
26
|
-
if batch_size is not None:
|
27
|
-
test_inputs = [
|
28
|
-
jax.random.normal(jax.random.PRNGKey(42), (batch_size, *input_shape)) for input_shape in input_shapes
|
29
|
-
]
|
30
|
-
else:
|
31
|
-
test_inputs = [jax.random.normal(jax.random.PRNGKey(42), (1, *input_shape)) for input_shape in input_shapes]
|
32
|
-
if not hasattr(tf_module, "infer"):
|
33
|
-
raise ValueError("Model does not have an infer method")
|
34
|
-
return tf_module.infer(*test_inputs)
|
35
|
-
|
36
|
-
|
37
|
-
def export(
|
38
|
-
model: Callable,
|
39
|
-
input_shapes: list[tuple[int, ...]],
|
40
|
-
output_dir: str | Path = "export",
|
41
|
-
batch_size: int | None = None,
|
42
|
-
) -> None:
|
43
|
-
"""Export a JAX function to TensorFlow SavedModel.
|
44
|
-
|
45
|
-
Note: Tensorflow GraphDef can't be larger than 2GB - https://github.com/tensorflow/tensorflow/issues/51870
|
46
|
-
You can avoid this by saving model parameters as non-constants.
|
47
|
-
|
48
|
-
Args:
|
49
|
-
model: The JAX function to export.
|
50
|
-
input_shapes: The shape of the input tensors, excluding batch dimension.
|
51
|
-
output_dir: Directory to save the exported model.
|
52
|
-
batch_size: Optional batch dimension. If None, a polymorphic batch dimension is used.
|
53
|
-
"""
|
54
|
-
tf_module = tf.Module()
|
55
|
-
# Create a polymorphic shape specification for each input
|
56
|
-
poly_spec = "(b, ...)" if batch_size is not None else "(None, ...)"
|
57
|
-
polymorphic_shapes = [poly_spec] * len(input_shapes)
|
58
|
-
tf_module.infer = tf.function( # type: ignore [attr-defined]
|
59
|
-
jax2tf.convert(
|
60
|
-
model,
|
61
|
-
polymorphic_shapes=polymorphic_shapes,
|
62
|
-
# setting this to False will allow the model to run on platforms other than the one that exports the model
|
63
|
-
# https://github.com/jax-ml/jax/blob/051687dc4c899df3d95c30b812ade401d8b31166/jax/experimental/jax2tf/README.md?plain=1#L1342
|
64
|
-
# generally though I think native_serialization is recommended
|
65
|
-
native_serialization=False,
|
66
|
-
with_gradient=False,
|
67
|
-
),
|
68
|
-
autograph=False,
|
69
|
-
input_signature=[tf.TensorSpec([batch_size] + list(input_shape), tf.float32) for input_shape in input_shapes],
|
70
|
-
)
|
71
|
-
|
72
|
-
# warm up the model
|
73
|
-
_run_infer(tf_module, input_shapes, batch_size)
|
74
|
-
|
75
|
-
logger.info("Exporting SavedModel to %s", output_dir)
|
76
|
-
tf.saved_model.save(
|
77
|
-
tf_module,
|
78
|
-
output_dir,
|
79
|
-
)
|
80
|
-
|
81
|
-
|
82
|
-
def export_with_params(
|
83
|
-
model: Callable,
|
84
|
-
params: PyTree,
|
85
|
-
input_shapes: list[tuple[int, ...]],
|
86
|
-
output_dir: str | Path = "export",
|
87
|
-
batch_dim: int | None = None,
|
88
|
-
) -> None:
|
89
|
-
"""Export a JAX function that takes parameters to TensorFlow SavedModel.
|
90
|
-
|
91
|
-
Args:
|
92
|
-
model: The JAX function to export. Should take parameters as first argument.
|
93
|
-
params: The parameters to use for the model.
|
94
|
-
input_shapes: The shape of the input tensors, excluding batch dimension.
|
95
|
-
output_dir: Directory to save the exported model.
|
96
|
-
batch_dim: Optional batch dimension. If None, a polymorphic batch dimension is used.
|
97
|
-
"""
|
98
|
-
param_vars = tf.nest.map_structure(tf.Variable, params)
|
99
|
-
|
100
|
-
converted_model = jax2tf.convert(model)
|
101
|
-
|
102
|
-
def model_fn(*inputs: PyTree) -> Array:
|
103
|
-
return converted_model(param_vars, *inputs)
|
104
|
-
|
105
|
-
tf_module = tf.Module()
|
106
|
-
tf_module._variables = tf.nest.flatten(param_vars) # type: ignore [attr-defined]
|
107
|
-
tf_module.infer = tf.function( # type: ignore [attr-defined]
|
108
|
-
model_fn,
|
109
|
-
jit_compile=True,
|
110
|
-
autograph=False,
|
111
|
-
input_signature=[tf.TensorSpec([batch_dim] + list(input_shape), tf.float32) for input_shape in input_shapes],
|
112
|
-
)
|
113
|
-
|
114
|
-
# warm up the model
|
115
|
-
_run_infer(tf_module, input_shapes, batch_dim)
|
116
|
-
|
117
|
-
logger.info("Exporting SavedModel to %s", output_dir)
|
118
|
-
tf.saved_model.save(tf_module, output_dir)
|
119
|
-
|
120
|
-
|
121
|
-
def export_flax(
|
122
|
-
model: flax.linen.Module,
|
123
|
-
params: PyTree,
|
124
|
-
input_shape: tuple[int, ...],
|
125
|
-
preprocessor: Callable | None = None,
|
126
|
-
postprocessor: Callable | None = None,
|
127
|
-
input_name: str = "inputs",
|
128
|
-
output_name: str = "outputs",
|
129
|
-
output_dir: str | Path = "export",
|
130
|
-
) -> None:
|
131
|
-
jax_module = JaxModule(
|
132
|
-
params, model.apply, trainable=False, input_polymorphic_shape="(b, ...)"
|
133
|
-
) # if you want to use a batch dimension
|
134
|
-
|
135
|
-
# to avoid mapping sequences to ambiguous mappings
|
136
|
-
if postprocessor is None:
|
137
|
-
|
138
|
-
def postprocessor(x: PyTree) -> PyTree:
|
139
|
-
return {output_name: x}
|
140
|
-
|
141
|
-
export_manager = ExportManager(
|
142
|
-
jax_module,
|
143
|
-
[
|
144
|
-
ServingConfig(
|
145
|
-
"serving_default",
|
146
|
-
input_signature=[tf.TensorSpec([None] + list(input_shape), tf.float32, name=input_name)],
|
147
|
-
tf_preprocessor=preprocessor,
|
148
|
-
tf_postprocessor=postprocessor,
|
149
|
-
)
|
150
|
-
],
|
151
|
-
)
|
152
|
-
|
153
|
-
logger.info("Exporting model to %s", output_dir)
|
154
|
-
export_manager.save(output_dir)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|