x-transformers 2.6.0__tar.gz → 2.6.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. {x_transformers-2.6.0 → x_transformers-2.6.1}/PKG-INFO +1 -1
  2. {x_transformers-2.6.0 → x_transformers-2.6.1}/pyproject.toml +1 -1
  3. {x_transformers-2.6.0 → x_transformers-2.6.1}/tests/test_x_transformers.py +3 -1
  4. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/x_transformers.py +14 -5
  5. {x_transformers-2.6.0 → x_transformers-2.6.1}/.github/FUNDING.yml +0 -0
  6. {x_transformers-2.6.0 → x_transformers-2.6.1}/.github/workflows/python-publish.yml +0 -0
  7. {x_transformers-2.6.0 → x_transformers-2.6.1}/.github/workflows/python-test.yaml +0 -0
  8. {x_transformers-2.6.0 → x_transformers-2.6.1}/.gitignore +0 -0
  9. {x_transformers-2.6.0 → x_transformers-2.6.1}/LICENSE +0 -0
  10. {x_transformers-2.6.0 → x_transformers-2.6.1}/README.md +0 -0
  11. {x_transformers-2.6.0 → x_transformers-2.6.1}/data/README.md +0 -0
  12. {x_transformers-2.6.0 → x_transformers-2.6.1}/data/enwik8.gz +0 -0
  13. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/all-attention.png +0 -0
  14. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/attention-on-attention.png +0 -0
  15. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/cosine-sim-attention.png +0 -0
  16. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/deepnorm.png +0 -0
  17. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/dynamic-pos-bias-linear.png +0 -0
  18. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/dynamic-pos-bias-log.png +0 -0
  19. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/dynamic-pos-bias-sinusoidal.png +0 -0
  20. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/dynamic-pos-bias.png +0 -0
  21. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/enhanced-recurrence.png +0 -0
  22. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/fcm.png +0 -0
  23. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/ffglu.png +0 -0
  24. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/flash-attention.png +0 -0
  25. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/gate_values.png +0 -0
  26. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/gating.png +0 -0
  27. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/length-extrapolation-scale.png +0 -0
  28. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/macaron-1.png +0 -0
  29. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/macaron-2.png +0 -0
  30. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/memory-transformer.png +0 -0
  31. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/normformer.png +0 -0
  32. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/pia.png +0 -0
  33. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/qknorm-analysis.png +0 -0
  34. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/resi_dual.png +0 -0
  35. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/residual_attn.png +0 -0
  36. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/rezero.png +0 -0
  37. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/rotary.png +0 -0
  38. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/sandwich-2.png +0 -0
  39. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/sandwich.png +0 -0
  40. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/sandwich_norm.png +0 -0
  41. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/scalenorm.png +0 -0
  42. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/talking-heads.png +0 -0
  43. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/topk-attention.png +0 -0
  44. {x_transformers-2.6.0 → x_transformers-2.6.1}/images/xval.png +0 -0
  45. {x_transformers-2.6.0 → x_transformers-2.6.1}/train_belief_state.py +0 -0
  46. {x_transformers-2.6.0 → x_transformers-2.6.1}/train_copy.py +0 -0
  47. {x_transformers-2.6.0 → x_transformers-2.6.1}/train_entropy_tokenizer.py +0 -0
  48. {x_transformers-2.6.0 → x_transformers-2.6.1}/train_enwik8.py +0 -0
  49. {x_transformers-2.6.0 → x_transformers-2.6.1}/train_length_extrapolate.py +0 -0
  50. {x_transformers-2.6.0 → x_transformers-2.6.1}/train_parity.py +0 -0
  51. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/__init__.py +0 -0
  52. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/attend.py +0 -0
  53. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/autoregressive_wrapper.py +0 -0
  54. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/belief_state_wrapper.py +0 -0
  55. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/continuous.py +0 -0
  56. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/dpo.py +0 -0
  57. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/entropy_based_tokenizer.py +0 -0
  58. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/multi_input.py +0 -0
  59. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/neo_mlp.py +0 -0
  60. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/nonautoregressive_wrapper.py +0 -0
  61. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/up_wrapper.py +0 -0
  62. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/xl_autoregressive_wrapper.py +0 -0
  63. {x_transformers-2.6.0 → x_transformers-2.6.1}/x_transformers/xval.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: x-transformers
3
- Version: 2.6.0
3
+ Version: 2.6.1
4
4
  Summary: X-Transformers
5
5
  Project-URL: Homepage, https://pypi.org/project/x-transformers/
6
6
  Project-URL: Repository, https://github.com/lucidrains/x-transformers
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "x-transformers"
3
- version = "2.6.0"
3
+ version = "2.6.1"
4
4
  description = "X-Transformers"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -1232,4 +1232,6 @@ def test_external_key_values():
1232
1232
  (torch.randn(3, 8, 32, 16), torch.randn(3, 8, 32, 16)),
1233
1233
  ]
1234
1234
 
1235
- logits = model(seq, self_attn_additional_kv = key_values)
1235
+ additional_kv_mask = torch.randint(0, 2, (3, 32)).bool()
1236
+
1237
+ logits = model(seq, self_attn_additional_kv = key_values, additional_kv_mask = additional_kv_mask)
@@ -1618,7 +1618,8 @@ class Attention(Module):
1618
1618
  return_intermediates = False,
1619
1619
  cache: Intermediates | None = None,
1620
1620
  value_residual = None,
1621
- additional_key_values: tuple[Tensor, Tensor] | None = None
1621
+ additional_key_values: tuple[Tensor, Tensor] | None = None,
1622
+ additional_key_value_mask = None,
1622
1623
  ):
1623
1624
  b, n, h, kv_h, head_scale, num_mem_kv, device, has_context, qkv_receive_diff_residuals, is_multi_latent_attn = x.shape[0], x.shape[1], self.heads, self.kv_heads, self.head_scale, self.num_mem_kv, x.device, exists(context), self.qkv_receive_diff_residuals, self.use_latent_kv
1624
1625
 
@@ -1791,15 +1792,22 @@ class Attention(Module):
1791
1792
  # maybe append additional key / values
1792
1793
 
1793
1794
  if exists(additional_key_values):
1795
+ seq_len = k.shape[-2]
1794
1796
 
1795
1797
  added_k, added_v = additional_key_values
1796
- added_kv_len = added_k.shape[-2]
1797
1798
 
1798
1799
  k = cat((added_k, k), dim = -2)
1799
1800
  v = cat((added_v, v), dim = -2)
1800
1801
 
1801
- if exists(input_mask):
1802
- input_mask = pad_at_dim(input_mask, (added_kv_len, 0), dim = -1, value = True)
1802
+ if (exists(input_mask) or exists(additional_key_value_mask)):
1803
+
1804
+ if not exists(additional_key_value_mask):
1805
+ added_kv_len = added_k.shape[-2]
1806
+ input_mask = pad_at_dim(input_mask, (added_kv_len, 0), dim = -1, value = True)
1807
+ elif not exists(input_mask):
1808
+ input_mask = pad_at_dim(additional_key_value_mask, (0, seq_len), dim = -1, value = True)
1809
+ else:
1810
+ input_mask = cat((additional_key_value_mask, input_mask), dim = -1)
1803
1811
 
1804
1812
  # determine masking
1805
1813
 
@@ -2426,6 +2434,7 @@ class AttentionLayers(Module):
2426
2434
  attn_bias = None,
2427
2435
  deep_embeds_and_ids: tuple[nn.Parameter, Tensor] | None = None,
2428
2436
  self_attn_additional_kv: list[tuple[Tensor, Tensor]] | None = None,
2437
+ additional_kv_mask = None,
2429
2438
  condition = None,
2430
2439
  in_attn_cond = None, # https://arxiv.org/abs/2105.04090
2431
2440
  layers_execute_order: tuple[int, ...] | None = None
@@ -2666,7 +2675,7 @@ class AttentionLayers(Module):
2666
2675
  # forward depending on layer type
2667
2676
 
2668
2677
  if layer_type == 'a':
2669
- out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, pos = pos, rotary_pos_emb = rotary_pos_emb, additional_key_values = next(iter_self_attn_kv, None), prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, attn_bias = attn_bias, value_residual = maybe_self_attn_value_residual, return_intermediates = True)
2678
+ out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, pos = pos, rotary_pos_emb = rotary_pos_emb, additional_key_values = next(iter_self_attn_kv, None), additional_key_value_mask = additional_kv_mask, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, attn_bias = attn_bias, value_residual = maybe_self_attn_value_residual, return_intermediates = True)
2670
2679
  elif layer_type == 'c':
2671
2680
  out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), value_residual = maybe_cross_attn_value_residual, **cross_attn_rotary_pos_emb, return_intermediates = True)
2672
2681
  elif layer_type == 'f':
File without changes
File without changes