x-transformers 2.9.0__tar.gz → 2.9.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. {x_transformers-2.9.0 → x_transformers-2.9.2}/PKG-INFO +13 -1
  2. {x_transformers-2.9.0 → x_transformers-2.9.2}/README.md +12 -0
  3. {x_transformers-2.9.0 → x_transformers-2.9.2}/pyproject.toml +1 -1
  4. {x_transformers-2.9.0 → x_transformers-2.9.2}/tests/test_x_transformers.py +12 -0
  5. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/attend.py +15 -1
  6. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/x_transformers.py +6 -0
  7. {x_transformers-2.9.0 → x_transformers-2.9.2}/.github/FUNDING.yml +0 -0
  8. {x_transformers-2.9.0 → x_transformers-2.9.2}/.github/workflows/python-publish.yml +0 -0
  9. {x_transformers-2.9.0 → x_transformers-2.9.2}/.github/workflows/python-test.yaml +0 -0
  10. {x_transformers-2.9.0 → x_transformers-2.9.2}/.gitignore +0 -0
  11. {x_transformers-2.9.0 → x_transformers-2.9.2}/LICENSE +0 -0
  12. {x_transformers-2.9.0 → x_transformers-2.9.2}/data/README.md +0 -0
  13. {x_transformers-2.9.0 → x_transformers-2.9.2}/data/enwik8.gz +0 -0
  14. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/all-attention.png +0 -0
  15. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/attention-on-attention.png +0 -0
  16. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/cosine-sim-attention.png +0 -0
  17. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/deepnorm.png +0 -0
  18. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/dynamic-pos-bias-linear.png +0 -0
  19. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/dynamic-pos-bias-log.png +0 -0
  20. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/dynamic-pos-bias-sinusoidal.png +0 -0
  21. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/dynamic-pos-bias.png +0 -0
  22. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/enhanced-recurrence.png +0 -0
  23. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/fcm.png +0 -0
  24. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/ffglu.png +0 -0
  25. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/flash-attention.png +0 -0
  26. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/gate_values.png +0 -0
  27. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/gating.png +0 -0
  28. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/length-extrapolation-scale.png +0 -0
  29. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/macaron-1.png +0 -0
  30. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/macaron-2.png +0 -0
  31. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/memory-transformer.png +0 -0
  32. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/normformer.png +0 -0
  33. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/pia.png +0 -0
  34. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/qknorm-analysis.png +0 -0
  35. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/resi_dual.png +0 -0
  36. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/residual_attn.png +0 -0
  37. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/rezero.png +0 -0
  38. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/rotary.png +0 -0
  39. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/sandwich-2.png +0 -0
  40. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/sandwich.png +0 -0
  41. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/sandwich_norm.png +0 -0
  42. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/scalenorm.png +0 -0
  43. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/talking-heads.png +0 -0
  44. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/topk-attention.png +0 -0
  45. {x_transformers-2.9.0 → x_transformers-2.9.2}/images/xval.png +0 -0
  46. {x_transformers-2.9.0 → x_transformers-2.9.2}/train_belief_state.py +0 -0
  47. {x_transformers-2.9.0 → x_transformers-2.9.2}/train_copy.py +0 -0
  48. {x_transformers-2.9.0 → x_transformers-2.9.2}/train_entropy_tokenizer.py +0 -0
  49. {x_transformers-2.9.0 → x_transformers-2.9.2}/train_enwik8.py +0 -0
  50. {x_transformers-2.9.0 → x_transformers-2.9.2}/train_gpt_vae.py +0 -0
  51. {x_transformers-2.9.0 → x_transformers-2.9.2}/train_length_extrapolate.py +0 -0
  52. {x_transformers-2.9.0 → x_transformers-2.9.2}/train_parity.py +0 -0
  53. {x_transformers-2.9.0 → x_transformers-2.9.2}/train_with_muon.py +0 -0
  54. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/__init__.py +0 -0
  55. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/autoregressive_wrapper.py +0 -0
  56. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/belief_state_wrapper.py +0 -0
  57. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/continuous.py +0 -0
  58. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/dpo.py +0 -0
  59. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/entropy_based_tokenizer.py +0 -0
  60. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/gpt_vae.py +0 -0
  61. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/multi_input.py +0 -0
  62. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/neo_mlp.py +0 -0
  63. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/nonautoregressive_wrapper.py +0 -0
  64. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/up_wrapper.py +0 -0
  65. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/xl_autoregressive_wrapper.py +0 -0
  66. {x_transformers-2.9.0 → x_transformers-2.9.2}/x_transformers/xval.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: x-transformers
3
- Version: 2.9.0
3
+ Version: 2.9.2
4
4
  Summary: X-Transformers
5
5
  Project-URL: Homepage, https://pypi.org/project/x-transformers/
6
6
  Project-URL: Repository, https://github.com/lucidrains/x-transformers
@@ -2574,4 +2574,16 @@ ids_out, num_out, is_number_mask = model.generate(start_ids, start_nums, 17)
2574
2574
  }
2575
2575
  ```
2576
2576
 
2577
+ ```bibtex
2578
+ @misc{yan2017hierarchicalmultiscaleattentionnetworks,
2579
+ title = {Hierarchical Multi-scale Attention Networks for Action Recognition},
2580
+ author = {Shiyang Yan and Jeremy S. Smith and Wenjin Lu and Bailing Zhang},
2581
+ year = {2017},
2582
+ eprint = {1708.07590},
2583
+ archivePrefix = {arXiv},
2584
+ primaryClass = {cs.CV},
2585
+ url = {https://arxiv.org/abs/1708.07590},
2586
+ }
2587
+ ```
2588
+
2577
2589
  *solve intelligence... then use that to solve everything else.* - Demis Hassabis
@@ -2525,4 +2525,16 @@ ids_out, num_out, is_number_mask = model.generate(start_ids, start_nums, 17)
2525
2525
  }
2526
2526
  ```
2527
2527
 
2528
+ ```bibtex
2529
+ @misc{yan2017hierarchicalmultiscaleattentionnetworks,
2530
+ title = {Hierarchical Multi-scale Attention Networks for Action Recognition},
2531
+ author = {Shiyang Yan and Jeremy S. Smith and Wenjin Lu and Bailing Zhang},
2532
+ year = {2017},
2533
+ eprint = {1708.07590},
2534
+ archivePrefix = {arXiv},
2535
+ primaryClass = {cs.CV},
2536
+ url = {https://arxiv.org/abs/1708.07590},
2537
+ }
2538
+ ```
2539
+
2528
2540
  *solve intelligence... then use that to solve everything else.* - Demis Hassabis
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "x-transformers"
3
- version = "2.9.0"
3
+ version = "2.9.2"
4
4
  description = "X-Transformers"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -1373,3 +1373,15 @@ def test_muon_params():
1373
1373
 
1374
1374
  enc = Encoder(dim = 512, depth = 2)
1375
1375
  assert len(enc.muon_parameters()) > 0
1376
+
1377
+ def test_stochastic_attn():
1378
+ from x_transformers import Attention
1379
+
1380
+ attn = Attention(dim = 512, gumbel_softmax = True)
1381
+ out, intermediate = attn(torch.randn(1, 1024, 512), return_intermediates = True)
1382
+
1383
+ assert out.shape == (1, 1024, 512)
1384
+
1385
+ from x_transformers.attend import log_prob_from_hard_attend
1386
+ log_probs = log_prob_from_hard_attend(intermediate)
1387
+ assert log_probs.shape == (1, 8, 1024)
@@ -67,6 +67,15 @@ def once(fn):
67
67
 
68
68
  print_once = once(print)
69
69
 
70
+ # gumbel softmax attention related
71
+
72
+ def log_prob_from_hard_attend(intermeds: Intermediates):
73
+ log_probs = intermeds.pre_softmax_attn.log_softmax(dim = -1)
74
+
75
+ one_hot = intermeds.post_softmax_attn.argmax(dim = -1, keepdim = True)
76
+ log_prob = log_probs.gather(-1, one_hot)
77
+ return rearrange(log_prob, 'b h i 1 -> b h i')
78
+
70
79
  # selective attention
71
80
  # https://arxiv.org/abs/2410.02703 - section 3.3
72
81
  # it is a technique to allow each token to prevent itself from being attended to by future tokens
@@ -171,6 +180,9 @@ class Attend(Module):
171
180
  qk_norm = False,
172
181
  l2_distance = False,
173
182
  sigmoid = False,
183
+ gumbel_softmax = False,
184
+ gumbel_softmax_temp = 1.,
185
+ gumbel_softmax_hard = True,
174
186
  custom_attn_fn: Callable | None = None,
175
187
  flash = False,
176
188
  softclamp_logits = False,
@@ -203,7 +215,7 @@ class Attend(Module):
203
215
  assert not (flash and hard), 'hard attention not available for flash'
204
216
  assert not (flash and is_sparse_topk_attn), 'topk attention not available for flash'
205
217
 
206
- assert at_most_one_of(sigmoid, hard, l2_distance, is_sparse_topk_attn)
218
+ assert at_most_one_of(sigmoid, hard, l2_distance, gumbel_softmax, is_sparse_topk_attn)
207
219
 
208
220
  if exists(custom_attn_fn):
209
221
  self.attn_fn = custom_attn_fn
@@ -213,6 +225,8 @@ class Attend(Module):
213
225
  self.attn_fn = one_hot_straight_through
214
226
  elif is_sparse_topk_attn:
215
227
  self.attn_fn = partial(sparse_topk_attn, sparse_topk = sparse_topk, straight_through = sparse_topk_straight_through)
228
+ elif gumbel_softmax:
229
+ self.attn_fn = partial(F.gumbel_softmax, dim = -1, tau = gumbel_softmax_temp, hard = gumbel_softmax_hard)
216
230
  else:
217
231
  softmax_fn = partial(F.softmax, dim = -1)
218
232
  self.attn_fn = partial(softmax_fn, dtype = torch.float32) if not qk_norm else softmax_fn
@@ -1336,6 +1336,9 @@ class Attention(Module):
1336
1336
  value_rmsnorm = False, # used in alphagenome and bytedance's GR3 for further stability
1337
1337
  l2_distance = False,
1338
1338
  sigmoid = False,
1339
+ gumbel_softmax = False,
1340
+ gumbel_softmax_temp = 1.,
1341
+ gumbel_softmax_hard = True,
1339
1342
  selective = False,
1340
1343
  custom_attn_fn: Callable | None = None,
1341
1344
  hybrid_module: Module | None = None,
@@ -1541,6 +1544,9 @@ class Attention(Module):
1541
1544
  scale = qk_norm_scale if qk_norm else self.scale,
1542
1545
  l2_distance = l2_distance,
1543
1546
  sigmoid = sigmoid,
1547
+ gumbel_softmax = gumbel_softmax,
1548
+ gumbel_softmax_temp = gumbel_softmax_temp,
1549
+ gumbel_softmax_hard = gumbel_softmax_hard,
1544
1550
  selective = selective,
1545
1551
  custom_attn_fn = custom_attn_fn,
1546
1552
  add_zero_kv = add_zero_kv,
File without changes