x-transformers 2.3.9__tar.gz → 2.3.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. {x_transformers-2.3.9 → x_transformers-2.3.10}/PKG-INFO +1 -1
  2. {x_transformers-2.3.9 → x_transformers-2.3.10}/pyproject.toml +1 -1
  3. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/continuous.py +5 -4
  4. {x_transformers-2.3.9 → x_transformers-2.3.10}/.github/FUNDING.yml +0 -0
  5. {x_transformers-2.3.9 → x_transformers-2.3.10}/.github/workflows/python-publish.yml +0 -0
  6. {x_transformers-2.3.9 → x_transformers-2.3.10}/.github/workflows/python-test.yaml +0 -0
  7. {x_transformers-2.3.9 → x_transformers-2.3.10}/.gitignore +0 -0
  8. {x_transformers-2.3.9 → x_transformers-2.3.10}/LICENSE +0 -0
  9. {x_transformers-2.3.9 → x_transformers-2.3.10}/README.md +0 -0
  10. {x_transformers-2.3.9 → x_transformers-2.3.10}/data/README.md +0 -0
  11. {x_transformers-2.3.9 → x_transformers-2.3.10}/data/enwik8.gz +0 -0
  12. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/all-attention.png +0 -0
  13. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/attention-on-attention.png +0 -0
  14. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/cosine-sim-attention.png +0 -0
  15. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/deepnorm.png +0 -0
  16. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/dynamic-pos-bias-linear.png +0 -0
  17. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/dynamic-pos-bias-log.png +0 -0
  18. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/dynamic-pos-bias-sinusoidal.png +0 -0
  19. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/dynamic-pos-bias.png +0 -0
  20. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/enhanced-recurrence.png +0 -0
  21. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/fcm.png +0 -0
  22. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/ffglu.png +0 -0
  23. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/flash-attention.png +0 -0
  24. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/gate_values.png +0 -0
  25. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/gating.png +0 -0
  26. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/length-extrapolation-scale.png +0 -0
  27. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/macaron-1.png +0 -0
  28. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/macaron-2.png +0 -0
  29. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/memory-transformer.png +0 -0
  30. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/normformer.png +0 -0
  31. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/pia.png +0 -0
  32. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/qknorm-analysis.png +0 -0
  33. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/resi_dual.png +0 -0
  34. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/residual_attn.png +0 -0
  35. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/rezero.png +0 -0
  36. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/rotary.png +0 -0
  37. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/sandwich-2.png +0 -0
  38. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/sandwich.png +0 -0
  39. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/sandwich_norm.png +0 -0
  40. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/scalenorm.png +0 -0
  41. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/talking-heads.png +0 -0
  42. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/topk-attention.png +0 -0
  43. {x_transformers-2.3.9 → x_transformers-2.3.10}/images/xval.png +0 -0
  44. {x_transformers-2.3.9 → x_transformers-2.3.10}/tests/test_x_transformers.py +0 -0
  45. {x_transformers-2.3.9 → x_transformers-2.3.10}/train_belief_state.py +0 -0
  46. {x_transformers-2.3.9 → x_transformers-2.3.10}/train_copy.py +0 -0
  47. {x_transformers-2.3.9 → x_transformers-2.3.10}/train_entropy_tokenizer.py +0 -0
  48. {x_transformers-2.3.9 → x_transformers-2.3.10}/train_enwik8.py +0 -0
  49. {x_transformers-2.3.9 → x_transformers-2.3.10}/train_length_extrapolate.py +0 -0
  50. {x_transformers-2.3.9 → x_transformers-2.3.10}/train_parity.py +0 -0
  51. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/__init__.py +0 -0
  52. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/attend.py +0 -0
  53. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/autoregressive_wrapper.py +0 -0
  54. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/belief_state_wrapper.py +0 -0
  55. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/dpo.py +0 -0
  56. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/entropy_based_tokenizer.py +0 -0
  57. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/multi_input.py +0 -0
  58. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/neo_mlp.py +0 -0
  59. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/nonautoregressive_wrapper.py +0 -0
  60. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/x_transformers.py +0 -0
  61. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/xl_autoregressive_wrapper.py +0 -0
  62. {x_transformers-2.3.9 → x_transformers-2.3.10}/x_transformers/xval.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: x-transformers
3
- Version: 2.3.9
3
+ Version: 2.3.10
4
4
  Summary: X-Transformers
5
5
  Project-URL: Homepage, https://pypi.org/project/x-transformers/
6
6
  Project-URL: Repository, https://github.com/lucidrains/x-transformers
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "x-transformers"
3
- version = "2.3.9"
3
+ version = "2.3.10"
4
4
  description = "X-Transformers"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -42,10 +42,9 @@ def masked_mean(t, mask):
42
42
  # probabilistic loss fn
43
43
 
44
44
  class GaussianNLL(Module):
45
- def forward(self, pred, target):
45
+ def forward(self, pred, target, eps = 1e-5):
46
46
  mean, var = pred
47
- dist = Normal(mean, var)
48
- return -dist.log_prob(target)
47
+ return F.gaussian_nll_loss(mean, target, var)
49
48
 
50
49
  # main classes
51
50
 
@@ -271,7 +270,9 @@ class ContinuousAutoregressiveWrapper(Module):
271
270
 
272
271
  if self.probabilistic:
273
272
  mean, var = last_output
274
- last_output = torch.normal(mean, var * temperature)
273
+ stddev = var.clamp(min = 1e-5).sqrt()
274
+
275
+ last_output = torch.normal(mean, stddev * temperature)
275
276
 
276
277
  out = cat((out, last_output), dim = -2)
277
278
 
File without changes